Topologically Enabled Superconductivity
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Majorana zero modes are a much sought after consequence of one dimensional topological super
conductivity. Here, we show that, in turn, zero modes accompanying dynamical instanton events strongly

enhance in some cases even enable

superconductivity. We find that the dynamics of a one dimensional

topological triplet superconductor is governed by a @ term in the action. For isotropic triplets, this term
enables algebraic charge 2e superconductivity, which is destroyed by fluctuations in nontopological
superconductors. For anisotropic triplets, zero modes suppress quantum phase slips and stabilize
superconductivity over a large region of the phase diagram. We present predictions of correlation
functions and thermodynamics for states of topologically enhanced superconductivity.

One-dimensional topological p-wave superconductors
are widely proposed as building blocks for quantum
information processing [1-8]. While proximity-induced
superconductivity is discussed most frequently, the pros-
pect of intrinsic superconductivity in one-dimensional
structures would certainly allow for more versatile archi-
tectures. However, despite the obvious challenge of iden-
tifying the right material, there seems to be a more
fundamental limitation to such an approach. In low
dimensions the influence of fluctuations is very strong.
The impact of order-parameter fluctuations on one-dimen-
sional topological superconductivity has been extensively
studied for the spinless p-wave case [9—12] and it has been
demonstrated that vacuum tunneling by 27 quantum phase
slips (QPS) is suppressed in these systems [10,13], thus
enlarging the superconducting domain in the phase dia-
gram. However, for isotropic triplet superconductivity the
role of fluctuations in the spin sector is ordinarily so strong
as to completely destroy 2e superconductivity [14—17].

In this Letter, we show that charge-2e topological triplet
superconductivity in one-dimensional quantum wires
becomes possible while it is not allowed for nontopological
systems. The latter can only undergo vestigial charge-4e
pairing in a much reduced regime of the phase diagram; see
Figs. 1(a) and (b). Zero modes, primarily discussed as static
Majorana bound states of topological superconductivity,
emerge in our analysis as dynamical events accompanying
instantons of the order parameter field. They are shown to
suppress order-parameter fluctuations via destructive inter-
ference due to a Berry phase, enabling the charge-2e
superconducting state. This Berry phase leads to a topologi-
cal term in the field theory, a € term [18,19]. For the
topological angle we find € = z for topological supercon-
ductors and € = 0 for nontopological ones. We obtain this

result using non-Abelian bosonization and, using a physi-
cally more transparent reasoning, by demonstrating that
dynamical zero modes give rise to a complex QPS fugacity.
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FIG. 1. Ground state phase diagram of the trivial (a), (c) and
topological (b), (d) superconductor. The top (bottom) row depicts
the spin isotropic (strongly anisotropic) case. The axes correspond
to the renormalized, i.e., experimentally relevant, charge (K.)
stiffness, and the bare (K?) and renormalized (K ,) spin stiffness in
the isotropic and the anisotropic case, respectively. All super
conducting states have algebraic, quasi long range order. While in
the isotropic case only vestigial charge 4e superconductivity is
allowed for topologically trivial systems, a € term in the theory
enables charge 2e pairing of topological superconductors, which
occurs in amuch larger domain of the phase diagram. At finite spin
anisotropy, disorder inducing quantum phase slips are suppressed
by zero modes, stabilizing superconductivity.
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FIG. 2. Selected topologically nontrivial order parameter configurations in space time [27]. Left panel: skyrmion of topological
charge Q = 1. Middle and right panel Q = i% merons, i.e., spin vortices that differ by the orientation of the spin inside the core.

These findings occur for systems that are isotropic in
spin space where we exploit a connection to Haldane’s
conjecture [20] for spin chains. Including an anisotropy in
spin space, disorder-inducing configurations are sup-
pressed by zero modes that are more akin to what is
known for spinless systems [10,13].

Model.—We study a time reversal invariant p-wave spin
triplet superconductor in one dimension at zero temperature.
The Bogoliubov—de Gennes Hamiltonian for given space-
and time-dependent order-parameter configuration A(x, 7)
in the Nambu spinor basis ¥ = (w4, w .y . —yy)" is

. X,T)-0
H[A]:< mH AT 5x>’ (1)
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with m the fermion mass and p the chemical potential. The
order parameter takes the form of a real unit vector n, which
describes the orientation of the Cooper pair spin, times a
global phase 9, i.e., A = |A|e'’n, with the pairing strength
|A|. p < Ocorresponds to a trivial and 4 > 0 to a topological
superconductor [21]. The order parameter manifold is
M = (8! x §?)/Z,, where the Z, quotient stems from
the equivalence of field configurations (9,n)~ (9+
7, —n) [22,23]. The fermionic dynamics is then governed
by the action

Sy = %/ drdx ¥ (0, + H)Y. (2)

In low-dimensional intrinsic superconductors, order-param-
eter fluctuations are important and are governed by the
nonlinear s-model (NLoM)
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Here, KY and K9 denote the bare stiffnesses of the charge
and spin sector respectively. v, and v, are the respective
velocities. We use K, ; for the renormalized stiffnesses.

This model is a generalization of previous descriptions
for spinless fermions [11,24,25].

Topological field configurations.—The fields 9, n that
describe U(1)-phase and spin of a Cooper pair allow for
several distinct QPSs, shown in Fig. 2: we call vortices of 9
with winding v,. in space-time 2zv,. “charge QPSs.” Space-
time “skyrmions” in r have integer winding Q, which relies
on 7,(S?) = Z. The evaluation of the partition function
contains a sum over all possible topological sectors,
determined by a set of numbers N = {v,., Q,---} [19],

z=>Y" / DIyDnyZL[9,n)e 10 (4)
N

where [DIyDny... denotes the integral over smooth
bosonic fluctuations on top of the topological field con-

figuration and Z/,[9, n] is the fermionic partition sum in a
given bosonic background of fixed N. Notice, all fluctua-
tions around the trivial state, including these instantons,
must be taken into account as long as their action is finite.
Estimating the core size of QPS we obtain, following
Ref. [26], rops & (K,0/27Enq)"/?, and the core action
SQPS ~ K ¢ / 2.

Topologically trivial superconductivity.—To analyze the
model it is tempting to argue that fermions are gapped
and should not change the universal behavior of order-
parameter fluctuations. Then, the NLoM of Eq. (3) implies
(A) = 0 with exponentially decaying correlations, caused
by fluctuations in the spin sector. As last resort the system
can still enter a state of algebraic vestigial order charac-
terized by the composite A-A below a Berezinskii-
Kosterlitz-Thouless (BKT) transition [22,23]. However,
this state, where two spin triplets form a charge-4e spin
singlet, can be destroyed by the proliferation of z, i.e.,
fractional QPSs. In our units, the QPS configurations with
smallest winding number v, become relevant at a critical
stiffness of K. = 2/12. Hence, in order to stabilize 4e order
with v, = 1/2 fractional vortices, the charge stiffness has to
be 4 times larger compared to the usual BKT transition,
which implies K. = 8; see the left panel of Fig. 1. This
behavior, deduced from the two-dimensional classical
model, is indeed correct in the topologically trivial phase.



Yet, as we will see next, it does not apply to topological
superconductors.

In the topological phase, order-parameter configurations
with nontrivial topology in space-time play a key role
[28-34], requiring us to carefully distinguish their effects
and their interplay with the fermionic degrees of freedom.

Integrating out fermions.—In order to systematically
integrate out fermions in a one-dimensional system, we
employ non-Abelian bosonization [35], which manifestly
preserves the symmetry properties of interacting fermion
theories and is expressed in terms of the Wess-Zumino-
Novikov-Witten (WZNW) action.We employ this method
to effectively eliminate the massive degrees of freedom
while retaining the effect of zero modes. The degrees of
freedom of the WZNW theory are group valued boson
fields defined on the orthogonal group O(4). The matrix
components of this field can be related to fermionic
currents by g;; = (=i/M)yiy), where yg, y; are right-
and left-moving Majorana fermions that can be constructed
from the microscopic fermions, and M is a regularization
dependent mass scale. The degrees of freedom described by
the Bogoliubov—de Gennes Hamiltonian [Eq. (1)] deep in
the topological phase are exactly four right-moving and
four left-moving Majorana fermions, which explains the
manifold O(4). Effectively, the field g encodes the fer-
mionic fluctuations and the opening of a gap corresponds to
breaking the chiral symmetry, i.e., individual components
of g develop a finite expectation value. The action with
coupling constant y reads

1
Sw g / drdxtr],g0"g '] +T, (5)

where the Wess-Zumino term I'[g] is defined by extending
the domain of the group valued field g€ O(4) to a
hemisphere of the three-dimensional unit sphere with $?
as boundary:

F—;::i/d3rtr[g 1(6”9)9 l(ayg)g 1(()/) ). (6)

The pairing term is bosonized and introduces a (9, n)
dependent mass term for g. In the adiabatic limit, g follows
the variation of the background fields (8,n) and thereby
traces the equator of O(4). The details of the subsequent
analysis are given in the Supplemental Material [36]. The
first term in Eq. (5) yields terms identical to the NLoM in
Eq. (3), i.e., it yields a renormalization of the stiffnesses due
to fermions. More interesting is the second term. When
constrained to the equator, the Wess-Zumino term [Eq. (6)],
which measures the solid hyperangle on O(4) normalized
to 2z, may only take values of 7 mod 2z. We find that

0
Mo Sy — i4—/ dedxn- (0 xom),  (7)
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where 6 = z. For a topologically trivial superconductor we
obtain instead @ = 0. Equation (7) has profound implica-
tions. According to Haldane’s conjecture [20], where 0 =
occurs in the same action for n for half-integer spins [37],
Sy leads to a critical state described by a SU,(2) WZNW
theory [38,39] rather than a state with finite correlation
length. Hence, algebraic charge-2e¢ superconductivity
becomes possible for topological superconductors while
it is forbidden in topologically trivial ones.

Before we discuss further implications of this finding, we
offer an alternative and physically more transparent deri-
vation of the € term. We consider nontrivial skyrmion
configurations, but in this context it is particularly con-
venient to introduce a soft easy-plane anisotropy [40]. This
anisotropy yields spin-vortex configurations but allows n to
escape the plane in a core region, whose size is determined
by the strength of the anisotropy, avoiding a singularity.
There are two kinds of 2z spin QPSs distinguished by the
orientation of the vector in the core (£n,), called “meron”
and “antimeron” with skyrmion winding number Q = + %;
see Fig. 2. The fermionic operator K = 0, + H acts in
space and (imaginary) time. Since the Nambu spinor
satisfies the reality condition W' = W/C (where C =
6’7’ with ¢' acting on spin and 7' on Nambu degrees of

freedom), the fermionic partition function Z4[9.n] =
Pf(CK[9,n]) follows directly from the Pfaffian of the
fermionic kernel. Hence, in the case that the fermionic
kernel possesses a zero eigenvalue mode the fermionic
partition function vanishes. As summarized in [36], inte-
grating out fermions yields in the limit of large anisotropy
that two zero modes are shifted to finite eigenvalue in such
a manner that

ZL[9.n]) < e Q. (8)

With this complex fugacity, the contribution of 2z spin
QPS vanishes upon summation over Q, the internal degree
of freedom of the vortex [40]. Within a field theoretical
language, this behavior is precisely the effect that follows
from a 6 term in the action, Sy, = i0Q, where Q=
Jdrdxn - (d,n x d,n)/(4x) is the associated topological
charge [19]. It reveals that the € term yields destructive
interference of disordering spin configurations.

In addition to nontrivial spin textures, we can also analyze
charge vortices or combinations of charge and spin vortices.
We find that one can map this dynamic problem onto an
effective Hermitian single-particle Hamiltonian H ¢ in two
dimensions (x,7). H.; can then be reduced to the two-
dimensional Fu-Kane Hamiltonian of a 3D topological
insulator surface state in contact with an s-wave super-
conductor [41]. Established results for zero modes due to
static vortex configurations of the Fu-Kane Hamiltonian can
now be used to obtain the number and character of zero
modes for K. Since one coordinate of this two-dimensional
problem corresponds to (Euclidean) time, those are again



dynamical instanton events. The details of this rather
powerful but straightforward analogy are summarized in
the Supplemental Material [36]. It yields, for example, two
zero modes of K for a charge-27z QPS (v. = 1) and one zero
mode for a combined 2z half QPS (v, =v, = %), with
winding number of a planar spin vortex v,. More generally
we obtain a zero mode for each odd v, +v,. These
dynamical zero modes can be understood as protected level
crossings under the adiabatic variation of a parameter.
Perturbations that do not destroy the level crossing also

do not lift the dynamic zero modes. Hence, Z/,[9, n] = 0 for
these single-defect configurations and the corresponding
vortex fugacities vanish. More importantly, vortex-
antivortex pairs do not contribute to a BKT transition as
the exponentially small overlap between modes gives rise to
alinear, confining potential overruling the usual logarithmic
interaction. Our mapping to the Fu-Kane model can also be
applied to spinless p-wave superconductors where it agrees
with past results on QPSs in this system [10,13].
Quantum phase diagram.—If we combine the 8 term and
the presence of zero modes due to charge vortices, we can
determine the phase diagrams shown in Fig. 1. In the
topologically trivial phase, 2e superconducting order is
destroyed because n fields are gapped but 4e superconduct-
ing order may exist for K. > 8. In contrast, in the
topological phase the n fields are algebraically ordered
and the charge-2e superconductor persists. A BKT tran-
sition driven by v, = 2, i.e., 4z, QPS disorders the phase
sector for K, < 2/v% = 1/2. The resulting state possesses
vestigial order of the composites AlAy + A}TAX, A;’CAX—

A; Ay, and Al A, . Itis a charge insulator and a spin-nematic
state. Hence, the critical stiffness for the destruction of
superconductivity is 16 times lower than in the trivial case;
see Fig. 1(b).

Correlators.—Let us discuss experimentally and numeri-
cally measurable consequences of the topological phases in
terms of bosonic and fermionic correlators. In topologically
trivial superconductors, fermions are gapped and fermion
correlators decay exponentially. This is qualitatively
different for topological superconductors. The power-law
behavior of the single-fermion correlator is again caused by
dynamical zero modes. We obtain

TS
=

Wo(PW(0)) ~ S, 5 7 7, 9)

where r = \/x* + v2z* denotes the Euclidean norm of a
point (x,7) in space-time. For simplicity we assumed
v, = v,.. Hence, the topological superconductor possesses
gapless charged fermionic excitations. This is in contrast to
nodal excitations that can appear in higher dimensions and
are charge neutral. However, experiments that measure
the phase coherence, such as flux quantization or the ac
Josephson effect are expected to detect a condensate
charge of 2e.

Equation (9) implies a power-law dependence on energy
in the tunneling density of states p(E), which can be
detected in scanning tunneling microscopy measurements,

1 Ke o
p(E) ~ ET7 2, E>0. (10)
Similarly, we expect power-law dependence on temperature
of various transport coefficients, such as the thermal
conductivity [42].

Notice that, nonetheless, the system cannot be described
as a Tomonaga-Luttinger liquid of charge-e fermions, since
the behavior of two-particle correlators differs. Zero modes
also nontrivially affect two-particle correlators in the
topological state [36]. Specifically, we find the tunneling
density of states for tunneling a singlet and triplet Cooper
pair into the wire

p(E)~ BN (B~ B (1)

The exponent for the singlet pair-correlator differs from
the Luttinger liquid result (extracting the Luttinger para-
meters from the one-particle correlator) for general values
of K, pti ~ E'*(1/2K) In the 2e-ordered phase the singlet
correlations are less singular than in a conventional
Luttinger liquid. At low energies the amplitude for tunnel-
ing triplet pairs into the system is enhanced compared to the
one for singlet pairs. A detailed derivation is given in [36].

Easy axis anisotropy.—We already discussed an addi-
tional easy axis anisotropy S,, = 4 f drdxn? when we
offered an alternative derivation of the 6 term in Eq. (8).
The fact that topological superconductivity is stabilized
over the topologically trivial case can also be seen at 4 > 0.
It is, however, more similar to what is known from spinless
p-wave superconductors [10,13], since the spin sector is
now also governed by a U(1) order parameter and charge-
2e superconductivity becomes possible for both topological
and nontopological superconductors. However, at small
stiffnesses, algebraic order is now destroyed by the pro-
liferation of three kinds of space-time topological defects:
27 charge, spin, or combined vortices; see also Refs. [43—
46]. This yields the four possible phases presented in
Fig. 1(c) and 1(d): a completely ordered (all QPSs
expelled), a completely disordered (all QPSs proliferate),
and two vestigial phases (only one kind of QPS prolifer-
ates). Physically, the resulting phases can be identified as a
spin-nematic charge-2e superconductor, where the two
gapless excitations are spin-1 Cooper pairs, a correlated
insulator, a charge-4e superconductor with gapless excita-
tions carrying charge 4e and spin 0, and a spin-nematic
phase similar to the isotropic case. While thermodynami-
cally the phase diagram of topological and trivial limits is
similar, in the former case 2z charge, spin, or combined
QPSs are suppressed by dynamic zero modes. Hence, the
leading transitions are effected only by 4z QPSs, and as a
result we find again that the superconducting state is



stabilized for the topological phase. Similar to the isotropic
case, zero modes lead to gapless fermion and two-particle
excitations in the 2¢ phase. In the vestigial charge-4¢ phase,
single fermions are gapped, but the singlet pair-correlator
remains gapless. There is another distinction between the
topological and the trivial vestigial phases: in the topo-
logical case the bosonic operator ¢ (x) [¢(x)], which is the
dual field to the phase 9,(x) [9(x)], develops bona fide long
range Z, order in the vestigial charge (spin) phase on the
top left (bottom right) of the phase diagram. The reason is
that the partial disorder is induced by 4z spin (charge)
QPSs that preserve a remnant Z, order. Physically, these
order parameters correspond to the magnetization (charge)
integrated up to a point x along the 1D system—thus, they
are nonlocal order parameters.

Conclusion.—We find that superconducting fluctuations
in topological and topologically trivial superconductors are
qualitatively different, leading to distinct phase boundaries,
symmetry breaking, and excitation spectra. The common
theme is that superconductivity in topological systems is
much more robust against fluctuations. The reason is the
crucial role of dynamic zero modes. The most dramatic
effect is the emergence of otherwise forbidden charge-2e
superconductivity for isotropic triplets caused by a topo-
logical term in the action. It yields algebraic superconduct-
ing order for a stiffness 16 times lower than charge-4e
superconductivity in the nontopological counterpart.
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