
Vol.:(0123456789)

SN Computer Science           (2022) 3:445  
https://doi.org/10.1007/s42979-022-01338-z

SN Computer Science

ORIGINAL RESEARCH

An Empirical Evaluation of Constrained Feature Selection

Jakob Bach1   · Kolja Zoller2 · Holger Trittenbach1 · Katrin Schulz2,3 · Klemens Böhm1

Received: 18 March 2022 / Accepted: 19 July 2022 
© The Author(s) 2022

Abstract
While feature selection helps to get smaller and more understandable prediction models, most existing feature-selection tech-
niques do not consider domain knowledge. One way to use domain knowledge is via constraints on sets of selected features. 
However, the impact of constraints, e.g., on the predictive quality of selected features, is currently unclear. This article is 
an empirical study that evaluates the impact of propositional and arithmetic constraints on filter feature selection. First, we 
systematically generate constraints from various types, using datasets from different domains. As expected, constraints tend 
to decrease the predictive quality of feature sets, but this effect is non-linear. So we observe feature sets both adhering to 
constraints and with high predictive quality. Second, we study a concrete setting in materials science. This part of our study 
sheds light on how one can analyze scientific hypotheses with the help of constraints.

Keywords  Feature selection · Constraints · Domain knowledge · Theory-guided data science

Introduction

Motivation

Feature selection targets at identifying the variables in a 
dataset that are most useful for predictions [23]. Feature 
selection can increase prediction quality, reduce hardware 
requirements and ease understanding of the data [8]. Most 

feature-selection algorithms optimize a quantitative qual-
ity criterion, like the accuracy of predictions. However, it 
also has become important to have constraints which sets 
of selected features must adhere to [19, 30, 36, 43]. For-
mulating such constraints typically requires familiarity with 
the respective domain. We see at least four situations when 
using constraints is helpful: 

1.	 Firm domain knowledge In many scientific settings, 
domain knowledge is available [33, 60]. One kind of 
domain knowledge is firm, established knowledge of sci-
entific communities. To obtain so-called physically con-
sistent models, researchers want to express known facts 
explicitly so that machine learning considers this knowl-
edge. For feature selection, one can make relationships 
between features explicit in the form of constraints. To 
illustrate, a researcher might know that some features 
are redundant and thus want to rule out combinations 
of these features. This idea of considering established 
knowledge has gained much attention in the literature 
recently [33].

2.	 Hypotheses ‘Domain knowledge’ also includes hypoth-
eses, i.e., ideas or expectations that a domain expert 
would like the data-analysis process or, more specifi-
cally here, a feature-selection algorithm to respect. An 
example is that researchers are hypothesizing that 
certain features are redundant, and they want to study 

 *	 Jakob Bach 
	 jakob.bach@kit.edu

	 Kolja Zoller 
	 kolja.zoller@kit.edu

	 Holger Trittenbach 
	 holger.trittenbach@kit.edu

	 Katrin Schulz 
	 katrin.schulz@kit.edu

	 Klemens Böhm 
	 klemens.boehm@kit.edu

1	 Department of Informatics, Karlsruhe Institute 
of Technology (KIT), Am Fasanengarten 5, 
76131 Karlsruhe, Baden‑Württemberg, Germany

2	 Department of Mechanical Engineering, Karlsruhe Institute 
of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, 
Baden‑Württemberg, Germany

3	 Faculty of Mechanical Engineering and Mechatronics, 
Karlsruhe University of Applied Sciences, Moltkestraße 30, 
76133 Karlsruhe, Baden‑Württemberg, Germany

http://orcid.org/0000-0003-0301-2798
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01338-z&domain=pdf


	 SN Computer Science           (2022) 3:445   445   Page 2 of 25

SN Computer Science

whether subsets of features without these hypothesized 
redundancies suffice for predictions. To do this, they can 
formulate a respective constraint: If prediction quality 
drops significantly with feature sets respecting the con-
straint, this speaks against the hypothesis.

3.	 Preferences Researchers might have specific preferences, 
or there are external requirements. An example is that 
they want to inspect the feature-selection results later 
manually, and they only can do this efficiently if the 
results have a particular structure.

4.	 Alternatives Constraints are helpful to implement the 
‘alternate’ paradigm, i.e., targeting at analysis results 
that are different from ones already obtained earlier, to 
obtain a broader understanding of the scientific phenom-
enon under investigation. Researchers have studied this 
in contexts like association rules and clustering [4], and 
it is useful for feature selection as well. In other words, 
constraints may explicitly exclude the currently selected 
feature set, and the feature-selection algorithm must find 
an alternative. Such constraints can yield different fea-
ture sets that have similar prediction quality.

In all four cases, constraints tend to be abstract and do 
not prescribe a concrete feature set yet. Constraints also 
give way to interpretability, a recent and highly relevant 
topic in machine learning [7, 17]. For instance, aligning 
sets of features with domain knowledge, the first situation, 
makes things easier to understand for a domain expert. In 
general, the notion of ‘constraint’ is broad, as constraints 
can be domain-independent as well as domain-specific. 
For instance, establishing an upper bound on the number 
of selected features is a domain-independent constraint.

Example 1  This example features a domain-specific con-
straint in materials science. Specifically, we look at the 
phenomenon that the microstructure of a material specimen 
changes if a load is applied and the material deforms. The 
evolution of the microstructure is a complex process, at pre-
sent typically analyzed with simulations with high compu-
tational costs [57]. Prediction models may help uncover and 
describe relationships between physical quantities in such 
simulation datasets. Feature selection is of great interest 
here, as the set of quantities is large, and it is worthwhile to 
narrow it down to a small set of predictors for a target quan-
tity. The physical mechanisms of deformation are related to 
so-called twelve slip systems, i.e., twelve planes and direc-
tions in space. For most physical quantities, one can derive 
twelve features correspondingly. However, domain experts in 
our team have come up with the hypothesis that not all slip 
systems are needed to describe the microstructural evolution. 

Constraints allow integrating this hypothesis into feature 
selection. One can now formulate the following constraint: 
“For each physical quantity, select at most two out of those 
twelve features.”

Problem Statement

In this article, we evaluate the impact of constraints on 
feature selection empirically, in a domain-specific as well 
as in a domain-independent study. As a shorthand, we use 
the term constrained feature selection. We assume the con-
straints to be pre-defined before feature selection, e.g., based 
on the requirements of domain experts. Thus, constraints 
should not improve the predictive quality of selected fea-
tures in usual cases. Instead, constraints should fulfill dif-
ferent purposes, like improving the interpretability of fea-
ture-selection results. In fact, constraints prune feature sets 
that would be allowed without constraints. Therefore, con-
strained feature selection should be seen as complementary 
rather than a competitor to traditional feature selection. In 
particular, constraints can be combined with various existing 
feature-selection techniques.

Ideally, the quality of the features selected under con-
straints is similar to the unconstrained case. However, it can 
become significantly lower. An important question is if there 
are sweet spots, i.e., high-quality feature sets that adhere to 
the given constraints. Put differently, the exact relationship 
between constraints and their characteristics on the one hand 
and that decrease of quality on the other hand currently tends 
to be unclear. Next, the number of constraints one can for-
mulate is vast, as follows: First, there are various constraint 
types, e.g., different logical operators like AND, OR, etc., to 
provide a simple example. Second, one can formulate con-
straints for different subsets of the feature set. Third, one can 
have several constraints simultaneously, resulting in inter-
actions between constraints. All this calls for a systematic 
evaluation of how constraints affect feature-selection results.

Constraints have been used in many areas of knowledge 
discovery like pattern mining [44] and clustering [12]. In 
feature selection, integrating constraints has also been a topic 
for years. But existing work tends to aim at just one constraint 
type, like group constraints [15, 29, 56, 64, 69], cost con-
straints [30, 43, 48, 50, 68] or cardinality constraints [34, 36, 
54, 63], but does not systematically cover the effects of con-
straints on feature selection. The focus of that work tends to 
be on developing efficient algorithms that take (specific) con-
straints into account. In this article, in turn, we empirically 
evaluate the impact of constraints on the feature-selection 
results. We consider various constraint types and explicitly 
look at combinations of constraints and their effects.



SN Computer Science           (2022) 3:445 	 Page 3 of 25    445 

SN Computer Science

Challenges

Evaluating constrained feature selection is challenging for 
several reasons: (C1) size of solution space, (C2) size of 
evaluation space, and (C3) choice of evaluation metrics. 
Challenge (C1) (size of solution space) refers to the fact 
that feature selection is a combinatorial problem. The pres-
ence of constraints does not change this. To illustrate, if one 
formulates constraints with propositional logic, then it is an 
NP-complete problem only to determine if there is any valid 
feature set at all [11]. When combining constraints, the space 
of valid feature sets can take an arbitrary shape and volume. 
Thus, finding the best feature set under constraints often 
is costly. Challenge (C2) (size of evaluation space) refers 
to the large number of potential constraints. The challenge 
is to develop an experimental design that covers this space 
broadly and systematically. Just working with a few manu-
ally defined constraints from a particular use case might not 
suffice to obtain general insights.

Challenge (C3) (choice of evaluation metrics) is how to 
describe and measure the impact of constraints. This chal-
lenge is twofold: First, one needs to identify interesting 
characteristics of constraints, e.g., how many feature sets 
they prune, and quantifying them may not always be obvi-
ous. Second, one needs to characterize the feature-selection 
results, e.g., the predictive quality of a feature set. For both 
categories, it is not clear which metrics one should use.

Contributions

Having started with a case in materials science, we have 
seen the usefulness of applying constraints to feature selec-
tion. However, as mentioned in Challenge (C2), it is difficult 
to systematically evaluate the impact of constraints when 
focusing on one particular domain and the (relatively few) 
constraints occurring there. So we make two contributions: 
We conduct a systematic, domain-independent study as well 
as a domain-specific case study. The first study lets us gener-
ally analyze the impact of constraints on feature selection. 
We use 35 regression datasets from various domains. For 
these datasets, we generate synthetic constraints systemati-
cally. We vary the number of constraints, constraint types, 
and features used when formulating constraints. In particu-
lar, we use a diverse set of constraints formulated in propo-
sitional logic and linear arithmetic. Such kinds of constraints 
are typical in related work. Next, we focus on filter feature 
selection, which is computationally efficient and independ-
ent of the choice of a prediction model [37]. We analyze the 
relationships between various characteristics, describing the 
constraints and the feature-selection results.

Second, we conduct a case study in materials science to 
evaluate the impact of constraints for a concrete use case. 

Materials science is a domain where literature argues for 
integrating domain knowledge into machine learning [41, 
60]. In our case study, we apply an established numeri-
cal simulation method to a material specimen subjected 
to tensile loading. The evolution of the microstructural 
processes in the material is computed and post-processed 
to extract a dataset. The dataset is high-dimensional, con-
taining 135 features. The physical processes behind the 
data are complex and currently not fully understood. This 
means that the constraints used here mainly are domain-
specific hypotheses. We evaluate the hypotheses by ana-
lyzing how the corresponding constraints affect feature 
selection.

Results

We have both concrete results regarding the impact of 
constraints as well as insights on a methodological level, 
which might help domain scientists wanting to do con-
strained feature selection. Using synthetic constraints, we 
observe that the impact of constraints is similar for all 
datasets, i.e., observations tend to generalize over datasets. 
At the same time, we see that this impact strongly depends 
on the constraint type. For example, some constraint types 
decrease the quality of the selected features much more 
than others. An overall trend is that the quality of fea-
ture sets decreases if constraints become stronger, as one 
would expect. However, our experiments show that there is 
a positive side to this: Namely, the effect is not necessarily 
linear, i.e., even if constraints prune a significant fraction 
of feature sets, the quality of the features does not neces-
sarily decrease to the same extent. In other words, there 
seem to be sweet spots with high-quality feature sets. This 
means that it might be worthwhile for domain experts to 
look out for such spots.

In our case study, none of our domain-specific hypoth-
eses, expressed as constraints, decreases prediction qual-
ity by much. This means that the data does not invalidate 
any hypothesis. Domain scientists could now think about 
more elaborate (but at the same time more involved) ways 
of verifying the hypotheses with more rigor. We find this 
encouraging as well—one can interpret our results as 
an indication that all this is a way to evaluate scientific 
hypotheses, at least in a preliminary fashion. To carry out 
such analyses, looking back at our case study, we now rec-
ommend formulating constraints not necessarily upfront 
but after seeing unconstrained results, and refining the 
constraints iteratively. Such an approach should yield a 
more focused search for feature sets. Finally, some con-
straints trigger the selection of features that differ from the 



	 SN Computer Science           (2022) 3:445   445   Page 4 of 25

SN Computer Science

ones in the unconstrained case. In other words, the result 
are alternative feature sets of similar quality. We take this 
as a sign that the ‘alternate’ paradigm is feasible in the 
context of feature selection and benefits domain experts.

All experimental data1 and our code2 are available online.

Paper Outline

“Specification of Problem” specifies the problem of con-
strained feature selection. “Related Work” summarizes 
related work. “Study with Synthetic Constraints” presents 
the design and results of the domain-independent study with 
synthetic constraints. “Case Study in Materials Science” fea-
tures the case study in materials science. “Conclusions and 
Future Work” concludes.

Specification of Problem

Objective Function

Feature Selection

Let X ∈ ℝ
m×n be a dataset in the form of a matrix. Each 

row xi is a data object, and each column fj is a feature. In 
particular, we assume the features are already defined before 
training a prediction model rather than being extracted by 
the model. Further, let y ∈ ℝ

m be a vector representing the 
prediction target. With feature selection, one makes binary 
selection decisions sj ∈ {0, 1} for each feature, i.e., either do 
not select it or do select it. The vector s ∈ {0, 1}n combines 
all these selection decisions. The selected features form a 
feature set. The function Q(s, X, y) returns the quality of 
a feature set and should be maximized. Feature-selection 
approaches differ in their quality function Q(s, X, y) and 
the algorithm determining the optimal feature set. Two big 
categories of approaches are wrapper feature selection and 
filter feature selection. We focus on the latter in this article, 
as explained later.

Wrapper Feature Selection

With wrapper feature selection, Q(s, X, y) is evaluated by 
training a prediction model with the selected features [37]. 
These evaluations are part of a search that iterates over can-
didate feature sets, using a metaheuristic [2]. Because of the 
repetitions of the model training, wrapper feature selection 
is expensive. In addition, if the type of model is unknown, 

this is a black-box optimization problem. Thus, optimization 
algorithms cannot use the internal structure of the objective 
function. Instead, they can only observe its outputs.

Filter Feature Selection

Filter feature selection evaluates the quality Q(s,  X,  y) 
without prediction models. There are univariate as well as 
multivariate filter approaches [37]. Univariate filter feature 
selection breaks Q(s, X, y) down to the qualities qj(sj, fj, y) of 
individual features. One can compute these qualities inde-
pendently of each other. The overall quality of the feature 
set, Q(s, X, y), is an aggregate of the individual qualities, 
e.g., their sum. Thus, given the individual feature qualities, 
computing Q(s, X, y) is cheap. Next, one can use white-box 
optimizers here. For multivariate filter methods, one needs 
to consider relationships within groups of features. These 
relationships increase the number of terms in the objective 
function, so multivariate methods scale worse than uni-
variate approaches. For example, the number of pairwise 
relationships between features grows quadratically with the 
number of features. So, for optimizing Q(s, X, y), we focus 
on univariate filter feature selection in this article. However, 
to evaluate feature selection, we also train prediction models 
with the selected features. Next, in our case study in materi-
als science, we consider the pairwise correlation between 
features in the form of additional constraints.

As quality measure in this article, we take the absolute 
Pearson correlation |�fj,y| of each feature with the target vari-
able: qj(sj, fj, y) = sj ⋅ |�fj,y| This correlation measure results 
in a feature quality between zero and one, with zero denoting 
uninformative or de-selected features. Pearson correlation is 
one of the simplest and most common feature-quality meas-
ures. However, one could also use any other univariate score 
for filter feature selection instead. One example is mutual 
information, which also supports categorical features. In 
preliminary experiments with mutual information, we 
obtained results similar to those with absolute Pearson cor-
relation. So we stick to the latter for our detailed 
evaluation.

We now state the optimization objective as follows:

Constraints

Without constraints, the objective in Eq. (1) is trivial to 
optimize by selecting all features. By introducing con-
straints, one narrows down the number of valid feature sets. 
The remaining feature sets are the solutions of the optimi-
zation problem. In our work, we consider constraints in 

(1)max
s

Q(s,X, y) =

n∑

j=1

sj ⋅ |�fj,y|

1  https://​doi.​org/​10.​5445/​IR/​10001​48891.
2  https://​github.​com/​Jakob-​Bach/​Const​rained-​Filter-​Featu​re-​Selec​
tion.

https://doi.org/10.5445/IR/1000148891
https://github.com/Jakob-Bach/Constrained-Filter-Feature-Selection
https://github.com/Jakob-Bach/Constrained-Filter-Feature-Selection


SN Computer Science           (2022) 3:445 	 Page 5 of 25    445 

SN Computer Science

propositional logic and linear arithmetic. These two catego-
ries allow formulating various expressive constraints. In par-
ticular, all constraints proposed by the domain scientists in 
our case study can be formulated in that way. Additionally, 
propositional and linear-arithmetic constraints are typical in 
related work in software engineering. Finally, the nature of 
the objective function and the constraints still allow using 
white-box solvers, e.g., Satisfiability Modulo Theories 
(SMT) solvers. Many SMT solvers also support other logi-
cal theories to formulate constraints, e.g., arrays, bit vectors, 
or strings.

Propositional Constraints

Propositional constraints describe relationships between 
features with propositional logic. The logical val-
ues {False,True} represent the binary selection deci-
sions sj ∈ {0, 1} . One can now use logical operators like 
∧  (AND), ∨  (inclusive OR), ⊕  (XOR, the exclusive or), 
¬ (NOT), → (IMPLIES) and ↔ (IFF). For example, s1 → s2 
means that if Feature 1 is selected, then Feature 2 has to 
be selected as well. By combining the operators, one can 
also create formulas for groups of features. For example, 
(s4 ∧ s7 ∧ s10)⊕ (s2 ∧ s11) means that either the three fea-
tures from the first group or the two features from the second 
group have to be selected.

Arithmetic Constraints

Linear arithmetic allows the use of the four operators + 
(addition), − (subtraction), ⋅ (multiplication) and ≤ (less than 
or equal to). In the terminology of first-order logic, the first 
three operators are functions, returning another arithmetic 
value, while the inequality is a predicate, yielding a logical 
value. Linear arithmetic does not allow multiplication of two 
variables, as at least one operand has to be a constant [5]. 
The objective function in Eq. (1) also is an expression in 
linear arithmetic once the feature qualities |�fj,y| are com-
puted. In general, one can use linear-arithmetic constraints 
by assigning each feature a fixed value and formulating an 
inequality based on this. To illustrate, suppose that each fea-
ture has a measurement cost cj , and one wants to select a 
subset of features with a total cost below a threshold Cmax . 
This yields the following linear inequality:

For instance, such a situation occurs if feature values are 
obtained with sensors with different energy consumption, 
and the total amount of energy per measurement is limited.

Finally, one may use propositional and arithmetic con-
straints interchangeably in some situations. Think of a group 

(2)
n∑

j=1

sj ⋅ cj ≤ Cmax

of five features, and one wants to select at least one of them. 
One way to express this is an arithmetic inequality: the sum 
over selection decisions for these five features should be at 
least one. Another way to express this is with propositional 
logic, using the OR operator.

Experiments

We conduct two types of experiments: first, we systemati-
cally generate synthetic constraints on datasets from various 
domains. By doing so, we conduct a comprehensive evalu-
ation of the impact of constraints, independent from the 
domain. Second, we carry out a case study in the domain of 
materials science. In this study, we use constraints to analyze 
domain-related hypotheses.

Implementation

We implement our entire experimental pipeline in Python 
and make the code available online. We use the SMT theo-
rem prover Z3 [13], which is popular in related work in soft-
ware engineering. It can handle optimization problems in 
addition to checking satisfiability. Among other logical theo-
ries, it supports propositional logic and linear arithmetic, 
which suffices for our constraint types. However, our work 
does not depend on this particular solver; one can use any 
other solver with these capabilities. Next, while the objective 
function in Eq. (1) is easy to evaluate, finding valid feature 
sets under SMT constraints still is an NP-hard problem in 
general [5], even without optimization. However, developing 
strategies for SMT solving is beyond the scope of this paper. 
We rely on the search heuristics used in Z3 to address Chal-
lenge (C1) (size of solution space) efficiently.

Related Work

We review related work from three fields. We begin with 
data mining, where feature selection is a subfield, and con-
straints are used within feature selection as well as in other 
subfields. Second, we look into software engineering, which 
offers various approaches for constrained feature selection, 
though the use cases are different from ours. Finally, we 
discuss feature selection in the domain of materials science, 
as our case study resides in this domain as well.

Data Mining

Overview

There is a broad spectrum of work on feature selection in 
general, i.e., without constraints [2, 8, 14, 37]. We refrain 
from discussing individual approaches in detail here, as our 



	 SN Computer Science           (2022) 3:445   445   Page 6 of 25

SN Computer Science

goal is not to develop a new feature-selection technique. 
In particular, we do not use constraints to find feature sets 
superior to those of an unconstrained approach. We rather 
perceive constraints as domain knowledge that must be con-
sidered, potentially reducing prediction performance. Thus, 
we evaluate constraints in combination with a popular exist-
ing feature-selection technique.

Working with constraints is an area of research for vari-
ous sub-fields of data mining [18], e.g., for clustering [12] 
and pattern mining [44]. While there also are approaches for 
considering constraints in feature selection, which we will 
present next, they usually differ from our work in focus and 
scope. First, they tend to focus on integrating constraints 
into particular feature-selection algorithms. In contrast, we 
systematically evaluate the impact of constraints on feature-
selection results. Second, related work usually targets at spe-
cific constraint types. In contrast, we work with a variety 
of constraint types and also combinations of constraints of 
different types.

Constraint Types and Approaches

There is work on cost constraints [30, 43, 48, 50, 68] and 
cardinality constraints [34, 36, 54, 63] in supervised fea-
ture selection. Feature selection with pre-defined groups of 
features has been studied as well, though mainly specific to 
linear models, e.g., group lasso and its variants [15, 29, 56, 
64, 69]. Groves [19] is more general than the previous ref-
erence, as he presents four feature-selection approaches for 
arbitrary constraints. However, the evaluation in this article 
only uses particular types of manually defined constraints.

Other Notions of Constrained Feature Selection

Three further subfields of data mining use constraints in 
feature selection. However, the approaches are similar to our 
direction rather by name than by methodology. First, fea-
ture selection with constraints is studied in semi-supervised 
learning [26, 52, 55, 65]. However, the constraints used there 
express relationships between data objects, not between fea-
tures. For example, pairwise ‘must-link’ and ‘cannot-link’ 
constraints express whether two objects belong to the same 
class or not, without assigning a class label. Second, con-
straints play a role in unsupervised feature selection [39, 66, 
67]. These constraints do not directly express user needs on 
feature sets, but help find a low-dimensional representation 
of the data. Third, there is constraint-based feature selection 
that builds on Bayesian network learning [35]. It does not 
involve user-defined constraints but conditional independ-
ence constraints between features, which are learned and 
propagated.

Software Engineering

Overview

Outside the field of data mining, there are approaches for 
constrained feature selection in software engineering [6, 16, 
24]. From a technical perspective, the feature-selection prob-
lem and constraint types are similar to our scenario. Thus, 
approaches from that area can also be applied to our sce-
nario, so we will discuss them shortly. However, our article 
goes beyond applying constraints and focuses on how they 
impact feature-selection results.

Constraint Types and Approaches

In software engineering, a feature is a characteristic of a 
software product, not a dataset. There, feature selection aims 
at configuring a software system. Feature models express 
logical relationships, i.e., constraints, between these features. 
These relationships often result in a hierarchical structure of 
the feature models. Additionally, feature attributes express 
properties like component costs, memory requirements, etc. 
These properties form the base for further arithmetic con-
straints or one or several target functions [20, 25, 53]. Typi-
cal solution approaches to find feature sets include sampling 
[47], constraint solving [62], adapting general-purpose opti-
mization techniques [20] or combining satisfiability solving 
with general-purpose optimization [21, 22, 25].

Constraint Generation

Related work in software engineering often uses feature 
models with pre-defined constraints, which can be found in 
repositories, e.g., LVAT [40] and SPLOT [42]. Only some 
literature in software engineering also generates constrained 
feature models for a more systematic evaluation. Similar to 
our study with synthetic constraints, some proposals itera-
tively generate constraints, randomly picking constraint 
types and the features to be used [20, 46, 58]. However, 
these proposals use generated constraints to evaluate new 
approaches for dealing with constraints, while we focus on 
evaluating the impact of constraints themselves.

Materials Science

Overview

In materials science, various feature-selection approaches 
have already been applied, e.g., [1, 28, 32], but without 
considering constraints. At the same time, several papers 
argue for the integration of domain knowledge in machine 
learning. Mangal and Holm [41] compare feature-selection 
techniques for the classification of stress hotspots. The 



SN Computer Science           (2022) 3:445 	 Page 7 of 25    445 

SN Computer Science

article observes that the results of many standard feature-
selection techniques might not be interpretable from a 
domain perspective. Wagner and Rondinelli [60] describe 
general problems which might occur when applying standard 
machine-learning techniques directly in materials science. 
The article presents a workflow for machine learning in 
materials science and argues for relying on domain knowl-
edge as guidance.

Feature Engineering

Childs and Washburn [10] and Ramprasad et al. [51] survey 
machine-learning approaches in materials science. Some 
approaches presented there use domain knowledge when 
creating new features. As one example, physical laws can 
guide which interaction terms should be created from the 
original features. As another example, when describing 
materials with ‘fingerprint’ feature vectors [27], implicit 
physical constraints limit possible values of features. Our 
work differs from both of these directions. First, constrained 
feature selection focuses on reducing existing feature sets 
instead of extending them with new features. Second, we 
constrain the selection of features instead of constraining 
feature values.

Involving Domain Experts

Apart from constrained feature selection, one can directly 
involve domain experts in the selection process. Liu et al. 
[38] use a multi-layer feature-selection approach to predict 
properties of materials. This approach lets domain experts 
rate the importance of features. The approach combines 
these manuals ratings with several automated feature-selec-
tion steps. Such an approach requires knowledge about the 
usefulness of individual features. Our work, in turn, focuses 
on knowledge or hypotheses regarding relationships between 
features. Depending on the type of knowledge available in a 
concrete use case, either approach or even a combination of 
both might be suitable.

Study with Synthetic Constraints

Experimental Design

Research Questions

To systematically analyze the impact of constraints, we gen-
erate many constraints in an automated manner. In compari-
son, our case study in materials science will involve a rela-
tively small set of constraints, defined intellectually based 
on domain knowledge. With synthetic constraints, we study 
the following research questions: 

	(Q1)	 Which relationships between constraints and feature-
selection results exist?

	(Q2)	 How does the impact of constraints differ between 
constraint types?

	(Q3)	 How does the impact of constraints differ between 
datasets?

Question (Q1) is the main question, while Question (Q2) 
and Question (Q3) target at a deeper understanding of these 
effects.

Evaluation Metrics

Overview We now address Challenge (C3) (choice of evalu-
ation metrics). For all evaluations, we use two kinds of met-
rics: metrics describing the constraints and metrics describ-
ing the feature-selection results. Both kinds of metrics are 
needed to evaluate the impact of constraints on feature selec-
tion. To describe the constraints, we consider four metrics, 
i.e., number of constraints nco , number of constrained fea-
tures ncf , number of unique constrained features nucf , and 
number of solutions nso . To describe the feature-selection 
results, we use three metrics, i.e., number of selected fea-
tures nse , objective value Q(s, X, y), and prediction perfor-
mance R2 . We mostly normalize metrics to a minimum of 
zero and a maximum of one. This normalization facilitates 
comparisons of characteristics between datasets with differ-
ent numbers of features and different distributions of feature 
qualities. The normalized versions of the metrics have the 
superscript norm, e.g., nnorm

so
.

Observe that we do not study the runtimes of finding fea-
ture sets under constraints. As we use an off-the-shelf solver, 
which one can replace by another one, runtime benchmark-
ing would mainly yield insights regarding the solver but not 
on constrained feature selection in general. For the same 
reason, we also do not compare against other approaches 
that consider constraints.

In the following, we describe the evaluation metrics infor-
mally. “Formulas of Evaluation Metrics” introduces them 
formally and explains the normalization process.

Metrics describing constraints Constraints are logi-
cal and arithmetic formulas, which can become arbitrarily 
complex. So one can come up with many metrics describ-
ing the constraints. In the field of SAT solving, there are 
dozens of metrics that characterize logical formulas [3, 45]. 
However, many of these metrics require formulas in a spe-
cific form, i.e., conjunctive normal form. Many metrics also 
capture rather complex concepts, e.g., referring to a graph 
representation of the logical formula or specific SAT solving 
approaches. In this study, we use a small set of metrics with 
simple interpretations. We also pick metrics that describe 
constraints at different levels of granularity. The first met-
ric we use is the number of constraints nco . This metric is 



	 SN Computer Science           (2022) 3:445   445   Page 8 of 25

SN Computer Science

relatively coarse-grained, as it neither describes the strength 
of individual constraints nor the interaction between con-
straints. Second, we look at the number of features involved 
in constraints ncf . This metric counts the number of features 
in the logical formula representing a constraint. If a feature 
occurs several times in a constraint or a set of constraints, it 
is counted that many times. For example, the constraint set 
C = {s1 ↔ s2, s1 ∨ s3, s4 → s5} refers to Feature 1 two times. 
Third, we study the number of unique features involved in 
constraints nucf . Here, each feature is only counted once, 
even if it appears in a constraint or a set of constraints more 
than once. Fourth, we evaluate the number of solutions nso 
remaining after we added constraints to the optimization 
problem. Phrased in a way specific to feature selection, this 
is the number of valid feature sets in the presence of con-
straints. This metric quantifies the size of the solution space. 
It is the most fine-grained metric describing the constraints. 
However, it is also costly to compute, as it requires checking 
whether each possible feature set meets the constraints. The 
number of possible feature sets grows exponentially with the 
number of features, i.e., for n features, there are 2n feature 
sets. Thus, iterating over all feature sets becomes infeasible 
with growing n. This effect limits the dimensionality of the 
datasets in our evaluation.

Metrics describing feature-selection results The result, 
i.e., solution, of feature selection is a feature set. One can 
analyze the selected features as well as their use for down-
stream tasks, like generating predictions. First, we look at 
the number of selected features nse , i.e., the size of the solu-
tion. This metric is a purely quantitative description of the 
features selected. In a case study, one can also evaluate the 
selected features qualitatively, i.e., which domain-specific 
conclusions one can draw if particular features are selected 
or not. Our second metric is the objective value Q(s, X, y) of 
the constrained optimization problem, see Eq. (1). This met-
ric guides the search for the optimal feature set and therefore 
is essential for the evaluation. Third, we take the features 
selected under constraints and train regression models with 
them. We consider prediction performance in terms of the 
R2 value. R2 is a standard evaluation metric for regression 
problems [31]. One could use other prediction-performance 
measures as well, for instance, if the use case requires a dif-
ferent measure. We summarize objective value and predic-
tion performance as solution quality.

Constraint Generation

We address Challenge (C2) (size of evaluation space) by 
distinguishing between two aspects when generating con-
straints. First, the generation strategy varies the features 
involved in constraints, i.e., the operands of the constraints. 
Second, the constraint types define the operators for formu-
lating constraints, e.g., AND, OR, etc. Keeping these two 

aspects separate from each other allows for a comprehensive 
evaluation.

Generation strategy We employ the same generation 
strategy for all constraint types except for two cases, which 
we discuss later, and we use this strategy for all datasets. The 
generation process varies several characteristics of a con-
straint set: the number of constraints, the number of features 
in each constraint, and the actual features in each constraint. 
On the one hand, this flexibility gives way to broad cover-
age of the evaluation space. On the other hand, this causes 
a considerable variance between single runs of constraint 
generation. Consequently, we repeat the generation process 
1000 times per constraint type.

Algorithm 1 Generate and evaluate constraints

Input: Constraint type t
Input: Optimization problem o
Output: Evaluation metrics from Section 4.1.2
1: for i ← 1 to 1000 do
2: o′ ← o � make copy
3: C ← ∅ � set of constraints
4: nco ← Choose nco ∈ {1, . . . , 10} uniformly

at random � number of constraints
5: for j ← 1 to nco do
6: if t is ‘single’ constraint then
7: n′ ← 2 � number of features in

constraint
8: else if t is ‘group’ constraint then
9: n′ ← Choose n′ ∈ {2, . . . , n} uni-

formly at random
10: end if
11: F ← Choose n′ distinct features uni-

formly at random
12: c ← Apply t to F � one constraint
13: C ← C ∪ {c}
14: end for
15: o′ ← Add C to o′

16: Solve o′

17: Evaluate o′

18: end for

Algorithm 1 is the process of generating and evaluating 
constraints. The initial optimization problem o only consists 
of the objective function, quantifying the feature qualities 
of one dataset. For a single run of constraint generation, we 
first vary the number of constraints uniformly at random 
between one and ten. Next, we decide on the number of 
features per constraint. Some constraint types always involve 
two features, and some support larger sets. We refer to the 
former type as single constraints and the latter type as group 



SN Computer Science           (2022) 3:445 	 Page 9 of 25    445 

SN Computer Science

constraints. As we do not want to prefer a particular group 
size, we choose the group size n� ∈ {2,… , n} uniformly at 
random. The choice of features involved in a constraint is 
uniformly random as well. We sample without replacement. 
After creating constraints, we add them to the optimization 
problem, run the optimizer, and compute the evaluation met-
rics from “Evaluation Metrics”.

The runtime of this generation-and-evaluation algorithm 
depends on the number of features in each dataset. In par-
ticular, the optimization problem is NP-hard [5], and com-
puting evaluation metric number of solutions nso requires 
iterating over an exponentially growing number of poten-
tial feature sets. Also, the prediction models for evaluating 
feature-set quality require longer training if the datasets are 
larger. We consider these limitations when choosing datasets 
in “Datasets”.

Constraint types To specify constraint types, we have 
to select from the broad range of possible logical opera-
tors. In particular, combining logical operators yields other 
logical operators. For example, the NAND operator can be 
expressed with an AND and a NOT operator. Furthermore, 
the same constraint can often be expressed equivalently with 
different operators. Thus, exhaustively evaluating all possi-
ble constraint types is not feasible. The datasets in this study 
also come from different domains. Thus, it is impossible 
to formulate a common set of domain-specific constraints. 
Instead, we use various generic constraint types, which one 
can apply to any dataset. When compiling the list that fol-
lows, we have aimed at simple and, at the same time, diverse 
constraint types. Appendix section “Study with Synthetic 
Constraints” contains the formulas for all constraint types. 

	(T1)	 Global-AT-MOST From the set of all n features, select 
at most k features. As this constraint type always 
refers to all features instead of a random subset, we 
do not use Algorithm 1 here. Instead, we evaluate all 
possible values of k exhaustively.

	(T2)	 Group-AT-MOST From a group of features of size n′ , 
select at most k. We choose k ∈ {1,… , n� − 1} uni-
formly at random.

	(T3)	 Group-AT-LEAST From a group of features of size n′ , 
select at least k. Again, we choose k ∈ {1,… , n� − 1} 
uniformly at random. This constraint type alone does 
not exclude the trivial solution of selecting all fea-
tures. So we combine it with (T1), requiring that at 
most half of all features are selected globally.

	(T4)	 Single-IFF From a pair of features, select either both 
or none. To exclude the trivial solution of selecting all 
features, we combine this constraint type with (T1), 
requiring that at most half of all features are selected 
globally.

	(T5)	 Group-IFF The transitive extension of (T4): from a 
group of features of size n′ , either select all or none. 

To exclude the trivial solution, we combine this con-
straint type with (T1), requiring that at most half of 
all features are selected globally.

	(T6)	 Single-NAND From a pair of features, do not select 
both simultaneously. This constraint is a special case 
of (T2).

	(T7)	 Group-NAND From a group of features of size n′ , 
select at most n� − 1.

	(T8)	 Single-XOR From a pair of features, select exactly one.
	(T9)	 Group-MIXED With equal probability, pick between 

(T2), (T3), (T5), (T7) and (T8). There is no global 
cardinality constraint (T1).

	(T10)	UNCONSTRAINED Mainly to have a reference point, 
we also consider the unconstrained solution, i.e., the 
upper bound for the objective value. We only com-
pute this once for each dataset instead of using Algo-
rithm 1. This is because there are no random effects 
or parameters which would change the outcome in a 
repeated generation.

Datasets

The study with synthetic constraints is domain-independent. 
We take 35 regression datasets from the OpenML reposi-
tory [59]; see our experimental data for details on each 
dataset. For regression tasks, we can use absolute Pearson 
correlation between a feature and the target variable as a 
feature-quality measure. We select and filter the datasets by 
technical criteria only. To this end, OpenML’s Python API 
allows us to retrieve datasets based on well-defined charac-
teristics. We do not conduct further pre-processing steps.

Dataset size We use medium-sized datasets with between 
100 and 10,000 data objects. This number does not affect 
the runtime of the constrained optimization problem. It only 
affects the one-time effort to compute the feature-quality 
values. Additionally, dataset size affects training time for 
prediction models, which we use to evaluate feature sets. As 
we evaluate several thousand feature sets for each dataset, 
we limit dataset size to keep overall evaluation time under 
control.

Dataset dimensionality We choose datasets with 10–14 
numeric features. We drop categorical features since Pear-
son correlation is undefined for them. This number of 
features might seem relatively low, considering that fea-
ture selection usually targets at high-dimensional feature 
spaces. As we show in our case study in materials science, 
the solver we use can handle larger optimization problems. 
However, in preliminary experiments with high-dimen-
sional data and the same constraint-generation strategy, 
we observed the following phenomena: First, counting 
the number of valid solutions under constraints nso , a key 
evaluation metric, has been infeasible. Second, for some 
constraint types, optimization has become very costly. 



	 SN Computer Science           (2022) 3:445   445   Page 10 of 25

SN Computer Science

Third, for the feasible experiments, we have obtained 
results similar to those of the study conducted here.

Dealing with missing values We exclude datasets with 
missing values. Of course, when computing feature qual-
ity, one does need a strategy to deal with missing values. 
For example, one could replace missing values with the 
mean of that feature, exclude individual data objects with 
missing values, etc. However, it is beyond the scope of 
our study to include methods that handle missing values.

Prediction Models

After selecting features under constraints, we use the 
resulting feature sets in regression models. We choose 
four models: Linear regression, regression tree, boosted 
linear regression, and boosted trees. The first two models 
are from the scikit-learn library [49], the last two from 
xgboost [9]. These models follow two different learning 
paradigms, linear and tree-based, and have different com-
plexities. We do not optimize the hyperparameters of the 
models but mostly stick to the defaults. For reproducibil-
ity, we set random seeds for the non-deterministic models. 
For the two xgboost models, we set the size of the ensem-
bles to 20 trees.

We evaluate prediction performance in terms of R2 , i.e., 
the proportion of variance explained. We conduct tenfold 
cross-validation for each constraint evaluation. We do not 
only consider train-test splits for predictions but also in the 
optimization problem itself: We compute feature qualities 
on the training splits only.

Evaluation

Comparison of Prediction Performance

Before studying the impact of constraints, we analyze pre-
diction performance. The rationale is twofold: first, we com-
pare prediction models to decide which ones we should keep 
for subsequent evaluations. Second, we analyze the impact 
of datasets on prediction quality in the unconstrained case. 
If datasets had a significant impact, this might overshadow 
the impact of constraints.

To measure prediction performance, we evaluate predic-
tion models trained after feature selection. In this section, 
we use R2 without additional normalization per dataset or 
prediction model. Figure 1a shows that there is a consider-
able variation of prediction performance for each predic-
tion model. Note that the plot contains all pipeline runs, 
i.e., data from different constraint types, datasets, and repeti-
tions of the randomized constraint generation process. How-
ever, as we can see in Fig. 1b, there still is a considerable 
variation in prediction performance when only looking at 
the unconstrained (T10) run from each dataset. Thus, the 
datasets themselves have a substantial impact on prediction 
performance.

We also see that test performance is lower than training 
performance, i.e., overfitting occurs. However, in our study, 
we see prediction performance only as a metric to evaluate 
the impact of constraints, and optimizing prediction perfor-
mance is not a target per se. In the following sections, we 
focus on performance on the test folds. We min–max nor-
malize R2 per dataset and prediction model, i.e., we report 

(a) All experimental runs. (b) Unconstrained experimental runs.

Fig. 1   Prediction performance, measured with R2 . To keep the plots readable, we exclude outlier points from plotting and truncate the y-axis at 
− 0.1



SN Computer Science           (2022) 3:445 	 Page 11 of 25    445 

SN Computer Science

R2,norm . This normalization allows focusing on the relative 
impact of constraints, ignoring differences in dataset dif-
ficulty and model complexity.

We limit our analysis to two prediction models: The first 
one is linear regression, the simplest model of the ones we 
use. It also is conceptually related to our study’s optimiza-
tion objective, i.e., capturing linear dependencies with Pear-
son correlation. A disadvantage of linear regression is that 
it exhibits a relatively low average prediction performance 
in this study. Second, we use gradient-boosted trees, which 
yield the best average performance of the models.

Relationship Between Evaluation Metrics (Q1)

We study the relationships between evaluation metrics in 
two ways. First, we analyze these relationships in terms 
of correlation. Later, we also plot the metrics against each 
other. For correlation analysis, we take the values of each 
normalized evaluation metric over all experiments and com-
pute the Spearman rank correlation between them. See Fig. 2 
for the correlation matrix. There is a strong positive cor-
relation between the number of selected features nnorm

se
 , the 

number of solutions nnorm
so

 , and the objective value Qnorm . All 
pairwise correlations between these metrics are higher than 
0.8. Figure 3a shows that there is a roughly linear relation-
ship between the number of selected features nnorm

se
 and the 

objective value Qnorm . As the objective function of the opti-
mization problem in Eq. (1) is monotonous, it is plausible 
that selecting more features increases the objective value. 

However, the quality of the selected features can vary. For 
the same size of the feature set, different constraints can 
lead to different objective values, as they might exclude dif-
ferent feature combinations. Figure 3b shows that the rela-
tionship between the number of solutions nnorm

so
 and objec-

tive value Qnorm is more involved. Decreasing the number 
of valid feature sets tends to decrease the objective value. 
However, it also matters which feature sets become invalid 
due to the constraints. The optimizer might find feature sets 
with a high objective value even in small solution spaces, 
depending on the concrete constraints and the distribution of 
feature qualities. In contrast, we have not observed any sce-
nario with a large solution space but a low objective value.

Coming back to the correlation matrix in Fig. 2, there is 
a moderately negative correlation between metrics describ-
ing the complexity of constraints (i.e., number of con-
straints nnorm

co
 , number of constrained features nnorm

cf
 , number 

of unique constrained features nnorm
ucf

 ) on the one side and 
number of solutions nnorm

so
 as well as objective value Qnorm 

on the other side. This effect is expected—using more 
constraints prunes more solutions. The correlation is only 
moderate, though, since the features affected by constraints 
might have different qualities, and constraints also interact. 
Thus, the other metrics can vary even for the same number 
of constraints or number of features involved in constraints. 
Figure 3c graphs the relationship of the number of con-
straints nnorm

co
 and the objective value Qnorm . For the number 

of constrained features, the relationship with the number of 
solutions might even be positive, e.g., for NAND constraints.

Figure 2 reveals that prediction performance R2,norm is not 
more than moderately correlated with the objective value 
and with metrics for the solution space. Figure 3d also shows 
this in more detail. The objective function cannot describe 
interactions between features, as it only sums up the individ-
ual feature qualities. This caveat is a general characteristic 
of univariate filter feature selection. In contrast, prediction 
models evaluate a feature set as a whole.

Comparison of Constraint Types (Q2)

Figure 4 shows how evaluation metrics vary between con-
straint types. As one extreme, without any constraint, i.e., 
type UNCONSTRAINED (T10), all feature sets are valid, 
and the objective value is maximal. All features remain 
selected, except maybe features with a quality of zero, for 
which selection is optional. Once constraints enter the opti-
mization problem, both the number of solutions and the 
objective value decrease. As another extreme, there might 
be no solution satisfying the constraints or only the solution 
where no features are selected. In these situations, the objec-
tive value is zero.

The impact of constraints strongly depends on the con-
straint type. If one combines different constraint types in 

Fig. 2   Correlation between normalized evaluation metrics



	 SN Computer Science           (2022) 3:445   445   Page 12 of 25

SN Computer Science

the type Group-MIXED (T9), the objective value shows 
the widest distribution. Regarding the number of solu-
tions, Global-AT-MOST (T1) has the largest inter-quar-
tile range. This effect is expected since we systematically 
vary the cardinality to cover all feature-set sizes. Single-
NAND (T6) constraints show only a small decrease in 
objective value. This effect is even more pronounced if 
the same operator is applied to more features as Group-
NAND (T7). The explanation is that NAND only excludes 
selecting all involved features simultaneously. The more 
features are involved in the constraint, the less restrictive 
the constraint becomes. In contrast, Single-IFF (T4) con-
straints become stronger when applied to several features 
in the form of Group-IIF (T5). This is because they require 
either all of these features to be selected or none. Remem-
ber that we combine IFF with a Global-AT-MOST (T1) 
constraint to prevent the trivial outcome of selecting all 

features. The more features are grouped in IFFs, the more 
difficult it becomes to satisfy the global cardinality con-
straint. In the worst case, the set of selected features is 
empty, yielding an objective value of zero.

We do not show the plots for prediction performance 
grouped by constraint type here. Namely, if we normalize 
prediction performance per dataset and prediction model, 
the picture is similar to the one for normalized objective 
values in Fig. 4b. Finally, one could also compute the 
mean of each evaluation metric per constraint type and 
dataset. Such a procedure averages out randomness over 
the iterations of the generation process but still allows 
to analyze variation over constraint types or datasets. If 
we conduct such a procedure, there is still a considerable 
variation between constraint types but low variance within 
each constraint type, i.e., between datasets.

(a) Number of selected features vs. objective value. (b) Number of solutions vs. objective value.

(c) Number of constraints vs. objective value. (d) Test R2 of linear regression vs. objective value.

Fig. 3   Relationship between normalized evaluation metrics. In the scatter plots, we have sampled 1000 experimental runs to keep plot size rea-
sonable



SN Computer Science           (2022) 3:445 	 Page 13 of 25    445 

SN Computer Science

Comparison of Datasets (Q3)

We could compare datasets in the same way as constraint 
types. However, evaluation metrics can vary considerably 
within each dataset, making the comparison between them 
difficult. Figure 5a shows this for the objective value. Except 
for prediction performance, all evaluation metrics vary more 
within datasets than between them. This observation makes 
sense for two reasons. First, we have already seen that the 

impact of the constraint type varies considerably. Second, 
there are multiple sources of randomness in the generation 
process for each type. Thus, we take the average of each 
evaluation metric per dataset in Fig. 5b and compare this 
over datasets. Now there is a slight variation between 
datasets. Our constraint-generation mechanism, which is 
the same for each dataset, is the cause for this. Repetition 
averages out randomness in the generation process. So it is 
expected that there nearly is no variation over datasets for 

(a) Number of solutions. (b) Objective value.

Fig. 4   Distribution of normalized evaluation metrics per constraint type. To keep the plots readable, we exclude outlier points from plotting

(a) Normalized objective value Qnorm per dataset. (b) Mean normalized evaluation metrics per dataset.

Fig. 5   Comparison of datasets



	 SN Computer Science           (2022) 3:445   445   Page 14 of 25

SN Computer Science

the number of constraints nnorm
co

 , the number of unique con-
strained features nnorm

ucf
 , and the number of solutions nnorm

so
 . 

These three metrics solely depend on the generation process. 
In contrast, the number of selected features nnorm

se
 and the 

objective value Qnorm do not only depend on the generation 
but also feature qualities. For each dataset, the distribution 
of feature qualities may vary. For example, qualities of fea-
tures might be relatively uniform in one dataset and heavily 
skewed in another one. In the first case, it does not matter 
which features are part of a constraint; only the strength of 
the constraint itself affects the objective value. In the sec-
ond case, the features involved in a constraint significantly 
impact the objective value. To illustrate, adding a XOR 
between two highly relevant features decreases the objec-
tive value, while a XOR between two unimportant features 
does not affect it much. However, as Fig. 5b shows, the mean 
objective value per dataset does not vary much between 
datasets in our experiments. A reason for this could be the 
large number of repetitions in constraint generation. With 
many repetitions, lots of different feature sets take part in 
constraints, and the effect of the imbalanced distribution of 
feature qualities is averaged out. An averaging effect might 
also cause the number of selected features to only vary 
slightly between datasets. The most considerable difference 
between datasets occurs for prediction performance R2,norm . 
Our explanation is the earlier observation that prediction 
performance is only moderately correlated with the con-
strained optimization problem.

Summary

We observe a trade-off between the size of the solution 
space nnorm

so
 and the objective value Qnorm . Both the number 

of selected features nnorm
se

 and the objective value decrease 
when constraints prune solutions. However, the effect is 
non-linear, i.e., stronger constraints can still result in a high 
objective value. This observation means there may be sweet 
spots, i.e., high-quality feature sets that adhere to the con-
straints. While the objective value is strongly related to the 
number of solutions, the latter is costly to compute. To a 
lesser extent, more coarse-grained metrics like the number 
of constraints nnorm

co
 and number of constrained features nnorm

cf
 

are also related to the objective value. All aforementioned 
effects and dependencies occur similarly for all datasets. 
Most of the individual evaluation metrics show a similar 
distribution for all datasets as well. This observation might 
be an effect of our systematic constraint-generation proce-
dure. In contrast, the distribution of individual evaluation 
metrics strongly depends on the constraint type. This is 
because some types prune more solutions than other ones. 
Thus, it is difficult to make general statements about the 
exact impact of constraints. Finally, we see that prediction 
performance behaves differently than the objective value of 

the optimization problem. Prediction performance depends 
on the size of the solution space only moderately. However, 
it strongly depends on the dataset. Thus, one should not use 
the objective value of Eq. (1) as a proxy for actual prediction 
performance.

Case Study in Materials Science

Experimental Design

Scenario and Dataset

The scenario of our case study involves crystalline materi-
als, such as most metals, on the micro-scale. This material 
class incorporates defect structures, so-called dislocations, 
within the regular crystal structure. The line-like disloca-
tions evolve in time and space in a material volume and 
build complex 3D networks. These networks are mainly 
responsible for the permanent deformation of the mate-
rial under loading. Understanding the ongoing processes 
during the network evolution is vital to characterize the 
deformation behavior. A thorough understanding enables a 
predictive description of crystalline materials in micro- and 
nano-structures.

To investigate dislocation networks, the materials scien-
tists in our team performed extensive numerical simulations 
using the method of discrete dislocation dynamics [61]. In 
this current study, we use data from simulations represent-
ing an aluminum specimen under tensile loading. See [57] 
for details. The goal of analyzing the simulation data from 
a materials-science perspective is to find out how various 
properties evolve. These properties characterize the dislo-
cation network structures if a specific force is applied and 
the material deforms. An example of a property is the slip 
system a dislocation can move in. It is defined by a crystal-
lographic slip plane characterized by the plane containing 
the greatest number of atoms per area and the slip direction 
characterized as close-packed directions with the highest 
number of atoms per length. Another example is the so-
called Schmid-factor. It describes the slip plane and the slip 
direction that resolves the highest mechanical stress affecting 
a slip system.

It is known in materials science that a dislocation line 
can react with other dislocation lines in the volume in sev-
eral ways. These reaction types are the usual way of charac-
terizing the evolution of a dislocation network. In our case 
study, we focus on one type of reaction, the so-called glissile 
reaction. The target property is the density of dislocation 
line segments attached to such a reaction in the evolving 
dislocation network. The features are other physical quanti-
ties of the system, like dislocation density, shear stress, etc. 
Our dataset represents different locations in the simulated 



SN Computer Science           (2022) 3:445 	 Page 15 of 25    445 

SN Computer Science

material specimen as well as different loading respectively 
time steps. The dataset consists of 14,903 data objects and 
135 features. Each data object represents the state of the 
material at a particular location and time step.

Constraints

Goals The primary purpose of this case study is to evaluate 
the impact of constraints on a concrete use case in materials 
science. As the underlying physical processes are complex 
and not fully understood, there is no firm domain knowledge 
suited for constraints. However, we do have some hypotheses 
about relationships between features. We formulate them 
as constraints, and feature selection must respect them. We 
evaluate how the resulting feature sets and solution qual-
ity change compared to an unconstrained selection. Several 
outcomes are possible when considering constraints. For 
example, the selected features might change due to con-
straints, but solution quality remains similar. This outcome 
could indicate an alternative scientific explanation for the 
target variable. Instead, one might obtain a different feature 
set but a much lower solution quality. This outcome might 
indicate that the hypothesis behind the constraints is wrong. 
By formulating different sets of constraints and evaluating 
them independently, one also can compare different scien-
tific hypotheses.

In our case study, we use domain-specific as well as 
domain-independent constraints. The domain-specific con-
straints represent the hypotheses. The domain-independ-
ent ones express preferences on the resulting feature sets. 
Appendix section “Case Study in Materials Science” con-
tains the respective formalizations.

Domain-independent constraint types In preliminary 
experiments, we observed three phenomena that made it dif-
ficult for domain experts to interpret feature sets. We believe 
that these phenomena are not specific to our case study. 

	(P1)	 Size of the feature set We observe that, if feature sets 
become larger, they are more difficult to interpret for 
domain experts.

	(P2)	 Inter-feature correlation Datasets may contain fea-
tures strongly correlated with each other. For a 
domain expert, having such highly correlated features 
in the result is undesirable, at least in some situations. 
To illustrate, such features are somewhat likely to 
describe the same physical phenomenon, just meas-
ured or encoded differently. In this case, selecting one 
of these features is sufficient. However, the objective 
function in Eq. (1) considers features independently 
and thus ignores inter-feature correlation.

	(P3)	 Low-quality features Datasets may contain features 
with a feature quality close to zero. Even if these fea-
tures are neither pruned by other constraints nor cut 

during optimization, they provide little value when 
being in the set of selected features. However, given 
the exponential growth of possible feature sets, such 
low-quality features increase optimization time dra-
matically. It makes sense to remove such features 
manually before optimization—or to add a respective 
constraint, as follows: “If the quality of a feature is 
under a certain threshold, do not select it.”

In the following, we present three constraint types we use to 
alleviate these phenomena. 

	 (I1)	 Global-cardinality To counter the issue with large 
feature sets  (P1), we apply a global cardinality 
constraint. In our case study, we apply limits of 
at most five and at most ten features. Both limits 
were acceptable for the domain experts in our case 
study. We use two limits, so we can compare how 
the solution quality changes from the smaller (five) 
to the larger (ten) cardinality.

	 (I2)	 Inter-correlation To deal with inter-feature correla-
tion (P2), we use a threshold on the Pearson cor-
relation between features. If a pair of features has 
an absolute Pearson correlation of at least 0.8, we 
select at most one of these features.

	 (I3)	 Quality-filter To filter low-quality features (P3), we 
set a quality threshold of 0.2. We remove features 
with a lower quality before optimization.

Domain-specific constraint types Using domain knowledge, 
we specify the following domain-specific constraint types. 
Appendix section “Case Study in Materials Science” con-
tains the corresponding formulas. 

	(D1)	 Schmid-group Some physical quantities in our dataset 
are measured for the twelve slip systems of the mate-
rial, i.e., have twelve features each. For the crystal ori-
entation of the considered specimen, the slip systems 
can be divided into two groups based on the Schmid 
factor. We hypothesize that it should suffice to have 
features from at most one of these groups. Within the 
chosen group, an arbitrary number of features can be 
selected.

	(D2)	 Quantity-Schmid-group The constraint (D1) goes over 
all physical quantities. Alternatively, one can choose 
between the two slip system groups for each quantity 
independently. With such a constraint, we hypothesize 
that one slip system group might be relevant for some 
quantities, and the other group for other quantities. 
This constraint makes feature selection more flexible, 
i.e., the hypothesis is less strict.

	(D3)	 Schmid-group-representative Based on the grouping 
of (D1), instead of selecting features from at most one 



	 SN Computer Science           (2022) 3:445   445   Page 16 of 25

SN Computer Science

group, one can also select at most one feature from 
each group. This constraint corresponds to the situ-
ation where both groups are important, but it is suf-
ficient to pick a representative feature in each group.

	(D4)	 Quantity-Schmid-group-representative We merge 
the ideas of (D2) and (D3): For each quantity inde-
pendently, select at most one feature per slip system 
group.

	(D5)	 Plastic-strain-tensor Six features in our dataset 
describe the plastic strain tensor, corresponding to 
six different directions in space. We hypothesize that 
selecting three of the six directions should be suffi-
cient.

	(D6)	 Dislocation-density In our dataset, several features 
are based on the same physical quantity, namely dis-
location density, aggregated over the slip systems. 
This observation does not only apply to the standard 
aggregates we use in (D8) and (D10) but also further 
features. We hypothesize that selecting at most one 
such feature is sufficient.

	(D7)	 Plastic-strain-rate For the physical quantity describ-
ing the plastic strain rate according to the material 
loading, the simulation data contains features origi-
nating from two different computation methods. We 
hypothesize that selecting features computed with at 
most one of the methods suffices.

	(D8)	 Aggregate As mentioned, several physical quantities 
are measured in twelve slip systems individually. To 
get a broader picture, we can aggregate over the slip 
systems, e.g., minimum, maximum, median, mean, 
and standard deviation. However, having several 
aggregates of the same quantity might not provide 
much additional information. Thus, we establish the 
constraint that at most one kind of aggregate function 
is used.

	(D9)	 Quantity-aggregate Constraint (D8) can be refined 
to choose the aggregate function for each physical 
quantity independently. This new constraint allows 
choosing different aggregate functions for different 
quantities.

	(D10)	Aggregate-or-original Aggregates describe the same 
physical quantities as the corresponding features 
they aggregate. Thus, we establish a constraint that 
enforces for each quantity to either select original fea-
tures or aggregates or none of the two.

	(D11)	Mixed Various combinations of the constraint types 
above are possible, though some constraint types 
are redundant or compete with each other. Besides 
this, as our domain-specific constraint types repre-
sent scientific hypotheses, we prefer to evaluate them 
individually. For comparison, we still consider one 
combination of several constraint types: the union of 
(D4), (D5), (D6), (D7), (D9), and (D10).

	(D12)	Unconstrained To have a reference point, we evaluate 
the case without domain-specific constraints.

Combining domain-independent and domain-specific con-
straint types From the three domain-independent constraint 
types (I1), (I2), and (I3), we create two sets of constraints. 
Both sets involve all three types, but one uses a cardinality of 
five, the other one a cardinality of ten. We combine each of 
these two constraint sets with each of twelve sets of domain-
specific constraints. So we get 24 constraint sets overall. In 
the evaluation of the case study, we always refer to these 
combinations of domain-specific with domain-independent 
constraint types, though we only mention the name of the 
domain-specific constraint types.

Evaluation Metrics

To evaluate our hypotheses expressed as constraints, we 
focus on solution quality and selected features. We analyze 
how solution quality and selected features differ between 
hypotheses, compared to the reference case in particu-
lar (D12). Technically, we can use the complete set of eval-
uation metrics as in the study with synthetic constraints. 
However, we only have 24 constraint evaluations here, i.e., 
we evaluate each set of constraints only once. This number 
of evaluations is much smaller than in the synthetic case, 
where we do 1000 evaluations for each constraint type. So 
statements on the relationship between evaluation metrics 
are less generalizable here.

Prediction Models

We use the same prediction models and the same measure 
for prediction performance as in the study with synthetic 
constraints. As our data has a temporal dimension, we apply 
a time-based 80:20 holdout split instead of cross-validation, 
i.e., all data objects in the training data are from earlier time 
steps than the test data. Observe that our predictions do not 
go into the future but predict from feature values at one time 
step the target quantity at the same time step.

Evaluation

Solution Quality

Prediction performance Figure 6a shows the prediction 
performance in the case study over all 24 constraint types. 
All in all, prediction performance with all models is good, 
even with simple linear regression. The plot also shows that 
different constraint types cause some but not a substantial 
variation in prediction performance. Figure 6b shows that 
models with five features tend to perform slightly worse 
than models with ten features. The difference is relatively 



SN Computer Science           (2022) 3:445 	 Page 17 of 25    445 

SN Computer Science

small, depending on the model. We conclude that one can 
make good predictions with a small set of features, i.e., the 
scenario of our case study is suitable for feature selection.

Objective value If we look at the objective value instead 
of prediction performance, we observe that the selected fea-
tures have high quality as well. As the variance between con-
straint types is low, we do not plot this and only report the 
numbers. For a cardinality of five, the objective value varies 
between 3.79 and 4.04, with a median of 4.04. For a cardi-
nality of ten, the objective value varies between 6.45 and 
7.48, with a median of 7.36. The theoretical upper bound 
for the objective value is 5 respectively 10. However, this 
theoretical upper bound assumes that all selected features 
have a quality of 1, which usually is not true. In our dataset, 
the maximum feature quality is 0.92, and the average feature 
quality is 0.27. So the objective values achieved are con-
siderably higher than for randomly selecting features with 
average quality, i.e., 0.27 ⋅ 5 = 1.35 and 0.27 ⋅ 10 = 2.7.

For both cardinalities, the lowest objective value is the 
one for constraint type Mixed (D11). This type combines 
six other constraint types and therefore narrows down the 
solution space more than individual constraint types. So 
the reduction in quality is plausible. Leaving aside this con-
straint type, the ranges of the objective value narrow down 
to [3.92, 4.04] and [7.03, 7.48]. Thus, in our case study, the 
domain-specific constraint types do not considerably impact 
the objective value. We will examine the potential causes 
and implications of this later. In contrast, cardinality does 
have a significant impact on the objective value. The fact 
that this value increases is a straightforward consequence of 
its monotonicity. However, the size of the increase indicates 
that the sixth to tenth selected features still have relatively 
high quality. This observation means that several features in 

the dataset have a moderate to strong relationship with the 
prediction target. This should give way to alternative feature 
sets with similar quality. We will analyze this later.

Comparing hypotheses As none of the domain-specific 
constraint types significantly decreases solution quality, 
none of the underlying hypotheses seems to be invalidated. 
On the other hand, given the modest variation of solution 
quality between hypotheses, it is difficult to draw conclu-
sions regarding individual hypotheses. Thus, one should 
analyze the hypotheses more thoroughly with domain-spe-
cific methods. However, this is out of the scope of this cur-
rent article. Nevertheless, the selected features offer insights 
into the domain, and our next step is to examine them in 
some detail.

Selected Features

Cardinality of five For all constraint types, feature sets con-
tain several dislocation-density features, representing dislo-
cation density on individual slip systems or in an aggregated 
manner. This observation is expected, as the target variable 
quantifies reactions of dislocations. Figure 7 shows how 
many selected features are the same when comparing results 
with different constraint types. We can make this compari-
son in the case study since we only have one dataset, and 
each constraint type is only evaluated once for each cardinal-
ity, yielding just one feature set. In the study with synthetic 
constraints, some aggregation strategy over datasets and 
repeated generations of constraints would be necessary to 
conduct such a feature-overlap analysis.

For a cardinality of five, several constraint types share 
more than half of their selected features. In particular, six 
constraint types yield the same feature set as the reference 

(a) All data, comparing models and splits.
(b) Only test data, comparing models and cardinali-
ties.

Fig. 6   Prediction performance in the case study, measured with R2



	 SN Computer Science           (2022) 3:445   445   Page 18 of 25

SN Computer Science

case, i.e., Unconstrained (D12). One could conclude that the 
constraints are inactive. We see two reasons for this. First, 
the constraints may relate to features that are part of the 
unconstrained result, but the constraints are consistent with 
that result. For example, without domain-specific constraints, 
only dislocation densities from one slip-system group are 
selected. So the constraint types Schmid-group (D1) and 
Quantity-Schmid-group (D2) are already satisfied in the ref-
erence case. In contrast, Schmid-group-representative (D3) 
and Quantity-Schmid-group-representative (D4) are violated 
in this case. When considering the latter two types, dislo-
cation densities from different slip systems are selected as 
features. Second, some constraint types may not affect any 
of the selected features in the reference case. For example, 
Plastic-strain-rate (D7) and Plastic-strain-tensor (D5) refer to 
physical quantities which seem to be unimportant in the pre-
diction scenario. In future work, one might apply an iterative 
approach to avoid inactive constraints, as follows: inspect the 
result without domain-specific constraints, formulate con-
straints, inspect the results, etc. This procedure should allow 
focusing the intellectual formulation and evaluation effort 
on constraints with an actual impact on feature selection.

Cardinality of ten For a cardinality of ten, the picture 
becomes a bit more diverse. Most pairs of constraint types 
still have at least half the features in common. However, 
there are fewer cases where all features are the same. This 
is because some constraints consistent with the reference 
case before are now violated. Still, as observed in the pre-
vious section, objective value and prediction quality are 

pretty similar between the constraint types. For example, 
type Mixed (D11) results in swapping 3/5 or 5/10 features 
compared to Unconstrained (D12). At the same time, the 
objective value only drops by 6.2% or 13.8%, which is a 
much smaller share. This observation indicates that there are 
alternative feature combinations that differ from the refer-
ence case but still yield a similar quality. Thus, the analyzed 
prediction scenario shows a certain ‘robustness’ against con-
straints. More generally speaking, these findings indicate 
that constraints can be used to implement the ‘alternate’ 
paradigm in feature selection.

Summary

We observe that our domain-specific constraints have a rela-
tively small impact on the quality of feature sets. In other 
words, our analysis does not yield any evidence against our 
domain-specific hypotheses. So the hypotheses should be 
analyzed further with domain-specific methods. Another 
observation is that there are many features with high quality 
in our prediction scenario. This has two implications. First, 
for a high prediction quality, it tends to suffice to select a 
few features. This observation gives way to small and under-
standable prediction models. Second, in the optimization 
problem, constraints result in features being replaced with 
alternatives of similar quality. Additionally, we observe that 
several constraints are already satisfied in the solution of the 
reference case, i.e., without domain-specific constraints. In 
such situations, constraints do not have any impact. So it is 

(a) Cardinality of five. (b) Cardinality of ten.

Fig. 7   Number of common features between results with different constraint types



SN Computer Science           (2022) 3:445 	 Page 19 of 25    445 

SN Computer Science

not possible to arrive at any insights regarding the underly-
ing hypotheses. For future research on constrained feature 
selection, we recommend an iterative approach of inspecting 
solutions and formulating new constraints instead of formu-
lating all constraints upfront.

Conclusions and Future Work

Problem and Approach

Feature selection helps to obtain small and understandable 
yet accurate prediction models. Vanilla feature-selection 
techniques do not consider any domain knowledge. Con-
straints allow incorporating a broad range of such knowledge 
into feature selection, e.g., physical laws, hypotheses, etc. 
This begs the question of how constraints affect feature-
selection results. While using constraints in feature selec-
tion has been a topic for years, the focus has been on inte-
grating specific types of constraints into feature-selection 
algorithms.

In this article, we have systematically evaluated the 
impact of constraints on the results of filter feature selection. 
We have empirically examined how the quality of selected 
features depends on constraints. To do so, we have compiled 
various constraint types, and we have also combined them. 
We have conducted two empirical studies: The first one is 
broad, with constraints generated systematically on datasets 
from various domains. Second, there is a case study with 
domain-specific constraints on data from materials science.

Results and Discussion

Constraint‑Quality Trade‑Off

We have seen that, while constraints generally reduce the 
quality of feature sets, this effect is non-linear. In particular, 
we observed sweet spots, i.e., high-quality feature sets adher-
ing to the constraints. Finding such feature sets is of vital 
interest for domain experts wanting to do constrained feature 
selection. We have also observed that the constraints’ impact 
strongly depends on the constraint type. In other words, the 
existence of such sweet spots is not guaranteed for arbitrary 
constraints. This calls for further studies to assess the exact 
impact of domain-specific constraints. When systematically 
generating the same constraint types for different datasets, 
we noted that high-level observations on the impact of con-
straints generalize over datasets.

Besides the constraints, the type of feature-selection 
technique might influence the impact of constraints as well. 
While we focused on a filter-feature-selection technique, 
other feature selectors might behave differently if equipped 
with constraints. In particular, the objective value of our 

filter technique was only moderately correlated to prediction 
performance with the feature set. Analyzing wrapper feature 
selectors might bring the objective of feature selection closer 
to actual prediction performance. However, wrappers are 
also much more computationally expensive than filters, and 
can usually not directly be integrated into white-box solvers.

Alternative Feature Sets

In our case study in materials science, we have noticed that 
most of our domain-specific constraint types did not signifi-
cantly affect the resulting feature sets’ quality. Instead, some 
constraints have yielded alternative feature sets with similar 
quality. This indicates that constraints allow finding alterna-
tive solutions that are interesting for domain experts. How-
ever, the alternatives in our study mainly were a by-product 
of domain-specific constraints. In future work, one could 
develop a systematic and domain-independent approach to 
find alternative feature sets.

Future Work

User‑Centric Systems

In the future, bringing our findings closer to users will be 
essential, i.e., making strides towards user-centric systems. 
So far, we have hard-coded the constraints for our studies. In 
the case study, we did this after talking to domain experts. 
For better usability, we envision tools where users can for-
mulate and evaluate constraints themselves. For example, 
users could input a file with constraints, formulated in a 
domain-specific language, or edit constraints via a graphi-
cal user interface.

Iterative Constraint Formulation

As seen in our case study, formulating and evaluating con-
straints iteratively might be beneficial. Systems for con-
strained feature selection could support this as well. How-
ever, depending on the dataset and the specific constraints, 
constraint evaluation might take too long for real-time inter-
action, so more work is needed here. Ideally, a system could 
guide the user towards promising constraints, e.g., using 
heuristics to estimate the impact of constraints on feature-
set quality.

Soft Constraints

Currently, all constraints are hard, i.e., they all have to be ful-
filled. As we have observed, this can result in reduced quality 
of feature sets or even an empty solution space. With soft con-
straints, users could attach individual penalties to the violation 
of each constraint. In other words, they could specify how to 



	 SN Computer Science           (2022) 3:445   445   Page 20 of 25

SN Computer Science

trade off constraint satisfaction against feature-set quality. As 
an alternative approach, one could treat constraint satisfac-
tion as another optimization objective besides feature quality 
and apply multi-objective optimization [22, 53]. Similar to our 
current evaluation, there is no systematic study of how soft 
constraints affect feature selection, though there is work on 
considering soft constraints algorithmically.

Constrained Feature Engineering

In our current studies, we took all datasets as-is, i.e., assuming 
all features were engineered before formulating constraints. 
However, one could integrate constraints into feature-engineer-
ing approaches as well. In that area, constraints would steer the 
creation of new features rather than the selection of existing 
ones. For example, one could desire to only engineer features 
with specific characteristics or to only allow combining certain 
feature-engineering operators.

Appendix

Formulas of Evaluation Metrics

Here, we provide formulas for the metrics described in “Evalu-
ation Metrics”. We build on the notation introduced in “Objec-
tive Function”. For each metric, we give two formulas, one not 
normalized, one normalized.

Number of constraints Let C be a set of constraints. The 
number of constraints is the size of this set. To normalize this 
metric, let nmax

co
 be the maximum nco over all experiments, 

i.e., datasets, constraint types and repetitions of constraint 
generation.

Number of features involved in constraints Let features(c) 
be a function that returns a list with the names of all features 
that appear in the formula of constraint c. We iterate over 
all constraints and sum up the number of involved features. 
Features appearing multiple times count multiple times. To 
normalize this metric, we divide by the total number of fea-
tures in the dataset. Note that this normalized metric might 
assume values greater than one.

(3)nco = |C|

(4)nnorm
co

=
nco

nmax
co

(5)ncf =
∑

c∈C

|features(c)|

(6)nnorm
cf

=
ncf

n

Number of unique features involved in constraints In contrast 
to the previous metric, we first collect all features involved 
in any of the constraints and then make sure we count each 
feature only once. To normalize this metric, we divide by the 
total number of features in the dataset.

Number of solutions Each constraint c(s) ∈ C evaluates to 
zero (false) or one (true), depending on the feature-selection 
decisions s. To determine the number of solutions, one needs 
to count how many values of s result in all constraints being 
satisfied. Mathematically, all constraints are satisfied if the 
minimum of all constraint evaluations equals one. To nor-
malize this metric, we divide by the total number of possible 
feature sets, which is 2n for n features.

Number of selected features Mathematically, the number of 
selected features is the sum over all selection decisions sj . 
To normalize this metric, we divide by the total number of 
features in the corresponding dataset.

Objective value The objective value is the result of the objec-
tive function in Eq. (1). To normalize this metric, we divide 
by the value achievable in the unconstrained problem. One 
gets the latter value by selecting all features, i.e., summing 
up all feature qualities.

Prediction performance Let ŷ ∈ ℝ
m denote the prediction for 

a dataset, while the true target values are y ∈ ℝ
m . Techni-

cally speaking, y and ŷ do not refer to a whole dataset, but 
either the training split or the test split in cross-validation. 

(7)nucf =
||
⋃

c∈C

features(c)||

(8)nnorm
ucf

=
nucf

n

(9)nso =
∑

s∈{0,1}n

min
c∈C

c(s)

(10)nnorm
so

=
nso

2n

(11)nse =

n∑

j=1

sj

(12)nnorm
se

=
nse

n

(13)Q(s,X, y) =

n∑

j=1

sj ⋅ |�fj,y|

(14)Q(s,X, y)norm =
Q(s,X, y)
∑n

j=1
��fj,y�



SN Computer Science           (2022) 3:445 	 Page 21 of 25    445 

SN Computer Science

Let ȳ be the mean of the target variable. To evaluate pre-
diction performance, we use the proportion of variance 
explained, R2 , which is a typical metric for regression prob-
lems [31]. lreg as subscript denotes linear regression as the 
prediction model, and btree stands for boosted trees.

Though R2 already has a natural upper bound of one, it 
might vary considerably between datasets and prediction 
models. We analyze this behavior more closely in “Com-
parison of Prediction Performance”. Thus, for some evalua-
tions, we partition the results by prediction model and split 
of a dataset. In each partition, we record the minimum and 
maximum R2 , i.e., we aggregate over constraint types and 
repetitions of constraint generation. With these aggregates, 
we perform min-max normalization.

Formulas of Constraint Types

Here, we formalize the constraint types from both our stud-
ies. We build on the notation introduced in “Objective Func-
tion”. Note that the actual implementation in our Python 
code might use different logical and arithmetic operators but 
is logically equivalent.

Study with Synthetic Constraints

Here, we provide formulas for the constraint types described 
in “Constraint Generation”. For illustration purposes, we 
sometimes give two equivalent definitions. Each constraint 
type either refers to two features, a group of n′ features, or 
all n features. Note that some constraint types have an addi-
tional parameter k.

(T1) Global-AT-MOST

(T2) Group-AT-MOST

(T3) Group-AT-LEAST

(15)R2(y, ŷ) = 1 −

∑m

i=1
(yi − ŷi)

2

∑m

i=1
(yi − ȳ)2

(16)R2,norm(y, ŷ) =
R2(y, ŷ) − R

2,min

model,split

R
2,max

model,split
− R

2,min

model,split

(17)

Global-AT-MOST(s1,… , sn, k)

=

n∑

j=1

sj ≤ k, with k ∈ {1,… , n − 1}

(18)

Group-AT-MOST(s1,… , sn� , k)

=

n�∑

j=1

sj ≤ k, with k ∈ {1,… , n� − 1}

(T4) Single-IFF

(T5) Group-IFF

(T6) Single-NAND

(T7) Group-NAND

(T8) Single-XOR

(T9) Group-MIXED For each constraint to be generated, 
choose with equal probability between the following:

•	 Group-AT-MOST (T2) (Eq. 18)
•	 Group-AT-LEAST (T3) (Eq. 19)
•	 Group-IFF (T5) (Eq. 21)
•	 Group-NAND (T7) (Eq. 23)
•	 Single-XOR (T8) (Eq. 24)

(T10) UNCONSTRAINED This constraint is always satisfied.

Case Study in Materials Science

Here, we provide formulas for the constraint types described 
in “Constraints”.

(I1) Global-cardinality This is just a special case of (T1) 
in Eq. (17).

(I2) Inter-correlation For this constraint type, one needs to 
pre-compute the Pearson correlation �fj1 ,fj2 for each pair of 
features fj1 , fj2 . After computation, these values are numeric 

(19)

Group-AT-LEAST(s1,… , sn� , k)

=

n�∑

j=1

sj ≥ k, with k ∈ {1,… , n� − 1}

(20)Single-IFF(s1, s2) = s1 ↔ s2 = (s1 ∧ s2) ∨ (¬s1 ∧ ¬s2)

(21)
Group-IFF(s1,… , sn� ) = s1 ↔ s2 ↔ ⋯ ↔ sn� =

(s1 ∧ s2 ∧⋯ ∧ sn� ) ∨ (¬s1 ∧ ¬s2 ∧⋯ ∧ ¬sn� )

(22)Single-NAND(s1, s2) = ¬(s1 ∧ s2)

(23)

Group-NAND(s1,… , sn� ) = ¬(s1 ∧ s2 ∧⋯ ∧ sn� ) =

n�∑

j=1

sj ≤ n� − 1

(24)
Single-XOR(s1, s2) = s1 ⊕ s2 = (s1 ∧ ¬s2) ∨ (¬s1 ∧ s2)

(25)UNCONSTRAINED(s1,… , sn) = True

(26)

Global-cardinality(s1,… , sn, k)

=

n∑

j=1

sj ≤ k, with k ∈ {5, 10}



	 SN Computer Science           (2022) 3:445   445   Page 22 of 25

SN Computer Science

constants in the formula. The correlation threshold � is a 
numeric constant as well.

(I3) Quality-filter For this constraint type, the feature-target 
correlations |�fj,y| and the quality threshold � are numeric 
constants.

(D1) Schmid-group Based on the Schmid factor, one can par-
tition the twelve slip systems into non-overlapping groups. 
Let � be the partitioning, i.e., a set of sets. In our case study, 
|�| = 2 . Let P be the set of physical quantities measured for 
the twelve slip systems. Let subscript p, g identify a feature 
derived for a physical quantity p and a slip system g.

(D2) Quantity-Schmid-group Notation is the same as for 
Eq. (29).

(D3) Schmid-group-representative Notation is the same as 
for Eq. (29).

(D4) Quantity-Schmid-group-representative Notation is the 
same as for Eq. (29).

(D5) Plastic-strain-tensor Let T be a set of indices, identify-
ing features that describe the plastic strain tensor.

(27)

Inter-correlation(s1,… , sn, �)

=
⋀

(j1, j2) ∈ {1,… , n}2

j1 ≠ j2

((
|�fj1 ,fj2 | ≥ �

)
→ ¬(sj1 ∧ sj2 )

)

with � = 0.8

(28)

Quality-filter(s1,… , sn, 𝜏)

=

n⋀

j=1

((
|𝜌fj,y| < 𝜏

)
→ ¬sj

)
, with 𝜏 = 0.2

(29)Schmid-group(s1,… , sn) =
∑

G∈�

(
⋁

p∈P, g∈G

sp,g

)
≤ 1

(30)

Quantity-Schmid-group(s1,… , sn)

=
⋀

p∈P

(
∑

G∈�

(
⋁

g∈G

sp,g

)
≤ 1

)

(31)

Schmid-group-representative(s1,… , sn)

=
⋀

G∈�

(
∑

p∈P, g∈G

sp,g ≤ 1

)

(32)

Quantity-Schmid-group-repr.(s1,… , sn)

=
⋀

p∈P, G∈�

(
∑

g∈G

sp,g ≤ 1

)

(D6) Dislocation-density Let D be a set of indices, identi-
fying features that describe dislocation density, aggregated 
over all slip systems.

(D7) Plastic-strain-rate Let R1 and R2 be sets of indices, 
identifying features originating from the first and second 
computation method of the plastic strain rate, respectively.

(D8) Aggregate Let P be the set of physical quantities meas-
ured for the twelve slip systems. Let A be the set of aggregate 
functions. Let subscript p, a identify a feature derived for a 
physical quantity p and an aggregate function a.

(D9) Quantity-aggregate Notation is the same as for 
Eq. (36).

(D10) Aggregate-or-original Additional to the notation for 
Eq. (36), let subscript p, l identify a feature derived for a 
physical quantity p and a slip system l ∈ {1,… , 12}.

(D11) Mixed Several constraint types have to be satisfied at 
the same time.

(D12) Unconstrained This is the same definition as for (T10) 
in Eq. (25).

(33)Plastic-strain-tensor(s1,… , sn) =
∑

t∈T

st ≤ 3

(34)Dislocation-density(s1,… , sn) =
∑

d∈D

sd ≤ 1

(35)

Plastic-strain-rate(s1,… , sn)

=

(
⋁

r∈R1

sr

)
+

(
⋁

r∈R2

sr

)
≤ 1

(36)Aggregate(s1,… , sn) =
∑

a∈A

(
⋁

p∈P

sp,a

)
≤ 1

(37)Quantity-aggregate(s1,… , sn) =
⋀

p∈P

(
∑

a∈A

sp,a ≤ 1

)

(38)

Aggregate-or-original(s1,… , sn)

=
⋀

p∈P

((
⋁

a∈A

sp,a

)
+

(
⋁

l∈{1,…,12}

sp,l

)
≤ 1

)

(39)

Mixed(s1,… , sn)

= Quantity-Schmid-group-repr.(s1,… , sn)∧

Plastic-strain-tensor(s1,… , sn)∧

Dislocation-density(s1,… , sn)∧

Plastic-strain-rate(s1,… , sn)∧

Quantity-aggregate(s1,… , sn)∧

Aggregate-or-original(s1,… , sn)



SN Computer Science           (2022) 3:445 	 Page 23 of 25    445 

SN Computer Science

Funding  Open Access funding enabled and organized by Projekt 
DEAL. This work was supported by the Ministry of Science, Research 
and Arts Baden-Württemberg (Az: 33-7533.-9-10/20/1).

Availability of Data and Materials  All experimental data are available 
online at https://​doi.​org/​10.​5445/​IR/​10001​48891.

Code Availability  The code is available online at https://​github.​com/​
Jakob-​Bach/​Const​rained-​Filter-​Featu​re-​Selec​tion.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Agrawal A, Deshpande PD, Cecen A, et al. Exploration of data 
science techniques to predict fatigue strength of steel from com-
position and processing parameters. Integr Mater Manuf Innov. 
2014;3(1):90–108. https://​doi.​org/​10.​1186/​2193-​9772-3-8.

	 2.	 Agrawal P, Abutarboush HF, Ganesh T, et al. Metaheuristic algo-
rithms on feature selection: a survey of one decade of research 
(2009–2019). IEEE Access. 2021;9:26766–91. https://​doi.​org/​10.​
1109/​ACCESS.​2021.​30564​07.

	 3.	 Alfonso EM, Manthey N. New CNF features and formula clas-
sification. In: Proc. PoS@SAT; 2014. p. 57–71. https://​doi.​org/​10.​
29007/​b8t1

	 4.	 Bae E, Bailey J. COALA: a novel approach for the extraction of 
an alternate clustering of high quality and high dissimilarity. In: 
Proc. ICDM; 2006. p. 53–62. https://​doi.​org/​10.​1109/​ICDM.​2006.​
37

	 5.	 Barrett C, Tinelli C. Satisfiability modulo theories. In: Handbook 
of model checking, chap 11. Springer; 2018. p. 305–343. https://​
doi.​org/​10.​1007/​978-3-​319-​10575-8_​11

	 6.	 Benavides D, Segura S, Ruiz-Cortés A. Automated analysis 
of feature models 20 years later: a literature review. Inf Syst. 
2010;35(6):615–36. https://​doi.​org/​10.​1016/j.​is.​2010.​01.​001.

	 7.	 Carvalho DV, Pereira EM, Cardoso JS. Machine learning inter-
pretability: a survey on methods and metrics. Electronics. 2019. 
https://​doi.​org/​10.​3390/​elect​ronic​s8080​832.

	 8.	 Chandrashekar G, Sahin F. A survey on feature selection methods. 
Comput Electr Eng. 2014;40(1):16–28. https://​doi.​org/​10.​1016/j.​
compe​leceng.​2013.​11.​024.

(40)Unconstrained(s1,… , sn) = True
	 9.	 Chen T, Guestrin C. XGBoost: a scalable tree boosting sys-

tem. In: Proc. KDD; 2016. p. 785–794. https://​doi.​org/​10.​1145/​
29396​72.​29397​85

	10.	 Childs CM, Washburn NR. Embedding domain knowledge for 
machine learning of complex material systems. MRS Commun. 
2019;9(3):806–20. https://​doi.​org/​10.​1557/​mrc.​2019.​90.

	11.	 Cook SA. The complexity of theorem-proving procedures. In: 
Proc. STOC; 1971. p. 151–158. https://​doi.​org/​10.​1145/​800157.​
805047

	12.	 Dao TBH, Duong KC, Vrain C. A declarative framework for 
constrained clustering. In: Proc. ECML PKDD; 2013. p. 419–
434. https://​doi.​org/​10.​1007/​978-3-​642-​40994-3_​27

	13.	 De Moura L, Bjørner N. Z3: an efficient SMT solver. In: Proc. 
TACAS; 2008. p. 337–340. https://​doi.​org/​10.​1007/​978-3-​540-​
78800-3_​24

	14.	 Dhal P, Azad C. A comprehensive survey on feature selec-
tion in the various fields of machine learning. Appl 
Intell .  2021;52(4):4543–81. https:// ​doi. ​org/​10.​1007/​
s10489-​021-​02550-9.

	15.	 Friedman J, Hastie T, Tibshirani R. A note on the group lasso and 
a sparse group lasso; 2010. arXiv:​1001.​0736 [math.ST]

	16.	 Galindo JA, Benavides D, Trinidad P, et al. Automated analysis 
of feature models: Quo vadis? Computing. 2019;101(5):387–433. 
https://​doi.​org/​10.​1007/​s00607-​018-​0646-1.

	17.	 Gilpin LH, Bau D, Yuan BZ, et al. Explaining explanations: an 
overview of interpretability of machine learning. In: Proc. DSAA; 
2018. p. 80–89. https://​doi.​org/​10.​1109/​DSAA.​2018.​00018

	18.	 Grossi V, Romei A, Turini F. Survey on using constraints in data 
mining. Data Min Knowl Disc. 2017;31(2):424–64. https://​doi.​
org/​10.​1007/​s10618-​016-​0480-z.

	19.	 Groves WC. Toward automating and systematizing the use of 
domain knowledge in feature selection. Ph.D. thesis, University 
of Minnesota; 2015. https://​hdl.​handle.​net/​11299/​175444

	20.	 Guo J, White J, Wang G, et al. A genetic algorithm for optimized 
feature selection with resource constraints in software product 
lines. J Syst Softw. 2011;84(12):2208–21. https://​doi.​org/​10.​
1016/j.​jss.​2011.​06.​026.

	21.	 Guo J, Zulkoski E, Olaechea R, et al. Scaling exact multi-objec-
tive combinatorial optimization by parallelization. In: Proc. ASE; 
2014. p. 409–420. https://​doi.​org/​10.​1145/​26429​37.​26429​71

	22.	 Guo J, Liang JH, Shi K, et al. SMTIBEA: a hybrid multi-objective 
optimization algorithm for configuring large constrained software 
product lines. Softw Syst Model. 2019;18(2):1447–66. https://​doi.​
org/​10.​1007/​s10270-​017-​0610-0.

	23.	 Guyon I, Elisseeff A. An introduction to variable and feature 
selection. J Mach Learn Res 2003;3(Mar):1157–1182. https://​
www.​jmlr.​org/​papers/​volum​e3/​guyon​03a/​guyon​03a.​pdf

	24.	 Harman M, Jia Y, Krinke J, et al. Search based software engineer-
ing for software product line engineering: a survey and directions 
for future work. In: Proc. SPLC; 2014. p. 5–18. https://​doi.​org/​10.​
1145/​26485​11.​26485​13

	25.	 Henard C, Papadakis M, Harman M, et al. Combining multi-
objective search and constraint solving for configuring large soft-
ware product lines. In: Proc. ICSE; 2015. pp 517–528. https://​doi.​
org/​10.​1109/​ICSE.​2015.​69

	26.	 Hijazi S, Hamad D, Kalakech M, et al. Active learning of con-
straints for weighted feature selection. Adv Data Anal Classif. 
2021;15(2):337–77. https://​doi.​org/​10.​1007/​s11634-​020-​00408-5.

	27.	 Huan TD, Mannodi-Kanakkithodi A, Ramprasad R. Acceler-
ated materials property predictions and design using motif-based 
fingerprints. Phys Rev B. 2015;92(1):014106. https://​doi.​org/​10.​
1103/​PhysR​evB.​92.​014106.

	28.	 Imbalzano G, Anelli A, Giofré D, et al. Automatic selection of 
atomic fingerprints and reference configurations for machine-
learning potentials. J Chem Phys. 2018;148(24):241730. https://​
doi.​org/​10.​1063/1.​50246​11.

https://doi.org/10.5445/IR/1000148891
https://github.com/Jakob-Bach/Constrained-Filter-Feature-Selection
https://github.com/Jakob-Bach/Constrained-Filter-Feature-Selection
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/2193-9772-3-8
https://doi.org/10.1109/ACCESS.2021.3056407
https://doi.org/10.1109/ACCESS.2021.3056407
https://doi.org/10.29007/b8t1
https://doi.org/10.29007/b8t1
https://doi.org/10.1109/ICDM.2006.37
https://doi.org/10.1109/ICDM.2006.37
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.3390/electronics8080832
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1557/mrc.2019.90
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-642-40994-3_27
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10489-021-02550-9
https://doi.org/10.1007/s10489-021-02550-9
http://arxiv.org/abs/1001.0736
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1007/s10618-016-0480-z
https://doi.org/10.1007/s10618-016-0480-z
https://hdl.handle.net/11299/175444
https://doi.org/10.1016/j.jss.2011.06.026
https://doi.org/10.1016/j.jss.2011.06.026
https://doi.org/10.1145/2642937.2642971
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10270-017-0610-0
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
https://doi.org/10.1145/2648511.2648513
https://doi.org/10.1145/2648511.2648513
https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1007/s11634-020-00408-5
https://doi.org/10.1103/PhysRevB.92.014106
https://doi.org/10.1103/PhysRevB.92.014106
https://doi.org/10.1063/1.5024611
https://doi.org/10.1063/1.5024611


	 SN Computer Science           (2022) 3:445   445   Page 24 of 25

SN Computer Science

	29.	 Jacob L, Obozinski G, Vert JP. Group lasso with overlap and graph 
lasso. In: Proc. ICML; 2009. p. 433–440. https://​doi.​org/​10.​1145/​
15533​74.​15534​31

	30.	 Jagdhuber R, Lang M, Stenzl A, et al. Cost-constrained feature 
selection in binary classification: adaptations for greedy forward 
selection and genetic algorithms. BMC Bioinform. 2020. https://​
doi.​org/​10.​1186/​s12859-​020-​3361-9.

	31.	 James G, Witten D, Hastie T, et al. Linear regression. In: An 
introduction to statistical learning: with applications in R, 
chap 3. Springer; 2013. p. 59–126. https://​doi.​org/​10.​1007/​
978-1-​4614-​7138-7_3

	32.	 Janet JP, Kulik HJ. Resolving transition metal chemical space: 
Feature selection for machine learning and structure–property 
relationships. J Phys Chem A. 2017;121(46):8939–54. https://​
doi.​org/​10.​1021/​acs.​jpca.​7b087​50.

	33.	 Karpatne A, Atluri G, Faghmous JH, et al. Theory-guided data 
science: a new paradigm for scientific discovery from data. IEEE 
Trans Knowl Data Eng. 2017;29(10):2318–31. https://​doi.​org/​10.​
1109/​TKDE.​2017.​27201​68.

	34.	 Khushaba RN, Al-Ani A, Al-Jumaily A. Feature subset selection 
using differential evolution and a statistical repair mechanism. 
Expert Syst Appl. 2011;38(9):11515–26. https://​doi.​org/​10.​1016/j.​
eswa.​2011.​03.​028.

	35.	 Lagani V, Athineou G, Farcomeni A, et al. Feature selection with 
the R package MXM: discovering statistically equivalent feature 
subsets. J Stat Softw. 2017;80(7):1–25. https://​doi.​org/​10.​18637/​
jss.​v080.​i07.

	36.	 Lee J, Seo W, Kim DW. Effective evolutionary multilabel feature 
selection under a budget constraint. Complexity. 2018. https://​doi.​
org/​10.​1155/​2018/​32414​89.

	37.	 Li J, Cheng K, Wang S, et al. Feature selection: a data perspective. 
ACM Comput Surv. 2017;50(6):1–45. https://​doi.​org/​10.​1145/​
31366​25.

	38.	 Liu Y, Wu JM, Avdeev M, et al. Multi-layer feature selection 
incorporating weighted score-based expert knowledge toward 
modeling materials with targeted properties. Adv Theor Simul. 
2020;3(2):1900215. https://​doi.​org/​10.​1002/​adts.​20190​0215.

	39.	 Lu G, Li B, Yang W, et  al. Unsupervised feature selec-
tion with graph learning via low-rank constraint. Multimed 
Tools Appl. 2018;77(22):29531–49. https://​doi.​org/​10.​1007/​
s11042-​017-​5207-7.

	40.	 LVAT Linux variability analysis tools. 2021. https://​code.​google.​
com/​archi​ve/p/​linux-​varia​bility-​analy​sis-​tools/. Accessed 10 Aug 
2021

	41.	 Mangal A, Holm EA. A comparative study of feature selection 
methods for stress hotspot classification in materials. Integr 
Mater Manuf Innov. 2018;7(3):87–95. https://​doi.​org/​10.​1007/​
s40192-​018-​0109-8.

	42.	 Mendonca M, Branco M, Cowan D. S.P.L.O.T.: Software product 
lines online tools. In: Proc. OOPSLA; 2009. p. 761–762. https://​
doi.​org/​10.​1145/​16399​50.​16400​02

	43.	 Momeni N, Arza A, Rodrigues J, et al. Cafs: cost-aware features 
selection method for multimodal stress monitoring on wearable 
devices. IEEE Trans Biomed Eng. 2021. https://​doi.​org/​10.​1109/​
TBME.​2021.​31135​93.

	44.	 Ng RT, Lakshmanan LVS, Han J, et al. Exploratory mining and 
pruning optimizations of constrained associations rules. In: Proc. 
SIGMOD; 1998. p. 13–24. https://​doi.​org/​10.​1145/​276305.​
276307

	45.	 Nudelman E, Leyton-Brown K, Hoos HH, et al. Understanding 
random SAT: Beyond the clauses-to-variables ratio. In: Proc. CP; 
2004. p. 438–452. https://​doi.​org/​10.​1007/​978-3-​540-​30201-8_​33

	46.	 Ochoa L, González-Rojas O, Cardozo N, et al. Constraint pro-
gramming heuristics for configuring optimal products in multi 
product lines. Inf Sci. 2019;474:33–47. https://​doi.​org/​10.​1016/j.​
ins.​2018.​09.​042.

	47.	 Oh J, Batory D, Myers M, et al. Finding near-optimal configura-
tions in product lines by random sampling. In: Proc. ESEC/FSE; 
2017. p. 61–71. https://​doi.​org/​10.​1145/​31062​37.​31062​73

	48.	 Paclík P, Duin RPW, van Kempen GMP, et al. On feature selec-
tion with measurement cost and grouped features. In: Proc. 
SSPR/SPR; 2002. p. 461–469. https://​doi.​org/​10.​1007/3-​540-​
70659-3_​48

	49.	 Pedregosa F, Varoquaux G, Gramfort A, et  al. Scikit-learn: 
machine learning in python. J Mach Learn Res 2011;12:2825–
2830. http://​jmlr.​org/​papers/​v12/​pedre​gosa1​1a.​html

	50.	 Plasberg JH, Kleijn WB. Feature selection under a complexity 
constraint. IEEE Trans Multimed. 2009;11(3):565–71. https://​doi.​
org/​10.​1109/​TMM.​2009.​20129​44.

	51.	 Ramprasad R, Batra R, Pilania G, et al. Machine learning in 
materials informatics: recent applications and prospects. NPJ 
Comput Mater. 2017;3(54):1–13. https://​doi.​org/​10.​1038/​
s41524-​017-​0056-5.

	52.	 Rostami M, Berahmand K, Forouzandeh S. A novel method of 
constrained feature selection by the measurement of pairwise con-
straints uncertainty. J Big Data. 2020;7(1):83. https://​doi.​org/​10.​
1186/​s40537-​020-​00352-3.

	53.	 Sayyad AS, Menzies T, Ammar H. On the value of user prefer-
ences in search-based software engineering: a case study in soft-
ware product lines. In: Proc. ICSE; 2013. p. 492–501. https://​doi.​
org/​10.​1109/​ICSE.​2013.​66065​95

	54.	 Serpico SB, Bruzzone L. A new search algorithm for feature selec-
tion in hyperspectral remote sensing images. IEEE Trans Geosci 
Remote Sens. 2001;39(7):1360–7. https://​doi.​org/​10.​1109/​36.​
934069.

	55.	 Sheikhpour R, Sarram MA, Gharaghani S, et al. A survey on 
semi-supervised feature selection methods. Pattern Recognit. 
2017;64:141–58. https://​doi.​org/​10.​1016/j.​patcog.​2016.​11.​003.

	56.	 Simon N, Friedman J, Hastie T, et al. A sparse-group lasso. J 
Comput Graph Stat. 2013;22(2):231–45. https://​doi.​org/​10.​1080/​
10618​600.​2012.​681250.

	57.	 Sudmanns M, Bach J, Weygand D, et al. Data-driven exploration 
and continuum modeling of dislocation networks. Modell Simul 
Mater Sci Eng. 2020;28(6):065001. https://​doi.​org/​10.​1088/​1361-​
651x/​ab97ef.

	58.	 Thum T, Batory D, Kastner C. Reasoning about edits to feature 
models. In: Proc. ICSE; 2009. p. 254–264. https://​doi.​org/​10.​
1109/​ICSE.​2009.​50705​26

	59.	 Vanschoren J, Van Rijn JN, Bischl B, et al. Openml: networked 
science in machine learning. ACM SIGKDD Explor Newsl. 
2014;15(2):49–60. https://​doi.​org/​10.​1145/​26411​90.​26411​98.

	60.	 Wagner N, Rondinelli JM. Theory-guided machine learning in 
materials science. Front Mater Sci. 2016;3:28. https://​doi.​org/​10.​
3389/​fmats.​2016.​00028.

	61.	 Weygand D, Friedman L, van der Giessen E, et al. Discrete dis-
location modeling in three-dimensional confined volumes. Mater 
Sci Eng A. 2001;309:420–4. https://​doi.​org/​10.​1016/​S0921-​
5093(00)​01632-4.

	62.	 White J, Schmidt DC, Benavides D, et al. Automated diagnosis 
of product-line configuration errors in feature models. In: Proc. 
SPLC; 2008. p. 225–234. https://​doi.​org/​10.​1109/​SPLC.​2008.​16

	63.	 Yang H, Xu Z, Lyu MR, et al. Budget constrained non-monotonic 
feature selection. Neural Netw. 2015;71:214–24. https://​doi.​org/​
10.​1016/j.​neunet.​2015.​08.​004.

	64.	 Yuan M, Lin Y. Model selection and estimation in regression 
with grouped variables. J R Stat Soc Ser B (Stat Methodol). 
2006;68(1):49–67. https://​doi.​org/​10.​1111/j.​1467-​9868.​2005.​
00532.x.

	65.	 Zhang D, Chen S, Zhou ZH. Constraint score: a new filter method 
for feature selection with pairwise constraints. Pattern Recognit. 
2008;41(5):1440–51. https://​doi.​org/​10.​1016/j.​patcog.​2007.​10.​
009.

https://doi.org/10.1145/1553374.1553431
https://doi.org/10.1145/1553374.1553431
https://doi.org/10.1186/s12859-020-3361-9
https://doi.org/10.1186/s12859-020-3361-9
https://doi.org/10.1007/978-1-4614-7138-7_3
https://doi.org/10.1007/978-1-4614-7138-7_3
https://doi.org/10.1021/acs.jpca.7b08750
https://doi.org/10.1021/acs.jpca.7b08750
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1016/j.eswa.2011.03.028
https://doi.org/10.1016/j.eswa.2011.03.028
https://doi.org/10.18637/jss.v080.i07
https://doi.org/10.18637/jss.v080.i07
https://doi.org/10.1155/2018/3241489
https://doi.org/10.1155/2018/3241489
https://doi.org/10.1145/3136625
https://doi.org/10.1145/3136625
https://doi.org/10.1002/adts.201900215
https://doi.org/10.1007/s11042-017-5207-7
https://doi.org/10.1007/s11042-017-5207-7
https://code.google.com/archive/p/linux-variability-analysis-tools/
https://code.google.com/archive/p/linux-variability-analysis-tools/
https://doi.org/10.1007/s40192-018-0109-8
https://doi.org/10.1007/s40192-018-0109-8
https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1109/TBME.2021.3113593
https://doi.org/10.1109/TBME.2021.3113593
https://doi.org/10.1145/276305.276307
https://doi.org/10.1145/276305.276307
https://doi.org/10.1007/978-3-540-30201-8_33
https://doi.org/10.1016/j.ins.2018.09.042
https://doi.org/10.1016/j.ins.2018.09.042
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1007/3-540-70659-3_48
https://doi.org/10.1007/3-540-70659-3_48
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1109/TMM.2009.2012944
https://doi.org/10.1109/TMM.2009.2012944
https://doi.org/10.1038/s41524-017-0056-5
https://doi.org/10.1038/s41524-017-0056-5
https://doi.org/10.1186/s40537-020-00352-3
https://doi.org/10.1186/s40537-020-00352-3
https://doi.org/10.1109/ICSE.2013.6606595
https://doi.org/10.1109/ICSE.2013.6606595
https://doi.org/10.1109/36.934069
https://doi.org/10.1109/36.934069
https://doi.org/10.1016/j.patcog.2016.11.003
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1088/1361-651x/ab97ef
https://doi.org/10.1088/1361-651x/ab97ef
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.3389/fmats.2016.00028
https://doi.org/10.3389/fmats.2016.00028
https://doi.org/10.1016/S0921-5093(00)01632-4
https://doi.org/10.1016/S0921-5093(00)01632-4
https://doi.org/10.1109/SPLC.2008.16
https://doi.org/10.1016/j.neunet.2015.08.004
https://doi.org/10.1016/j.neunet.2015.08.004
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1016/j.patcog.2007.10.009
https://doi.org/10.1016/j.patcog.2007.10.009


SN Computer Science           (2022) 3:445 	 Page 25 of 25    445 

SN Computer Science

	66.	 Zhang L, Li Y, Zhang J, et al. Nonlinear sparse feature selec-
tion algorithm via low matrix rank constraint. Multimed 
Tools Appl. 2019;78(23):33319–37. https://​doi.​org/​10.​1007/​
s11042-​018-​6909-1.

	67.	 Zhang R, Zhang Y, Li X. Unsupervised feature selection via adap-
tive graph learning and constraint. IEEE Trans Neural Netw Learn 
Syst. 2020. https://​doi.​org/​10.​1109/​TNNLS.​2020.​30423​30.

	68.	 Zhang Z, Wang Q, Si L, et al. Learning for efficient supervised 
query expansion via two-stage feature selection. In: Proc. SIGIR; 
2016. p. 265–274. https://​doi.​org/​10.​1145/​29114​51.​29115​39

	69.	 Zhao P, Rocha G, Yu B. Grouped and hierarchical model selection 
through composite absolute penalties. Tech. rep., Department of 
Statistics, UC Berkeley; 2006. https://​stati​stics.​berke​ley.​edu/​sites/​
defau​lt/​files/​tech-​repor​ts/​703.​pdf

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11042-018-6909-1
https://doi.org/10.1007/s11042-018-6909-1
https://doi.org/10.1109/TNNLS.2020.3042330
https://doi.org/10.1145/2911451.2911539
https://statistics.berkeley.edu/sites/default/files/tech-reports/703.pdf
https://statistics.berkeley.edu/sites/default/files/tech-reports/703.pdf

	An Empirical Evaluation of Constrained Feature Selection
	Abstract
	Introduction
	Motivation
	Problem Statement
	Challenges
	Contributions
	Results
	Paper Outline

	Specification of Problem
	Objective Function
	Feature Selection
	Wrapper Feature Selection
	Filter Feature Selection

	Constraints
	Propositional Constraints
	Arithmetic Constraints

	Experiments
	Implementation

	Related Work
	Data Mining
	Overview
	Constraint Types and Approaches
	Other Notions of Constrained Feature Selection

	Software Engineering
	Overview
	Constraint Types and Approaches
	Constraint Generation

	Materials Science
	Overview
	Feature Engineering
	Involving Domain Experts


	Study with Synthetic Constraints
	Experimental Design
	Research Questions
	Evaluation Metrics
	Constraint Generation
	Datasets
	Prediction Models

	Evaluation
	Comparison of Prediction Performance
	Relationship Between Evaluation Metrics (Q1)
	Comparison of Constraint Types (Q2)
	Comparison of Datasets (Q3)
	Summary


	Case Study in Materials Science
	Experimental Design
	Scenario and Dataset
	Constraints
	Evaluation Metrics
	Prediction Models

	Evaluation
	Solution Quality
	Selected Features
	Summary


	Conclusions and Future Work
	Problem and Approach
	Results and Discussion
	Constraint-Quality Trade-Off
	Alternative Feature Sets

	Future Work
	User-Centric Systems
	Iterative Constraint Formulation
	Soft Constraints
	Constrained Feature Engineering


	References




