KIT | KIT-Bibliothek | Impressum | Datenschutz

The United States COVID-19 Forecast Hub dataset

US COVID-19 Forecast Hub Consortium; Cramer, Estee Y.; Huang, Yuxin; Wang, Yijin; Ray, Evan L.; Cornell, Matthew; Bracher, Johannes 1; Brennen, Andrea; Rivadeneira, Alvaro J. Castro; Gerding, Aaron; House, Katie; Jayawardena, Dasuni; Kanji, Abdul Hannan; Khandelwal, Ayush; Le, Khoa; Mody, Vidhi; Mody, Vrushti; Niemi, Jarad; Stark, Ariane; ... mehr

Abstract:

Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages.


Verlagsausgabe §
DOI: 10.5445/IR/1000150017
Veröffentlicht am 17.08.2022
Originalveröffentlichung
DOI: 10.1038/s41597-022-01517-w
Scopus
Zitationen: 41
Web of Science
Zitationen: 34
Dimensions
Zitationen: 69
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2052-4463, 2052-4436
KITopen-ID: 1000150017
Erschienen in Scientific Data
Verlag Nature Research
Band 9
Heft 1
Seiten Art.-Nr.: 462
Vorab online veröffentlicht am 01.08.2022
Nachgewiesen in Scopus
Dimensions
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page