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Abstract: In laparoscopic liver surgery (LLS) image-guided
navigation systems could support the surgeon by providing
subsurface information such as the positions of tumors and
vessels. For this purpose, one option is to perform a registra-
tion of preoperative 3D data and 3D surface patches recon-
structed from laparoscopic images. Part of an automatic 3D
registration pipeline is the feature description, which takes into
account various geometric and spatial information. Since there
is no leading feature descriptor in the field of LLS, two feature
descriptors are compared in this paper: The Fast Point Feature
Histogram (FPFH) and Triple Orthogonal Local Depth Images
(TOLDI). To evaluate their performance, three perturbations
were induced: varying surface patch sizes, spatial displace-
ment, and Gaussian deformation. Registration was performed
using the RANSAC algorithm. FPFH outperformed TOLDI
for small surface patches and in case of Gaussian deformations
in terms of registration accuracy. In contrast, TOLDI showed
lower registration errors for patches with spatial displacement.
While developing a 3D-3D registration pipeline, the choice of
the feature descriptor is of importance, consequently a careful
choice suitable for the application in LLS is necessary.
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1 Introduction
Laparoscopic liver surgery (LLS) has many benefits for the pa-
tients e.g. less pain and shorter hospital stays compared with
open surgery. However, it needs a trained surgeon to cope
with several challenges, e.g., no haptic feedback and a limited
field of view. An image-guided navigation system during the
surgery could further support the clinician by showing sub-
surface structures, e.g. hepatic vessels and tumors. Guidance
information can be obtained from preoperative Computer To-
mography (CT) or Magnetic Resonance Imaging (MRI) scans
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that can subsequently be reconstructed to a 3D model. The 3D
model can then be used overlayed onto the laparoscopic video
image to provide additional anatomical information. For the
computation of the overlay, one option would be the 3D re-
construction of the laparoscopic image data using for example
a stereo laparoscope. In general, the needed 3D global registra-
tion pipeline can be divided into three main steps. First, land-
marks have to be detected. Landmarks are characteristic points
(in this case in the 3D space) which can be robustly recognized
in the registration process. In a second step, these landmarks
have to be described. The feature description should ensure
an unambiguous representation of the landmarks. Thus, in a
last step, corresponding landmarks of the two data sets can be
found and matched.
Robu et al. introduced a registration pipeline for LLS using
the Triple Orthogonal Local Depth Images (TOLDI) feature
descriptor and the Random Sample Consensus (RANSAC)
matching algorithm [1]. They proposed a pruning step between
the feature description and the feature matching step to se-
lect an optimal set of landmarks. However, in case of small
surface patches (less than 20% of the whole liver surface)
the registration accuracy was limited. Pfeiffer et al. proposed
to solve the registration problem with a convolutional neural
network which does both, finding correspondences and non-
rigidly matching both point sets [2]. However, in advance a
manual coarse registration step had to be performed. Recently,
Koo et al. published an automatic 2D-3D registration approach
using a semantic liver contour detection [3]. Their deep learn-
ing based contour detection performed robustly. Nevertheless,
the registration itself only worked accurately with a visible sur-
face of at least 30%. Thus, due to several challenges the regis-
tration problem in LLS is not solved yet.
Beside the mentioned TOLDI algorithm, in the last years dif-
ferent 3D local feature descriptors were published [4]. How-
ever, they were not designed with an application focus on LLS.
Several papers compare their descriptiveness on specific 3D
data sets from a retrieval or laser scanner [5]. The used data
have in common to show distinct structures like edges, strong
curvatures, etc. However, in LLS, only a few characteristic
structures exist due to the smooth shape of the liver.
In this work, we state the following hypothesis: The feature
descriptor impacts the accuracy of the registration pipeline.
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Fig. 1: Data generation as used for the three experiments. From
left to right: First, seed points were homogeneously distributed.
Second, either the surface patch was varied or a fixed patch size
of 9% was modified by adding spatial displacement or Gaussian
deformation. Third, the patch was transformed.

There is room for improvement to facilitate the development of
a robust and accurate registration pipeline for LLS. For better
understanding the importance of the feature descriptor choice
we compare two feature descriptors: The TOLDI and the Fast
Point Feature Histogram (FPFH) descriptors [6, 7]. Thereby,
we include different disturbances observed in the data from
LLS.

2 Materials and Methods
The point set of a liver phantom from the OpenCAS dataset [8]
was used as input for the evaluation of feature descriptors. As
depicted in Fig. 1, patches were extracted from the complete
point set (in the following referred to as “surface patch”). The
surface patches were used as a surrogate for the intraoperative
point set that may be reconstructed by a stereo laparoscope.
The original, complete and not modified point set serves as a
surrogate for a preoperative point set acquired with a scanning
modality device (e.g. CT or MRI). This simulation setting fa-
cilitates the assessment of the impact of different confounding
factors on the accuracy of the registration of the (intraopera-
tive) surface patch with the (preoperative) point set.
Surface Patch Size: The intraoperative working distance
determines the size of the surface patch that can be recon-
structed. Surface patches of varying size were extracted from
the complete point set (Fig. 1 b). To this end, on the whole
point set a certain number of seed points were homogeneously
picked (Fig. 1 a). Each seed point serves as the center point
for a surface patch. A nearest neighbor approach was applied
to identify surrounding points that subsequently form a surface
patch of a given size around the seed point.
Spatial Displacement: Spatial displacement was applied to
the surface patch to simulate different point grid sampling sce-
narios that may occur in a real-world scenario e.g. due to the
multi-modality and noise of the laparoscopic data. Therefore,
a uniformly distributed spatial offset in x-, y-, and z-direction

was applied to each point of the surface patch (Fig. 1 e).
Gaussian deformation: Gaussian deformation with a vary-
ing amplitude was applied to the surface patch to mimic de-
formation relative to the preoperative complete point set as it
appears in LLS due to the insufflation pressure (Fig. 1 d).

2.1 Registration Pipeline
The encoding of local information in a point set is important
for point set registration. This is especially the case when a
surface patch needs to be registered to its corresponding loca-
tion on a larger point set. In this case, the descriptiveness of the
locally encoded information is of utmost importance to guide
the registration process. Two histogram-based feature descrip-
tors were exemplarily evaluated in this study, namely TOLDI
and FPFH. A reason for the choice is the different working
principle. The TOLDI generates a local reference frame and
calculates local depth information, thus it encodes geomet-
ric and spatial information of the surface. Whereas, the FPFH
focuses on geometric information as it uses surface normals
for the feature description. For further information regarding
the working principle of the feature descriptors we refer to
the original papers [6, 7]. For the FPFH descriptor, all points
were used for the feature description. The TOLDI descrip-
tor receives again all points on the surface patch. The set of
landmarks on the whole geometry consisted in our case of
1000 homogeneously distributed points from the whole sur-
face. The number was chosen according to [6]. We distributed
the points in the set homogeneously to guarantee the availabil-
ity of a correspondence set. For both feature descriptor, the de-
fault settings as proposed in the original papers were used. The
RANSAC with default settings was used for feature matching
as implemented in the Open3D package [9, 10].

2.2 Experiments
Surface patches covering the complete point set were gener-
ated. For both feature descriptors, the registration of each indi-
vidual surface patch with the complete point set was repeated
30 times. Three experiments were derived from this setting:
1. Impact of surface patch size (Fig. 1: a - b - f): The ex-

periment was conducted with surface patch sizes rang-
ing from 6.75% to 18% in increments of 25%. No dis-
turbances were applied to the surface patches.

2. Impact of spatial displacement (Fig. 1: a - c - e - f): The ex-
periment was conducted with a constant surface patch size
of 9%. Spatial displacement was applied to each surface
patch with a magnitude ranging from 0.5ṁm to 2 mm.

3. Impact of deformation (Fig. 1: a - c - d - f): The exper-
iment was conducted with a constant surface patch size
of 9%. Gaussian deformation with an amplitude ranging
from 5 mm to 30 mm was applied to each of the surface
patches.
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Fig. 2: RMSE (Mean and std) for different surface patch sizes (left), spatial displacement (middle) and Gaussian deformation (right).

The Root Mean Square Error (RMSE) was used to assess the
registration accuracy. Since a rigid matching was performed,
the optimal registration result (RMSE = 0 mm) was defined as
a complete compensation of the rotation and translation but not
of the disparity (spatial displacement or deformation) between
both point sets.

3 Results
Impact of Surface Patch Size: Fig. 2(a) shows the aver-
aged RMSE calculated over all surface patches, which was
substantially lower for FPFH compared to TOLDI for sur-
face patches of size 6.75% (mean±standard deviation (std)
= 2.6 mm±6.9 mm and 24.3 mm±22.8 mm, for FPFH and
TOLDI, respectively). No substantial difference regarding the
averaged RMSE was found for surface patch sizes of at least
11.25% and larger between FPFH and TOLDI.

Impact of Spatial Displacement: Both feature descrip-
tors are affected by spatial displacement. Nevertheless, FPFH
was found to be more sensitive to spatial displacement at an
amount of 1 mm and higher compared to TOLDI as indicated
by a substantially higher RMSE on average. The results are
illustrated in Fig. 2(b).

Impact of Gaussian Deformation: The averaged RMSE
calculated over all surface patches at different locations on
the complete point set was substantially lower for FPFH com-
pared to TOLDI for all amplitudes of deformation. The results
are illustrated in Fig. 2(c).

Impact of Location: In Fig. 3, the RMSE distribution of the
anterior side of the liver model is depicted for three different
cases: "normal" (no modification of the surface patch), spatial
displacement of 1 mm, and Gaussian deformation of 10 mm.
The surface patch size was set to 9%. The color distribution
covers the interquartile range for each case. For the FPFH,
patches on the anterior ridge have generally higher RMSE
values (especially for spatial displacement). For TOLDI, the
patches with higher RMSE values are rather located on the
right liver lobe. The distribution is similar for all three cases.

Fig. 3: RMSE distribution on the anterior side of the liver for three
cases: normal (no modifications), spatial displacement (disp.) of
1 mm and deformation of amplitude 10 mm for FPFH and TOLDI.
The surface patch size was set to 9%.

4 Discussion
The purpose of this study was to assess the impact of two
different feature descriptors on the registration performance.
Thereby, a simulated setting, which allows to control different
impact factors that may occur in LLS, was used. The results
demonstrated that the FPFH descriptor provided more accurate
overall registration results compared to the TOLDI descriptor
for small surface patch sizes reflecting 6.75% of the complete
point set. A possible explanation for the inferior performance
of the TOLDI descriptor for small surface patches could be an
instability with respect to the establishment of the used local
reference frame. The FPFH calculation only relies on the sur-
face normales of a small neighborhood. For surface patches re-
flecting 11.25% of the whole surface and larger, both options
were able to match both points sets very accurate (less than
1 mm mean RMSE). For the ideal case, a registration of a sur-
face patch with the preoperative 3D CT/MRI model in LLS is
possible assuming a realistic patch size of approximately 9%.
TOLDI features were found to be more robust against spa-
tial displacement compared to FPFH features. The robustness
of TOLDI was also evaluated and found to be high in a re-
view paper [5] and was the reason for Robu et al. to choose
it as an appropriate feature descriptor [1]. Moreover, this re-
sult is in accordance with the theoretical considerations, since
the FPFH feature descriptor uses normals which are especially
disturbed when adding spatial displacement. Otherwise, spa-
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tial displacement seems to not disturb the local depth images,
which are used by TOLDI, much. The result obtained with
deformed surface patches were contrary. The FPFH option
showed more robust registration results compared to TOLDI.
An explanation could be the feature characteristics used by
TOLDI. It uses depth information from three different per-
spectives. However, due to the deformation, the depth of the
patches is also changed and yields therefore a weak founda-
tion for the matching process. The RMSE values on the liver
surface were different distributed for FPFH and TOLDI. The
higher RMSE values for TOLDI in flat regions is consistent to
the findings by dos Santos et al. [11]. For flat surface patches,
which especially occur on the right liver lobe, the registration
problem can be ambiguous. For the FPFH case, RMSE values
for flat patches were generally lower than with TOLDI. This
could support the theory of a higher descriptiveness in these
areas. For spatial displacement, the FPFH features seem to be
more ambigious for patches at the anterior ridge than TOLDI
features. This might be connected to the fact that in patches
with a higher curvature, spatial displacement affects the struc-
ture. Thus the point’s normals change more than if patches are
flat and FPFH features are less reliable.
The histogram, which is the feature vector, generated with the
TOLDI has a length of 1200 bins in contrast to 33 bins for the
FPFH descriptor. Thus, the computation time for the TOLDI
itself, as well as for the matching, is much higher. We decided
to use 1000 landmarks on the whole surface as proposed in [6],
and all points on the patch to guarantee the existence of cor-
respondences. For the FPFH calculation, however, all points
were used as landmarks. Thus, the initial situation regarding
the landmarks is not equal. This has to be further evaluated,
nevertheless, considering all points as landmarks for TOLDI
would lead to an ernourmous increase in computation time.
Even when using only 1000 points for TOLDI the computa-
tion time was at least 10 times higher as for FPFH (e.g. for
the non-modifed case and a surface patch size of 9%: 0.7 s for
FPFH in contrast to 8.6 s for TOLDI). Taking the demand for
a real-time solution into account, it is questionable if this is at
all practicable.
There are several limitations of this study. First, the proposed
registration framework provides a simplified setting with re-
spect to the real-world setting of LLS, e.g. only one type of
deformation (Gaussian) was considered. Stereoscopic surface
reconstruction provides its own challenges and sources of er-
rors, e.g. light reflections on the laparoscopic video, that may
lead to inaccurate surface reconstruction results. Moreover, the
matching problem could be restricted to the anterior side of the
liver since the posterior side is not visible in a real-world set-
ting. Second, the results shown in this study are only obtained
from a single point set from a liver phantom of the OpenCAS
dataset. Therefore, it would be interesting to confirm the re-

sults on real-life point sets derived from CT and/or MRI scans
of real patients. Finally, an adjustment of the used parameters,
e.g. the support radius, could impact the registration accuracy.

5 Conclusion
The feature descriptor is an integral part of the registration
pipeline and the selection of an appropriate feature descriptor
is crucial to achieve a reasonable registration accuracy in a
LLS setting. In future, additional feature descriptors should be
compared. Furthermore, a feature descriptor optimized for the
registration of a preoperative 3D liver model and an intraoper-
ative surface patch should be developed.
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