KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep automatic segmentation of brain tumours in interventional ultrasound data

Zeineldin, Ramy A. ORCID iD icon 1; Pollok, Alex; Mangliers, Tim; Karar, Mohamed E.; Mathis-Ullrich, Franziska 1; Burgert, Oliver
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Intraoperative imaging can assist neurosurgeons to define brain tumours and other surrounding brain structures. Interventional ultrasound (iUS) is a convenient modality with fast scan times. However, iUS data may suffer from noise and artefacts which limit their interpretation during brain surgery. In this work, we use two deep learning networks, namely UNet and TransUNet, to make automatic and accurate segmentation of the brain tumour in iUS data. Experiments were conducted on a dataset of 27iUS volumes. The outcomes show that using a transformer with UNet is advantageous providing an efficient segmentation modelling long-range dependencies between each iUS image. In particular, the enhanced TransUNet was able to predict cavity segmentation in iUS data with an inference rate of more than 125 FPS.These promising results suggest that deep learning networks can be successfully deployed to assist neurosurgeons in the operating room.


Verlagsausgabe §
DOI: 10.5445/IR/1000150031
Veröffentlicht am 25.08.2022
Originalveröffentlichung
DOI: 10.1515/cdbme-2022-0034
Scopus
Zitationen: 5
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.07.2022
Sprache Englisch
Identifikator ISSN: 2364-5504
KITopen-ID: 1000150031
Erschienen in Current Directions in Biomedical Engineering
Verlag De Gruyter
Band 8
Heft 1
Seiten 133–137
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page