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Abstract:  Machine learning-based solutions rely heavily on 
the quality and quantity of the training data. In the medical 
domain, the main challenge is to acquire rich and diverse 
annotated datasets for training. We propose to decrease the 
annotation efforts and further diversify the dataset by 
introducing an annotation-efficient learning workflow. Instead 
of costly pixel-level annotation, we require only image-level 
labels as the remainder is covered by simulation. Thus, we 
obtain a large-scale dataset with realistic images and accurate 
ground truth annotations. We use this dataset for the 
instrument localization activity task together with a student-
teacher approach. We demonstrate the benefits of our 
workflow compared to state-of-the-art methods in instrument 
localization that are trained only on clinical datasets, which are 
fully annotated by human experts. 

Keywords: Annotation-efficiency learning, neurosurgery, 
instrument localization, medical deep learning  

1 Introduction 

The lack of large, annotated data is one of the main 
challenges in medical deep learning. This stems from the fact 
that the creation of such datasets is constrained by cost- and 
time-intensive annotations, which often require medical 
expertise. Annotations are especially expensive if they are on 
a pixel-wise level, such as segmentation or bounding boxes. 
To address the annotated data constraint, annotation-efficient 
learning became a relevant issue in medical deep learning [1]. 

We focus on the problem of localizing surgical instrument 

activity in neurosurgical microscope video data, see Fig. 1 (a), 
which is a cornerstone towards computer-assisted surgery. To 
train deep learning models in our prior work [2], annotators 
manually labelled instrument tips with bounding boxes, which 
we required to compute instrument activity labels, see Fig. 1 
(b). Creating a medium-sized annotated dataset took hundreds 
of hours and many annotation rounds. To create a large-scale 
dataset, we need even more time and human effort. In this 
work, we investigate annotation-efficient learning to save 
annotation labour for future similar problems. 

Contributions.  We propose an annotation-efficient 
learning workflow for surgical instrument activity 
localization. We abstain from costly pixel-level bounding box 
annotations and resort to cheaper image-level labels, which 
merely require annotators to decide if an instrument is present 
in a current frame or not. Based on these image-level 
annotations, we create a hybrid-synthetic data domain, where 
we can automatically compute instrument activity labels. In 
this way, we combine the advantage of human-made image-
level annotations and machine-made pixel-level annotations. 
This approach speeds up the annotation process and diversifies 
the dataset with more instrument shapes and positions. Then, 
we formulate a student-teacher approach to learn instrument 
activity localization, where we use our hybrid-synthetic data 
domain as a proxy to guide the student. While we achieve 
competitive results compared to the model trained on the 
dataset based on costly manual bounding box annotations, our 
approach saves ~75% of the annotation work. 
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Figure 1: (a) A neurosurgical scene (left) with surgical instrument 
activity as yellow overlay (right). (b) Bounding box annotation 
for the same scene (top) and post-processing to obtain 
surgical activity labels (bottom).  
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1.1 Related work 

Current approaches to surgical instrument localization address 
annotation efficiency in different ways: [3] boost instrument 
segmentation through a self-supervised pre-training on 
unlabelled surgical data. [4] follow a different approach and 
apply weak supervision to simplify the annotation labour from 
segmentation level to stripe level. Image-to-image techniques 
are leveraged in [5] for style transfer between labelled and 
unlabelled datasets. On the other hand, [6] use domain 
adaption to combine rendered, synthetic laparoscopic data [7] 
with unlabelled clinical data. However, applying such an 
approach to the neurosurgical domain is currently impossible 
since no synthetic dataset as [7] is available.  

We build upon [6] and introduce a hybrid-synthetic data 
domain. We refer to hybrid-synthetic data as a mixture of real-
world clinical background images and synthetic instruments 
overlaid as foreground. Hybrid-synthetic data tackles various 
challenges of purely synthetic data: (1) no complex surgical 
scene/anatomy modelling is required, (2) high variability can 
be achieved easily by exchanging the background, (3) realistic 
appearance due to real-world clinical backgrounds; thus, 
smaller domain gap to the real-world clinical test domain. 

2 Method 

We consider the problem of predicting surgical instrument 
activity as a 16 x 9 saliency map 𝑄𝑄 = (𝑝𝑝𝑖𝑖,𝑗𝑗), where 𝑝𝑝𝑖𝑖,𝑗𝑗 
describes the probability for an instrument tip in the image 
region (i,j), see Fig. 1 (a). Our goal is to train a model 𝜃𝜃 that 
can infer instrument activity 𝑄𝑄 for an image input 𝐼𝐼. Thereby, 
𝐼𝐼 comes from a real-world clinical domain, 𝒟𝒟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

To train 𝜃𝜃 in a supervised fashion as in [1], one needs 
clinical training data {𝐼𝐼,𝑄𝑄∗}𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  with 𝐼𝐼 ∈  𝒟𝒟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , that 
consist of images 𝐼𝐼 with corresponding reference labels 𝑄𝑄∗. To 
create 𝑄𝑄∗, bounding box annotations are needed (Fig. 1). 

Our method avoids the need for manually labelling 
bounding boxes. Instead, we use cheaper image-level 
annotations created based on the question of whether 
annotators see surgical instruments in the frame. We employ 
these image-level annotations to design a hybrid-synthetic 
domain 𝒟𝒟ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  which we define such that we can 
automatically compute 𝑄𝑄∗. This allows to leverage the benefits 
of human-made manual image-level annotations and machine-
made pixel-level annotations. Finally, we take labelled data 
from 𝒟𝒟ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 and unlabelled data from 𝒟𝒟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   to learn 
instrument localization based on a student-teacher approach. 

In summarizing, our method consists of three steps: (a) 
Conduct image-level annotations, (b) based on them, create 
hybrid-synthetic data, (c) train a model 𝜃𝜃 using a student-
teacher approach. We give an overview of our method in Fig. 
2 and describe its steps in more detail in the following sections. 

2.1 Image-level annotations 

For our image-level annotations, annotators classify if the 
surgical instruments are present in a frame or not. Our 
observations show that such image-level annotations take only 
approx. 25% of the time required for bounding box 
annotations. We assume to have such image-level annotations 
for a set of real-world clinical images {𝐼𝐼}𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⊆ 𝒟𝒟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
Based on this presence/absence annotation, we divide 
{𝐼𝐼}𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 into two subsets, {𝐼𝐼}𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and {𝐼𝐼}𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 

Figure 2: (a) Annotators classify if clinical video frames contain a surgical instrument or not (image-level annotation). For better visibility, 
we mark instrument tips with a white arrow. (b) Frames without instruments are used to create hybrid-synthetic data. We overlay 
synthetic instruments as foreground and compute the according label Q*. (c) The student-teacher learning incorporates annotated 
hybrid-synthetic data and unlabeled clinical data.  
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2.2 Hybrid-synthetic neurosurgical data 

Our goal is to synthesize neurosurgical training data, where we 
can obtain saliency labels 𝑄𝑄∗ at no additional annotation cost.  
We achieve this by creating a hybrid-synthetic data domain 
𝒟𝒟ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  . Based on image-level labels, we design 𝒟𝒟ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑 such 
that we can automatically compute saliency labels 𝑄𝑄∗. 
We create hybrid-synthetic neurosurgical data by using our 
framework presented in [8]. It uses the 3D animation software 
Blender to render neurosurgical scenes in two steps: (1) 
Generate a random geometric constellation of neurosurgical 
instruments, (2) underly single neurosurgical microscope 
images as a background. Fig. 2 (b) illustrates the creation of 
such hybrid-synthetic data. For details, see [8].  

We employ the image-level annotation to design 𝒟𝒟ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  
such that we can automatically compute 𝑄𝑄∗: As background 
images, we take images from {𝐼𝐼}𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, as they do not contain 
surgical instruments already. When adding synthetic 
instruments on-top of {𝐼𝐼}𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 images, the synthetic 
instruments are the only instruments in the rendered image. 
Consequently, we can automatically compute labels 𝑄𝑄∗ from 
the position of the synthetic instruments in Blender. We render 
a dataset {𝐼𝐼,𝑄𝑄∗}ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 and show samples from it in Fig. 3 (a). 
We provide reference of real clinical images in Fig. 3 (b). 

2.3 Student-Teacher-Learning 

Our goal is to train a model 𝜃𝜃 for the clinical domain 𝒟𝒟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
Building upon [6], we formulate a student-teacher task for the 
regression problem of instrument activity localization. Our 
approach combines supervised training on the labelled hybrid-
synthetic domain 𝒟𝒟ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  and domain adaption to the 
unlabelled clinical domain 𝒟𝒟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  through consistency 
learning.  By this way, two networks - a student network 
𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and a teacher network 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒 with identical 
architecture - interact in a two-step cycle:  
Step 1. The teacher network receives an input image 𝐼𝐼 sampled 
from {𝐼𝐼}𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to predict 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒. As the true label 𝑄𝑄∗ is 
unknown, 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒 serves as a pseudo-label for the 
student. The student is trained on two tasks simultaneously:  

(a) Consistency learning: The goal of the consistency loss is to 
make student familiar with variations in the clinical domain 
𝒟𝒟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  which are simulated by data augmentations. The same 
image 𝐼𝐼 is pixel-wise perturbated (see Fig. 2 (c)) to obtain 𝐼𝐼.  𝐼𝐼 
is given as input to the student. Since pixel-wise perturbations 
have no effect on 𝑄𝑄∗, the student’s output 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  should 
match 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒 .  This is enforced by a consistency loss: 
ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒�

2 (1) 
(b) Supervised task learning: To focus the student on the 
instrument activity localization task, the student is trained on 
labelled hybrid-synthetic data {𝐼𝐼,𝑄𝑄∗}ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  with: 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄∗�2, (2) 
whereas 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the student’s prediction. The student’s 
weights 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   are updated based on combined loss as in [6], 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛼𝛼(𝑡𝑡) ∗ ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, (3) 
with a weighting factor 𝛼𝛼(𝑡𝑡). The weighting factor is increased 
throughout the training to shift the student’s focus from 
𝒟𝒟ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 to 𝒟𝒟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . We use the same loss function for the 
supervised training as for the consistency training to allow a 
smooth transition between the task with increasing 𝛼𝛼(𝑡𝑡).  
Step 2. We update the teacher by an exponential filter as [6]: 

𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒 =  0.95 ∗ 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒 + 0.05 ∗ 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (4) 
By repeating this two-step cycle, the student benefits from an 
improved teacher due to better pseudo-labels.  

3 Experiments 

We describe our experimental setup. Then, we explain 
baselines that serve as a comparison to our method. 
Data. We use the NeuroSurg dataset introduced in [2], for 
which both instrument presence/absence labels and instrument 
activity labels are available. We ignore the instrument activity 
labels for training our method and only rely on the instrument 
presence/absence labels. We consider six neurosurgical cases 
for training purposes and test on the six independent cases [2]. 
Evaluation. We use the SIM metric, which is a standard metric 
in the saliency literature: 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑min�𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑄𝑄∗�, whereas 
∑𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∑𝑄𝑄∗ = 1.  Hybrid-synthetic data. Based on the 
image-level annotations for the six training surgeries, we 
generate a dataset {𝐼𝐼,𝑄𝑄}ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  with 20.000 training images.  

Fig 3: (a) We show different samples of our hybrid-synthetic dataset. Upper row: generated images, lower row: labels 𝑸𝑸∗.             
(b) We show different samples from the clinical data. Comparing (a) and (b) confirms the realism of our hybrid-synthetic data.  
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Student-Teacher-Learning implementation. We use the CNN 
architecture from [2] and re-implement the perturbations as in 
[6]. Initial learning rate lr=0.01 (reduced by 0.5 every 50 
epochs), no. of epochs = 300, batch size = 25, 𝛼𝛼(𝑡𝑡) = {0 for 
t≤10, lin. increase to 1 for t∈[11,50], 1 for t≥50}. 
Baseline. We investigate the benefit from annotating the 
training data with bounding boxes as in Fig. 1. Also, we 
explore the advantages of the student-teacher approach in 
contrast to mere supervised training on the hybrid-synthetic 
data {𝐼𝐼,𝑄𝑄}ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦. We compare our method with several 
baselines: (1) We use fully supervised model from [2] which 
we refer to as Clinical6-FS. (2) To investigate the effect of 
training dataset size, we train a supervised baseline, Clinical2-
FS, on only two training cases of NeuroSurg (~31% of the 
training data of Clinical6-FS). (3) We train another baseline 
Hybrid-FS on {𝐼𝐼,𝑄𝑄}ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  using the conditions as in [2]. 

4 Results 
We compare the performance of our annotation-efficient 
learning method with the two baseline methods in Tab. 1. 

Our annotation-efficient learning method achieves a 
competitive performance to the baseline Clinical6-FS. It 
performs close to on-par on some test cases and slightly worse 
on the remaining cases. Our method even outperforms the 
supervised baseline Clinical2-FS on five of six test cases. 

Now we compare Hybrid-FS and Clinical6-FS. Although 
Hybrid-FS never saw real instruments – only real clinical 
backgrounds - during training, it continuously achieves > 80% 
of performance of Clinical6-FS. This supports our claim that 
our hybrid-synthetic data are highly realistic. 

Finally, we compare our method with Hybrid-FS. Our 
method outperforms Hybrid-FS on all test cases. Despite the 
already good performance of Hybrid-FS on the test data, we 
still gain benefits from the student-teacher approach.  

 5 Conclusions 

We leverage hybrid-synthetic data and a student-teacher 

learning approach for annotation-efficient learning of surgical 
instrument activity. Our approach replaces effort- and cost-
intensive bounding box annotations with simpler and cheaper 
image-level annotations. We demonstrate how to generate a 
realistically looking large-scale synthetic dataset for training 
by successfully combining human-made and machine-made 
annotations. While we achieve a competitive performance 
compared to state-of-the-art supervised learning based on 
bounding box annotations, we save up to 75% annotation 
effort.  
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Our method 0.76±0.14 0.75±0.17 0.75±0.16 0.67±0.20 0.77±0.12 0.67±0.18 

Clinical6-FS 0.83±0.11 0.81±0.15 0.78±0.12 0.72±0.18 0.78±0.12 0.72±0.13 
Clinical2-FS 0.72±0.17 0.67±0.19 0.68±0.16 0.63±0.20 0.71±0.15 0.68±0.16 

Hybrid-FS 0.67±0.22 0.69±0.25 0.71±0.21 0.59±0.26 0.73±0.17 0.58±0.24 
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