KIT | KIT-Bibliothek | Impressum | Datenschutz

Quality-dependent Deep Learning for Safe Autonomous Guidewire Navigation

Ritter, Jacqueline; Karstensen, Lennart 1; Langejürgen, Jens; Hatzl, Johannes; Mathis-Ullrich, Franziska 1; Uhl, Christian
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Cardiovascular diseases are the main cause ofdeath worldwide. State-of-the-art treatment often includes theprocess of navigating endovascular instruments through thevasculature. Automation of the procedure receives much at-tention lately and may increase treatment quality and unburdenclinicians. However, in order to ensure the patient’s safety theendovascular device needs to be steered carefully through thebody. In this work, we present a collection of medical criteriathat are considered by physicians during an intervention andthat can be evaluated automatically enabling a highly objectiveassessment. Additionally, we trained an autonomous controllerwith deep reinforcement learning to gently navigate within a2D simulation of an aortic arch. Among others, the controllerreduced the maximum and mean contact force applied to thevessel walls by 43% and 29%, respectively.


Verlagsausgabe §
DOI: 10.5445/IR/1000150033
Veröffentlicht am 25.08.2022
Originalveröffentlichung
DOI: 10.1515/cdbme-2022-0006
Scopus
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.07.2022
Sprache Englisch
Identifikator ISSN: 2364-5504
KITopen-ID: 1000150033
Erschienen in Current Directions in Biomedical Engineering
Verlag De Gruyter
Band 8
Heft 1
Seiten 21–24
Schlagwörter deep reinforcement learning, safety, guidewire navigation, autonomous, machine learning
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page