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Abstract 

In this study, we introduce MulT_predict as a fully integrated solute multicomponent 

geothermometer, combining numerical optimisation processes for sensitive parameters to back-

calculate to chemical reservoir conditions. This results in a state of the art geothermometer, providing 

an accurate reservoir temperature estimation validated by geothermal borehole measurements on a 

worldwide scale. In addition, a universally valid mineral assemblage for an unknown reservoir 

composition is developed, focusing on worldwide applicability. Using the evolved methodology, the 

limits of the optimisation processes are determined by using a synthetic brine (150°C, pH 6, aluminium 

concentration 0.003 mmol/l) and successively perturbing its geochemical equilibrium state. Individual 

back-calculation of reservoir conditions lead to valid temperature estimations of 145°C, 3.4% lower 

than the initial temperature while a simultaneous and interdependent optimisation reconstructs the 

sensitive parameters even more precisely with a deviation of 0.056 for the initial pH value, and 0.164 

µmol/l for the aluminium concentration. 
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1. Introduction 

Evaluating the quantity of energy in a reservoir is essential for an economical geothermal energy 

production. Therefore, the accurate determination of the reservoir temperature is one key factor in 

geothermal exploration besides flow rate. Chemical geothermometry is a common technique to 

predict the reservoir temperatures from the geochemical composition of geothermal fluids. 

Temperature-dependent cation ratios, as well as the saturation state of mineral phases, can be the 

basis for temperature estimation, assuming an in-situ chemical equilibrium of the reservoir rock and 

fluid (Ellis and Mahon, 1964). As a result, the first conventional solute geothermometers were 



introduced around 60 years ago by Fournier and Rowe (1966). In an ongoing development, new solute 

geothermometers were continuously developed but led to high uncertainties due to changes in fluid 

chemistry regarding different geothermal locations (Nitschke et al., 2018). Reed and Spycher (1984) 

plotted saturation indices of mineral phases calculated from thermodynamic data against 

temperature. The resulting saturation curves illustrate the temperature-dependent solubility of the 

reservoir mineral assemblage in the geothermal fluid. Spycher et al. (2014) took up this methodology 

and presented a multicomponent geothermometer, which evaluates the geochemical equilibria of 

mineral phases and fluid for reservoir temperature estimation. Nitschke et al. (2017) analysed 

temperature predictions from conventional and multicomponent geothermometers, showing a large 

reduction in uncertainties for this modelling approach. Thus, multiple mineral phases lead to 

statistically more robust temperature estimations. Therefore, Spycher et al. (2011) introduced the 

multicomponent geothermometer GeoT, followed by RTEst by Palmer (2014). Also, software for the 

chemical reconstruction of downhole and reservoir conditions like WATCH (Bjarnason, 2010) improved 

the results of solute geothermometry. GeoT uses Newton-Raphson iteration to calculate the 

geochemical equilibria of mineral phases from external thermodynamic databases (Sonnenthal et al., 

2013). To compute temperature estimations, a complete fluid analysis is necessary. The program 

allows reconstructing the deep fluid composition (pH value, gas loss, dilution, and mixing) needing 

additional gas chemistry as well as end-member solutions. Recently, a python script was developed to 

search for the most suitable mineral assemblage for reservoir temperature estimation (Olguín-

Martínez et al., 2022). RTEst uses the weighted sum of squares of the saturation indices of mineral 

phases to calculate the reservoir temperature estimation optimising the calculation by CO2 fugacity 

and the mass of water (Palmer, 2014). Developing MulT_predict, Ystroem et al. (2020) combined the 

multicomponent temperature estimation with a numerical reconstruction of the reservoir conditions. 

The scope of MulT_preidct is to reconstruct the parameters, which control mineral solubility and are 

prone to secondary changes. Hence, sensitive parameters such as the aluminium concentration and 

pH value are back-calculated to reconstruct in-situ conditions (Ystroem et al., 2021). In addition, effects 

from secondary processes such as dilution and boiling are corrected. These parameters are prone to 

geochemical changes of the fluid during the ascent to the surface or while sampling (Giggenbach, 1981, 

1988). The major advantage of MulT_predict, unlike other solute multicomponent geothermometers, 

is that a standard fluid analysis is sufficient and a sophisticated gas analysis is not required. In addition, 

all optimisation processes (pH value, aluminium concentration, boiling, and dilution) are calculated 

simultaneously and interdependently. Previously, MulT_predict was developed, applied, and validated 

for the basaltic setting of Krafla and Reykjanes fields in Iceland (Ystroem et al., 2020). The emphasis of 

this study is the development of a comprehensive multicomponent geothermometer for field 

exploration. At such an early stage, little reservoir knowledge and no borehole data is available. The 



reservoir rock mineralogy as the basis of multicomponent geothermometrical temperature estimation 

is typically lacking. To facilitate the application of MulT_predict, as an early-stage exploration tool, for 

a broad range of geothermal sites, geological settings, and play types, the focus of the study is the 

development of a universally valid mineral set. Based on this, a general procedure of statistical outlier 

removal is introduced to acquire more precise temperature estimations and simplify the practicality 

of MulT_predict.  

First, the applicability of the tool is transferred to a broad range of geothermal settings around the 

world including saline crystalline basements, marine, and continental basin facies as well as volcanic 

rock. In a first step, individual mineral sets are evolved for each geothermal setting. Afterwards, 

mineralogical coherences within the mineral sets are combined in a universally valid mineral set for 

general applicability. The subsequent outlier removal increases the precision of the temperature 

estimation. The results of the validation are shown for examples of boreholes. Furthermore, the 

characteristics of the site-specific brine are discussed to identify clustering and similarities concerning 

geochemical key parameters, providing insights into why a universally valid mineral set provides 

precise temperature predictions and where the limits of its application are. In the last part, 

MulT_predict’s optimisation processes are benchmarked and discussed. Therefore, a predefined 

synthetic brine, initially in full equilibrium, is increasingly perturbed stepwise. This perturbation is then 

reconstructed using two different approaches. Firstly, each optimisation process is evaluated 

individually regarding the back-calculation of each sensitive parameter (boiling/dilution, pH value, and 

aluminium concentration). Secondly, the performance of the interdependent optimisation processes 

is evaluated by reconstructing all sensitive parameters together. Furthermore, the results of both 

reconstructions of reservoir conditions are discussed.  

 

2. Methods 

In solute multicomponent geothermometry, the base assumption is the geochemical equilibrium 

between the geothermal fluid and the hosted reservoir rock (Fournier and Truesdell, 1974). Thus, in 

the temperature-dependent reaction mineral phases are dissolved until an equilibrium within the fluid 

is reached. The geochemical equilibrium of each mineral phase is attained when the determined ion 

activity product IAP of the fluid equals the temperature-dependent thermodynamic constant K(T) 

(Equation 1). As a result, the temperature-dependent saturation index SI(T) of a mineral phase is zero. 

𝑆𝐼(𝑇) = log  (
𝐼𝐴𝑃

𝐾(𝑇)
)           (1) 

SI saturation index; T temperature; IAP ion activity product; K thermodynamic equilibrium constant 



For reservoir temperature estimation, the saturation indices of several mineral phases are plotted 

against the temperature. The resulting equilibrium temperatures (at SI = 0) serve as a part of the 

geothermometer. Basing the temperature estimation on the SIs for several minerals has proven to be 

a robust geothermometric tool. As input parameters for MulT_predict, a standard geochemical fluid 

analysis covering the major cations and anions, the pH value, as well as silica and aluminium 

concentrations are needed to account for the chemical elements being the components of the 

reservoir rock mineral assemblage. Nevertheless, the geochemical equilibrium is still prone to 

uncertainties when the chemistry of the fluid changes. Divergences from the chemical equilibrium 

state are due to a) an immature fluid has not yet reached equilibrium or b) secondary processes while 

the fluid ascends to the surface or while sampling. Such processes refer to phase segregation, boiling, 

mixing, or dilution, as well as complex building and precipitation of mineral phases (Arnórsson et al., 

1990) (Cooper et al., 2013) (Peiffer et al., 2014) (Spycher et al., 2014) (Nitschke, 2018). In a previous 

study, numerical optimisation processes are introduced to MulT_predict correcting sensitive 

parameters such as pH value, aluminium concentration, as well as changes in the fluid concentration 

from these effects (Ystroem et al., 2021). The goal is to reconstruct the in-situ chemical system as a 

basis to compute the equilibrium temperatures. Assuming that the temperature estimations for 

multiple mineral phases converge to an equal temperature. For these saturation index determinations, 

MulT_predict couples MATLAB to an IPhreeqcCOM server introduced by Charlton and Parkhurst 

(2011). The current IPhreeqc version (3.7.0 – 15749) is used to calculate the equilibrium state of a 

chosen mineral set to serve as a multicomponent geothermometer. Thermodynamic data for mineral 

phases are taken from our updated Lawrence Livermore National Laboratory (llnl.dat) database for 

high-temperature estimations (Ystroem et al., 2020). The major cation (Na, K, Ca, and Mg), and major 

anion (Cl, SO4, H2S, and HCO3) as well as SiO2, Fe, and Al concentrations are used as input data. In 

addition, to calculate the saturation indices of the mineral phases, the physicochemical parameters for 

the geothermal brine have to be defined. Therefore, the sampling pressure, temperature, as well as 

pH value are essential input data. MulT_predict distributes the input data to IPhreeqc to calculate the 

saturation indices SI(T) over a predefined temperature range i for previously selected mineral phases j 

(e.g. a universally valid mineral set). To identify the equilibrium temperatures for the mineral phases 

(SI = 0), the SI(T) returned from IPhreeqc are stored in a i x j matrix Aij and evaluated by the signum 

function in matrix Bij (Equation 2). 

𝐵𝑖𝑗 = sign(𝐴𝑖𝑗) ∶= lim
𝑘→∞

1−2
−𝑘𝐴𝑖𝑗

1+2
−𝑘𝐴𝑖𝑗

= {

−1     if  𝐴𝑖𝑗 < 0

0        if  𝐴𝑖𝑗 = 0

1        if  𝐴𝑖𝑗 > 0
         (2) 



Performing differences and approximate derivatives (Equation 3) upon the data returns the zero 

crossing of the saturation indices (Equation 1) of the chosen mineral set j over their defined 

temperature range i, which are stored in a new matrix C. 

𝐶 = diff (𝐵𝑖𝑗) = [
𝐵(1,0) − 𝐵(0,0) ⋯ 𝐵(1, 𝑗) − 𝐵(0, 𝑗)

⋮ ⋱ ⋮
 𝐵(𝑖, 0) − 𝐵(𝑖 − 1,0) ⋯ 𝐵(𝑖, 𝑗) − 𝐵(𝑖 − 1, 𝑗)

]        (3) 

To find the equilibrium temperature, the data of matrix C are indexed by Equation 4 and transferred 

into an array D. 

𝐷 = for diff (𝐶) ≠ 0           (4) 

The resulting equilibrium temperatures D and their mineral phases are both stored as cell entries in E. 

When the optimisation process is enabled, the selected sensitive parameters (boiling/dilution, pH 

value, and aluminium concentration) are iterated interdependently in their predefined range. After 

each computation, the result is also stored in the cell array E. Depending on the number of selected 

parameters n, the cell array E is stocked up in n-dimensions. To get a consistent, statistically evaluable 

dataset, the mineral phases and their associated equilibrium temperatures are validated in each entry. 

Therefore, the cell entries of E have to be cleaned up. An n-dimensional loop compares all resulting 

mineral phases and their temperatures from beginning to end. Missing temperature data is filled up 

with NaN while the names of j are added as the associated phases. Simultaneously, redundant and 

excess information is removed. After the completion, the procedure is executed vice versa starting at 

the end to check for inconsistency within the updated array E. Then, the cell array E is analysed by 

comparing the 0.25 and 0.75 quantiles, the interquartile range IQR, as well as the 1.5*IQR outliers 

within each entry stored in an array F (Equation 5). 

𝐹𝑛 = [(𝑞0.75 + 1.5 ∗ 𝐼𝑄𝑅) − (𝑞0.25 − 1.5 ∗ 𝐼𝑄𝑅)];  for all entries in 𝐸         (5) 

Afterwards, MulT_predict statistically evaluates all n-dimensional cell entries of Fn for the minimum 

element of the array excluding NaN values. The global minimum represents the maximal convergence 

of the equilibrium temperatures of the considered mineral phases (Equation 6). 

min(𝑓(𝑥0)) ,  𝐹𝑛 ⊆ ℝ+, 𝑥0 ∈ 𝐹𝑛, 𝑓: 𝐹𝑛 → ℝ+, if (∀𝑥 ∈ 𝐹𝑛) 𝑓(𝑥0) ≤ 𝑓(𝑥)       (6) 

Determining the position of the global minima in the array Fn, the back-calculated in-situ values of the 

reservoir parameters are extracted. In the last step, MulT_predict re-evaluates the in-situ reservoir 

parameters and re-calculates the final temperature estimation. The final results are output graphically 

and tabular. 

 



3. Data & Results 

To develop a comprehensive multicomponent geothermometer and a universally valid mineral 

assemblage MulT_predict has to be validated for a variety of geothermal sites. A thorough validation 

is only possible with datasets, where geochemical fluid analyses, as well as borehole temperatures, are 

available. Geothermal sites were intentionally selected in a way, that the data covers a broad range of 

different lithologies, temperatures, and geochemical characteristics to evolve a comprehensive tool. 

The geothermal fluid samples from different geothermal sites are mostly compiled from the literature. 

In sum, eight geothermal settings were evaluated (Table 1). To validate MulT_predict, geochemical 

data, as well as in-situ reservoir temperature measurements of the reservoir, must be available for 

each site. The sites are categorised by their geology and tectonic setting: crystalline basement of a rift 

basin, sedimentary back-arc basin dominated by continental facies, foreland basin dominated by 

marine facies, sedimentary basin dominated by marine facies, volcanic facies dominated by andesite 

to rhyolite at subduction zones, and basaltic facies on the mid-ocean ridge induced by a hotspot. 

Table 1: Collocation of the lithology, geological setting, location, and references of the geothermal wells for the validation of 
MulT_predict. 

Lithology Setting Location Reference 

Granite Basement (rift basin) Upper Rhine Graben Sanjuan et al. (2001) 

Schindler et al. (2010) 

Dezayes et al. (2013) 

Sanjuan et al. (2016) 

Vidal and Genter (2018) 

Vidal et al. (2019) 

Lacustrine facies Back-arc basin Pannonian Basin Varsányi et al. (1997) 

Marine facies, Malm Foreland basin German Molasse Basin Internal communication 

Marine facies, Dogger Sedimentary basin Paris Basin Michard and Bastide (1988) 

Marty et al. (1988) 

Criaud et al. (1989) 

Rhyolite, Andesite Subduction zone Waiotapu Banwell (1959) 

Ellis and Mahon (1977) 

Giggenbach et al. (1994) 

Andesite Subduction zone Miravalles Dennis et al. (1989) 

Gherardi et al. (2002) 

Dacite Subduction zone El Tatio Ellis and Mahon (1977) 

Giggenbach (1978) 

Basalt, hyaloclastite Hotspot Iceland Guðmundsson and 

Arnórsson (2002) 

Óskarsson et al. (2015) 

 



The data representing the highly saline fluid of sedimentary origin hosted in the granitic crystalline 

basement in the Upper Rhine Graben (URG) is presented by Sanjuan et al. (2001) and Schindler et al. 

(2010) for GPK 1 and 2 in Soultz-sous-Forêts, Dezayes et al. (2013) and Vidal et al. (2019) for GRT-1 in 

Rittershoffen, and Sanjuan et al. (2016) as well as Vidal and Genter (2018) for GTLA-1 in Landau and 

INSH in Insheim. The continental sedimentary facies is represented by lacustrine to fluvial sedimentary 

sequences in the Pannonian Basin published by Varsányi et al. (1997). Malm layers in the German 

Molasse Basin represent marine facies in a foreland basin (internal communication with power plant 

operators, Appendix A). Marine sedimentary facies from Dogger layers in the Paris Basin were 

published by Michard and Bastide (1988), Marty et al. (1988), and Criaud et al. (1989). The volcanic 

facies are summing up different types of reservoir rock around the Pacific Ring of Fire. For Waiotapu 

in New Zealand, rhyolite and andesite reservoir formations are hosting the geothermal wells published 

by Banwell (1959), Ellis and Mahon (1977), and Giggenbach et al. (1994). Further, data from the wells 

of the andesite reservoir formation in Miravalles, Costa Rica, are presented by Dennis et al. (1989), and 

Gherardi et al. (2002). Lastly, the geochemical data presented by Ellis and Mahon (1977), and 

Giggenbach (1978) of a dacite reservoir in an ignimbrite formation at El Tatio, Chile, are used. The 

basalt and hyaloclastite facies are visualised by data from Krafla (Guðmundsson and Arnórsson, 2002), 

and Reykjanes (Óskarsson et al., 2015). For reference, the artificial standard of ocean water is 

illustrated (ASTM D1141-98, 2013).  

To establish the new procedure for unknown temperature estimations three steps had to be passed. 

First, setting-specific mineral sets were developed for known mineralogical and temperature data. 

Second, coinciding mineral phases of setting-specific mineral sets are combined into a universally valid 

set. Third, to refine the general temperature estimation, a procedure of outliner removal has to be 

implemented. The results of the three steps are visualised in Figure 1.  

For each geothermal setting, the mineral set for reservoir temperature estimation is compiled 

individually (Appendix B). Creating these unique sets is time-consuming. Therefore, if known, the 

observed mineral composition of the reservoir rock should be transferred into a mineral set. Hence, 

the main mineral phases of the reservoir rock, as well as secondary and accessory minerals, have to be 

considered. The resulting mineral assemblages have to be refined until the optimised saturation curves 

converge on each other, minimising the uncertainty of the temperature estimation (c.f. Equation 5, 6). 

Therefore, mineralogical foreknowledge of the reservoir rock composition and its secondary 

mineralisation is preferable in general. Nevertheless, in some cases this information is not available or 

unknown, thus, a predefined universal mineral set is presented. This universally valid mineral set 

consists of the most common rock-forming minerals as well as secondary and accessory minerals. The 

focus of the universal set is its comprehensive applicability while providing still reasonable 

temperature estimations. Together with the upcoming procedure of outlier removal, the temperature 



estimations get more precise. Thus, all evolved setting-specific mineral sets were compared among 

themselves. As a result, in most of the sets, an overlap of mineral phases is repeatedly equilibrated. 

Combining them, a universally valid mineral set has been established, which can be applied on a 

worldwide scale independently of reservoir mineralogy and setting. This universally valid set consists 

of quartz, K-feldspar, microcline, albite, muscovite, illite, diaspore, analcime, scolecite, anhydrite, 

kaolinite, and pyrophyllite (Appendix B). Figure 1 illustrates the outlier removal procedure to obtain 

the most reasonable temperature estimation. In the diagram, three temperature estimations per 

geothermal setting are shown. The orange box indicates the measured in-situ temperature 

corresponding to the open hole section within the example. The first boxplot (magenta) illustrates the 

temperature estimation by just applying the universally valid mineral set. In the next step, for the 

second boxplot in green, two statistical outliers of the universal set are removed. This corresponds to 

mineral phases M, which are exceeding 1.5 times the interquartile range (IQR) the most (Equation 7). 

𝑀 ⊆ ℝ+, 𝑦 ∈ 𝑀, {
 if  𝑦 > 𝑦𝑚𝑒𝑑𝑖𝑎𝑛 + 1.5 ∗ 𝐼𝑄𝑅
 if  𝑦 <  𝑦𝑚𝑒𝑑𝑖𝑎𝑛 − 1.5 ∗ 𝐼𝑄𝑅

          (7) 

This outlier removal represents the procedure, which is used to evaluate new geochemical data with 

unknown mineralogy. The third boxplot in blue visualises the best fitting result obtained by developing 

an individual mineral set for each setting, as mentioned in Appendix B. After the universally valid 

mineral set for reservoir temperature estimation has been introduced, it can be compared to the 

results of the outlier removal and each setting-specific mineral set (Appendix B). Comparing the three 

boxplots in Figure 1, the shift of temperature estimation towards the measured in-situ temperature is 

evident. In each case, the overall spread of the plot is decreasing as well as a decreasing or steady IQR. 

Only for the carbonate facies of the Paris Basin and the Molasse Basin, calcite and dolomite have to be 

added to the universally valid mineral set to reconstruct reservoir conditions and temperature 

estimations more precisely. 



 

Figure 1: Comparison of three temperature estimations for an exemplary well of individual geothermal settings around the 
world (Krafla on Iceland, Soultz-sous-Forêts in the Upper Rhine Graben, Waiotapu in New Zealand, El Tatio in Chile, Miravalles 
in Costa Rica, Makó in the Pannonian Basin, Unterhaching in the German Molasse Basin, and Evry in the Paris Basin). Straight 
lines separate different reservoir rock compositions (basaltic, crystalline, volcanic, clastic, and marine facies). The orange box 
indicates the measured in-situ temperature in the open hole section of the well. The first boxplot (magenta). visualises the 
temperature estimation with the original universally valid set The secondary boxplot is obtained by reducing the outermost 
mineral phases (black diamonds) within the universal set and recalculating the temperature estimation (outlier reduction in 
green). In comparison, the third boxplot (blue) is the best-fitting mineral set individually developed for each setting (cf. 
Appendix B). 

For Iceland, the outlier removal reduces the IQR by 50 % to 7 K, while the median temperature remains 

at 235°C, fitting the best-fit temperature and the temperature log. For URG, two samples of GPK2 in 

Soultz-sous-Forêts are presented. URG 1 was sampled in the year 1997 when the well reached 3876 m 

depth. URG 2 was sampled in the year 1999 after deepening the well down to 5093 m representing 

the actual temperature at the bottom of GPK2. For URG 1, the overall uncertainty decreases by 12% 



due to the outlier removal, but further refinement of the mineral set is necessary to reach best-fit 

conditions at 166°C. For URG 2, the outlier removal decreases the spread of the boxplot by 18 K. The 

best-fit temperature estimation matches the measured in-situ temperature of the open hole section. 

The two temperature estimations of GPK2 illustrate the importance of the equilibrium reaction 

between the hosted reservoir and the fluid, where the technical available temperatures are predicted. 

At Waiotapu, the necessity of outlier removal for the magenta boxplot is clear. The removal reduces 

the spread by 59 K and emphasises the median temperature at 207°C within the measured 

temperature. In addition, the IQR (4 K) of the adjusted universally valid mineral set equals the best-

fitting result. For El Tatio, the overall spread is reduced by 50% due to the outliner removal and 

increases the median temperature to its final result at 228 °C, matching the measured in-situ 

temperature. The outlier removal for Miravalles diminishes the spread by 62 K and the IQR by 45%. 

Likewise, the adjusted universally valid mineral set resembles the best-fitting plot. For the Pannonian 

Basin, the procedure shifts the median temperature by 22 K into the measured temperature range. 

Compared to the best-fitting plot, the mineral assemblage can be further refined to increase accuracy. 

For both marine facies, the outlier removal reduces the uncertainties but the temperature estimation 

does not fit the in-situ temperature. For the Molasse Basin, the spread diminishes by 79%, while for 

the Paris Basin its halves. Due to the lack of carbonate mineral phases within the universally valid 

mineral set, the median of the temperature estimation in the Molasse is 20 K beneath the best fit and 

in the case of Paris Basin 16 K. 

 

4. Discussion  

For the illustration of coherence of the properties of brines from different geothermal settings, 

geochemical key parameters are analysed. These parameters are relevant to multicomponent 

geothermometry and can explain the plausibility of a generally valid mineral set. For this purpose, the 

major chemical components are used (Na, K, Ca, Mg, Cl, SO4, HCO3, and additionally pH). To graphically 

cluster the brines according to the surrounding lithology, strongly temperature-sensitive components 

such as SiO2 were omitted. Thus, the major chemical components of dissolved mineral phases used in 

geothermometry are evaluated. Thus, the graphical single-point method by Langelier and Ludwig 

(1942) is modified. In the original two-dimensional plot, the pH value of the fluid is added as the z-axis. 

Furthermore, the total dissolved solids TDS are projected as sphere size s (Equation 8). 

𝑠 = log  (TDS ∗ 10)           (8) 



To display the differences in sphere sizes homogenously, the TDS is multiplied by ten and then the 

decadic logarithm is applied. Hence, standard fluid analysis of the geothermal brines are plotted in the 

modified Langelier-Ludwig diagram (Figure 2).  

 

Figure 2: Modified Langelier-Ludwig diagram for classification of geothermal settings in different facies. The pH value was 
added as a third dimension (z-axis) as well as the total dissolved solids (TDS) visualised in sphere size. 

By plotting the geochemistry of the different geothermal sites clustering can be observed. High saline 

brines from the Dogger formation in the Paris Basin, the saltwater intrusion in the wells of the 

Reykjanes Peninsula, as well as the samples from the Upper Rhine Graben, cluster below the salinity 

of seawater at Na+K 40% and SO4+Cl 50%. The shift in pH value is a function of temperature and salinity 

(Ellis, 1970). Increasing temperature and salinity cause the pH value to decrease. The marine facies 

samples cluster near-neutral pH values. This corresponds to a buffering reaction within the carbonates 



(Malm, Dogger) due to calcite solubility equilibrium and temperature-dependent auto-dissociation 

within the fluid (Ellis, 1963). Therefore, the brines in the URG (TDS ~ 100 g/L) and high-temperature 

settings in Reykjanes (exceeding 300°C) have lower pH values. For the volcanic facies, Miravalles and 

El Tatio are forming the main cluster around Na+K 47% and SO4+Cl 50% with a pH of 7.5. The samples 

of Waiotapu have a shift to higher pH values. For Waiotapu, Giggenbach et al. (1994) proposed a low 

content of CO2 within the parent magma and removal of CO2 as calcite through Ca-Al-silica interaction. 

In addition, there is degassing and dilution of the fluid before reaching the wells. The well waters in 

Krafla and Námafjall cluster at the highest pH values. These waters are low mineralised and of meteoric 

origin. Due to degassing of CO2 and H2S the pH is increased as well as a bicarbonate concentration 

trend up to 15% of HCO3 corresponding to an increase in magmatic activity underneath well K-20 

(Guðmundsson and Arnórsson, 2002). For samples from the Pannonian Basin, the TDS concentration 

is low. The fluid chemistry clusters next to Waiotapu samples. Similar to the bicarbonate trend in 

Icelandic samples, the Pannonian chemistry shows the HCO3 concentration increasing with 

temperature and depth corresponding to lacustrine carbonates within the formations (Varsányi et al., 

1997).  

The clustering of samples in the Langelier-Ludwig diagram (Figure 2) shows up similarities within the 

unique signature of each geothermal setting. In addition, the influence of evaporites and seawater can 

clearly be distinguished from samples of meteoric origin. The distribution of pH values represents a 

variety of geochemical processes coupled to the individual settings. The pH value sums up buffer 

reactions, degassing processes, and the impact of salinity and temperature. Therefore, the 

geochemistry of the geothermal fluid is an indicator of the mineral composition leached out of the 

reservoir rock. Thus, these similarities in the clustering are reflected in the universally valid mineral 

assemblage presented for reservoir temperature estimations. 

Furthermore, the optimisation process within MulT_predict is evaluated. Therefore, a synthetic brine 

is set up and processed by MulT_predict to back-calculate the initial brine temperature. In the next 

step, all parameters of the optimisation processes are tested individually. In this case, the influence of 

salinity, steam loss, and dilution, the pH value as well as the Al concentration are examined. Therefore, 

the synthetic brine is increasingly perturbed stepwise for one of these parameters at once. This is 

resumed until the numerical limits of the optimisation of MulT_predict are reached. Thus, the 

individual optimisation processes can be evaluated. Lastly, the synthetic brine is perturbed for all 

parameters at once. The steam loss and dilution are increased stepwise, while random pH values and 

element concentrations in a predefined range are added. In this case, the MulT_predict’s optimisation 

process is used interdependently to back-calculate reservoir conditions.  

The synthetic mineral assemblage is equilibrated at 150°C and has a pH value of six. The mineral 

assemblage is composed of phases of the universally valid set: quartz, microcline, albite, calcite, 



anhydrite, muscovite, illite, and stilbite. The resulting equilibrated fluid lost some mass while reacting 

with stilbite (0.899 kg remaining) as well as the pH value increased to 6.743 due to changes in the 

activity of hydrogen ions. To revert to initial conditions, the fluid mass is set back to 1 kg. In the next 

step, each parameter is varied individually and stepwise around its initial value to perturb the 

equilibrium between mineral phases. Then, MulT_predict’s optimisation process is used to reconstruct 

the equilibrium conditions of the fluid and determine the initial equilibrium temperature. First, the 

salinity is increased in 100 steps from zero molar up to five molar by adding NaCl to the solution. In 

Figure 3, for each increment, the MulT_predict computes the temperature estimations which are 

plotted in the diagram. The computed temperature estimation is constantly at 148°C close to the initial 

conditions of 150°C, thus MulT_predict temperature estimations show virtually no sensitivity to 

increasing salinity. 

Figure 3: Temperature estimations corresponding to salinity changes from zero to five molar by adding Na Cl to the solution. 
The red line is indicating the initial equilibrium temperature of the synthetic fluid. The red line indicates the equilibrium 
temperature of 150°C. 

The assessment of the sensitivity of changes by steam loss and dilution in the fluid is displayed in 

Figure 4. Therefore, the moles of the fluid are altered by 1% per step. For dilution, 0.555 moles of pure 

water are added per increment. In contrast, 0.555 moles of pure water are subtracted mimicking steam 

loss. In MulT_predict’s optimisation process, these changes are back-calculated. On the left side a) of 

Figure 4, MulT_predict’s computed concentration error is plotted against the percentage of changes 

to the fluid concentration as well as the resulting temperature estimation on the right side b). 



Figure 4: On the left side a), the error of the reconstructed fluid concentration is plotted against the changes to the mass of 
water within the fluid. The dashed red line indicates the targeted error. In the right graph b), the corresponding temperature 
estimations are visualised, while the solid red line indicates the targeted temperature of 150°C. 

For perturbations within ±20% of dilution or steam loss, the optimisation process reconstructs the fluid 

with small errors of 3 percentage points on average (cf. dashed, red line in Figure 4). Regardless of 

whether steam loss or dilution, at higher changes MulT_predict starts to underestimate these 

perturbations. Thus, the difference between the synthetic changes in the fluid and the reconstruction 

is rising. This curve shape corresponds to the geochemistry in the fluid. Decreasing water by 50% 

doubles the element concentration. In contrast, dilution of 100% halves the concentration. Comparing 

the resulting element concentration leads to a continuous increase in error. Nevertheless, the 

temperature estimations on the right side of Figure 4 have a maximum spread of five Kelvin (144°C to 

149°C) and are on average 145°C. The red line indicates the equilibrium temperature of the synthetic 

set.  

Furthermore, changes in the pH value are evaluated in Figure 5. The pH value varies between five and 

seven in 200 increments. The resulting pH value of the optimisation process is plotted in a) against the 

synthetic pH variation. In b), the resulting pH value is illustrated against the temperature estimation. 



Figure 5: On the left side a), the reconstructed pH value of the fluid is plotted against its variation between five and seven. The 
dashed red line indicates the initial equilibrium pH at 6.743. In the right graph b), the corresponding temperature estimations 
are visualised, while the solid red line indicates the targeted temperature of 150°C. 

Figure 5 a) visualises the difference between the resulting optimised pH value and the initial equilibrate 

pH (6.743) indicated by the dashed, red line. pH values increasing 6.743 cannot be back-calculated by 

IPhreeqc because of a thermodynamic equilibrium gap for the aluminium concentration at higher pH. 

Therefore, MulT_predict is also capped at this level, not allowing interdependent optimisation yet. The 

estimations of the pH value show a pattern corresponding to geochemical adaptations of IPhreeqc 

iteration steps. Because of the loss in precision due to no redox buffering, IPhreeqc alters parameters 

automatically. Therefore, the redox potential is varied so the balance equations can be solved to obtain 

a chemical equilibrium (Parkhurst and Appelo, 2013). This leads to a recommencement at pH 6.443 

and a steady decline in the optimised pH value towards the initial value while the redox potential is 

adjusted. In Figure 5 b), optimised pH values in the range 7.303 to 7.193 reach a temperature 

estimation of 144°C. For values from 7.183 to 6.883 the estimation is 145°C and for a lower pH, a 

temperature of 147°C is calculated.  

Finally, variations in the aluminium concentration are examined. In 160 steps, 80% of the initial 



aluminium concentration is added and subtracted. Figure 6 illustrates the optimised aluminium 

concentration against the shift in concertation as well as the resulting temperature estimation. 

Figure 6: On the left side a), the reconstructed aluminium concentration is plotted against its variation between -80% and 
+80%.The dashed red line indicates the initial aluminium concentration of 0.00303 mmol/l. In the right graph b), the 
corresponding temperature estimations are visualised, while the solid red line indicates the targeted temperature of 150°C. 

Figure 6 a) shows a steady back-calculated aluminium concentration around 0.00267 mmol/l (11% less 

than the initial 0.00303 mmol/l) for raising concentrations. With decreasing aluminium concentration, 

IPhreeqc starts to iterate the equilibrium calculation to converge the chemistry. Due to the variation 

in the overall small aluminium concentration, errors accumulate while running the simulation. Thus, 

the program automatically attempts to solve the calculation by altering and combining tolerances and 

step sizes to fit the solution (Parkhurst and Appelo, 2013). Similarly, the redox potential is adjusted. 

Therefore, the aluminium concentration fluctuates from 0.00245 mmol/l to 0.00269 mmol/l and 

reaches the maximum of 0.00304 mmol/l at -80%. However, the temperature estimation is steady at 

145°C once rising to 147°C at -80%.   

Comprising all cases, MulT_predict underestimates the temperature estimations, anyhow not 

exceeding 6 K (4% error). Only optimising individual parameters does not take chemical interactions 

into account. As mentioned in the methodology, these sensitive parameters are coupled due to 

secondary processes. Therefore, in a second step, the back-calculation process is tested by optimising 

the parameters interdependently. Therefore, in 5%-steps the fluid concentration was perturbed again 

between -45 % to 70%, as well as the values for the pH and Al concentration have been randomised. 

For the pH, random values between pH 5 and 7 and for the aluminium concentration values between 

0.001 mmol/l and 0.006 mmol/l were generated. Currently, MulT_predict is allowed to simultaneously 

optimise all sensitive parameters interdependently. 



 

Figure 7: Simultaneous and interdependent optimisation (purple) of all sensitive parameters plotted into each optimisation 
process (pale colours). a) shows the reconstructed fluid concentration resulting from the variation of the mass of water within 
the fluid. b) visualises the back-calculated pH value against its change. In c), the interdependent reconstruction of the 
aluminium concentration is plotted against its variation. d) illustrates the temperature estimation of the overall optimisation 
process. The dashed red lines indicate the initial equilibrium conditions, as well as the solid red line which shows the equilibrium 
temperature of the synthetic fluid. 

In Figure 7, the fluid concentration, pH value, and aluminium concentration are optimised 

simultaneously. The interdependent estimations from test step 1 were plotted into the results of the 

individual optimisation processes, which were paled out. In a), the average concentration error 

decreases by 2 percentage points compared to the result of the independent back-calculation. The pH 

values in b) and the aluminium concentrations in c) fit the target values more accurately than those 

resulting from the individual optimisation process. For the pH value, the maximum deviation is 0.3 less 

than the targeted pH. On average, the variance of the interdependent pH optimisation is 0.056, which 

is negligible compared to the mean deviation of 0.32 for the independent calculation. For the 



aluminium concentration, the average deviation is 0.164 µmol/L about 5% of the target concentration. 

Therefore, interdependent optimisation is circa 50% more precise than independent optimisation. In 

addition, the temperature estimations in d) improved to a mean value of 147°C. Especially the 

reconstruction of the pH value and the aluminium concentration show the importance of an 

interdependent optimisation process to reflect geochemical changes within the fluid. 

 

5. Conclusions 

MulT_predict is a robust multicomponent geothermometer with a built-in optimisation process to 

reconstruct the initial in-situ reservoir conditions and temperature from a chemically perturbed 

geothermal fluid sample. The temperature estimations are based on a standard chemical analysis of 

the geothermal fluid composition. No sophisticated sampling methods nor analyses are needed. A 

numerical reconstruction process of the in-situ chemical conditions is implemented to correct 

secondary perturbation of the fluid sample. The joint optimisation of coupled key parameters 

(boiling/dilution, pH value, and aluminium concentration) allows for the determination of precise 

reservoir temperatures. A universally valid mineral set is deduced, allowing the calculation of reservoir 

temperatures. Regardless of the setting and the reservoir mineralogy, the universally valid mineral set 

provides a great advantage when only little or no knowledge of the subsurface mineralogy is available. 

The implementation of a statistical outlier removal refines the mineral assemblage and improves the 

temperature estimation further. Therefore, MulT_predict can be used as an early phase greenfield 

exploration tool, which has been validated at multiple geothermal sites worldwide.  

The emphasis of the study was the enhancement of the applicability of MulT_predict on a worldwide 

scale, as well as the focus on the performance of the optimisation processes and their validation. The 

newly developed universally valid mineral set allows a first temperature estimation for geothermal 

systems of an unknown subsurface. The set contains twelve mineral phases (quartz, K-feldspar, 

microcline, albite, muscovite, illite, diaspore, analcime, scolecite, anhydrite, kaolinite, and 

pyrophyllite). These mineral phases are selected according to their common existence in geothermal 

systems worldwide causing similar chemical signatures (in terms of key parameters for 

multicomponent geothermometry) to fluids of very different settings. They consist of key mineral 

phases of major rock types, accessory minerals, secondary mineral phases, as well as polymorphic 

mineral phases. The developed universally valid mineral set is tested and validated at eight different 

geothermal sites (Iceland, Upper Rhine Graben, German Molasse Basin, Paris Basin, Pannonian Basin, 

Waiotapu, Miravalles, and El Tatio). This mineral set combines mineral phases of the associated 

geology of the settings (basaltic, volcanic, marine, and continental facies as well as crystalline 

basement).  



The functionality of the optimisation processes is tested by perturbing an equilibrated synthetic 

mineral assemblage. Thus, four critical parameters are investigated: the salinity of the fluid, changes 

in the mass of water (steam loss and dilution), as well as variations in the pH value, and the aluminium 

concentration. First, each optimisation process is performed individually. Perturbation of the salinity 

does not affect the temperature estimation of MulT_predict. Perturbations in the mass of water, the 

pH value, and aluminium concentration lead to an average temperature estimation of 145°C and 

therefore, a reasonable error of 3.4%. For the interdependent optimisation process, the back-

calculations for pH value and aluminium concentration resemble the initial conditions. The average 

temperature estimation is 147°C, 3 K less than the initial equilibrium temperature of 150°C. 

Considering all cases, MulT_predict and its built-in optimisation processes provide precise 

temperature estimations. Thereby, the interdependent optimisation process can back-calculate 

reservoir conditions more accurately than an individual parameter optimisation. However, the 

calculation of the interdependent optimisation process is more computation-intensive. Therefore, the 

number of coupled sensitive parameters should be optimised jointly. Overall, the introduced 

universally valid mineral set expands the usability of MulT_predict and its applicability for the user. In 

addition, the effectiveness of interdependent optimisation processes is verified, resulting in improved 

temperature estimations. Eventually, MulT_predict is a fully integrated comprehensive 

multicomponent geothermometer. 
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Criaud et al. (1989). Waiotapu: Banwell (1959); Ellis and Mahon (1977), Giggenbach et al. (1994). 

Miravalles: Dennis et al. (1989); Gherardi et al. (2002). El Tatio: Ellis and Mahon (1977), Giggenbach 

(1978). Iceland: Guðmundsson and Arnórsson (2002), Óskarsson et al. (2015). 

 

Acknowledgements 
This study is part of the subtopic “Geoenergy” in the program “MTET - Materials and Technologies for 
the Energy Transition” of the Helmholtz Association. The support from the program is gratefully 
acknowledged. We also want to thank the Editor-in-Chief Dr. Chris Bromley and Associate Editor Dr. 
Halldór Ármannsson, as well as our two anonymous reviewers for their constructive remarks raising 
the quality of the manuscript. 

Competing interest 
The authors declare that they have no competing interests. 



Authors’ contributions 
Lars Ystroem: Conceptualisation, Data curation, Investigation, Methodology, Software, Writing - 
Original Draft. Fabian Nitschke: Conceptualisation, Investigation, Writing - Review & Editing, 
Supervision. Thomas Kohl: Writing - Review & Editing, Supervision, Funding acquisition. 

Funding 
See section “Acknowledgements”.   



7. Appendices 

Appendix A: Anonymised data from power plant operators from the German Molasse Basin. Element concentrations are presented in mg/l. 

pH 
Sampling 

temperature 
SiO2 Na K Ca Mg Cl SO4 H2S HCO3 Fe Al 

 [°C] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] 

7.1 46.5 54 284 15.5 14.0 4.4 172.0 0.5 1.0 509.0 0.02 0.0870 

7.3 34.9 20 353 13.2 30.7 7.3 400.9 0.0 0.2 390.4 0.16 0.0072 

6.9 49.2 40 104 12.3 28.4 10.1 70.0 0.5 4.5 314.0 0.11 - 

6.8 38.1 44 105 12.2 27.5 9.1 68.9 1.4 5.6 308.5 0.03 0.0060 

6.2 41.3 103 162 30.5 38.9 5.7 169.0 35.0 11.3 289.2 0.09 - 

6.4 24.8 130 111 16.3 3.2 1.1 68.3 16.3 6.5 192.8 0.03 0.0150 
 

  



Appendix B: Individual setting-specific minerals sets for reservoir temperature estimation. 

URG Iceland El Tatio Waiotapu Miravalles Pannonia Paris Molasse 

Quartz Quartz Chalcedony Quartz Chalcedony Quartz Quartz Quartz 

K-feldspar K-feldspar K-feldspar K-feldspar K-feldspar K-feldspar K-feldspar K-feldspar 
Microcline Microcline Microcline Microcline Microcline Microcline Microcline Microcline 

Albite Albite Albite Albite Albite Albite Albite Albite 

Muscovite Muscovite Muscovite Muscovite Muscovite Muscovite Muscovite Muscovite 

Illite Illite Illite   Illite Illite Illite Illite 

Diaspore Diaspore Diaspore Diaspore Diaspore Diaspore Diaspore Diaspore 

Analcime Analcime Analcime Analcime Analcime Analcime Analcime   

Scolecite   Scolecite Scolecite Scolecite Scolecite Scolecite Scolecite 

Anhydrite Anhydrite Anhydrite Anhydrite Anhydrite   Anhydrite Anhydrite 

Kaolinite   Kaolinite   Kaolinite Kaolinite Kaolinite Kaolinite 

Pyrophyllite   Pyrophyllite   Pyrophyllite Pyrophyllite Pyrophyllite Pyrophyllite 

Montmor. Montmor. Montmor. Montmor. Montmor. Montmor. Montmor. Montmor. 
Beidellite   Beidellite Beidellite Beidellite Beidellite Beidellite Beidellite 

  Calcite     Calcite Calcite Calcite Calcite 

  Sanidine   Sanidine Sanidine Sanidine Sanidine   

Smectite Smectite   Smectite   Smectite   Smectite 

    Mesolite Mesolite Mesolite     Mesolite 

    Stiblite Stiblite Stiblite Stiblite   Stiblite 

      Saponite Saponite   Saponite Saponite 

Paragonite   Paragonite     Paragonite Paragonite   

Tremolite Tremolite             

  Clinochlore       Clinochlore   Clinochlore 

Laumontite Laumontite     Laumontite       

Gibbsite         Gibbsite Gibbsite Gibbsite 

          Dolomite Dolomite Dolomite 

      Clinoptilolite   Clinoptilolite     

  Enstatite       Enstatite     

  Wollastonite     Wollastonite       

  Wairakite             
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