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The branching fractions of the decays Bþ → ηlþνl and Bþ → η0lþνl are measured, where l is either an
electron or a muon, using a data sample of 711 fb−1 containing 772 × 106BB̄ pairs collected at the ϒð4SÞ
resonance with the Belle detector at the KEKB asymmetric-energy eþe− collider. To reduce the
dependence of the result on the form factor model, the measurement is performed over the entire q2

range. The resulting branching fractions are BðBþ → ηlþνlÞ ¼ ð2.83� 0.55ðstat:Þ � 0.34ðsyst:ÞÞ × 10−5 and

BðBþ → η0lþνlÞ ¼ ð2.79� 1.29ðstat:Þ � 0.30ðsyst:ÞÞ × 10−5.

DOI: 10.1103/PhysRevD.106.032013

I. INTRODUCTION

The transition b̄ → ūlþνl, which spans over two gen-
erations of quarks, has been observed to be strongly
suppressed. Understanding these decays is important to
resolve the tension in the determination of the CKM matrix
element Vub by improving the model of inclusive B →
Xulþνl decays, and also the backgrounds in measurements
of other decays. This paper describes the measurements of
the branching fractions of the decays Bþ → ηlþνl and
Bþ → η0lþνl [1]. Previous measurements of these decays
typically restricted the measured range of the square of the
momentum transfer (q2 ¼ ðpB − pηð0Þ Þ2) which created a
difficulty to quantify uncertainty in the modeling of the
decay. This analysis reconstructs these decays without
restrictions in q2. Taking into account the Hermiticity of
the detector and the known initial state, only one of the two
B mesons produced in the decay of the ϒð4SÞ is recon-
structed. This achieves the statistical power needed for
studying such a suppressed set of processes. The modes
analyzed in this paper have before been measured by

BABAR [2–4], CLEO [5] and another Belle analysis [6]
using hadronic tagging.

II. THE BELLE DETECTOR AND ITS DATA SET

The measurement presented here is based on the full data
sample of 772 × 106BB̄ pairs collected with the Belle
detector at the KEKB asymmetric-energy eþe− (3.5 on
8 GeV) collider [7] operating at the ϒð4SÞ resonance.
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter comprised of
CsI(Tl) crystals (ECL) located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field. An iron
flux-return located outside of the coil is instrumented
to detect K0

L mesons and to identify muons (KLM). The
detector is described in detail elsewhere [8]. Two inner
detector configurations were used. A 2.0 cm radius beam-
pipe and a 3-layer silicon vertex detector were used for the
first sample of 152 × 106BB̄ pairs, while a 1.5 cm radius
beampipe, a 4-layer silicon detector and a small-cell inner
drift chamber were used to record the remaining 620 ×
106BB̄ pairs [9].
In this analysis several different sets of Monte Carlo

(MC) simulated data have been used. Decays involving
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b → c transitions have been simulated with the equivalent
of ten times the integrated luminosity acquired in data,
while the transitions eþe− → qq̄; ðq ¼ u; d; s; cÞ, denoted
continuum, are simulated with six times the data luminos-
ity. Additionally, a set containing one B meson decaying
via b̄ → ūlþνl with the other decaying via b → c is
simulated with twenty times the integrated luminosity of
data. This sample also contains the signal decay. The
decays have been simulated using EVTGEN [10] and
PYTHIA [11], while the detector response was modeled
with GEANT3 [12]. Final-state radiation was added using
PHOTOS [13]. The branching fractions for B → Dð�Þlþνl
decays, as well as exclusive and inclusive b̄ → ūlþνl
decays have been updated to the most recent measurements
[14], except for the semileptonic decays to ρmesons, which
have been set to the values measured by Ref. [15]. The form
factors of the semileptonic decays toD� andD�� have been
updated according to the values reported in Ref. [16]
and Ref. [17].

III. EVENT SELECTION AND BACKGROUND
SUPPRESSION

All charged particle tracks and neutral clusters used in
the analysis are required to satisfy basic quality criteria.
Tracks need to originate from the interaction point (IP). All
tracks for which the distance of closest approach to the IP in
the longitudinal jdzj (perpendicular jdrj) component with
respect to the beam direction is greater than 2 cm (0.5 cm)
are discarded. Tracks with a transverse momentum less
than 275 MeV=c are checked for duplicates. A track is
considered a duplicate if the three-momentum difference
to another such track is less than 100 MeV=c, and the
angle between them is less than 15° for equal charge or
greater than 165° for opposite charge tracks. For each such
pair, only the track with the lesser value of j5 × drj2 þ
jdzj2 is kept. Photons are accepted within a polar angle, θ,
relative to the direction of the positron beam of 17° to
150°. Due to variations in the distribution of beam-related
backgrounds, different energy requirements are used
depending on the polar angle region. In the central barrel
region, from 32° to 130°, photons are required to have an
energy above 50 MeV. In the forward region, θ < 32°, the
requirement is Eγ > 100 MeV, while in the backward
region, θ > 130°, the requirement is Eγ > 150 MeV, with
the boundaries based on ECL geometry. As the total
charge of the initial eþe− system is zero, the sum of the
charges of all reconstructed particles should be zero as
well. However, particles can be misreconstructed or
completely escape detection. Therefore a requirement
of jP qtracksj < 3e is set.
A signal event is required to have only one lepton,

which can be either an electron or a muon. Electrons must
lie in the same acceptance region as photons with
17° < θ < 150°, while muons, for which KLM information

is important, are accepted in the range 25° < θ < 145°.
Both must have a center-of-mass (c.m.) momentum above
1.3 GeV=c, and electrons (muons) must have a lab frame
momentum above 0.4 ð0.8Þ GeV=c. Electrons are identi-
fied by using a likelihood function, which combines the
shower shape in the ECL, the light yield in the ACC, the
energy loss dE=dx due to ionization in the CDC, the ratio
of energy measured by the ECL to the momentum of the
track measured in the CDC, and quality of the matching of
the CDC track to the ECL cluster position [18]. The muon
likelihood compares the CDC track with the associated
KLM hits, using both the penetration length determined
by the CDC and the matching quality of the KLM hits to
the trajectory extrapolated out of the CDC [19]. In the
momentum region relevant to this analysis, charged
leptons are identified with an efficiency of about 90%
and the probability to misidentify a pion as an electron
(muon) is 0.25% (1.4%). For electron candidates, brems-
strahlung photons are recovered by searching photons
in a 5° cone around the electron. The closest photon is
added to the lepton momentum unless it is used in the η
reconstruction.
The η meson is reconstructed in two channels, η → γγ

and η → πþπ−π0. A common background source for
photons in the former is π0 decays. A veto [20] against
such photons is implemented by combining each candi-
date photon with all other photons in the event, and
if the combined mass lies between 110 MeV=c2 and
160 MeV=c2, it is deemed to have come from a π0 decay.
Both photons in such a decay are discarded. All remaining
photons are combined, where pairs with a mass between
510 MeV=c2 and 580 MeV=c2 are saved as η candidates.
For the η → πþπ−π0 channel, two pions of opposite

charge are combined with one neutral pion built from two
accepted photons. Charged pions are tested against the
kaon hypothesis using a likelihood combining the energy
loss dE=dx from the CDC, the flight time measured by the
TOF, and the ACC response, providing an efficiency of
86% and a misidentification probability of 10% [21]. The
invariant mass of the combination is required to lie
between 540 MeV=c2 and 555 MeV=c2. A vertex fit with
χ2=n:d:f: < 3 is required for the η candidate. The η0
meson is reconstructed through the η0 → πþπ−η decay
mode. The η candidates decay into two photons. The
combined mass is required to be between 913 MeV=c2

and 996 MeV=c2, with the additional requirement that the
mass difference mη0 −mη must be between 400 MeV=c2

and 420 MeV=c2. Here too a vertex fit is required
with χ2=n:d:f: < 3. The mass windows required for the
η and the η0, as well as their mass difference, all
correspond to a �3σ window around the reconstructed
value. Reconstruction of η0 using η → πþπ−π0 candidates
proved to not be feasible due to increased combinatoric
background.
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Background is further suppressed using the angle
between the B meson and the combination of the lepton
and ηð0Þ, defined as

cosðθ⋆
Blηð0Þ Þ ¼

2E⋆
BE

⋆
lηð0Þ −m2

Bc
4 −m2

lηð0Þc
4

2jp⃗⋆
Bjjp⃗⋆

lηð0Þ jc2
; ð1Þ

where E⋆
B and jp⃗⋆

Bj are the energy and momentum of the B
meson in the c.m. frame, mlηð0Þ is the mass of the combined

lepton-ηð0Þ system, while E⋆
lηð0Þ and jp⃗⋆

lηð0Þ j are its energy and
momentum. As the four-momentum of the B meson cannot
be directly measured, the half of the c.m. energy E⋆

B ¼ffiffiffi
s

p
=2 and jp⃗⋆

Bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

Bc
2

p
are used in Eq. (1). The

distribution is shown in Fig. 1. All events must fulfil the
requirements jcosðθ⋆

Blηð0Þ Þj < 1, which ensures that they lie

within the physical region. For remaining Bþ → ηð0Þlþνl
candidates, all charged decay products are fitted to a
common vertex, and candidates for which the fit fails
are discarded. Roughly half of the events contain more than
one candidate in a single channel. Only the candidate with
the lowest χ2=n:d:f. from this fit is kept.
All final state particles of the signal decay chain have

been measured except for the neutrino. Instead of a direct
measurement, it is indirectly reconstructed with a technique
[22] using the known c.m. state of the event. Assuming all
other particles in the event were detected, the difference
between the sum of their 4-momenta and that of the
initial state corresponds to the neutrino 4-momentum.
This difference is called the missing momentum, pmiss,
and is defined as

pmiss ¼ pϒð4SÞ −
�XN

i

Ei;
XN
i

p⃗i

�
; ð2Þ

where pϒð4SÞ is the momentum of the initial state of the
ϒð4SÞ, i.e., the sum of the two beam momenta, and energy
and momenta of all N particles remaining in the event are
summed together. In this summation the requirements are
loosened to jdrj < 1.5 cm and jdzj < 10 cm. The invariant
mass of the neutrino reconstructed in this way should be
consistent with zero. Therefore, events with jm2

missj >
7 GeV2=c4 are rejected. The missing mass is defined as:

m2
miss ¼ jpmissj2: ð3Þ

To compensate for the detector having better momentum
resolution than the energy one, the neutrino energy in
subsequent calculations is adjusted constraining jEνl j ¼
jp⃗νl jc.
Using the inferred neutrino kinematics with the

reconstructed l and ηð0Þ yields the B� candidate. Signal
yield extraction uses the beam-constrained mass Mbc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E⋆2
beam=c

4 − p⃗⋆2
B =c2

p
and the energy differenceΔE ¼ E⋆

B−
E⋆
beam. Here E⋆

beam is the energy of one beam in the c.m.
system, equivalent to half the c.m. energy, while p⃗⋆

B and E⋆
B

are the three-momentum and energy of the combined B-
daughter particles, including the inferred neutrino. At this
point, candidates outside the fit region, 5.1 GeV=c2 <
Mbc < 5.3 GeV=c2 and −1 GeV < ΔE < 1 GeV, are
discarded.
Continuum background is reduced by requiring the ratio

of the second to zeroth Fox-Wolfram moment [23] to be
less than 0.4. Further background reduction uses boosted
decision trees (BDTs) [24]. For each channel, two such
BDTs are trained, one to discriminate against background
originating from BB̄ events, and the other against con-
tinuum background. The training uses MC corresponding
to the on-resonance integrated luminosity for the b → c and
continuum background, and ten times the data integrated
luminosity of the signal modes and the b̄ → ūlþνl back-
ground. These events are excluded from the analysis
afterwards. The variables used by the BDT are: the number
of particles with all general requirements applied except
the distance to the IP; the number of charged particle tracks
that fail the requirement on the distance to the IP; the
number of K� candidates; m2

miss; the angles between the
sum of all particles not assigned to the signal decay
(representing the decay of the second B), and either the
ηð0Þ or the lepton candidate; the energy asymmetry of the
two signal π� and the two γ (where applicable) defined
as Aη ¼ ðEd1 − Ed2Þ=ðEd1 þ Ed2Þ; and the difference
between the squared momentum transfer, q2, calculated
with the inferred neutrino as q2 ¼ ðpl þ pνlÞ2 and the
method from Ref. [25]. The continuum classifier addition-
ally uses the cosine of the angle between the thrust axes of
the ηð0Þlþ system and the remaining event and 13 of the
modified Fox-Wolfram moments [26] found to be

10− 5− 0 5
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310×

E
ve

nt
s/

0.
5

Signal

 u→b 

 c→b 

qq

FIG. 1. Distribution of cosðθ⋆
Blηð0Þ Þ for the η → γγ channel, with

all other requirements applied but before applying the BDT.
Between the vertical yellow lines is the accepted region. The
signal contribution is overlaid with an arbitrary scale factor. The
distribution for the other channels looks very similar.
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uncorrelated to q2. The variable distributions are shown in
the Supplemental Material [27].
The selection of classifier input variables was

restricted by the requirement to keep the entire q2 range
unbiased throughout the selection procedure. For each
channel, the selections on the BDT output values are

determined simultaneously by maximizing the figure of
merit NSig=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSig þ NBkg

p
, where NSigðNBkgÞ is the number

of signal (background) events in the remaining sample. The
efficiencies of the event selection can be seen in Table I.
The agreement between data and MC was validated in
sidebands. These sidebands consist of events outside the
accepted η mass range, or outside the range of the mass
difference mη0 −mη in case of the η0. All other selection
criteria including the BDT were unchanged. The signal
region was only investigated after sufficient agreement in
the description was verified.

IV. SIGNAL DETERMINATION

The number of signal events in the remaining sample is
determined with a two-dimensional binned maximum-
likelihood fit [28] in the variables Mbc and ΔE taking into
account MC statistical uncertainties. Each ηð0Þ channel is
fitted individually, while no distinction between decays to
electrons or muons is made in the fit. The fitted range is
5.1 GeV=c2 < Mbc < 5.3 GeV=c2 and −1 GeV < ΔE <
1 GeV, divided into eight equal-sized bins in each
variable. The four most signal-rich bins in the area
5.25 GeV < Mbc and jΔEj < 0.25 GeV further split
into four bins each, giving a total of 76 bins for the fit.
Pseudo-data generated from the MC have been used to
validate the fit procedure, no bias in the results was
observed.

TABLE I. Efficiencies of the event selection.

Channel Efficiency (%)

η → γγ 2.92
η → πþπ−π0 2.03
η0 → πþπ−ηðγγÞ 2.22

TABLE II. Event yields, fit quality and selection efficiencies.
For the fixed b̄ → ūlþνl component the Poissonian uncertainty
of the yield is quoted.

Component η → γγ η → πþπ−π0 η0 → πþπ−η

Signal 530� 116 196� 77 166� 76

b̄ → ūlþνl 2219� 47 674� 26 459� 22

b → c 4337� 233 2262� 147 2078� 150
Continuum 2285� 221 692� 137 479� 129

Data 9373 3828 3185
χ2=n:d:f. 88.0=72 86.3=72 64.4=72
Efficiency 2.92% 2.03% 2.23%
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FIG. 2. Projections onto the two fit variables for all three channels used, with the contributions scaled to those obtained in the fit. The
other variable is restricted to the signal-enriched region of 5.25 GeV=c2 < Mbc < 5.3 GeV=c2 and −0.25 GeV < ΔE < 0.25 GeV
respectively for visibility.

U. GEBAUER et al. PHYS. REV. D 106, 032013 (2022)

032013-6



The fit uses one signal and three background
histogram templates. The first two background templates
are the BB̄ decays via b → c only and involving
b → u. The third is the continuum as defined in the
BDT training. The contribution of the b̄ → ūlþνl back-
ground is fixed to the inclusive measurement from
Ref. [16] while the other two backgrounds and the
signal are determined by the fit. The number of events
for each component and channel can be seen in Table II
together with the efficiency ϵ. The distributions resulting
from the fit can be seen in Fig. 2. With the fitted event
yield, Nfit and the efficiency, ϵ, the branching fraction is
expressed as:

BðBþ → ηð0ÞlþνlÞ

¼ Nfit

4NBB̄Bðϒð4SÞ → BþB−ÞBðηð0Þ → XÞϵ : ð4Þ

ηð0Þ → X denotes the decay of the ηð0Þ into the respective
final state. The sample contains NBB̄ ¼ 772 × 106 pairs,
the fraction of BþB− among them is taken to be
Bðϒð4SÞ → BþB−Þ ¼ 0.513� 0.006 [14] in this analysis.
Both of these can decay to the signal mode. Together with
the combination of decays to electrons and muons this
gives a factor of four.

V. SYSTEMATIC UNCERTAINTIES

The sources of systematic uncertainty considered for this
analysis fall into three categories, uncertainties related (i) to
the detector performance, (ii) to the quality of the MC
model and related input parameters, and (iii) to the fit
procedure used. Unless otherwise stated, these are esti-
mated by varying the relevant parameter by one standard
deviation and repeating the full study. All individual
components listed here are assumed to be uncorrelated.
The values of the individual contributions are shown in
Table III.

A. MC modeling and theory

The most important background source for this analysis
is other semileptonic decays of the type B → lþνlXBkg.
Their branching fractions are reweighted to the current
values taken from [14] and are varied within their
uncertainty.
Semileptonic decay form factors are another important

input of the MC model for which uncertainties are
estimated. The form factors for the b → c decays
B → Dlþνl, B → D�lþνl, B → D1lþνl, B → D0lþνl,
B → D0

0l
þνl, and B → D2lþνl have been updated to the

most recent values [16,17] with the method described in
Ref. [29] for both charged and neutral decaying B mesons.
The signal decays Bþ → ηlþνl and Bþ → η0lþνl are
reweighted from the ISGW2 model [30] to the model
taken from Ref. [31] with the form factors updated to

Ref. [32], using the BZ parametrization and assuming
uncorrelated parameters. The decay Bþ → ωlþνl is mod-
eled according toRef. [33] in theMCused and reweighted to
Ref. [34] for comparison. The shape of the inclusive
component [35] of the b̄ → ūlþνl transitions is also
considered. The form factor uncertainties listed in
Table III are based on those reported in the publications
they were obtained from. Despite having a slowly varying
efficiency the η → γγ mode appears to have the largest such
uncertainty.
The effect of remaining background events containing

K0
L is considered by varying the yield of such events up

and down by 20% when building the MC templates for
the fit. Missing momentum indicating a neutrino can be
faked by K0

L. The continuum MC consists of two separate
components, decays via a cc̄ pair and those via a pair
of the three lighter quarks. Effects of a mismodeled
continuum are included by varying the ratio of the
two components by 20%. The total measured number
of BB̄ pairs has an uncertainty of 1.4% which is
propagated through Eq. (4), as do the branching fractions
of ϒð4SÞ → BþB− and the subsequent signal decay chain
taken from Ref. [14]. The MC statistics are assumed
to have Poisson-distributed uncertainties due to their
finite size.

TABLE III. Breakdown of the systematic uncertainty in %.

Source ηðγγÞ ηðπþπ−π0Þ η0

Statistical 22 39 46
Combined Systematic 11 14 11

BðB� → XBkgÞ 2.4 1.7 1.3

Bðηð0Þ → XÞ 0.51 1.2 1.7

B → Dð�;��Þlþνl form factor 0.82 1.1 1.3

B → ηð0Þlþνl form factor 3.0 2.9 0.14

B → ωlþνl form factor 0.81 2.1 2

b̄ → ūlþνl shape 0.39 0.15 0.21

Background with K0
L 3.5 8.6 3.8

Continuum 0.2 0.62 0.63
NBB̄ 1.4 1.4 1.4
Bðϒð4SÞ → BþB−Þ 1.2 1.2 1.2

b̄ → ūlþνl yield 4.1 5.2 4.4

Monte Carlo statistics 0.86 1.3 2.3
Charged tracks 0.35 1.1 1.1
γ detection 4.0 2.5 4.0
Electron PID 1.6 1.6 1.5
Muon PID 2.1 2.1 2
First π� PID 0 0.97 1.1
Second π� PID 0 1.3 2.2
Misidentified Leptons 4.3 5.5 2.3
Control Mode 5.0 5.0 5.0
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B. Detector performance

Independent data samples have been used to validate the
detector description and detection efficiency in the MC. A
fully correlated uncertainty of 0.35% per charged particle
due to track recognition and 2% per photon used in the
signal reconstruction is assigned. For π0 candidates a
combined uncertainty of 2.5% is assigned instead.
Studies on the performance of the particle identification
(PID) for both charged leptons and pions led to the use of
angle and momentum-dependent correction factors with an
associated uncertainty. The two pions are ordered by their
energy with the first pion always being the higher-energy
one. Additionally, the yield of background events with a
lepton candidate not being an actual lepton originating
directly from a Bmeson decay is varied by 20% to estimate
the effect of incorrectly assigning the lepton source.
The dependence of the reconstruction efficiency on the

value of the momentum transfer q2 for an event is shown in
Fig. 3. The η → γγ channel only shows a weak dependence
on q2, while the other two channels show a decrease at large
q2 values which can be traced to pion detection efficiency.

C. Fit validation

The much more common decay Bþ→D̄0lþνl, with
D̄0→Kþπ−, was used as a control mode. The reconstruction
follows the same method except for adjusted mass require-
ments and adding a kaon. Themeasured branching fraction is
2.536� 0.036� 0.087%. There is a 1.9σ discrepancy with
the world average [14] of 2.29� 0.09% after adjusting to
Bðϒð4SÞ → BþB−Þ ¼ 0.513. Themeasured branching frac-
tion does however show good agreement with the previous
measurement by Belle [36]. The difference in central values
of these measurements is 5% which is used as the systematic
uncertainty due to shape mismodeling in the fit variables and
selection efficiency discrepancies; this is listed in Table III as
the control mode uncertainty.

VI. RESULTS

The branching fraction of Bþ → ηlþνl decay resulting
from the fit is

by γγ∶ ð2.91� 0.64� 0.32Þ × 10−5; ð5Þ

by πþπ−π0∶ ð2.65� 1.04� 0.37Þ × 10−5; ð6Þ

where the first uncertainty is the statistical uncertainty from
the fit, while the second is systematic. Since the measure-
ments of the branching fraction in the two η decay modes
are consistent with each other, we can average over both η
modes, assuming the statistical uncertainties to be uncorre-
lated and the systematic uncertainties to be fully correlated:

BðBþ → ηlþνlÞ ¼ ð2.83� 0.55� 0.34Þ × 10−5: ð7Þ
The branching fraction of Bþ → η0lþνl decay resulting
from the fit is

BðBþ → η0lþνlÞ ¼ ð2.79� 1.29� 0.30Þ × 10−5: ð8Þ

This result is compatible with and complements the earlier
Belle result [6], which uses hadronic tagging for the second
B meson in the event. Due to the different methods applied
the statistical overlap between the two analyses is negli-
gible and they can be considered independent. The branch-
ing fractions have been previously also measured by
BABAR [2–4], although Ref. [4] reports a greater value.
For the branching fraction for Bþ → η0lþνl CLEO [5]
reports a value about an order of magnitude larger and
incompatible with both this and the result from BABAR.
The precision of this measurement is limited by the sample
size. Significantly more precise results can therefore be
expected in the future with the Belle II experiment at
SuperKEKB.
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