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Abstract

Autonomous vehicles require perception capabilities to understand their
environment as a necessary prerequisite for controllable and safe interac-
tion. Perception for structured indoor and outdoor environments targets
economically lucrative areas such as autonomous passenger transport
or industrial robotics, while research on perception for unstructured
environments is greatly under-represented in the research field of en-
vironment perception. The analyzed unstructured environments pose
a particular challenge as the existing, natural and grown geometries
mostly do not have a homogeneous structure, and similar textures and
difficult-to-separate objects dominate them. This makes capturing these
environments and their interpretation difficult, and perception methods
must specifically be designed and optimized for this application domain.

This doctoral thesis proposes novel and customized perception meth-
ods for unstructured environments and combines them within a holistic,
three-level pipeline for autonomous off-road vehicles: low-level, mid-
level, and high-level perception. The proposed classic and machine learn-
ing (ML) perception methods complement each other. Furthermore, the
combination of perception and validation methods for each level facili-
tates a reliable perception of the possibly unknown environment with
loosely coupled and tightly coupled validation methods being combined
to ensure a detailed but flexible assessment of the perception methods
proposed. All methods were designed as individual modules within
the perception and validation pipeline proposed in this thesis, and their
flexible combination permits different pipeline designs for a variety of
off-road vehicles and use cases according to demand.

Low-level perception contributes a tightly coupled confidence assess-
ment for raw 2D and 3D sensor data to detect sensor failures and ensure
sufficient accuracy of the perception sensor data. Furthermore, novel
calibration and registration approaches for multi-sensor systems in per-
ception are presented that only use the structure of the surroundings to
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register the captured sensor data: a semi-automatic registration approach
for multiple 3D Light Detection and Ranging (LiDAR) sensors, and a
confidence-based framework combining different registration methods
and facilitating the registration of various sensors with differing mea-
surement principles. Hereby, the combination of multiple registration
methods validates the registration results in a tightly coupled manner.

Mid-level perception facilitates the 3D reconstruction of unstructured
environments with two stereo image disparity estimationmethods: a clas-
sic, correlation-based method for hyperspectral images, which requires
a limited volume of testing and validation data, and a second method
that estimates the disparity from grayscale images with convolutional
neural networks (CNNs). Novel disparity error metrics and an evaluation
toolbox for stereo image 3D reconstruction complement the proposed
stereo vision methods and provide loosely coupled validation.

High-level perception focuses on interpreting “single-shot” 3D point
clouds for navigability analysis, object detection, and obstacle avoidance.
A domain transfer analysis for state-of-the-art semantic 3D segmentation
methods provides recommendations for the segmentation performance
to be as accurate as possible in new target domainswithout the generation
of new training data. The presented, customized training approach for
3D segmentation methods with CNNs can further reduce the required
volume of training data. Pre-modeling and post-modeling explainable
artificial intelligence methods provide a loosely coupled validation of
the proposed high-level methods with dataset assessment and model-
agnostic explanations for CNN predictions.

The decontamination of landfill sites and military logistics constitute
the two main use cases in unstructured environments targeted within
this thesis. These application scenarios also demonstrate how to bridge
the gap between the development of individual methods and their inte-
gration in the processing chain for autonomous off-road vehicles with
localization, mapping, planning, and control.

Concluding, the proposed perception–validation pipeline provides
flexible perception solutions for autonomous off-road vehicles and the
accompanying validation ensures accurate and trustworthy perception
of unstructured environments.
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Zusammenfassung

Autonome Fahrzeuge benötigen die Fähigkeit zur Perzeption als eine
notwendige Voraussetzung für eine kontrollierbare und sichere Interak-
tion, um ihre Umgebung wahrzunehmen und zu verstehen. Perzeption
für strukturierte Innen- und Außenumgebungen deckt wirtschaftlich
lukrative Bereiche, wie den autonomen Personentransport oder die In-
dustrierobotik ab, während die Perzeption unstrukturierter Umgebun-
gen im Forschungsfeld der Umgebungswahrnehmung stark unterreprä-
sentiert ist. Die analysierten unstrukturierten Umgebungen stellen eine
besondere Herausforderung dar, da die vorhandenen, natürlichen und
gewachsenen Geometrienmeist keine homogene Struktur aufweisen und
ähnliche Texturen sowie schwer zu trennende Objekte dominieren. Dies
erschwert die Erfassung dieser Umgebungen und deren Interpretation,
sodass Perzeptionsmethoden speziell für diesen Anwendungsbereich
konzipiert und optimiert werden müssen.

In dieser Dissertation werden neuartige und optimierte Perzeptions-
methoden für unstrukturierte Umgebungen vorgeschlagen und in einer
ganzheitlichen, dreistufigen Pipeline für autonome Geländefahrzeuge
kombiniert: Low-Level-, Mid-Level- und High-Level-Perzeption. Die
vorgeschlagenen klassischen Methoden und maschinellen Lernmetho-
den (ML) zur Perzeption bzw. Wahrnehmung ergänzen sich gegenseitig.
Darüber hinaus ermöglicht die Kombination von Perzeptions- und Vali-
dierungsmethoden für jede Ebene eine zuverlässige Wahrnehmung der
möglicherweise unbekannten Umgebung, wobei lose und eng gekop-
pelte Validierungsmethoden kombiniert werden, um eine ausreichende,
aber flexible Bewertung der vorgeschlagenen Perzeptionsmethoden zu
gewährleisten. Alle Methoden wurden als einzelne Module innerhalb
der in dieser Arbeit vorgeschlagenen Perzeptions- und Validierungspipe-
line entwickelt, und ihre flexible Kombination ermöglicht verschiedene
Pipelinedesigns für eine Vielzahl von Geländefahrzeugen und Anwen-
dungsfällen je nach Bedarf.
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Low-Level-Perzeption gewährleistet eine eng gekoppelte Konfidenz-
bewertung für rohe 2D- und 3D-Sensordaten, um Sensorausfälle zu
erkennen und eine ausreichende Genauigkeit der Sensordaten zu ge-
währleisten. Darüber hinaus werden neuartige Kalibrierungs- und Regis-
trierungsansätze für Multisensorsysteme in der Perzeption vorgestellt,
welche lediglich die Struktur der Umgebung nutzen, um die erfassten
Sensordaten zu registrieren: ein halbautomatischer Registrierungsansatz
zur Registrierung mehrerer 3D Light Detection and Ranging (LiDAR)
Sensoren und ein vertrauensbasiertes Framework, welches verschiedene
Registrierungsmethoden kombiniert und die Registrierung verschiede-
ner Sensoren mit unterschiedlichen Messprinzipien ermöglicht. Dabei
validiert die Kombination mehrerer Registrierungsmethoden die Regis-
trierungsergebnisse in einer eng gekoppelten Weise.

Mid-Level-Perzeption ermöglicht die 3D-Rekonstruktion unstruktu-
rierter Umgebungen mit zwei Verfahren zur Schätzung der Disparität
von Stereobildern: ein klassisches, korrelationsbasiertes Verfahren für
Hyperspektralbilder, welches eine begrenzte Menge an Test- und Validie-
rungsdaten erfordert, und ein zweites Verfahren, welches die Disparität
aus Graustufenbildern mit neuronalen Faltungsnetzen (CNNs) schätzt.
Neuartige Disparitätsfehlermetriken und eine Evaluierungs-Toolbox für
die 3D-Rekonstruktion von Stereobildern ergänzen die vorgeschlagenen
Methoden zur Disparitätsschätzung aus Stereobildern und ermöglichen
deren lose gekoppelte Validierung.

High-Level-Perzeption konzentriert sich auf die Interpretation von
einzelnen 3D-Punktwolken zur Befahrbarkeitsanalyse, Objekterkennung
und Hindernisvermeidung. Eine Domänentransferanalyse für State-of-
the-art-Methoden zur semantischen 3D-Segmentierung liefert Empfeh-
lungen für eine möglichst exakte Segmentierung in neuen Zieldomänen
ohne eine Generierung neuer Trainingsdaten. Der vorgestellte Trainings-
ansatz für 3D-Segmentierungsverfahren mit CNNs kann die benötigte
Menge an Trainingsdaten weiter reduzieren. Methoden zur Erklärbarkeit
künstlicher Intelligenz vor und nach der Modellierung ermöglichen eine
lose gekoppelte Validierung der vorgeschlagenen High-Level-Methoden
mit Datensatzbewertung und modellunabhängigen Erklärungen für
CNN-Vorhersagen.
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Altlastensanierung und Militärlogistik sind die beiden Hauptanwen-
dungsfälle in unstrukturierten Umgebungen, welche in dieser Arbeit
behandelt werden. Diese Anwendungsszenarien zeigen auch, wie die
Lücke zwischen der Entwicklung einzelner Methoden und ihrer Inte-
gration in die Verarbeitungskette für autonome Geländefahrzeuge mit
Lokalisierung, Kartierung, Planung und Steuerung geschlossen werden
kann.

Zusammenfassend lässt sich sagen, dass die vorgeschlagene Pipeline
flexible Perzeptionslösungen für autonome Geländefahrzeuge bietet und
die begleitende Validierung eine exakte und vertrauenswürdige Perzep-
tion unstrukturierter Umgebungen gewährleistet.
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1 Introduction

Robotic systems such as autonomous off-road vehicles require percep-
tion capabilities to “see” and understand their environment. To this end,
perception senses the environment and builds a reliable, detailed repre-
sentation as a key requirement for controllable and safe interaction of
autonomous off-road vehicles with the physical world. Off-road vehicles
belong to the class of mobile robotic systems and some off-road vehicles
can also manipulate their environment, such as excavators.

Perception is derived from the Latin perceptio, which means gather-
ing or receiving [238], and describes the capture and understanding
of the environment by organizing, identifying, and interpreting the ac-
quired sensory information. Heizmann et al. [115] state that perception
is one of the greatest challenges for an autonomous operation of mobile
robots in unstructured environments. To this end, this doctoral thesis
proposes novel and customized, classic and machine learning (ML) per-
ception methods for off-road vehicles in unstructured environments, and
combines themwithin a three-level perception pipeline composed of low-
level, mid-level, and high-level perception. Accompanying validation
methods for each level facilitate an in-depth assessment of the perception
methods and ensure an accurate and valid perception of unstructured
environments.

1.1 Scope and Objectives
The perception solutions proposed in this thesis primarily target the per-
ception of unstructured environments in cross-country, off-road scenarios
and mostly away from public roads. Target applications are autonomous
off-road vehicles: heavy construction machinery for the decontamination
of hostile environments, search and rescue robotics, as well as agricul-
tural systems and unmanned ground systems in defense. Typical use
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Perception for Autonomous Off-Road Vehicles

Low
•Extrinsic Sensor Calibration
•Calibration to the Vehicle Frame

Mid
•Stereo Image Disparity Estimation
•Sensor Data Fusion

High •Semantic Segmentation of 3D Point Clouds

Low
•Confidence of Raw Sensor Data
•Confidence-based Registration (UCSR)

Mid
•Customized Disparity Error Metrics
•3D Reconstruction Assessment (SET)

High
•Pre-modeling XAI with Dataset Assessment (IC-ACC)
•Post-modeling XAI for 3D Segmentation (X³Seg)

Perception Validation
Data

Figure 1.1 Low-level, mid-level, and high-level perception with corresponding
validation methods for off-road vehicles. Tight coupling of perception–validation
is integrated for confidence of raw sensor data, UCSR, and IC-ACC. Disparity
error metrics, 3D reconstruction assessment, and X3Seg are loosely coupled with
the analyzed perception methods.

cases are the remediation of landfills [216], where a high concentration
of unknown and possibly harmful substances occurs, and autonomous
off-road transport. In both cases the use of autonomous platforms can
lead to a notable reduction of potential risks for humans.

The targeted unstructured environments are primarily dominated by
similar textures and characterized by the absence (and non-observance)
of controlled, clearly separable, and recognizable topological structures.
They often consist of natural and grown structures, such as trees, bushes,
and rocks, along with unknown structures encountered in decontamina-
tion or defense scenarios. Cooperative and advanced driving behaviors
are unnecessary and structures with known geometry, e.g., parking lots
in urban environments, are not relevant for autonomous off-road naviga-
tion [156]. The distinction between passable and non-passable terrain,
obstacle avoidance, and reaction to unknown scenes have priority instead.

The proposed methods are structured according to the low-level, mid-
level, and high-level structure proposed in Khan et al. [148] and represent
the natural information flow in perception, as illustrated in Figure 1.1
and further discussed in Section 2.2. Low-level perception comprises
the confidence assessment of raw sensor data and the registration of
sensor data from multi-sensor systems for calibration and registration
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purposes. According to Khan et al. [148], mid-level perception generates
3D information from 2D images and comprises stereo image disparity
estimation as well as sensor data fusion. Concluding, the proposed low-
level and mid-level methods process 2D image data from passive camera
systems as well as 3D point cloud data from Light Detection And Rang-
ing (LiDAR) sensors and stereo image disparity estimation. Mapping,
planning, and control for off-road vehicleswithmanipulation capabilities
such as autonomous excavators require a geometric 3D reconstruction
of the environment to facilitate autonomous exploration and potential
manipulation tasks. Hence, the presented high-level perception methods
interpret the perceived 3D data as 3D point clouds of single scenes for
object detection and obstacle avoidance. These 3D point clouds can be di-
rect 3D sensor outputs or 3D processing results from low- and mid-level
perception. Furthermore, the interpretation and understanding as well as
the accuracy and trustworthiness assessment of perception results forms
a highly relevant part of perception for autonomous systems. This thesis
extends the concept of Khan et al. [148] for high-level perception and
includes the understanding and explanation of the perception results in
the sense of explainable artificial intelligence (XAI) which tries to assign
human-understandable explications for neural network’s decisions.

Customized perception and validation solutions for each level facilitate
a trustworthy perception of the – possibly unknown – environment. The
proposed low-level, mid-level, and high-level methods are designed as
individual modules within the perception and validation pipeline. Their
flexible combination allows different pipeline designs for a variety of
off-road vehicles and use cases according to demand while providing
the basis for the subsequent navigability analysis, localization, mapping,
planning and control for autonomous navigation or manipulation of the
environment. Section 1.1.3 presents two exemplary pipeline designs for
off-road vehicles.

In the following, the term multi-sensor system should refer to a vi-
sual/optical sensor system for 2D and 3D perception. The proposed
methods are demonstrated on multi-sensor systems consisting of LiDAR
sensors and camera systems, as they are commonly encountered on
off-road vehicles for unstructured environments. This demonstrates the
applicability of the proposed methods for the targeted use cases. It also
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points out that the proposed pipeline concept can overcome the gap
between developing isolated methods and their integration into a pro-
cessing chain required for autonomous off-road vehicles.

The integration of other types of perception sensors such as time-of-
flight (ToF) cameras or radar sensors is possible due to the flexible and
generic character of the proposed methods. The perception of struc-
tured environments and potential subsequent processing steps such as
mapping, localization, and planning are partly covered for comparison
purposes. This highlights the generalization potential of the proposed
methods to other environments and considers the compatibility to these
subsequent steps and to concrete, practical applications that exceed the
proof-of-concept demonstrations in this thesis.

1.1.1 Perception and Validation
For safe and controllable interactionwith the environment, perception for
autonomous off-road vehicles does not only require perception methods
but also complementing validation methods. To this end, this thesis com-
bines loosely and tightly coupled validation methods for the proposed
perception solutions and the utilized data therein.

This thesis combines classic and ML methods with accompanying clas-
sic validation methods for each level facilitating a thorough and holistic
examination of the proposed perception methods for unstructured en-
vironments. Hereby, both classic perception and validation methods
contribute to the validation and understanding of ML perception results
and represent a first step towards developing trustworthy artificial in-
telligence (AI) systems meeting the ethics guidelines specified by the
high-level expert group on AI (AI HLEG)1. Furthermore, the proposed
accompanying validation methods address the decision explanation for

1 Ethics Guidelines for Trustworthy AI: https://digital-strategy.ec.europa.eu/en/library
/ethics-guidelines-trustworthy-ai, access on 24.01.2022.
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artificial systems2 to meet legal provisions and laws, such as in the Gen-
eral Data Protection Regulation of the European Union3.

The present thesis combines the proposed perception and validation
methods into a perception pipeline for off-road vehicles in unstructured
environments. Nevertheless, this thesis cannot address all facets of per-
ception required in any particular cases. The primary focus lies on the
contribution of perception and accompanying validation methods for
the discussed low-, mid-, and high-level perception steps. The perceived
sensor data is interpreted as static, “single-shot” scenes captured at the
same time and with a sufficiently accurate sensor synchronization unless
described otherwise. Dynamic objects, such as cars in urban traffic or
humans, are not considered in particular over time as these do hardly
occur in the unstructured and hazardous environments analyzed.

1.1.2 Classic Methods and Machine Learning
The definition of AI is complex and often unclear due to a high number
of definitions that partially contradict one another [61, 63, 153]. Hence,
a clear separation into AI and non-AI methods is hardly possible. This
thesis separates into classic methods, with a determination of model
parameters by a human expert, and ML methods, which are subject to
data-driven modeling. Both classic and ML methods are interpreted
as part of AI, and classic perception and validation methods and ML
methods form a more complex artificial system for perception within
this thesis, as detailed in Section 2.1.

Classic methods are model-based. Their explicit modeling in develop-
ment and optimization requires expert knowledge, and implies a top-
down specification process on the basis of the determined requirements.
Furthermore, classic methods provide deterministic, inherently explain-
able, transparent, and trustworthy decision-making with logical reason-
ing.MLmethods are data-driven, and theirmodeling process is driven by
the features of the examined data in a bottom-upmanner without explicit

2 The Alan Turing Institute: Impact story: A right to explanation, https://www.turing.ac.
uk/research/impact-stories/a-right-to-explanation, access on 12.01.2021.

3 European Parliament and the Council of the European Union: General Data Protection
Regulation, http://data.europa.eu/eli/reg/2016/679/oj, access on 24.01.2022.
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Figure 1.2 Off-road vehicles operate in unstructured environments primarily
dominated by similar textures, naturally occurring structures, and difficult-to-
separate objects. The primary applications in the present thesis target the reme-
diation of landfill sites and transport applications in defense.

programming. This thesis focuses on combining classic and ML meth-
ods to provide a broad and comprehensive perception for unstructured
environments.

1.1.3 Application Environments and Use Cases
The decontamination of hazardous environments [216] and autonomous
off-road navigation for defense applications have been selected as the
two application scenarios for off-road vehicles in this thesis.

In general, application environments for autonomous vehicles can be
divided into structured andunstructured environments [50, 156, 270]. Per-
ception for structured indoor and outdoor environments targets highly
interesting areas from an economic perspective: autonomous passenger
transport, logistics, or assistance and rehabilitation robotics.

However, research on perception for unstructured environments is
greatly under-represented in the research field of environment percep-
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tion. The analyzed unstructured environments pose a particular chal-
lenge because the existing, naturally grown geometries mostly do not
have a homogeneous structure, making capturing these environments
and their interpretation difficult. Therefore, perception methods must
specifically be designed and optimized for this application domain. Fig-
ure 1.2 shows exemplary scenes in unstructured environments.

The proof-of-concept demonstrations in decontamination were con-
ducted in the competence center “ROBDEKON”4. ROBDEKON is ded-
icated to the research on robotic systems for the decontamination of
hazardous environments and funded by the Federal Ministry of Educa-
tion and Research within the scope of the German Federal Government’s
“Research for Civil Security” program. The competence center is coordi-
nated by the Fraunhofer Institute of Optronics, System Technologies and
Image Exploitation (IOSB)5.

The defense use cases presented were realized in close cooperation
with the Institute for Autonomous Systems Technology (TAS) of the
Bundeswehr University Munich6. The financial support from BAAINBw
U6.2 and the “Wehrtechnische Dienststelle” 41 (WTD) of the Bundeswehr
for the presented defense applications is gratefully acknowledged.

The proposed methods and approaches are demonstrated on the dif-
ferent technology demonstrators for decontamination and defense ap-
plications IOSB.BoB, IOSB.amp Q1, “Technologieträger Unbemanntes
Landfahrzeug” (TULF), and IOSB.Alice depicted in Figure 1.3. Technical
details for the technology demonstrators are shown in Section 7.1, and ex-
emplary perception and validation pipelines for the regarded technology
demonstrators are described in Section 7.2.

4 Competence Center ROBDEKON: https://robdekon.de/, access on 17.01.2022.
5 https://www.iosb.fraunhofer.de/, access on 17.01.2022.
6 https://www.unibw.de/tas-en/main, access on 23.12.2021.
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(a) IOSB.BoB. (b) IOSB.BoB, IOSB.amp Q1 and Q2.

(c) TULF. (d) IOSB.Alice.

Figure 1.3 Off-road vehicles for unstructured environments that are all equipped
with multi-sensor systems for perception and localization. Section 7.1 describes
the algorithmic basis for perception, localization, mapping, planning, and control.
Images (a), (b), (d) © Fraunhofer IOSB, (c) courtesy of WTD41, Bundeswehr.

1.2 Scientific Contributions
This thesis’ main scope is placed on perceptionmethods for unstructured
environments with loosely and tightly coupled validation methods com-
bined in a perception pipeline for autonomous off-road vehicles. The
main contributions of this thesis are:

Tightly coupled confidence assessment for raw 2D and 3D sen-
sor data (Section 4.1) and confidence-based data fusion for cross-
source 3D point clouds generated from differing measurement
principles (Section 5.3).
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A semi-automatic registration approach to register multiple
3D LiDAR sensors [323] (Section 4.2).
A confidence-based registration framework [329] that combines
multiple 2D–3D and 3D–3D registration methods for cross-source
sensor data to extrinsically register multi-sensor systems with
tightly coupled validation using only the structure of the surround-
ings (UCSR, Section 4.3).
Disparity estimation from stereo camera images for unstructured
environments with a classic method for hyperspectral images [324]
and the UEM-CNN architecture [327] (Section 5.1).
The SET evaluation toolbox for 3D reconstruction results from
stereo image disparity estimation [325] (Section 5.2.2).
A domain transfer analysis for state-of-the-art methods in the se-
mantic segmentation of 3Dpoint cloudswith recommendations for
enhanced domain transfer performance and a customized training
approach to reduce the required volume of training data (Sec-
tion 6.1).
A first step towards validating and understanding high-level per-
ception results by pre-modeling XAI with dataset assessment and
recommendations for the generation of optimized training data
reducing the data volume required to train neural networks [326]
(IC-ACC, Section 6.2.1).
The X3Seg approach to facilitate post-modeling, model-agnostic
XAI for the semantic 3D segmentation in unstructured environ-
ments [330] (see Section 6.2.2).
A novel planning constraint optimizing the driving performance of
autonomous off-road vehicles in unstructured environments [328]
(Section 7.6).

1.3 Thesis Structure
The thesis consists of eight consecutive chapters. Chapter 2 provides an
overview of relevant state-of-the-art perception and validation methods,
and Chapter 3 elaborates theoretical foundations for the presented con-
tributions to low-level, mid-level, and high-level perception. Chapter 4
and 5 discuss the proposed contributions to low-level and mid-level per-
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ception, and the high-level perception methods proposed are described
in Chapter 6. Chapter 7 bridges the gap between the development of
individual methods, their integration in the required processing chain for
autonomous off-road vehicles for concrete use cases, and the subsequent
utilization of their results, e.g., in mapping and planning. The exper-
imental results and proof-of-concept demonstrations of all proposed
perception and validation methods follow the methodical discussion of
each method. A summary of the proposed methods and an outlook on
future work in Chapter 8 conclude the present thesis.
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The state of the art presented here does not claim completeness. Its
purpose is to provide an overview of state-of-the-art perception and
validation methods and primarily to focus on research that is related to
the methods proposed in this thesis.

2.1 Artificial Intelligence and Machine Learning
ML comprises a wide field of methods from early methods, such as
support vector machines, to artificial neural networks (ANNs). Support
vector machines are subject to a rather discriminative modeling but
with a determination of model parameters on the basis of the selected
data. Current ML research concentrates on the subdomain of ANNs,
and perception with ML methods typically requires deep ANNs with a
higher number of layers due to the complexity of the perceived sensor
data.

ANNs are derived from biological neural networks and were already
subject to research in the 1960s and earlier [132, 211, 273, 274]. The first
ANN was proposed in 1951 by Minsky and Edmonds [197] and their
success and popularity notably increased when the computation power
reached a sufficient level to analyze deep ANN architectures with a
high number of layers. Therefore, ANNs have revolutionized perception
starting from the ImageNet competition [233] in 2012. Neural networks,
also denoted nature analogous methods in Klüver and Klüver [153],
take a unique position in image processing due to their huge success in
recent years. They exhibit tremendous potential and highly contributed
to increased accuracy and speed in 2D and 3D image exploitation. The
deep learning review of Le Cun et al. [162] provides an overview on the
state of the art until its publication in 2015 and illustrates research areas
that especially benefit from ML with neural networks, such as image
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processing, speech recognition, and object detection. Le Cun et al. [162]
furthermore summarize the benefits of ANNs in image processing that
contribute to their recent success: “local connections, shared weights,
pooling, and the use of many layers” [162, p. 439].

Goodfellow et al. [92] state that ML algorithms can be classified ac-
cording to their problem statement: classification as a discrete problem
predicts one class for the input data, e.g., class labels are assigned to all
3D points in the semantic segmentation of point clouds (see Section 2.5.1),
while regression aims to estimate one or more numerical values on the
basis of the input data, such as the registration of two 3D points clouds
(see Section 2.3.3).

LeCun et al. [162] state that perception mostly relies on feed-forward
networks with multi-layer perceptrons composed of multiple processing
layers. Furthermore, the authors [162] describe that ANNs in 2D image
and 3D point cloud processing typically have input layers with a large re-
ceptive field. Therein, convolutional layers combine local neighborhoods
and contain a set of filters (kernels) convoluted with the receptive field
of the input layer, as further discussed in [148]. They reduce the size of
the receptive field for the next layer for kernels of at least size 2 × 2, while
upsampling convolutions increase the receptive field size of the next layer
with dilated convolutions [148]. Activation function layers and fully con-
nected layers facilitate the mapping of non-linear relations, and pooling
layers provide a downsampling, e.g., with maximum pooling that only
transfers the maximum of the local neighborhood to the next layer. Batch
normalization layers, often combined with dropout, reduce the internal
covariate shift of a network and provide regularization [130]. This helps
to prevent over-fitting and benefits the network’s generalization ability.

ANNs form an important part of ML in perception research and learn
from the externally supplied or self-generated data as stated by the
European Defense Agency (EDA) that defines AI as “…the capability
provided by algorithms of selecting, optimal or sub-optimal choices from
a wide possibility space to achieve specific goals by applying different
strategies including adaptivity to the surrounding dynamical conditions
and learning from own experience, externally supplied or self-generated
data” [61]. As previously stated, a clear separation into AI and non-AI
methods is hardly possible, and this thesis separates classic and ML
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methods. Following the definition of the EDA, this thesis classifies ML
methods as primarily data-driven. Fully automatic design processes for
ML architectures that are subject to recent research in AutoML [171, 190]
even expand this and deduce the model architecture from the data [171].
However, automated network design is rather detrimental for percep-
tion methods aiming at transparency and validation and is hence not
discussed further within this thesis.

The analogies between recognition and intuition in psychology high-
light the importance of examining and combining classic and ML meth-
ods in perception. Recognition in psychology is similar to the operation
of classic methods reaching decisions in a calculating and logical way,
while intuitive decision making resembles the black box operations in-
side ANNs with fast, rather stereotypic and learned behaviors. In the
area of human thinking, the psychologist Kahneman [144] introduces a
metaphor of two systems closely related to ANNs and classic methods:
system one is “fast, automatic, frequent, emotional, stereotypic, uncon-
scious” [63] and hence similar to decisionmaking in ANNs, while system
two is “slow, effortful, infrequent, logical, calculating, conscious” [63],
alike classic methods. Nobel Prize winner Herbert Simon furthermore
states that “…intuition is nothing more and nothing less than recogni-
tion” [258], while Falchi [63] elaborates that neither humans nor intelli-
gent AI systems should solely rely on intuition for decision-making [63,
145]. From this, Falchi [63] derives the two most important conditions in
ML decision-making: a sufficiently familiar environment to facilitate its
predictability, and the availability of sufficient and valid training data.
Falchi [63] hence recommends the use of ML methods as a part of more
complex artificial systems involving classic, non-intuitive processes in
addition to intuitive ML processes relying on the recognition of learned
patterns and correlations. Hodler et al. [121] furthermore propose a
subdivision into narrow and general AI that interprets classic and ML
approaches as AI in a broad sense: narrow AI is centered on one task,
such as image classification for 2D images, while general AI denotes
multiple, more general abilities, such as planning, object detection and
obstacle avoidance, learning, or problem-solving.

Naujoks et al. [204] demonstrate that the combination of classic andML
methods can improve the performance of perception methods and help
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Figure 2.1 Overview of the AI definition for this thesis.

to overcome the need for large datasets, as discussed in Section 2.5.1. The
classic methods in this thesis process environment data in a deterministic
and predictable manner on the basis of a mathematical modeling of the
respective system. Classic methods are strong if a mathematical and
analytical description of the underlying model is possible, such as in
the case of physical laws of nature, where they perfectly complement
ML methods. To conclude, Figure 2.1 illustrates the AI definition chosen
within this thesis.

The transfer of the thoughts of Simon [258], Kahneman and Klein [145],
Kahneman [144], Falchi [63], and Hodler et al. [121] into perception
demonstrates that ML methods do not require the domain knowledge
of an expert in development as it is required for classic methods. How-
ever, it also becomes clear that ML methods do not incorporate domain
knowledge in the way classic methods do. Consequently, the aim to un-
derstand perception results and the development of trustworthy systems
leads to a combination of classic and ML methods within a general AI
system, according to Hodler et al. [121], facilitating a holistic analysis
and application of perception methods in this thesis.

2.2 Pipelines and Abstraction Levels
Autonomous navigation in unstructured environments requires similar
primary processing steps as autonomous driving in structured environ-
ments. Liu et al. [173] describe the processing pipeline for structured
environments as an interaction of perception, localization, prediction,
routing, decision, planning, and control. They define sensing, percep-
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tion, and decision as the three cornerstones of a system architecture
for autonomous systems. Here, perception comprises the sensing and
perception for autonomous robotic systems with 2D and 3D sensor infor-
mation prior to the mapping step. Furthermore, Reinoso and Paya [226]
propose the subdivision of navigation for mobile robotic systems into
mapping, localization, planning, and control. The perception and vali-
dation methods in this thesis address the sensing and perception steps,
according to Liu et al. [173].

Khan et al. [148] and Beyerer et al. [16] propose processing chains for
machine vision being closely related. Khan et al. [148] subdivide machine
vision into the discussed low-, mid-, and high-level steps, while Beyerer
et al. [16] separate into image acquisition, digitization, preprocessing,
information compression and extraction, and decision. Preprocessing
in Beyerer et al. [16] corresponds to low-level vision in Khan et al. [148],
information compression and extraction [16] is equivalent to mid-level vi-
sion [148]. High-level vision [148] corresponds to the decision processing
step [16]. Digitization in [16] succeeds image acquisition and provides
raw, digital images that constitute this work’s starting point for low-level
perceptionmethods. To conclude, the term perception in this thesis refers
to 2D machine vision and 3D perception.

2.3 Low-Level Perception

2.3.1 Confidence Measures for Raw Sensor Data
Sensor confidence analysis estimates the reliability and accuracy of raw
sensor data to decide if the captured sensor information is an accurate
and reliable representation of the environment. Hence, confidence mea-
sures indicate the probability of a measurement to be correct. Two types
of confidence and reliability estimation methods exist. Error detection
and recovery aim to modify the sensors and their performance to make
the sensor data more believable. However, perception for autonomous
off-road vehicles requires the second group: confidence and reliability
assessment methods determining which sensors perform reliably. In the
context of confidence assessment, the terms confidence and reliability
are used as synonym within this thesis. In general, two groups of sen-
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sors can be distinguished: one group provides single measurements,
such as temperature sensors [76, 127, 178], where the sensor confidence
is equivalent to the measurement confidence, while the second group
yields numerous measurements from one “single-shot” capture and each
2D image pixel and 3D point provides a single measurement as it is the
case for all perception sensors.

Frolik et al. [76] discuss the self-validation, fusion, and reconstruction
of the acquired sensor data for the first group of sensors. They exploited
the fact that multiple sensors measure similar quantities, such as depth
estimation in 3D space with 3D LiDAR sensors or stereo camera systems.
Usually, the measured parameters may be correlated, the sensors are not
truly redundant but quasi-redundant, and one single confidencemeasure
from multiple sensors is derived by the measurements of these similar
quantities [76]. While Frolik et al. [76] deduce confident measurements
by a combination of multiple, quasi-redundant sensor measurements,
Hughes [127, 128] estimates the reliability of each sensor. The theoret-
ical background of [127, 128] is inspired by the psychological research
of Lawrence Marks on the human sensory system [183]. According to
Marks [183], certain properties, such as intensity or duration, exist for
all sensors. These analogous attributes and qualities may be in different
forms but nevertheless similar for all senses – or sensors. The systematic
assessment of sensor confidence in [127, 128] can indicate the trust to be
placed into an individual sensor on the basis of its estimated reliability
in the sensor model.

Broten and Wood [25] examine the confidence levels of sensor outputs
for multi-sensor arrays on the basis of ANNs. They propose a combina-
tion of sensor fusion and ANNs inspired by the central idea of standard
addition in analytical chemistry: it is assumed that an ANN can learn
the relationships between the outputs of simulated sensor arrays and the
individual analyte concentrations in a mixture of analytes. The learned
relationships determine the confidence level of the sensor outputs ap-
plied in data fusion from the examined sensors. An ANN with three
layers is trained to estimate a numeric value for the confidence level of a
sensor output in the range from 0% to 100%. However, the approach of
Broten and Wood [25] requires an approximately linear relation of the
individual analyte concentration as well as the accurate dosage of the
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analyte [85]. This can only be guaranteed in simulated data, as examined
in [25], and the ANN-based estimates would require an explanation of
the confidence assessment with XAI methods (see Section 2.5.3). Hence,
this approach is hardly applicable for sensor data from unstructured,
potentially unknown environments in safety-critical applications.

The theoretical accuracy of LiDAR systems is analyzed in [7] for air-
borne laser scanning. The authors [7] state that LiDAR accuracy depends
on the signal-to-noise ratio of the reflected signals and on LiDAR beam
resolution. For robotic applications, Thrun et al. [268] define four types
of measurement errors for beam models of range finders, such as LiDAR
sensors: correct measurements with rather low and local noise, unex-
pected objects, failures, and random measurements. These measurement
errors are modeled in a probabilistic manner and integrated into the state
vector in the subsequent mapping and localization step. For instance, the
authors [268] recommend modeling noise for correct measurements by a
narrow Gaussian distribution within the limited measurement range of
the respective sensor. Failures denote the missing of obstacles, e.g., for re-
flecting surfaces or objects absorbing the emitted light of a LiDAR sensor,
while random measurements refer to phantom measurements mostly
caused by multi-path scattering or sensor crosstalk [268]. As proposed
in [268], the probabilistic modeling requires a tight and computationally
expensive coupling of perception and mapping that can also limit the
generic application of confidence measures.

In contrast to [268], Wolf and Berns [296] propose a generic sensor-
fusion approach that conducts a separated uncertainty analysis for sensor
data to increase the robustness in the subsequent classification and map-
ping steps. This uncertainty analysis is integrated as quality assessment
inside a layered perception framework similar to the level structure for
perception in this thesis. Environment modeling and confidence mea-
sures are conducted for volume pixels, so-called voxels. The authors [296]
derive the measurement quality for LiDAR sensors from the beam ex-
pansion and propose three beam models: “beam distribution, constant
accuracy, dynamic accuracy”[296, p. 3]. The beam distribution model
requires the availability of the relevant modeling parameters from the
sensor manufacturer. However, the authors state that these parameters
are not available for some LiDAR types, such as Velodyne LiDAR sen-
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sors, and constant and dynamic accuracy modeling is exploited for these
LiDAR sensors. The stereo image disparity estimation quality mainly de-
fines the quality of stereo camera systems. Here,Wolf and Berns [296] pro-
pose exponential and quadratic error models for the quality assessment
of stereo cameras and a customized filtering approach that eliminates
low-quality 3D points from stereo image disparity estimation.

Motten and Claesen [199] state that textureless image regions have a
higher probability of inducing incorrect depth estimates. Hence, texture
analysis can provide a confidence estimate for stereo image disparity
estimation. Beyerer et al. [16] define texture as “a two-dimensional struc-
ture with a certain deterministic or statistical regularity”[16, p. 651]
and distinguish structural, structural-statistical, and statistical textures.
Julesz and Bergen [143] propose a texture measure that utilizes a discrete
Markov Random Field model to describe the relationship between a
pixel and its respective neighbors, while Hu and Ensor [125] propose the
analysis of image textures via their Fourier spectrum. The authors [125]
describe texture using a collection of properties, such as pattern size or
directionality, within a texture descriptor. Beyerer et al. [16] state that
gray-level co-occurrence matrices (GLCM) analyze spatial dependencies
of image pixels to other, neighboring image pixels. They are often used
in medical imaging [18, 312] and landscape classification [103]. GLCM
are mostly described with second order statistics, such as correlation and
homogeneity, as detailed in [317], and also facilitate texture analysis, as
described in [103].

Confidence assessment is also subject to research in other scientific
domains, such as wireless sensor networks or subsea sensor spreads.
Scheffel and Fröhlich [244] propose a confidence attribution scheme
to increase sensor reliability in wireless sensor networks. Each value,
respectively sensor measurement, is supplemented with a confidence
level. This contrasts the approaches of Hughes [127, 128], who assigns a
confidence estimate to the sensors, and of Frolik et al. [76], who deduce
confident measurement from quasi-redundant, multiple sensors. The
authors [244] state that their approach leads to increased resilience in case
of sensor faults and data injection by intruders. In the subsea domain,
the theoretical uncertainty of sensor spreads is modeled with the Total
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Propagated Uncertainty (TPU)1 that is formed by combining the Total
Vertical Uncertainty (TVU) and the Total Horizontal Uncertainty (THU)
for sonar sensor systems in digital terrain modeling.

2.3.2 2D and 3D Features
2D features provide the basis for feature-based 2D image registration.
Feature-based visual simultaneous localization and mapping (SLAM)
tracks features in subsequent keyframes to estimate the camera poses
for a localization inside a map. The majority of 2D features in feature-
based visual SLAM rely on edge detection, and a high contrast in images
benefits 2D feature detection. Well-known examples for 2D features are
scale-invariant feature transform (SIFT) [175], speeded up robust features
(SURF) [10], ORB (Oriented FAST [284] and rotated BRIEF [30]) [232], and
KAZE [2]. ORB-SLAM relies onORB featureswhich are based on rotation
invariant noise-resistant BRIEF descriptors and achieve an equivalent
performance as SIFTwith a lower computational effort, according to [232].
Wang et al. [287] propose tracking robust features in multiple layers of
contrasted images for visual SLAM. Here, multi-layered representations
of images as different contrast-enhanced versions of the original images
ensured a constant brightness in subsequently taken images [287]. The
approach of [287] is demonstrated on SIFT, SURF, and ORB features
and achieves an improved robustness, especially in changing lighting
conditions similar to the visual SLAMwith high-dynamic ranging (HDR)
images discussed in Section 4.4.

In 3D space, Point Feature Histograms (PFH) [235] and Fast Point
Feature Histograms (FPFH) [234] can be utilized to describe the local
geometric structure of 3D points with underlying surface and point
neighborhood on a detailed level. Rusu et al. [234, 235] state that both are
invariant to sampling densities and noise levels of neighbors, while FPFH
features are optimized for fast calculation and preserve the majority of
the discriminative power of PFH features.

Voxel Cloud Connectivity Segmentation (VCCS) [209] supervoxels
operate on a voxel representation and describe the local details of a set

1 Kristensen, Ole: https://www.eiva.com/about/eiva-log/how-navimodel-handles-th
eoretical-uncertainty-of-subsea-sensor-spreads, access on 26.11.2021.
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of voxels with 𝐟 = [𝑥, 𝑦, 𝑧, 𝐿, 𝑎, 𝑏, FPFH1...33], whereby 𝐿, 𝑎, and 𝑏 denote
the CIELAB color information.

Ensemble of shape functions (ESF640) with 640 degrees of freedom
(DoF) divide point sets in ten shape function histograms [295]. Shape
functions capture point distance, area shape, and angle, while the under-
lying, real surface is approximated with a voxel grid and separates the
shape functions into 64 bins for each function. The authors [295] state
that ESF descriptors are insensitive to outliers, holes in the data, coarse
object boundaries, and noise. The cross-source graph matching method
(CSGM) of Huang et al. [126] utilizes ESF640 descriptors to preserve the
local structure of the point set inside each extracted VCCS supervoxel, as
discussed in Section 2.3.2 and 4.3.4.

2.3.3 Calibration and Registration
Registration is subject to extensive research in medical imaging [109],
calibration of multi-sensor systems [54, 74, 158, 311], and SLAM for
autonomous platforms [60]. The calibration of multi-sensor systems re-
quires the intrinsic calibration of each sensor as well as the calibration
of each sensor to the vehicle frame. The intrinsic calibration of 3D per-
ception sensors, such as rotating 3D LiDAR sensors, is usually provided
by the sensor manufacturer, while the intrinsic camera calibration is
typically performed after mounting the sensor on the platform. The li-
braries of OpenCV and the Robot Operating System (ROS)2 provide well-
established software for the intrinsic calibration of individual 2D cam-
eras3 and camera systems in horizontal or vertical stereo-setup4. Stereo
camera systems require an extrinsic calibration, as discussed in Sec-
tion 3.3.

In general, the registration of multiple sensors to the vehicle frame
can also be achieved via the extrinsic calibration and registration of all

2 https://www.ros.org/, access on 18.01.2022.
3 https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calib

ration.html, access on 28.10.2021.
4 Camera Calibration, 3D Reconstruction: http://wiki.ros.org/camera_calibration,

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_rec
onstruction.html, access on 18.01.2022.
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sensors relative to each other and their joint registration to the vehicle
frame, as described in Section 4.2.

Registrationmethods can be separated into online and offlinemethods,
local and global methods, as well as direct and transformative meth-
ods [126]. Maye et al. [186] state that offline methods search for the mini-
mum of a cost function, while online methods mostly optimize the state
vector of a Bayes filter. Offline methods facilitate the validation of the reg-
istration results prior to their utilization on the platform. Consequently,
sensor calibration and sensor data registration for critical applications
typically relies on offline methods. The local or global character of a
registration method is defined by its optimization method [234]. Local
approaches, such as the extensively researched and evolved ICP algo-
rithm [38, 250, 311], guarantee local optimality. Globalmethods overcome
the problem of convergence in local minima due to faulty initialization,
but with the major drawback of extensive computational effort. Appro-
priate direct and transformative as well as local and global methods are
discussed subsequently.

Registration requires a common representation of the input data. Direct
methods minimize the distance between aligned points or features [15,
188, 269] and require less computational effort but are mostly unsuit-
able for registering data from different types of sensors. Transformative
methods convert the registration into a model correspondence problem
by transforming 3D points from the Euclidean space to other repre-
sentations [48, 202]. Consequently, transformative registration methods
include all 2D–3D registration methods as well as feature-based methods
extracting 3D features from point clouds and transforming them into the
feature space for registration [234, 295]. Here, abstract data representa-
tion can increase the robustness but risks information loss and a higher
complexity of the registration method.

2D–3D Registration. Pandey et al. [207], Dhall et al. [49], and Geiger et
al. [82] present registration approaches of cameras to a single LiDAR sen-
sor with calibration targets. Dhall et al. [49] extract correspondences from
2D images and 3D point clouds with ArUco markers to determine accu-
rate rigid-body transformations between a LiDAR and a single camera,
while Geiger et al. [82] present a similar approach with checkerboards.
Kümmerle et al. [158] propose an automatic calibration approach for
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multiple cameras and depth sensors using a spherical calibration target.
The 2D images are projected onto a spherical screen that projects a sphere
onto a circle. It is assumed that the depth sensors provide range data
in an ordered structure with rows and columns; hence the presented
method is not applicable for unordered point clouds. Furthermore, the
authors of [158] provide a detailed overview on calibration errors and
their impact on the fused data. They state that a high robustness of a
2D–3D sensor calibration with checkerboards requires a suitable board
distribution with different orientations as normals close to the viewing
ray prevent a correct detection. Park et al. [212] demonstrate that ac-
tive depth sensors are sensitive to the reflectivity of the surface, which
influences the measured depth and can lead to a notable depth offset
between black and white areas. For stereo cameras setups and RGB-D
cameras, the camera’s resolution is notably higher than the resolution
of the depth sensor. Hence, the precision of the vertex detection with
3D edges in the point cloud is the major limiting factor in the 2D–3D cal-
ibration with boards. Planar targets with holes as utilized in [74, 280] are
subject to similar depth estimation errors due to inaccurate feature point
detections [158].

However, the utilization of calibration targets in unstructured envi-
ronments is deliberately avoided in this thesis to keep humans out of
potentially hazardous environments. Without calibration targets, the
2D–3D calibration of passive camera systems and active depth sensors is
also possible [32, 95, 165]. Gräter et al. [95] measure LiDAR reflections
in a customized darkroom and later minimize reprojection errors. This
calibration setting is not applicable for off-road vehicles, especially not
for heavy construction machinery. Castorena et al. [32], Pujol-Miro et
al. [219], and Levinson and Thrun [165] match intensity features from
camera images and depth edges from range sensors. Inaccuracies can oc-
cur if different features for intensity and depth are extracted and wrongly
associated. Alternatively, the mutual information (MI) between surface
intensities can be maximized as presented in Pandey et al. [206]. How-
ever, this can be subject to wrong associations for large initial decal-
ibrations. Transformative, cross-source registration methods without
calibration targets often rely on a combination of a coarse and a fine reg-
istration step [54, 219]. Dutschk et al. [55] compare Gaussian processes
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and weighted least squares methods to fuse 2.5D sensor data in surface
inspection and present a proof of concept with confocal microscopy and
white light interferometry on real and simulated data using root-mean-
square error (RMSE), correlation, Structural Similarity Index Measure
(SSIM), and multi-scale SSIM metrics. They found that weighted least
squares methods perform better with less computational effort in fusing
optical cross-source measurement data. The surface is approximated us-
ing a robust, iterative moving least squares method which fuses implicit
surfaces depending on the uncertainty 𝜎2 of the model with a weighting
factor 𝑤𝑖 = 1/𝜎2 [55] similar to the confidence-based weighting intro-
duced inUCSR (see Section 4.3). Furthermore, Dutschk et al. [54] present
a registration routine for multimodal data in surface inspection. Coarse
and fine registration are combined to increase the registration result’s
reliability, accuracy, and success rate [54]. The coarse alignment step ex-
tracts contours, while the fine registration of [54] step relies on area-based
mutual information. Pujol-Miro et al. [219] introduce a classic registra-
tion of 2D images to unorganized 3D point clouds by extracting and
matching relevant features, so-called contour cues. Similar to [54], coarse
registration with contour extraction and a subsequent fine registration
are combined [219], which provides a promising approach for detect-
ing contours in unstructured environments that is further discussed
in Section 4.3.2.

RegNet of Schneider et al. [246] is the first convolutional neural network
(CNN) proposing an extrinsic calibration of multimodal sensors with
six DoF and compares favorably to classic approaches on the KITTI 2012
dataset [83]. RegNet combines a joint initial estimate and online correction
of the extrinsic calibration parameters for 3D LiDAR and 2D RGB data.
The typical steps in registration – feature extraction, feature matching,
and global optimization – are combined into one CNN. The 3D point
cloud is projected onto a 2D depth image using the intrinsic camera
matrix and the initial transformation estimate. A mean calibration error
of 0.06m in translation and 0.28° in rotation is achieved on KITTI [83]
from a maximum decalibration of 1.5m and 20°.

Liu et al. [172] propose an online calibration method based on Reg-
Net [246] with the additional integration of a stereo camera system. The
projected LiDAR depth map and the stereo depth map are registered and
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fused. The fused LiDAR–stereo depth map is subject to subsequent regis-
tration inside a RegNet-like architecture. The evaluation is conducted on
data from structured indoor environments with clearly separated objects.
Unstructured environments are not considered.

CalibNet [131] estimates the rigid six DoF transformation between a
2D camera and a 3D LiDAR in real-time [131]. Similar to Schneider et
al. [246], calibration targets are not required, and image feature extraction
is conducted with a pre-trained ResNet-18 network [113]. Inputs to Cal-
ibNet are the intrinsic camera matrix, an RGB image, and a LiDAR point
cloud. The network is trained to maximize the geometric and photomet-
ric consistency of LiDAR clouds and RGB images by applying 3D Spatial
Transformer Networks [105]. Both photometric and point cloud distance
loss within the 3D spatial transformer layer are selected as training losses
in [131]. CalibNet is evaluated on the KITTI 2012 dataset [83] and can
correct decalibrations up to ±20° and 0.2m with a mean accuracy of
0.004m in translation and 0.41° in rotation [131].

CMRNet [33] regards registration in the SLAM context and estimates
image localization inside a pre-existing 3D LiDAR map with a mean
accuracy of up to 0.27m in translation and 1.07° in rotation on the KITTI
odometry dataset. The network architecture of CMRNet is inspired by
PWC-Net [262] for optical flow predictions. On the basis of a rough
initial estimate for the camera pose, the PWC-Net architecture is used
without weight sharing and upsampling layers. A fully connected layer
prior to the first layer for optical flow estimation facilitates regression. A
smooth 𝐿1 norm of the translation is used as training loss, as proposed
in Girshick [89].

In medical imaging, the intensity-based registration of pre-operative
3D data to intra-operative 2D data presents a key requirement in medical
imaging and image-guided intervention. Pre-operative 3D data origi-
nates from computed tomography, cone-beam computed tomography,
magnetic resonance imaging, and CADmodels of medical devices, while
intra-operative 2D data mainly consists of X-ray images. Miao et al. [195]
present a CNN regression approach for real-time registration of a 3D
X-ray attenuation map from computer tomography to a 2D X-ray image.
The complex CNN regression task is separated into multiple, simple
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sub-tasks by a hierarchical application of the regressor and training on
local zones.

3D–3D Registration of Similar-Source Data. 3D–3D registration min-
imizes an error metric between two point clouds. The local Iterative
Closest Point (ICP) approach [15, 311] minimizes the distances between
single corresponding points of two point clouds. Point-to-Plane-ICP
minimizes the distance of corresponding points on estimated surfaces
to estimated surfaces orientations in the other cloud. Generalized-ICP
(GICP) [250]minimizes the distance between approximated local surfaces
and calculates the orientation of estimated surfaces from a singular value
decomposition (SVD) of the covariance matrix. It notably outperforms
ICP and Point-to-Plane-ICP in terms of root mean square error (RMSE)
of the registration result [250].

In order to overcome the problem of convergence in local minima,
Fitzgibbon [69] proposes an alternative registration approach for the
registration of 2D LiDAR sensors, where the Levenberg-Marquardt algo-
rithm is used for error minimization, and registration of 3D clouds is only
treated theoretically. Therefore, it remains open whether this approach
is suitable in the more complex registration of 3D clouds.

Gao and Spletzer [78] and Schneider et al. [247] propose online cali-
bration approaches with additional requirements that are hard to realize
for tracked off-road vehicles in unstructured environments. Gao and
Spletzer [78] propose an extrinsic online calibration approach of multiple
LiDAR sensors on a mobile platform with calibration targets. A priori
information can be integrated, and optimization constraints, such as
calibration tolerances, can be taken into account. Furthermore, global
optimality can be achieved according to [78]. In their findings, the mean
absolute error lies in between 13.48 cm and 21.35 cm between the tar-
get reprojection residuals [78]. However, retro-reflective tape has to be
mounted to poles inside the sensor FoV as landmarks in pairs of twowith
a known size and initial sensor pose estimates with at least ±5° rotational
accuracy are required. Schneider et al. [247] propose an odometry-based
extrinsic online sensor calibration, where relative orientation and trans-
lation of two sensors are calculated using their time-synchronized pose
changes. However, the sensor poses within the odometry coordinate
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system have to be known, and the reliability of odometry measurements
for tracked vehicles is limited in case of slippage.

Frese et al. [75] present a registration approach for 3D sensors to the
vehicle frame exploiting the 3D model of the vehicle. The manipulator
arm of the platform lies inside the sensors FoV, and its inclusion in the
3D model allows registration of the LiDAR point cloud to the 3D model.
Here, the alignment result of the 3D model to the 3D sensor cloud yields
the calibration to the vehicle frame.

3D–3D Registration of Cross-Source Data. Direct 3D–3D registration
methods are mostly unable to register cross-source point clouds because
common features of both modalities are hard to find due to different
cross-source characteristics.

To register highly dense cross-source point clouds, Mellado et al. [189]
combine Random Sample Consensus (RANSAC) [68] and downsampling.
However, it remains unclear if their approach can register less dense point
clouds. The registration of 3D point clouds with strong cross-source
characteristics requires transformative registration methods to achieve
a sufficiently similar representation. Jian and Vemuri [136] transform
3D clouds to Gaussian Mixture models, which implies the minimization
of a statistical discrepancy measure. Deng et al. [48] suggest mapping
3D point clouds into a shape representation. The Schrödinger distance
transform minimizes the geodesic distance of the clouds described on
the unit Hilbert sphere.

CSGM [126] registers cross-source point clouds with a combination of
local details and global structure. Over-segmentation with VCCS super-
voxels extracts global characteristics according to Papon et al. [209]. The
voxel centers form the nodes of the adjacency graph that represents the
global cloud structures. Local details are captured in ESF640 descriptors.
The registration problem is solved by factorized graph matching [314].
The combination of local and global information increases the robustness
in cross-source registration similar to [54]. Finally, ICP refines the graph
matching results and extracts the rigid six DoF transformation. CSGM
is applied to register different types of structured point clouds, such
as multi-view stereo clouds from a KinectFusion camera to synthetic
clouds [126]. 3D clouds from single view stereo, point clouds from un-
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structured environments, or clouds with outliers, artifacts, and notably
different densities were not evaluated.

Park et al. [210] propose a CNN architecture to calibrate and fuse
3D point clouds from 3D LiDAR and stereo image depth reconstruction.
Their architecture consists of a calibration and a depth fusion network
with the calibration network projecting LiDAR clouds onto 2D dispar-
ity maps and registering them to the stereo image disparity map. The
depth fusion network fuses both disparity images on the basis of the
extrinsic calibration and generates high-precision disparity maps. Both
networks are trained on the KITTI dataset [83] with pseudo ground truth
labels [210]. An experimental evaluation of the proposed architecture
is conducted for different, structured scenes and across different sen-
sor settings. However, the projection of both 3D clouds into 2D space
introduces information loss.

Haskins et al. [109] present a method for the 3D–3D registration of
medical cross-source data that combines a deep similarity metric with
a composite optimization strategy. The 3D data from ultrasound and
magnetic resonance constitutes the input into a volumetric CNN. The
two imaging modalities present a notable difference in their appearance
similar to cross-source 3D data from LiDAR sensors and stereo image
disparity estimation. The composite optimization determines a suitable
initialization with differential evolution that subsequently initializes the
Newton-based Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization
of the similarity metric. The BFGS optimization provides an iterative so-
lution for the unconstrained optimization problem. Linear interpolation
is used to compare the resulting two pixel sets on the basis of the learned
similarity metric. The authors [109] demonstrate that their method out-
performs classic MI and state-of-the-art, feature-based methods on the
basis of a target registration error that measures the geometric distance
of manually selected points.

2.3.4 HDR Fusion, RGB–NIR Fusion
Mertens et al. [192] present the implicit Mertens Exposure Fusion (MEF)
method to fuse multiple exposure sequences of the same image into one
HDR image. The implicit fusion in 8-bit low dynamic range facilitates a
simple acquisition pipeline without the need to integrate the camera cal-
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ibration, compute a camera response function, or tone-mapping. Simple
quality measures are used to generate the scalar-valued weight map for
blending the input images: saturation, contrast, and well-exposedness.
Furthermore, Li and Lei [166] compare multi-exposure fusion results
using the SSIM score and state that CNN features can improve the quality
of fused images compared to most classic approaches, but they achieved
a lower SSIM score than MEF.

The fusion of multi-spectral image data, e.g., RGB and NIR images, is
typically conducted with PCA, Wavelet, or Curvelet transformation or
via a transformation of the color space. PCA does not fuse information
from different images, but it identifies and preserves only those channels
that exhibit the highest variance, as discussed in Section 3.4. Sappa et
al. [237] state that Wavelet transformation enables the time-frequency-
representation of signals with a frequency-dependent resolution and
compare different image fusion methods with the discrete wavelet trans-
form in NIR and Long Wave Infra-Red. Curvelet transformation is the
higher dimensional generalization of the Wavelet transform [179]. Due to
this generalization, images captured from different angles can be fused.
However, this generalization is not required with prism camera systems
providing an RGB and an NIR image through the same optic. RGB and
NIR images can also be fused in the Hue, Saturation, Value (HSV) color
space. The RGB image is transformed into HSV, and the NIR image is
exchangedwith the Value image for images from the same optic [70]. Con-
trasting the RGB–NIR fusion approaches discussed, this thesis proposes
MEF for RGB–NIR fusion, as detailed in Section 4.4.

2.4 Mid-Level Perception

2.4.1 Disparity Estimation from Stereo Images
Wheatstone [293] presents the first known investigation of human binocu-
lar vision and proposes the first detailed plans to view image pairs with a
stereoscope in apparent 3D. The first instruments to perform correlation
on digital images were discussed in the 1960s [279]. The development of
Charge Coupled Devices (CCD) [24] and Complementary Metal Oxide
Semiconductor (CMOS) imaging sensors [73] mainly led to the stereo im-
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agery becoming a central focus in computer vision research. Stereo image
disparity estimation is still relevant despite many years of research [118,
177, 302]. Repetitive patterns, occluded areas, as well as uniform image
parts are not solved yet. Numerous local [139, 266], semi-global [81, 118],
global [23, 155, 223], and seed-growing [34, 35] approaches to the stereo
correspondence problem exist.

Classic Disparity Estimation from Stereo Images. Pears et al. [214] di-
vide classic stereo image disparity estimation algorithms into correlation-
based and feature-based stereo matching methods. Correlation-based
methods produce dense disparity maps, while feature-based methods
match detected keypoints and yield sparse point clouds of the keypoints.
Local methods consider small image areas, so-called patches, whereas
global methods consider the whole image during optimization. Local,
correlation-based stereo matching can roughly be divided into four steps:
matching cost computation, cost aggregation, optimization, and disparity
refinement. They provide fast results with the drawback of less accu-
rate disparity maps [139]. Global approaches like graph cuts [23, 155] or
sub-pixel accuracy methods provide very accurate results but the high
computation effort makes them inappropriate for real-time systems.

Semi-globalmatching (SGM) [118, 119] ranges among themost popular,
classic stereo image disparity estimation methods. It facilitates an accu-
rate and yet efficient localmatching by comparing themutual information
(MI) between two images and integrating it into a global smoothness
constraint. Kallwies et al. [146] combine horizontal and vertical dispar-
ity images for enhanced depth estimation. Kallwies et al. [147] further
present a stereo processing approach that fuses the SGM-estimated hori-
zontal and vertical costs prior to the initial disparity selection to process
image triplets. The initial disparity image is generated by choosing the
disparity value corresponding to the lowest costs (winner-takes-it-all).
The early fusion approach in [147] demonstrates that SGM on image
triplets outperforms individual horizontal and vertical stereo image dis-
parity estimation as well as the late disparity fusion approach of [146].

The local, correlation-based CCRADAR approach [139] compares the
similarity of pixel intensities from the image pair for standard RGB im-
ages to calculate an initial disparity value for each pixel. Different cost
functions are defined and evaluated: Modified Color Census Transform
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(MCCT), the Sum of Absolute Differences of the intensity values (SAD),
as well as the Sum of Gradient Differences (SGD) along the horizontal
(SGDx) and vertical image axis (SGDy). The cost values of each pixel are
combined with regard to the selected weight of the cost functions. Aggre-
gation of the cost values is performed with Guided Filtering (GF) [112],
and initial disparity images are generated with a winner-takes-it-all strat-
egy. Post-processing includes a left-right consistency check (LRC), cross-
region-based voting, and detection of remaining artifacts and refinement.
CCRADAR ranked 9 of 167 in the Middlebury Stereo Evaluation for RGB
images at the time of writing this thesis5.

In contrast to RGB images, additional spectral channels can provide
additional information for correlation-based similarity measures. Hyper-
spectral images are commonly used in photometric stereo imaging [203,
205], remote sensing [79, 169], food analysis [56, 264], or victim detection
with rescue robots [271]. Local approaches, such as CCRADAR [139],
facilitate a separate processing of each color channel for multi- or hyper-
spectral images and are suitable for parallelization on General Purpose
Computation on Graphics Processing Units (GPGPU). This can provide
an enhanced stereo image disparity estimation in unstructured environ-
ments, as discussed in Section 5.1.1.

Disparity Estimation from Stereo Images with CNNs. Stereo image
disparity estimation with CNNs typically represents the stereo corre-
spondence problem as a classification problem [162, 307, 309], and cost
computation and aggregation are learned by CNNs [139, 266, 310]. Com-
mon CNN architectures consist of two Siamese networks [309, 310].

Žbontar and LeCun [309, 310] propose the Matching Cost-CNN (MC-
CNN) to predict the matching accuracy of two image patches. Here,
the learned similarity measure between two image patches is used to
initialize the matching costs and to deduce initial disparity estimates.
These initial disparity estimates can be post-processed by classic meth-
ods, such as cross-based cost aggregation, LRC, or a median filter [309].
The Siamese networks are trained in a supervisedmanner with stochastic
gradient descent on mini batches. The initial MC-CNN approach [309]

5 Middlebury Stereo Evaluation, v2: https://vision.middlebury.edu/stereo/eval/, access
on 09.12.2021.
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achieved an error rate of 2.61% on the KITTI 2012 dataset that ranged
among the top methods at the time of evaluation in August 2014 [310].
Furthermore, Žbontar and LeCun [310] proposed two architectures, a
fast and an accurate architecture whose major difference lies in the com-
bination of their convolutional layers’ outputs. Here, the fast architecture
compares the similarity score by extracting a vector from each of the two
input patches and computes the cosine similarity by normalization and a
dot product. Both the accurate and fast architecturewere evaluated on the
KITTI 2012, KITTI 2015, and the Middlebury datasets and ranged among
the most successful methods in all benchmarks in October 2015 [309].
Currently, MC-CNN (fast) ranks 121/211 in KITTI6 and 32/162 in Mid-
dlebury7. Training of both MC-CNN architectures was conducted on
the synthetic Middlebury dataset, and the test of MC-CNN on the real-
world KITTI 2012 dataset [83] showed promising results that indicate a
favorable domain transfer performance, especially for fast MC-CNN.

Luo et al. [177] extend MC-CNN [309, 310] and treat the correspon-
dence problem as a multi-class classification problem that represents all
possible disparity values as classes. The Siamese networks with shared
parameters consist of four layers with spatial convolutions with small
filters, such as 5 × 5 or 3 × 3, and a rectified linear unit. The last layer of
the Siamese networks only consists of the spatial convolution and spa-
tial batch normalization to preserve the information in negative values.
The receptive field is 9 × 9 if four layers with 3 × 3 filters are used [177].
Finally, a product layer with a dot-product fuses the processing results
of the two Siamese networks receiving patches from the left and right
image [177]. The approach of Luo et al. [177] notably outperforms both
fast and accurate MC-CNN [310] on KITTI 2015 in terms of runtime and
all error metrics on the validation set. The important findings include the
observation that subpixel enhancement and refinement do not always
improve the resulting disparity map [177]. The authors also state that
simple cost aggregation, as in block matching [266] or CCRADAR [139],
improves local smoothness and benefit the results.

6 Stereo Evaluation 2012: http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?b
enchmark=stereo, access on 28.10.2021.

7 https://vision.middlebury.edu/stereo/eval3/, access on 28.10.2021.
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Other disparity estimation approaches with CNNs are presented with
the DispNet architecture [187], and the cascade residual learning ap-
proach of Pang et al. [208] inside a two-stage CNN. The first stage of [208]
evolves from DispNet [187], the second stage explicitly rectifies the dis-
parity images initialized in the first stage and generates residuals across
multiple scales [208]. Similar to MC-CNN, the similarity between image
patches was learned in a supervised manner on KITTI 2015. Evaluation
was conducted on FlyingThings3D [187], Middlebury 2014 [243], and
KITTI 2015 [191]. The method of Pang et al. [208] ranked 173/3078, while
accurate MC-CNN ranked 214/3079. However, the authors [310] show
that MC-CNN yields less disparity estimation errors than cascade resid-
ual learning [208] on test images with a higher number of unstructured
elements.

Combined solutions ofmid-level stereo image disparity estimation and
high-level semantic segmentation within one network are, for instance,
presented in Bleyer et al. [19–21], Hane et al. [106], and Yamaguchi et
al. [301]. However, their integration in themodular perception–validation
pipeline proposed would not allow a flexible combination of the percep-
tion methods proposed in this thesis according to demand.

For post-processing, Drouyer et al. [52] propose the densification of
sparse disparity maps and demonstrate it on MC-CNN results [309].
Here, the captured scene is assumed as a collection of different objects,
and the surface of each object is assumed as a composition of multiple
simple shapes that can be modeled as planes using RANSAC. The de-
tected planes are filled with points to generate a dense point cloud. The
approach of Drouyer et al. [52] ranked number 12 in version 3 of the
Middlebury Benchmark in January 202210. However, scenes in unstruc-
tured environments are not composed of objects with partially smooth
surfaces, and the top-down segmented regression segmentation of [52]
is hence not applicable.

8 Stereo Evaluation 2015: http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?b
enchmark=stereo, access on 17.01.2022.

9 Stereo Evaluation 2015, access on 17.01.2022.
10 Middlebury Stereo Evaluation - Version 3: https://vision.middlebury.edu/stereo/eva

l3/, access on 26.01.2022.
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2.4.2 Confidence Measures for Disparity Maps
Several model-specific approaches were published to assess the con-
fidence of stereo image disparity estimation methods within the last
years [110, 111, 124, 218, 281]. Here, most model-specific stereo confi-
dence measures evaluate the cost volume processed by the stereo image
disparity estimation algorithm to determine the most likely disparity
value [218]. For instance, the peak ratiomeasure [124] is a popular, model-
specific confidence measure for single disparity estimates and measures
the distance between the minimum cost value and the second-lowest cost
value to derive a reliability measure: the higher the distance, the higher
the reliability of the estimated disparity. Another pixel-wise confidence
assessment of disparity estimates is proposed by Veld et al. [281] and
demonstrated on MC-CNN [309]: a pixel-wise analysis of the cost func-
tions especially targets the confidence assessment of disparity estimates
for difficult image areas, such as periodic structures, and eliminates
wrongly estimated disparities. The proposed confidence measure as-
sumes that a truly matching disparity value does not differ from the
given ground truth more than one pixel, and that the minimal match-
ing cost for each pixel is clearly identifiable by a single, distinguishable
minimum of the cost function [281], similar to the peak ratio measure.

Other confidence metrics target a simple and fast calculation on small,
low-cost devices, such as field programmable gate arrays (FPGA). They
utilize a decision tree in combination with an additional disparity refine-
ment, as proposed in Motten and Claesen [199]. The authors of [199] use
texture and depth differences between the center pixel and neighboring
pixels of the same color as confidence metrics to train a binary decision
tree, and each internal node represents a decision on a feature. Texture is
measured using a fixed window of intensity values around the examined
center pixel within a pixel window similar to the range-filtering method
discussed in Section 4.1.2.

Seki et al. [251] analyze discriminate features to predict the reliability
of correspondence estimates and a confidence fusion method for dense
disparity estimations. A classifier with two input features determines the
model-specific confidence estimate. Neighboring pixels with consistent
disparity values – and hence a small gradient of the disparity values –
are more likely to be a correct estimate. Hence, the approach of Seki et
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al. [251] assigns high confidence to a clearly distinguishable minimum
of the cost function similar to [124, 281].

Häusler et al. [110, 111] analyze model-specific disparity estimation
confidence measures on synthetic and real-world disparity estimation
results to predict potentially erroneous areas in disparity maps. They
evaluate curvature, perturbation, peak ratio, and LRC, and show that the
performance of confidence measures can vary notably between synthetic
and real-world data. The minimum of accumulated costs, disparity vari-
ance, maximum likelihoodmetric, and shape of the cost function provide
decent results for cost function dependent measures. LRC, nowadays
a common post-processing method for disparity maps, yields fast and
satisfying results evaluating the cost-independent measures, according
to Häusler et al. [110, 111], andwas hence selected for the post-processing
of both proposed stereo image disparity estimation algorithms in this
thesis (see Section 5.1).

2.4.3 Sensor Data and Information Fusion
Multiple sensors with different measuring modalities provide a wider
breadth of information for the environment perception of autonomous
systems. According to Heizmann et al. [115], information fusion tries to
determine the best combination of available sensor systems and process-
ing methods for optimal exploitation of sensor resources and processing
capabilities. Consequently, information fusion is also referred to as (sen-
sor) data fusion in this thesis as it combines substantial information from
multiple sensors, and creates a composite 2D image or 3D point cloud
with a higher information content and a more useful representation for
perception tasks [259]. Information fusion can be conducted on different
abstraction layers from raw sensor data up to the fusion of processed
sensor data with various abstraction layers and a semantic format, e.g.,
the fusion of object detection results from two different sensors [58].

Many works pursue object-oriented approaches [87, 88, 115] that target
the results of the environment interpretationwithin high-level perception.
Gheta et al. [88] propose an object-oriented information architecture that
combines prior knowledge and real-world sensory information within a
central object-oriented environment model. Each information is charac-
terized by its uncertainty in a Degree-of-Belief (DoB) distribution [87, 88,

34



2.4 Mid-Level Perception

115]. Heizmann et al. [115] propose a method to determine an optimal
selection of the input sensor data for environment perception and an
object-oriented environment model. Different sensor systems and data
processing methods for information extraction from the environment are
summarized within the concept of information channels, and the authors
identify the optimal combination of all available information channels as
the primary challenge in information retrieval. For the optimal input data
selection, Heizmann et al. [115] assume a sufficient number of sensors
and processing methods, and deduce their optimal combination with
Bayesian statistics and an objective DoB interpretation.

As proposed in Dürr et al. [53], iterative fusion approaches combine
semantic segmentation and sensor data fusion. High-level perception
results, such as a semantic segmentation of camera and LiDAR data, are
required for the fusion process. This inhibits a flexible combination of
different low-level, mid-level, and high-level methods required for the
perception of autonomous off-road vehicles.

To conclude, perception for unstructured environments requires the
fusion of raw sensor data to prevent information loss: 2D pixels with in-
tensity measures, 3D measurements with optional intensity information,
as well as 3D point clouds with optional confidence information. Particu-
larly 3D–3D fusion of multiple 3D point clouds benefits from confidence
assessment and filtering of inaccurate 3D information, especially when
stereo camera point clouds are involved. Consequently, object-oriented
and iterative fusion approaches are not utilized for the sensor data from
unstructured environments analyzed in this thesis. Here, Bayesian net-
works provide a well-established methodology to consider probabilistic
and, hence, confidence information from different hierarchical levels
in fusion processes. The Bayesian image fusion approach proposed by
Beyerer et al. [17] is an efficient option for the fusion of real-world sensor
data. It requires one single measure to describe a DoB in contrast to
other methodologies, such as Fuzzy theory [76] or the Dempster–Shafer
theory [152]. Briefly summarized, Bayesian statistics exploit a special
interpretation of the probability theory axioms of Kolmogorov [167].
Contrasting classical statistics, a probability can be interpreted as DoB
permitting the integration of uncertainty and confidence measures. The
authors [17] state that the Bayesian approach performs notably better
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than other methods for fusing real-world image data, and it was hence
selected for the confidence-based 3D–3D fusion in this thesis (see Sec-
tion 4.1).

2.5 High-Level Perception
Classification assigns one class to a 2D image or a 3D point cloud, while
object detection can recognize multiple objects with bounding boxes.
The semantic segmentation of 2D images and 3D point clouds yields
pixel-wise and point-wise classifications [93].

Naujoks et al. [204] suggest the combination of ML and classic, model-
based methods for the semantic detection of landmarks in autonomous
off-road driving. RGB images, light detection, and LiDAR clouds are
input to the proposed method. It outperforms state-of-the-art ML classi-
fication methods and highlights the relevance of classic, model-based
methods to complement ML methods. This also demonstrates that es-
pecially domains with limited data availability, as the perception of un-
structured environments, can benefit from this combination to overcome
the need for substantial amounts of data [204].

2.5.1 Semantic Segmentation
Navigation and especially manipulation in unstructured environments
require an accurate, pixel-wise or point-wise semantic segmentation and
bounding box approaches are unsuitable. The central challenge in seman-
tic segmentation with CNNs is to interpret global information while local
information has to be preserved. This requires deep feature architectures
to map local-to-global, such as in non-linear pyramid structures. Since
2010, classic methods are mostly outperformed by ML approaches and
pixel-to-pixel, end-to-end trained CNNs exceeded the state-of-the-art
in semantic image segmentation on the benchmark datasets PASCAL
VOC [62] and NYUDv2 [257] according to Long et al. [174]. Hybrid meth-
ods for semantic segmentation apply a classic feature extractor such as
SpinImages [140] together with an ML classifier such as support vector
machines [1]. Typically, semantic segmentation starts with the extraction
of features that are summarized by the downsampling character of convo-
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lutional layers. The subsequent upsampling assigns a class label to every
single pixel or point. Features for 2D image segmentation are extracted in
2D, whereas the feature extraction in 3D segmentation can be conducted
in 2D or 3D space. The feature extraction and interpretation with CNNs
in 3D space require the application of 3D convolutions. A discretization
using a voxel structure as also applied in 3D–3D registration [109] can
help to cope with the huge amount of 3D point cloud data.

PointNet [221] proposes a classification method for 3D point clouds.
Possible other 3D data representations include a spatial subdivision dif-
fering from cubic voxelization, such as OctNet [228] or VoxSegNet [289].
Rendered 2D image views perform feature extraction in 2D, such as Snap-
Net [22] or SqueezeSeg with spherical projections [298–300]. Superpoint
Graph [159] or splats [261] are other possible representations to segment
3D point clouds with increased efficiency. Generally, 3D feature extrac-
tion with 3D convolutions requires a notably higher processing time than
feature extraction and interpretation using 2D convolutions, as detailed
in Section C.1.2. This is confirmed by Milioto et al. [196] wherein the
authors state that the 2D segmentation of spherical projections is notably
less computationally expensive than class predictions in 3D space. Hence,
segmentation in 3D space by now hardly achieves the real-time capability
that is required for autonomous off-road vehicles and this thesis focuses
on the segmentation of spherical projections in 2D space.

The SqueezeSeg [298] and SqueezeSegV2 [299] architectures estimate
class labels during the semantic segmentation process on the basis of
a 2D spherical projection. SqueezeSeg evolves from the SqueezeNet ar-
chitecture [129] and the authors [298] combine real-world and synthetic
data from a LiDAR simulator included in Grand Theft Auto V, a video
game, to increase the amount of available training data.

RangeNet++ [196] is inspired by SqueezeSeg and achieved a notably
better performance in terms of the Intersection over Union (IoU) metric
according to Equation 6.3. RangeNet++ designates the basic network
architecture using a spherical 2D projection according to [196] to trans-
form 3D image data into 2D space. In contrast to other segmentation
approaches, RangeNet++ was specifically designed to work with arbi-
trary CNN backbones for the segmentation of 2D range images. Behley et
al. [11] andMilioto et al. [196] evaluate state-of-the-art segmentation archi-
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tectures on SemanticKITTI [11], such as PointNet++, SPGraph, Squeeze-
Seg [298], SqueezeSegV2 [299], and the RangeNet++ architectures Dark-
Net21Seg and DarkNet53Seg [196] with DarkNet backbones [65, 225].
DarkNet53Seg yielded an IoU of 49.9% for the 19 static classes on the
test sequences 11 to 21 of SemanticKITTI [11], while SqueezeSeg only
achieved an IoU of 29.5 % for the test sequences. Behley et al. [11] assume
that the low segmentation performance of SqueezeSeg is caused by the
fact that the size and complexity of SemanticKITTI cannot be mapped
properly with the number of network parameters in SqueezeSeg. The
DarkNet architectures permit a notably higher number of parameters,
and the results in [11] substantiate this hypothesis. The authors [11] fur-
ther show that the sparsity of LiDAR clouds becomes challenging for
large distances as the IoU of DarkNet53Seg reduced to less than 25%
in 50m distance to the sensor. Furthermore, Milioto et al. [196] evalu-
ate three different horizontal pixel resolutions of 2D range images (512,
1024, and 2048) and show that the most accurate segmentation results on
SemanticKITTIwere achievedwithDarkNet53Seg on a 2048×64 spherical
projection with kd-tree Nearest Neighbor Search (kNN) post-processing.

Dürr et al. [53] propose an iterative ML approach for the semantic
segmentation of 3D LiDAR clouds where a range view representation
of 3D clouds is used, similar to Milioto et al. [196]. Camera features
are additionally integrated iteratively to increase the robustness and
accuracy of the semantic segmentation method. Features are extracted
from camera and LiDAR data with a fusion module that transforms
the resulting feature maps into a common space. Fusion is conducted
iteratively by applying the fusion module for LiDAR and cameras feature
maps on different scales in 2D space. Here, semantic segmentation of the
2D camera images with ResNet50 building blocks yielded better results
than the deep layer aggregation technique [303]. The approach of Dürr et
al. [53] based on camera images and LiDAR point clouds outperformed
other state-of-the-art methods on SemanticKITTI. However, a flexible
combination of different low-level, mid-level, and high-level methods
as required within the perception pipeline proposed in this thesis is not
possible with iterative fusion approaches.
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2.5.2 Domain Transfer in 3D Segmentation
Domain transfer and domain adaption aim to transfer CNN architectures
trained on a specific domain in supervisedmanner to other domains [122,
133, 160], such as different types of LiDAR sensors or application environ-
ments. Their central motivation is to circumvent the generation of labeled
training data in a new target domain. Domain adaption includes CNN
retraining, while domain transfer designates the transfer of a neural net-
work architecture to another domain without additional data or retrain-
ing. Adversarial approaches utilize domain-invariant representations.
However, adversarial approaches are difficult in terms of transparency
and debugging and tend to fail for pixel-level domain shifts, according to
Hoffman et al. [122]. Some works rely on generative adversarial networks
(GAN) or simulation to adapt the labeled images or point clouds to the
target domain [122, 163].

Fernando et al. [67] deduce a mapping function for domain adaption
that aligns source and target domain. Here, the eigenvectors of source
and target domain are estimated and represent both domains in sub-
spaces. Jaritz et al. [133] propose amethod for unsupervised, cross-modal
domain adaption for domain shifts such as day-to-night or dataset-to-
dataset and demonstrate it on SemanticKITTI [11], nuScenes [29], and the
Audi Autonomous Driving Dataset (A2D2) [86]. In contrast to most other
works on unsupervised domain adaption, Jaritz et al. [133] aim at the do-
main shift of multimodal datasets and require 2D images and 3D images
for semantic 3D segmentation. The proposed architecture combines seg-
mentation loss on the source domain and cross-modal loss on the source
and target domain, and the two modalities – 2D images and 3D point
clouds – learn from each other by mutual mimicking. Langer et al. [160]
propose a domain adaption approach for semantic 3D segmentation
CNNs onto different LiDAR sensors with different FoV and resolution.
They aggregate 3D point cloud data from the source domain, a Velodyne
HDL-64E, with 3D SLAM, and a dense 3D model extracts semi-synthetic
data to retrain the model for the target domain. Geodesic correlation
alignment [299] with cross-entropy loss for the source domain and with
geodesic loss for source and target domain is proposed to minimize the
domain shift. However, domain adaption requires a retraining for each
notable domain change.
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A good domain transfer performance of segmentation architectures
can overcome the need for an additional generation of training data
in the new domain by capturing and labeling new data or generating
synthetic data, as discussed in [160]. Position-invariant features for the
semantic segmentation of the spherical projection presents one possibil-
ity to increase the domain invariance of CNNs in semantic segmentation:
Burkhardt et al. [28] demonstrate the existence and extraction of 2D fea-
tures that allow a position-invariant description of planar contours and
grayscale images to facilitate a position-invariant 2D pattern recognition,
while Schulz-Mirbach [248] discusses the existence of complete invari-
ant features spaces and derives criteria that ensure the existence of this
feature space. Schulz-Mirbach [249] extends the concepts of [28, 248]
and proposes a more generic algorithmic solution to construct invariant
features for certain changes of the input data. The discussed methods
require feature representations that are invariant to integration and rep-
resent joint properties for equivalent patterns, as discussed in [249]. They
are applicable for finite groups and compact topological Lie groups [117]
and imply the possibility of attributing the group with a group average.

2.5.3 Explainable AI
Explainable AI (XAI) tries to assign human-understandable explications
for neural networks’ decisions as this does not become clear from the
algorithms themselves. The explanation of the predictions and decisions
of ML systems can be achieved on three levels: pre-modeling explainabil-
ity, explainable modeling, and post-modeling explainability [9]. The goal
of pre-modeling explainability is to examine and understand data used
to develop models prior to training. It includes exploratory data anal-
ysis, dataset description standardization, dataset summarization, and
explainable feature engineering. So far, most methods for exploratory
data analysis summarize their main characteristics and focus on statistic
parameters within numeric and categorical features [114]. Explainable
modeling aims at developing technically transparent models inherently
understandable for human operators. Post-modeling XAI, or post-hoc ex-
plainability, targets the model-specific or model-agnostic, post-modeling
explanation of predictions from AI systems with an inherent black box
character. Well-proven post-modeling XAI methods include the analysis
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of model predictions via backward propagation and the creation of proxy
models. Model-specific approaches are customized for a specific model,
while model-agnostic approaches are independent of the underlying AI
model. Post-modeling XAI can be subdivided further into visualization,
explanation via simplification, textual explanations, and example-based
explanations [9]11.

Exploratory Dataset Analysis. Exploratory dataset analysis provides
a well-established strategy to determine statistical patterns and corre-
lations inside the assessed data [12]. It exhibits central heuristics and
computational tools as a part of exploratory statistics. Exploratory data
analysis and exploratory statistics look for patterns in the data [84]. They
complement statistical paradigms, such as complex statistical modeling
with Bayesian inference. Often, exploratory data analysis is applied in
the model formulation process in Bayesian inference. Data visualization
reaches beyond the common estimation and testing approaches, as they
are typically conducted in the description standardization and summa-
rization of datasets [272]. Gelman [84] introduces model checking to
compare original data to the data that the analyzed model reproduces
as a combination of exploratory and confirmatory data analysis. Heiler
and Michels [114] combine descriptive and exploratory data analysis
to, inter alia, analyze frequency distribution, measures of position and
dispersion, and the representativeness of samples.

Most research focuses on one target application, such as classifica-
tion [181, 286]: Mani et al. [181] propose an in-depth method to test
the coverage of deep neural network models by examining the dataset
quality with statistical measures. Wang and Liu [286] detect class struc-
ture ambiguities in classification and propose a reorganization strategy
in case of decreasing accuracy. The open-source AI Explainability 360
Toolkit [5]12 presents one of the first toolkits with different explanation
methods, such as data explanation or local and global post-modeling.

11 B. Khaleghi: The How of Explainable AI: Pre-modeling Explainability, https://towardsd
atascience.com/the-how-of-explainable-ai-pre-modelling-explainability-699150495fe4,
access on 25.01.2022.

12 IBM Research Trusted AI: AI Explainability 360, http://aix360.mybluemix.net/, access
on 17.01.2022.
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Prototype Methods. Prototype methods such as MMD-critic [149] and
ProtoDash [101] apply a metric, e.g., the maximum mean discrepancy
metric (MMD) [97], to compare two data distributions X∞ and X∈. In
this thesis, prototype methods are applied to identify prototypes and crit-
icism for the post-modeling explanation of ML methods by determining
a small set of samples for example-based explanations (data distribu-
tion X∈) that optimally represent another, notably larger dataset (X∞).
Gurumoorthy et al. [101] introduce ProtoGreedy, a slow and greedy pro-
totype selection algorithm with an objective function that satisfies a key
property of weak submodularity [46], and ProtoDash, a notably faster
prototype selection algorithm. In contrast to MMD-critic, ProtoDash can
operate with any positive definite kernel and Gurumoorthy et al. [101]
derive approximation guarantees for the fast ProtoDash algorithm using
the proof of weak submodularity. The MMD metric is applied to solve
the two-sample problem according to [98]: it tests if two data distribu-
tions X∞ and X∈ are different by selecting samples from each set and
comparing them with a well-behaved function that yields large values
on the samples taken from X∞ and small values on the points from
X∈, with small being as negative as possible. The test statistic to derive
this well-behaved function and to compare the two values is the MMD
which depends on the class of smooth functions selected to compare two
samples. Here, Gretton et al. [98] evaluated different function classes and
selected the unit balls in the characteristic reproducing kernel Hilbert
spaces [77] as they converge towards zero if the data distributions of
X∞ and X∈ are equal. However, they are also constrained enough for
the empirical MMD estimate to converge to its expectation value for an
increasing sample size and hence proved useful for the MMD metric in
ProtoDash according to [101].

2.6 Application Scenarios
This thesis focuses on scarcely examined and challenging unstructured
environments. The combination of LiDAR and camera systems represents
the state-of-the-art visual perception system for autonomous off-road
vehicles in these environments. Hence, the proposed methods are pri-
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marily demonstrated in the perception of unstructured environments
with regard to their application on autonomous off-road vehicles.

2.6.1 AI for Defense
The Fraunhofer IOSB chairs the Fraunhofer Group for Defense and Secu-
rity (Fraunhofer VVS). Fraunhofer VVS proposes seven Grand Defense-
Technological Challenges for the post-2020 defense research, starting
with AI and Autonomy that is “expected to become crucial military force
enablers in the mid-2020s”13. The major impact of ML in defense applica-
tions is seen in equipping defense systems with autonomous navigation
capabilities. Hence, the perception methods proposed in this thesis can
target the dwindling soldier numbers and allows humans to remain
outside of dangerous environments.

2.6.2 Application Environments
Kolski et al. [156] describe structured environments as “depending en-
tirely on such structure being present in their surroundings” [156, p. 1].
Structured environments contain controlled, clearly separable topolog-
ical objects and many smooth surfaces. Contrasting this, unstructured
environments “ignore any structure that exists” [156, p.1]. The DARPA
Urban Challenge [27] characterizes unstructured environments as “free-
navigation zones” where no restrictions for the planned path are given
except obstacle avoidance. Touati et al. [270] separate structured from
hostile environments, which are highly susceptible to system failures
and restrict the possibility of human intervention.

2.6.3 Robotics, Autonomous Systems, and Planning
The work of Thrun et al. [268] on probabilistic robotics undoubtedly
ranges among themost popular works in robotics research. Sensormodel-
ing for robotic applications according to [268] is discussed in Section 2.3.1.

13 Fraunhofer VVS: Grand defense-technological challenges for Europe post-2020, http:
//publica.fraunhofer.de/documents/N-521471.html, access on 03.12.2021.
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Furthermore, state estimation, robot motion, localization and mapping,
as well as decision processes are detailed in [268].

Different types of information architectures are possible in perception.
The object-oriented information architecture for perception proposed
in [88] is laid out for autonomous system applications and generates a
world model similar to the localization and mapping element of the algo-
rithm toolbox (ATB) [60]. Differing from the ATB system architecture [60]
and the fusion methods for raw sensor data discussed in Section 2.4.3,
Gheta et al. [88] propose an object-oriented high-level modeling of the en-
vironment. However, this is rather unsuitable for workspace monitoring
in unstructured environments requiring a point-wise 3D reconstruction
of the environment [60].

Forkel et al. [71] propose a probabilistic terrain estimation approach
and demonstrate that a clear separation of the passable terrain and ob-
stacles optimize autonomous driving in unstructured off-road environ-
ments. 3D point clouds from a Velodyne Alpha Prime LiDAR with 128
diodes, a horizontal FoV of 360°, a vertical FoV of 40°, and a semantic
segmentation with two classes (terrain and obstacles) constitute the input
data to the proposed method. The authors [71] state that temporal accu-
mulation and spatial smoothing with a maximum posterior estimation
of the terrain surface facilitate a superior separation into passable terrain
and obstacles, and demonstrate that an additional obstacle mapping on
the basis of an occupancy grid leads to notably increased performance
in terrain estimation.

Typical requirements for the driving behavior of autonomous vehicles
in structured, urban environments include stopping by pedestrian cross-
ings and lane keeping [173]. Planning is often split into longitudinal and
lateral planning. However, this cannot be transferred into planning for
off-road driving in unstructured environments as it focuses on passable
terrain, obstacle avoidance, and deviations being as small as possible
from the shortest path.

Meyer and Filliat [194] divide planning in discretized space into dis-
cretization of the search space, path and universal plan computation, and
the final learning of the universal plan. Discretization can be integrated
into the mapping step, and an already discretized map may constitute
the input for planning [215]. Here, a metric map is well suited for the
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following search-based planning step [194, 215]. Zafar andMohanta [306]
state that planning with potential fields presents the possible risk of local
minima in gradient descent, and cost functions in search-based planning
can achieve globally optimal solutions. Petereit [215] demonstrates that
search-based planning is more favorable in unstructured environments.
Benchmark approaches for path planning compare the time required
for plan computation, the resulting path length, the smoothness of the
plans, and the clearance and success rate of planning. Cohen et al. [41]
show a comparison of different motion planning methods in indoor
environments on the basis of these criteria.

Multifunctional utility logistics equipment transport (MULE) or a
humandriver that leads a group ofmultiple vehicles (Convoying) provide
the opportunity to send fewer humans into dangerous zones. Here, the
avoidance of static obstacles and dynamic objects as well as the passing
of difficult passages, such as sharp turns and roadblocks, is required. In
contrast to classic waypoint navigation that typically requires a human
operator to specify the waypoints, MULE and Convoying avoid this
manual intervention and present the two main application scenarios in
autonomous transport within the scope of the European Land Robot
Trial (ELROB)14.

2.6.4 Datasets
Perception for unstructured environment struggles with the limited avail-
ability of data for test and verification that is needed for both classic and
ML approaches. Datasets for autonomous driving in structured envi-
ronments and in agriculture can provide a base for the pre-training of
neural networks and the testing of classic approaches. Nevertheless, data
from the targeted unstructured environments is needed and in partic-
ular deep ANNs require huge data volumes to reach their outstanding
performance.

Many datasets exist for structured environments, e.g., in cities or on
motorways. Geiger et al. [83] present the KITTI 2012 dataset with color

14 ELROB 2018: Transport–MULE, Transport–Convoying: https://www.elrob.org/files/el
rob2018/Transport_Mule_V3.pdf, https://www.elrob.org/files/elrob2018/Transpor
t_Convoy_V3.pdf, access on 06.12.2021.
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and grayscale stereo images, Velodyne HDL-64E 3D LiDAR point clouds,
a GPS/IMU inertial navigation system, and extrinsic sensor calibration
information. The baseline for the grayscale and RGB stereo camera sys-
tems is 0.54m, and disparity images with 1241 × 376 px and 90° × 35°
opening are provided. TheHDL-64E yields an accurate 3D reconstruction
that also serves as ground truth for disparity images and is annotated
with 3D bounding box tracklets for object detection. Generally, the KITTI
Benchmark demonstrated that state-of-the-art algorithms that perform
very well in controlled laboratory conditions often yield below-average
results in real-world scenarios [83]. KITTI 2015 [191] extended KITTI 2012
with 400 additional scenes and focuses on the scene flow estimation in
street scenes. The SemanticKITTI dataset [11] provides point-wise labels
for the 3D LiDAR clouds of the KITTI Vision Odometry Benchmark [82]
that segment spherical 2D projections of 3D clouds, as discussed in Sec-
tion 6.1. It contains 2D label maps with 28 classes to train and evaluate
CNNs for the semantic segmentation of 3D point clouds, where 19 classes
are static and well-defined.

Cityscapes [43] contains video data, stereo images, GPS, ego-motion
odometry data, and temperature from 50 cities. Different seasons, light-
ing conditions, and daytimes are covered. Eight semantic classes are
provided for the 2D images on pixel- and instance-level. Berkeley Deep-
Drive [305] comprises video sequences from more than 1100 driving
hours and includes inertial measurement data, GPS, and timestamps.
Pixel- and instance-level annotations, drivable area information, and
2D bounding boxes are available for typical road objects, such as buses or
cars. Like Cityscapes [43], DeepDrive neither includes 3D point clouds
from LiDAR nor ground truth data for stereo image disparity estimation.
Geyer et al. [86] present the A2D2 dataset with 2D images and 3D point
clouds from 360° LiDAR sensors captured in structured, urban environ-
ments. Annotations include 3D bounding boxes and labels for semantic
and instance segmentation. The nuScenes dataset [29] also provides train-
ing and test data for urban driving scenarios with 3D bounding box labels
for 23 object classes. TheWaymoOpen Dataset [263] contains 1150 scenes
with synchronized 3D LiDAR and camera data from urban and suburban
environments. 2D bounding box annotations are provided for the images
and the LiDAR points clouds are annotated with 3D bounding boxes.
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The geospatial H3D dataset by Kölle et al. [154] provides perception
data from aerial laser scanning and textured 3D meshes from multi-view
stereo image disparity estimation captured with unmanned aerial vehi-
cles. However, the notably different bird’s eye perspective of the captured
data compared to the common perspective and FoV in the perception
for off-road vehicles impedes its application here.

In contrast to structured environments, datasets captured in unstruc-
tured environments are very rare. Metzger et al. [193] introduce the
TAS500 dataset that provides training and test data for the semantic seg-
mentation of 2D images from unstructured environments. Fine-grained
vegetation and terrain class distributions facilitate the training of CNNs
to differentiate drivable surfaces and natural obstacles. The authors [193]
demonstrate that a subdivision can increase the prediction accuracy in
semantic 2D segmentation into fine-grained semantic classes. The Deep-
Scene dataset [278] was captured in forest environments with a small
mobile robotic platform. It provides multi-spectral image data and depth
ground truth from a BumbleBee2 stereo camera subject to the accuracy
limitations discussed in Section 3.8. Pixel-wise ground truth labels are
available for obstacle, void, sky, trail, grass, and vegetation.

The FieldSAFE dataset [157] provides data from LiDAR, multi-spectral
cameras, radar, and localization, and contains data from one agricul-
tural field and annotations in 2D bird’s eye view for obstacle detection in
agriculture. The Sugar Beets 2016 dataset [36] includes a multi-spectral
camera, LiDAR, RGB-D camera, and localization data from agricultural
environments. The FoV of the LiDAR sensor and the cameras does not cor-
respond, and a depth ground truth for stereo image disparity estimation
is available from the RGB-D camera with accuracy limitations, according
to Section 3.8. The SemanticUSL [137] and the RELLIS-3D dataset [138]
were recorded in structured and unstructured off-road environments at
the Texas A&M University with an Ouster OS1-64 LiDAR with a vertical
FoV of 45° on a Clearpath Robotics Warthog platform. SemanticUSL con-
sists of 16578 unlabeled scans and 1200 scans labeled according to the 19
static SemanticKITTI classes, while the class structure of RELLIS-3D and
SemanticKITTI differ. RELLIS-3D contains 3D LiDAR point clouds from
Ouster OS1-64 and Velodyne Ultra Puck 32, 3D point clouds from two
stereo cameras, and RGB images from two cameras.
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The Middlebury datasets [119, 239–241, 243] ranged among the first
synthetic datasets for stereo image disparity estimation with a dense
ground truth. The Middlebury Stereo Evaluation provides a benchmark
on selected synthetic indoor images with favorable textures and close
objects. Mayer et al. [187] propose the Blender-rendered FlyingThings3D,
Monkaa, and Driving datasets with accurate and dense ground truth
to train CNNs in disparity, optical flow, and scene flow estimation. The
authors [187] find that the fine-tuning of DispNet on KITTI 2015 with
small disparity values optimizes the performance on this dataset but
degrades performance on other datasets with a higher disparity range.
It is assumed that training with a small disparity range decreases the
ability to correctly predict large disparity values on other datasets [187].
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This chapter elaborates on the theoretical foundations such as the tar-
geted sensors, data representations, accuracy constraints, and basic data
processing concepts for 2D and 3D data. Unless described otherwise, the
perceived sensor data in this thesis is interpreted as “single-shot” scenes
that are captured at the same time and with a sufficiently accurate sensor
synchronization. Sequences of multiple scenes with course-of-time infor-
mation are not explicitly considered. Exceptions are, e.g., the temporal
consistency analysis of sensor data. Furthermore, the availability of a
sufficiently accurate localization of the off-road vehicle is assumed for
all perception methods where required.

3.1 Sensor Systems and Data Representation
LiDAR sensors yield accurate but sparse 3D point clouds, while camera
images and stereo camera 3D reconstruction provide a dense, colored
representation of the environment with limited geometrical accuracy.

3D data provides geometric, shape, and scale information [99], and
the most primitive representation of 3D data is a point in Euclidean
space [234]. 3D point clouds are the most common representation of
3D data and summarize a large number of 3D data points, while other
options are depth images, meshes, or volumetric grids [99]. The spatial
relations to other points are not naturally represented by their order in
the data structure. In general, point clouds preserve the original 3D infor-
mation without any discretization that mostly comes with information
loss. Consequently, 3D data is represented, saved, and processed in the
form of 3D point clouds in this thesis.

Active sensors systems, such as LiDAR, radar, or ToF cameras, illumi-
nate the environment and are mostly independent to daytime, respec-
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tively artificial light. Distance measures 𝑟 are obtained via the time 𝑡 an
actively emitted signal requires from emittance to reception

𝑟 =
𝑐 ⋅ 𝑡

2
. (3.1)

LiDAR sensors are the most important active perception sensors for off-
road vehicles in unstructured environments, so that all finalists in the
DARPA Urban Challenge used LiDAR sensors as primary sensors for
3D information1 [27]. They provide highly accurate distance measures
due to the controlled emittance of laser pulses and an accurate detec-
tion of the reflected signals. The combination of several beams inside
one LiDAR can retrieve an accurate, sparse 3D reconstruction of the
environment. Radar sensors are often present in autonomous vehicles
in structured environments. However, radar is seldomly used for off-
road vehicles as the little presence of metallic structures in unstructured
environments is not favorable for its measurement principle. Velodyne
LiDAR sensors with 16, 32, 64, or 128 beams, for instance, achieve up to
± 2 cm accuracy between 1m and 100m distance from the respective sen-
sor as well as a minimum angular resolution of 0.1° and 0.4°2. Rotating
3D LiDAR sensors capture non-dense 3D point clouds with a horizontal
FoV of 360° and yield unordered clouds, as they do not correspond to the
matrix structure of images in contrast to ordered, dense stereo camera
clouds. Rotating 3D LiDAR sensors feature different vertical FoVs and
scan patterns due to their number of diodes, while solid-state LiDAR
sensors capture a limited FoV similar to stereo camera systems. How-
ever, they cannot provide a horizontal FoV of 360° with one sensor, and
are currently unable to replace rotating 3D LiDAR sensors. The partic-
ular scan patterns of solid-state LiDAR sensors most probably require
the application of cross-source registration methods for their registra-
tion to rotating LiDAR sensors. Subsequently, the term LiDAR will refer
to rotating 3D LiDAR sensors for clarity. The technical performance of

1 https://velodynelidar.com/blog/hdl-64e-lidar-sensor-retires/, access on 24.11.2021.
2 Velodyne LiDAR: Puck: https://velodynelidar.com/products/puck/, access on

06.12.2021; HDL-64E: https://web.archive.org/web/20210811205736/https://velody
nelidar.com/products/hdl-64e/, access on 06.12.2021.
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3.1 Sensor Systems and Data Representation

LiDAR sensors is defined by different parameters3: detection range, FoV,
scan pattern, immunity to crosstalk, detection rate, multiple returns, and
range precision/accuracy, allowing a first, quantitative estimate of the
global sensor performance without a prior analysis of the captured data.
The detection range is influenced by the internal sensor properties, by
external influences, such as snow or sunlight, and the captured objects.
The immunity to crosstalk can be optimized by synchronizing LiDAR
rotations for multiple LiDAR sensors. The reception of more than one re-
turn is possible due to the active nature of LiDAR sensors. The capability
to receive multiple returns leads to a higher resolution of the 3D point
cloud, and partially obstructed objects can be reconstructed in some
cases. Finally, range precision and accuracy provide a good initial esti-
mate of the measurement quality of a LiDAR sensor similar to the depth
estimation accuracy 𝜀𝑧 in stereo camera systems (see Equation 3.17).

Passive sensors comprise all types of passive cameras such as RGB,
grayscale, multi- and hyperspectral cameras and depend on sufficient
ambient – natural or artificial – light. Camera systems deliver color in-
formation within a pixel-wise, dense representation of the perceived
environment. 2D images contain the respective luminous intensity val-
ues in the cells of an ordered matrix structure, and images with multiple
spectral channels are typically saved with one matrix per channel. Stereo
image disparity estimation yields depth information for each 2D pixel
if the distance of the two optical centers of the stereo camera setup is
known, whereby disparity measures the position offset between the rep-
resentation of a specific 3D point of the surroundings in two different
image planes. Stereo 3D reconstruction yields ordered, dense 3D point
clouds that can also be referred to as 3D images due to their structural
similarity to 2D images. However, their depth estimation accuracy de-
creases quadratically with increasing distance, as discussed in Section 3.8.
Light field imaging captures a 4D representation with two spatial and
two angular coordinates, or the space of non-occluded rays within a
scene [134]. Uhlig et al. [275] interpret light field cameras as camera
arrays and propose surface reconstruction and disparity estimation sim-

3 M. Müller: Understanding LiDAR Parameters and Technical Specifications, https://ww
w.blickfeld.com/blog/understanding-lidar-performance/, access on 25.01.2022.
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ilar to stereo image disparity estimation. Advantages in the approach
of [275] are the possibility of digital post-capture focusing and synthesiz-
ing new viewpoints. Typical applications of light field cameras include
close-range, indoor applications, such as automated optical inspection
or face and gesture recognition. Uhlig et al. [276] state that the calibra-
tion of light field cameras is typically model-dependent, and present a
model-independent calibration approach to overcome this. Nevertheless,
the complex processing of the geometric structure of light fields limits
their application potential for the perception in unstructured, off-road
environments.

Active camera systems are independent of the captured scene’s illu-
mination compared to stereo camera systems [107, 308]. The group of
active camera systems includes cameras for structured illumination, ToF
cameras, and the extension of light field techniques to ToF cameras, as
discussed in [134]. Depth estimates of active cameras are currently less
accurate than 3D measurements of (rotating) LiDAR sensors. Jayasuriya
et al. [134] state that ToF cameras measure the length of the optical path
traveled by amplitude-modulated light. The amplitude modulated signal
is analyzed by various devices, including photogates and photonic mixer
devices, and advantages are a high density of the depth measurements
compared to LiDAR sensors. The operation with a single frequency is dis-
advantageous and often subject to measurement inaccuracies from phase
wrapping ambiguity and multi-path interferences due to scattering or
translucent objects [134]. ToF cameras conduct active measurements in
the NIR spectral range. They are hence subject to measurement errors in
outdoor environments due to theNIR spectrum of daylight. Furthermore,
their comparatively low resolution leads to depth estimation errors close
to the edges due to the mixed pixel effect [218].

The complementary sensor characteristics of active LiDAR sensors and
passive camera systems can detect and intercept failures of individual
sensors or systematic measurement errors in difficult environmental
conditions, such as rain or snowfall. Furthermore, the data fusion of
multiple, complementary sensors can notably improve the measurement
data accuracy.
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3.2 Sensor Poses and Transformations
Sensor calibration determines the relative transformation between two co-
ordinate systems. The extrinsic calibration ofmulti-sensor systems relates
each sensor to the vehicle body frame 𝒷. Themathematical representation
of transformations in this thesis is oriented towards the recommenda-
tions of [292]: a matrix 𝐓 that transforms a point 𝐩𝓈 in the sensor frame 𝓈
to the vehicle body frame 𝒷 is denoted as 𝐓𝒷

𝓈 . The affine transformation
matrix 𝐓 transforms each point 𝐩 from 𝓈 to 𝒷 with

𝐩𝒷 = 𝐓𝒷
𝓈 ⋅ 𝐩𝓈. (3.2)

This thesis only uses right-handed coordinate systems, and sensor cali-
bration consists of rigid transformations to map a vector 𝐱′ into a new
coordinate system that is represented by a combination of rotation 𝐑,
and translation 𝐭 with:

𝐱′ = 𝐑 ⋅ 𝐱 + 𝐭, (3.3)
where 𝐭 is represented as a 3D vector in Euclidean space. The representa-
tion of rotations in Euler angles is error-prone as they are neither unique
nor continuous. Euler angles do not adhere to the constraints of the Eu-
clidean space, and the gimbal lock problem can introduce singularities.
Singularity-free representations of rotations are 3 × 3 rotation matrices 𝐑
or quaternions 𝐪, and only an over-parameterization of the rotation leads
to a singularity-free representation. However, an over-parameterization
leads to the loss of one determinable parameter during the optimization
step. The application of Lie groups provides a well-established strategy
to circumvent the problem of over-parameterization by transferring the
rotations 𝐑 ∈ 𝑆𝑂(3) into a local Euclidean space according to [102]. Lie
groups are smooth manifolds, and each 𝑁-dimensional manifold 𝐌 em-
bedded in ℝ𝑛 with 𝑛 ≤ 𝑁 has an 𝑛-dimensional tangential space for each
point 𝐩 ∈ 𝐌. Hence, each 𝐩 on a 𝐌 has a local Euclidean space [117].
A rigid transformation is a pose 𝐓 ∈ 𝑆𝐸(3) and 𝐓 can be split into a
rotation 𝐑 ∈ 𝑆𝑂(3) and a translation 𝐭:

(
ℝ3×3 𝐭
01×3 1) . (3.4)

Consulting the theorem of von Neumann and Cartan [117], 𝑆𝑂(3) is a
subgroup of 𝐺𝐿(3, 𝐑) and a Lie group. Furthermore, 𝐓 ∈ 𝑆𝐸(3) can be
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represented as a 4 × 4 matrix and is isomorph to a subset of 𝐺𝐿(4, 𝐑).
Hence, 𝑆𝐸(3) is also a smooth manifold and a Lie group. Intuitively, a
manifold facilitates considering the infinitesimal small neighborhood
of a point 𝐩 as a flat, Euclidean space within its corresponding tangen-
tial space. In conclusion, 𝐓 globally lies within 𝑆𝐸(3), a 12-dimensional
manifold and a semi-direct product of the groups 𝑆𝑂(3) and ℝ3. Locally,
the corresponding Lie algebra 𝔰𝔬(3) maps the local structure of an 𝑆𝐸(3)
pose onto a Euclidean space. This concept, in-depth discussed in [117],
allows a singularity-free optimization of transformations 𝐓 during the es-
timation of an optimal registration result by transferring the optimization
process onto a locally Euclidean structure using the Lie group concept.

The registration approaches discussed in Section 4.2 and 4.3 assume
a singularity-free transformation representation and optimization. This
assumption holds in all evaluated cases as a rough initial estimate is
always provided for the optimization within the presented registration
methods. The optimizations, which determine the relative orientations,
operate on a small and delimited range around the identity, guaranteeing
a sufficient distance to the non-unique and non-continuous operating
range if Euler angles are used for rotation representation.

3.3 Camera Calibration and Stereo Vision
The width of 2D images is represented by 𝑥, the height by 𝑦, and the
depth 𝑧 is consequently negative in right-handed coordinate systems. The
2D image frame – the sensor frame for all cameras – is specifically marked
as 2D for images with 𝑥2D × 𝑦2D pixels, and 3D points are denoted as 𝐩3D

to distinguish between the sensor coordinate systems where useful.
The intrinsic camera calibration relates natural camera units – pixels

– to metrical units. Both, intrinsically calibrating a single camera and
calibrating stereo camera systems, rely on well-proven tools, such as
OpenCV4 in combination with chessboards. Intrinsic calibration with
OpenCVassumes a pinhole cameramodelwith plumbbob distortion that

4 Camera calibration With OpenCV: https://docs.opencv.org/2.4/doc/tutorials/calib3
d/camera_calibration/camera_calibration.html, access on 28.12.2021.
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3.3 Camera Calibration and Stereo Vision

jointly models radial and tangential distortion. It yields a 1D distortion
matrix and a camera calibration matrix 𝐊 according to [26] with

𝐊 =
⎛
⎜
⎜
⎝

𝑓𝑥 0 𝑜𝑥
0 𝑓𝑦 𝑜𝑦
0 0 1

⎞
⎟
⎟
⎠

, (3.5)

where 𝑓𝑥, 𝑓𝑦 are the focal lengths in pixel coordinates, while 𝑜𝑥, 𝑜𝑦 de-
scribe the optical center for lens cameras.

Stereo camera calibration5 yields a rectification matrix and a projection
matrix for each camera as well as the perspective transformation matrix.
Image rectification ensures the parallel alignment of the optical axes for
stereo image disparity estimation. Here, 𝐏 specifies the camera matrix of
the processed, rectified images. The 2D projection of a 3D point 𝐩3D in
the camera frame onto the rectified image pixel [𝑗, 𝑘] is calculated with

⎛
⎜
⎜
⎝

𝑗
𝑘
𝑤

⎞
⎟
⎟
⎠

= 𝐏 ⋅
⎛
⎜
⎜
⎜
⎝

𝑥𝑐
𝑦𝑐
𝑧𝑐
1

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑓 ′
𝑥 0 𝑜′

𝑥 𝐓𝑥
0 𝑓 ′

𝑦 𝑜′
𝑦 𝐓𝑦

0 0 1 0

⎞
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎜
⎝

𝑥𝑐
𝑦𝑐
𝑧𝑐
1

⎞
⎟
⎟
⎟
⎠

. (3.6)

where 𝑥𝑐 = 𝑗/𝑤 and 𝑦𝑐 = 𝑘/𝑤 describe the projections for both images
of the stereo camera pair. The fourth column of 𝐏 relates the position of
the optical center of the second camera to the optical center of the first
camera with 𝐓 = 𝟏 for the reference camera and 𝐓𝑦 = 0, 𝐓𝑥 = −𝑓 ′

𝑥 ⋅ 𝐵 for
the second camera of a horizontal stereo camera setup with baseline 𝐵.
Summarizing, 𝐊 contains the intrinsic camera parameters for distorted,
raw images, and 𝐏 is applied to project 3D points in the camera coordinate
system to rectified 2D pixel coordinates.

The triangulation of 2D images in stereo vision estimates two match-
ing points 𝑥1 (reference image) and 𝑥2 (second image) by solving the
correspondence problem. The distance 𝑟 between the image points 𝑥1
and 𝑥2 corresponding to an equivalent real-world point is denoted as
disparity 𝑑 = ‖𝑥1 − 𝑥2‖ for rectified images. The corresponding depth 𝑧
is calculated with

𝑧 =
𝑓 ⋅ 𝐵

𝑑
. (3.7)

5 Robot Operating System, StereoCalibration: http://wiki.ros.org/camera_calibration/T
utorials/StereoCalibration, access on 28.12.2021.
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Stereo camera systems rely on the photometric content of a scene, and
their accuracy depends on specific contents of the captured scene. Here,
poorly textured regions and repetitive patterns often lead to less accurate
stereo image disparity estimates [218]. Furthermore, correspondences
can only be estimated up to a certain accuracy due to repetitive and
ambiguous texture, blur, and other unfavorable image characteristics.
The image resolution defines the area corresponding to the estimated 𝑧.
With increasing 𝑧, the area covered by one pixel increases quadratically,
as discussed in Section 3.8.

A single-channel disparity image with pixels [𝑗, 𝑘] can be projected
into 3D space with 𝑊, 𝑋, 𝑌, and 𝑍 from the perspective transformation
matrix 𝐐𝑝 (see Section B.1.1):

⎛
⎜
⎜
⎝

𝑥([𝑗, 𝑘])
𝑦([𝑗, 𝑘])
𝑧([𝑗, 𝑘])

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑋
𝑊
𝑌
𝑊
𝑍
𝑊

⎞
⎟
⎟
⎠

. (3.8)

Knowing 𝐵 in a horizontal stereo camera setup, both clouds are trans-
formed into the same coordinate system. Outlier filtering with a nearest
neighbor search, similar to point cloud preprocessing in Section 4.2.1, and
LRC in stereo post-processing can remove streaks created by disparity
estimation errors.

3.4 Principle Component Analysis
Principle Component Analysis (PCA) summarizes a dataset of 𝑛 dimen-
sions with 𝑝 data points into an 𝑚 × 𝑚 data matrix X with 𝑚 < 𝑛 dimen-
sions. For this, PCA determines the linear combination of the columns of
X to represent a dataset in 𝑚 dimensions with maximum variance using
the linear combinations 𝑚

∑
𝑗=1

𝑎𝑗𝐱𝐣 = X𝐚. (3.9)

The variance of the linear combination is calculated as 𝑣𝑎𝑟(X𝐚) = 𝐚∗𝐒𝐚
for 𝐚 = {𝑎1, … , 𝑎𝑚} with the constants 𝑎1, … , 𝑎𝑚. 𝐒 is the 𝑚 × 𝑚 sample
covariance matrix of the dataset. This reduces PCA to the solution of
an eigenvector/eigenvalue problem 𝐒𝐚 − 𝝀𝐚 = 0, identical to 𝐒𝐚 = 𝝀𝐚,
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with eigenvectors 𝐚 and 𝝀𝐚 describing the corresponding eigenvalue of
the covariance matrix 𝐒. The eigenvalues are the variances of the linear
combinations 𝑣𝑎𝑟(X𝐚) = 𝝀 [141]. Covariancematrices of size 𝑚×𝑚 are real
symmetric with 𝑚 real eigenvalues 𝝀𝐤, 𝑘 ∈ 1, … , 𝑚. The corresponding
eigenvectors can be defined as an orthonormal set of vectors to form a
centered 𝑚-dimensional coordinate system for the representation of the
dataset. Applying a Lagrange multiplier approach as proposed by Jolliffe
et al. [141] guarantees the uncorrelatedness of the principal components
X𝐚.

PCA allows dimension reduction while keeping a preferably high
volume of information [141] by maximizing the variance during the
selection of the uncorrelated principal components. It constitutes a basic,
exploratory tool for data analysis and can be obtained from the singular
value decomposition (SVD) of a data matrix [91, 141]. The principal
components are linear combinations of the original variables. This thesis
applies PCA to analyze values with identical measurement units and
scale; problems due to different units in variance calculation do not
arise [141]. Applications for PCA in this thesis include surface orientation
estimation in 3D point clouds and dimension reduction from 3D to 2D.

A dimension reduction of higher dimensional data such as 3D point
clouds into 2D or 1D facilitates a faster analysis. For dimension reduction
from 3D to 2D with PCA, the first and the second principal component
compose the axes of the new 2D coordinate system and the analyzed
3D data is transformed into 2D by mapping onto the two new axes.

3.5 Analysis of 2D Image Data
Numerous measures are known to analyze the quality and information
content of 2D image data. Different quality measures to measure the
information content (IC) for 2D images or image patches are presented
and analyzed in this thesis:

Image contrast: Shannon entropy,
Difference of Gaussians (DoG),
Histogram of Oriented Gradients (HOG), and
Scale-Invariant Feature Transform (SIFT), Speeded up Robust Fea-
tures (SURF), Features from Accelerated Segment Test (FAST).
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The IC can be applied to filter image patches that are detrimental in
the training process of neural networks instead of helpful, such as im-
age patches with very low texture information in stereo image depth
estimation.

Shannon [254] proposes an entropy measure 𝐻 to assess the IC of a
message in the context of signal processing that is based on the proba-
bility 𝑝(𝑖) of a symbol 𝑖 ∈ 𝐼 to be present inside a message with 𝑁𝐼 = #𝐼
the number of possible symbols. The information content of 2D and
3D data can be analyzed similarly to the IC of a message. This thesis
transfers the Shannon entropy in the image domain to assess the IC
captured in 2D images [326, 327]. The IC of 2D image data (𝐼𝐶r2D) is con-
tained in the luminous intensity values of the captured spectral channels.
Thus, the IC of a defined 2D pixel grid can be measured by its Shannon
entropy. In 8-bit images, 𝐼 contains all possible, discretized intensities
𝐼 ∈ {0, 1, … , 255}. Hence, the Shannon entropy 𝐻(𝑚) of an image patch
𝑚 with 𝑁 × 𝑁 pixels that fulfill [𝑖, 𝑗] ∈ 𝑚 assesses the information in 𝑚:

𝐻(𝑚) = −( ∑
𝑁𝐼

𝑝(𝐼[𝑖,𝑗]) ⋅ log2(𝑝(𝐼[𝑖,𝑗]))). (3.10)

Here, 𝑚 is represented by a set of intensity values 𝐼[𝑖, 𝑗] that yields one
𝐼[𝑖, 𝑗] for each pixel [𝑖, 𝑗] in grayscale images. The probability 𝑝 of the
intensity value 𝐼[𝑖, 𝑗] to be contained in the set {𝐼[𝑖, 𝑗]}𝑖∈{1,…,𝑁},𝑗∈{1,…,𝑁}
is 𝑝(𝐼[𝑖, 𝑗]) and counts the relative frequency of each 𝐼[𝑖, 𝑗]. 𝑁𝐼 denotes
the number of different intensity values in 𝑚. A high Shannon entropy
indicates a high IC and thus higher differences in between the pixel’s
intensity values. In the case of 9×9 image patches (𝑁 = 9), the maximum
entropy is 𝐻(𝑚) = 6.340. 𝐻(𝑚) proved useful to measure the contrast of
the image patch, as demonstrated in Section 6.2.1.

Marr et al. [184] utilize DoG, respectively Gaussian blurring with
two valid blurring radii and a subtraction of the two blurred images, to
visualize edges inside images. DoG extracts edges on locally-connected
pixels with notable changes of the intensity values compared to their
neighboring pixels, and measures the intensity differences inside the
image. It can hence also indicate a high IC as a high difference in intensity
represents rich textures. HOG features proposed by Dalal et al. [45]
also detect edges on the basis of their respective gradients saving their
orientation for applications such as object detection by comparing the
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HOG representations of the assessed image and its HOG model. The
authors [45] state that HOG features are well-suited to visual object
recognition and outperform existing feature sets in the human detection
test case. An implementation is included in the SciKit-Image library6.
SIFT [176], SURF [10], and FAST [231] are gradient-based descriptors
which often occur in highly textured image areas and a high number
of detected SIFT, SURF, and FAST features can indicate a high IC of an
image patch similar to the Shannon entropy.

3.6 Analysis of 3D Point Cloud Data
Geometric 3D information can be analyzed in a 3D representation [326]
or after a dimension reduction. While various different metrics exist,
geometric structure and point density present two measures of major
importance and applicability [323, 329].

Points in 3D point clouds represent point sets on real surfaces, and
their structure can be described using their surface variation. This thesis
opts for the surface variation calculation described in [234]. The surface
variation around each point 𝐩𝑖 inside a point set 𝐏𝑘 is determined using
the eigenvalues of the covariance matrix 𝐂. Hence, the surface variation
𝑠𝑖 for a point 𝐩𝑖 is equal to its curvature. The surface variation for 𝐩𝑖 can
be formulated as

𝑠𝑖 =
𝜆3

(𝜆1 + 𝜆2 + 𝜆3)
, 𝜆3 = min(𝜆𝑗), 𝑗 ∈ {1, 2, 3}. (3.11)

The surface variation 𝑠𝑖 is calculated for each point 𝐩𝑖 and indicates the
structured or unstructured character of a point cloud. To combine the
values 𝑠𝑖 of a point set 𝐏𝑘, the empirical mean of 𝑠𝑖 for all points 𝐩𝑖 ∈ 𝐏𝑘,
denoted 𝑠, is calculated:

𝑠 =
1
𝑘

𝑘

∑
𝑖=1

𝑠𝑖. (3.12)

The surface variation is scale-invariant. A small 𝑠 indicates that all points
in the neighborhood 𝐏𝑘 are close to the plane tangent to the surface. Struc-

6 SciKit-Image library: https://scikit-image.org/docs/dev/api/skimage.measure.html,
access on 04.11.2021.
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tured environments contain a high number of smooth surfaces. Thus, a
low 𝑠 indicates a rather structured character of the perceived environ-
ment, while unstructured environments are typically characterized by a
high 𝑠.

Surface estimation can directly derive the surface normals from the
point cloud data [234]: an SVD of the covariance matrix of a point set
converts the normal estimation problem to a least-squares plane fitting
estimation problem and determines a normal vector estimate for each
point as a plane tangent to the estimated surface [14, 253]. The covariance
matrix of a 3Dpoint set 𝑃 𝑘, 𝑃 𝑘 = {𝐩1, … , 𝐩𝑖, … , 𝐩𝑘}, is represented as real,
positive semi-definite, symmetric matrix 𝐂 ∈ ℝ3×3 according to [234]:

𝐂 =
1
𝑘

𝑘

∑
𝑖=1

(𝐩𝑖 − 𝐩𝑖)(𝐩𝑖 − 𝐩𝑖)
𝑇. (3.13)

3D planes can be described uniquely by a point 𝐱 lying inside the plane
and a normal vector 𝐧 that indicates the surface orientation. Least-squares
plane fitting aims at minimizing the distance 𝑟 = (𝐩𝑖 − 𝐱)𝐧 of a point
𝐩𝑖 ∈ 𝐏𝑘 to a plane via 𝐩 = 1

𝑘 ∑𝑘
𝑖=1 𝐩𝑖. An Eigenvalue decomposition of 𝐶

is possible as covariance matrices are naturally quadratic and 𝐩 can be
solved by an eigenvalue decomposition of 𝐂:

𝐂𝐯𝑗 = 𝜆𝑗𝐯𝑗, 𝑗 ∈ {1, 2, 3}, 𝜆𝑗 ∈ ℝ. (3.14)

The eigenvectors 𝐯𝑗 are orthogonal and correspond to the principal com-
ponents of 𝐏𝑘. The eigenvector corresponding to the smallest, non-zero
eigenvalue approximates the normal vector 𝐧 and solves the first order
3D plane fitting problem.

In addition to the surface variation, the geometric structure of 3D point
clouds can be analyzed after a homogenization process that transforms
3D points back into the cylindrical projected coordinates 𝜙, 𝑟, and 𝑧 –
their coordinate system of origin in the capture process. The proposed
homogenization process yields a more uniform point distribution for
active, rotating sensors, and, hence, constitutes the most promising rep-
resentation for cross-source registration [329]:

𝜙 = arcsin (𝑦/√𝑥2 + 𝑦2), 𝑟 = √𝑥2 + 𝑦2, and 𝑧 = 𝑧. (3.15)
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Furthermore, the point distributions and the total number of points
can be applied to analyze the IC for point clouds and compare 3D point
clouds. The relative point distribution 𝜉 within the horizontal FoV of 360°
can be determined by a binning of the homogenized points according
to 𝜙. The 𝜉𝑖 for bin 𝑖 analyzes the relative amount of points 𝑁𝑖 in bin 𝑖 in
relation to the total number of points 𝑁 inside a cloud: 𝜉𝑖 = 𝑁𝑖/𝑁.

A high number of bins, e.g., 𝑖 = 36 and 10° per bin, ensures a fine-
grained analysis and is especially beneficial if notably different areas
are captured in a cloud. The variance 𝜎2(𝜉) and the empirical mean 𝜉
(see Equation 3.12) can be regarded additionally. A high 𝜎2(𝜉) is not fa-
vorable as it indicates an inhomogeneous point distribution inside the
point cloud. Uniform point distributions and a high number of 3D points
illustrate a proper representation of all cloud sectors inside a point cloud
(see Section 6.2.1.1). This can indicate a high IC favorable for percep-
tion methods of all levels, such as cross-source registration or semantic
3D segmentation.

3.7 2D–3D Fusion of Color and Geometry
2D–3D fusion assigns color intensity values to 3D LiDAR points within
the camera FoV. It projects the color information from the camera into
3D space by assigning a color intensity value to each 3D point. It requires
the availability of an intrinsically and extrinsically calibrated sensor setup
with at least one camera and one 3D LiDAR sensor that provides the
coordinate transformation between the pixel space and the 3D cloud
space. The 3D LiDAR (L) points 𝐩𝓈,L are transformed into the sensor
coordinate system of the camera 𝒸 with 𝐩𝒸 = 𝐓𝒸

𝓈,L ⋅ 𝐩𝓈,L, equivalent to
the cc23 registration approach discussed in Section 4.3.2. The projection
vectors 𝐯 = [𝑣𝑖; 𝑣𝑗; 1]∗ are related to the image coordinate system 𝒾. If
the image coordinate system is not equivalent to the sensor coordinate
system 𝓈, a second transformation with 𝐓𝒾

𝓈 is required: 𝐩𝒾 = 𝐓𝒾
𝓈 ⋅ 𝐩𝓈. The
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projection of the 3D point into the image plane is obtained by reformu-
lating Equation 4.30 for each pixel [𝑖, 𝑗] as

⎛
⎜
⎜
⎝

𝑣𝑖
𝑣𝑗
1

⎞
⎟
⎟
⎠

= 𝑧−1
𝓈,L ⋅ 𝐊 ⋅ 𝐓𝒾

𝓈,L ⋅
⎛
⎜
⎜
⎜
⎝

𝑥𝓈,L
𝑦𝓈,L
𝑧𝓈,L

1

⎞
⎟
⎟
⎟
⎠

= 𝑧−1
𝒾 ⋅ 𝐊 ⋅

⎛
⎜
⎜
⎝

𝑥𝒾
𝑦𝒾
𝑧𝒾

⎞
⎟
⎟
⎠

. (3.16)

The color intensity of the pixel that corresponds to the projection of the
respective 3D point inside the 2D pixel grid determines its color.

3.8 Accuracy in 2D and 3D Imaging
The accuracy in 2D images and the 2D–3D registration of image and
LiDARdata is limited by the area covered by one pixel. This area increases
quadratically with linearly increasing distance 𝑧, and the real-world
resolution in 𝑥 (width) and 𝑦 (height) depends on 𝑧. For an exemplary
JAI AD-130 GE camera with 1296 × 966 px, one pixel (px) covers 0.8 cm
of horizontal length for a horizontal FoV and width of 10 m, and 1.6 cm
for a horizontal FoV of 20 m.

Rotating 3D LiDAR sensors have a horizontal FoV of 𝜏ℎ = 360°. The
angular beam resolution 𝜏′

𝑣 can be estimated from the vertical sensor FoV
𝜏𝑣, the number of diodes that form the typical ring structure, and the
beam distribution. Furthermore, 𝜏′

𝑣, the horizontal angular resolution
𝜏′

ℎ, and the maximum measurement range of a LiDAR sensor max(𝑟) are
given in the datasheet. The angular resolutions 𝜏′

𝑣 and 𝜏′
ℎ can be converted

into metric resolutions 𝛼′
𝑣 = 𝑟 ⋅ sin(𝜏′

𝑣) and 𝛼′
ℎ = 𝑟 ⋅ sin(𝜏′

ℎ). As a reference,
the Velodyne HDL-64E has an average measurement accuracy of ±2 cm.

Accuracy limits for the 3D reconstruction with stereo camera systems
result from the disparity matching process, as discussed in Section 2.3.1.
The inherent depth estimation error 𝜀𝑧 in stereo disparity estimation
amounts to

𝜀𝑧 =
𝑧2 ⋅ 𝜀𝑑
𝐵 ⋅ 𝑓

, (3.17)

with the disparity estimation error 𝜀𝑑. The quadratic estimation error 𝜀𝑧
constitutes themost influential degradation in the 3D estimation accuracy
of stereo camera systems. The offset and the linear bias in the quadratic
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quality assessment modeling proposed by Wolf and Berns [296] have a
minor influence on the 3D measurement accuracy, especially for 3D mea-
surements with large depth values, which are hence discarded for the
accuracy modeling within this thesis. Disparity estimation errors up to
a maximum of three pixels from the reference data (3PE) are accepted
as a correct estimation for autonomous vehicles as proposed by Geiger
et al. [82]. Consequently, the depth estimation error for a pixel with
𝑧 = −2 m is notably smaller than for 𝑧 = −10 m. The stereo camera setup
of the IOSB.amp Q1 has two JAI AD-130GE cameras with 1296 × 966 px,
𝐵 = 0.62m, and 𝑓 = 686.85 px. The depth estimation accuracy with 𝜀𝑑 =
3 px equates to 𝜀𝑧 = 0.704 m at 𝑧 = −10 m. Hence, the achievable accuracy
in depth estimation from stereo disparity estimation is determined by the
disparity range and the resolution of the input images, and stereo camera
point clouds can contain plate-shaped structures originating from the
quantization within per-pixel or per-subpixel disparity estimates. Fur-
thermore, the achievable accuracy in the 3D–3D registration of stereo
camera and LiDAR data mainly depends on the depth estimation ac-
curacy from stereo images, and the attainable 𝑥3D and 𝑦3D accuracy is
identical to 2D–3D registration.

3.9 Registration and Multi-Sensor Calibration
Data fusion from multiple sensors into one coordinate system requires
their extrinsic calibration – the relative translation and orientation of all
sensor coordinate systems 𝓈𝑖. Utilization of the captured sensor data for
the environment perception of a robotic system additionally requires
the calibration of each sensor to a common vehicle coordinate system 𝒷.
Hereby, registration designates sensor calibration and the subsequent
application of the calibration results to transform, and hence register, the
captured sensor data inside one common coordinate system. Accurately
calibrating perception sensors is crucial for all further processing steps
as an inaccurate calibration notably degrades the data quality and can
even result in misleading or dangerous perception data.

An affine transformation 𝐓𝒷
𝓈 transforms each point 𝐩 from the sensor

frame 𝓈 to 𝒷: 𝐩𝒷 = 𝐓 ⋅ 𝐩𝓈. The calibration to 𝒷 can be achieved by an
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extrinsic calibration (and registration) of all sensors and the subsequent
calibration of one sensor to the platform frame.

Two approaches for extrinsic calibration are possible. As a first option,
the relative sensor poses can bemeasuredmanually. However, this is espe-
cially difficult if relative rotations have to be determined or the platform
coordinate system lies inside the platform. Alternatively, the captured
sensor data can be related with registration methods that yield the rela-
tive sensor poses in a semi-automatic or automatic manner. Registration
of multi-sensor systems can be formulated as an optimization problem
with six DoF limiting the search space for potential solutions to rigid and
affine 3D transformations, and with a special focus on a singularity-free
representation. Many methods register sensor data within a two-stage
process [54, 126, 195, 323]: a coarse initialization ensures that 𝐓 is located
in the vicinity of the globally optimal solution. A second, fine registration
step determines the locally optimal solution, often with Newton-based
optimization methods. Visual overlays can generally verify a singularity-
free transformation and always provide a qualitative assessment of the
registration accuracy (see Figure 4.20). For 2D–3D registration, the pro-
jection of a depth image onto an RGB image validates the determined
ground truth transformation if their accurate overlay is clearly visible,
such as in Figure 4.12. The following assumes that a ground truth refer-
ence transformation is available for all use cases. However, visual overlay
allows a qualitative evaluation for use cases without a reference trans-
formation. Preprocessing or also a qualitative accuracy assessment for
registered 3D point clouds is facilitated by kNN filtering, as proposed in
Section 4.2.1.

Similar-source data denotes data capturedwith sensors using the same
measurement principle, such as 3D LiDAR sensors. The direct registra-
tion of similar-source point clouds can be applied to extrinsically calibrate
sensor systemswithmultiple similar-source sensors. Cross-source sensor
data is obtained from different types of sensors, e.g., 2D images from
a passive camera and 3D point clouds from a LiDAR sensor, often pro-
vides complementary information due to multimodal sensor data. They
exhibit inherently different characteristics due to their different measure-
ment principles discussed in Section 3.1, such as outliers, artifacts, and
notably different densities. Hence, 2D–3D registration requires cross-
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source registration methods. The registration of a 3D LiDAR point cloud
and a 3D point cloud generated with the depth information from stereo
disparity estimation also belongs to cross-source registration.

2D–3D registrationmatches images and point clouds, while 3D–3D reg-
istration determines the relative poses of 3D point clouds. The registra-
tion of 2D LiDAR sensors as proposed in [69] is not regarded as it is no
longer required in off-road applicationswith the availability of 3D LiDAR
sensors.

Data for cross-source registration can also be viewed as data from two
different domains. Processing methods for cross-source data want to ac-
complish domain transfer in a wider sense and aim at a possible domain
invariant representation. Cross-source data is characterized by inherently
different structures: differences in scale, measurement density, accuracy,
noise, and outlier characteristics. Consequently, cross-source 3D data
is considerably more difficult to register than similar-source data. A
common data representation is required before extracting and matching
common features for correspondence matching. For 2D–3D registration,
a common representation can be achieved by projecting a 2D image into
3D space, mapping a 3D point cloud onto a 2D depth image, or gener-
ating a 3D point cloud from 2D stereo camera images. Naturally, the
3D–3D registration of point clouds is also possible without prior transfor-
mation. Transformative methods facilitate a common data representation
if data is given in two different dimensions, e.g., the registration of a
2D image to a 3D point cloud. Even for a common data representation,
direct registration methods such as ICP [15] are mostly unable to detect
sufficiently similar, common features for correspondence matching in
cross-source data, and specially crafted and optimized, transformative
registration methods are required. Unstructured environments with nat-
ural and grown topological structures introduce additional difficulties
into the registration process, as highlighted in exemplary images for
unstructured environments (see Figure 1.2 and Figure 4.18).

The registration of accurate but sparse 3D LiDAR point clouds to
dense but less accurate 3D stereo camera point clouds is an especially
challenging registration scenario. For this purpose, the estimated dispar-
ity images must be projected into 3D space to generate 3D stereo camera
point clouds, as described in Section 3.3. Stereo image depth estimation
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inaccuracy can lead to plate-like structures in larger distances, while
clouds from rotating 3D LiDAR sensors mostly show a ring structure due
to the LiDARmeasurement principle. The GICP algorithm likely matches
the plate-like structures in point clouds from stereo 3D reconstruction
to the estimated smooth, locally planar surfaces in the LiDAR cloud.
An ICP registration is likely to match the plate-like structures onto the
ring-shaped point sets contained in the sparse LiDAR cloud. Here, the
application of transformative methods can provide a more abstract and
thus more related representation of the cross-source data that enables
an accurate registration process.

3.10 Generalized ICP
Segal et al. [250] derive Generalized ICP (GICP) from ICP as a special
case of point-to-plane-ICP. GICP assumes a Gaussian distribution of the
points 𝐩𝑠,𝑖 and 𝐩𝑡,𝑗 in both, source cloud 𝐏𝑠 and target cloud 𝐏𝑡:

𝐩𝑠,𝑖 ∼ N (�̂�𝑠,𝑖, 𝐂𝑃𝑠
𝑖 ), (3.18)

𝐩𝑡,𝑗 ∼ N (�̂�𝑡,𝑗, 𝐂𝑃𝑡
𝑗 ). (3.19)

𝐂𝑖, 𝐂𝑗 are the estimated covariancematrices. Consequently, the Euclidean
distance 𝑟𝑖𝑗 between a corresponding set of points (𝐩𝑠,𝑖, 𝐩𝑡,𝑗) is also sub-
ject to a Gaussian distribution according to Segal et al. [250] and 𝐓𝑃𝑡

𝑃𝑠
transforms 𝐩𝑠,𝑖 to the target frame using the current GICP estimate:

𝑟𝑖𝑗 ∼ N (𝜇 = 0, 𝐂𝐏𝑡
𝑖 + (𝐓𝑃𝑠

𝑃𝑡
)𝐂𝑃𝑠

𝑖 (𝐓𝑃𝑠
𝑃𝑡

)∗
) . (3.20)

The current transformation estimate from source to target is calculated
with a maximum likelihood estimation

𝐓 = argmax𝐓 ∏
𝑖

𝑝 (𝑟𝑖𝑗) = argmax𝐓 ∑ log (𝑝(𝑟𝑖𝑗)) , (3.21)

that encodes the probability 𝑝 of the Euclidean distance 𝑟𝑖𝑗 and is simpli-
fied to

𝐓 = argmin𝐓 ∑
𝑖

(𝑟(𝐓)
𝑖𝑗 )

∗
𝐂𝑀

−1
(𝑟(𝐓)

𝑖𝑗 ) . (3.22)
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For optimization, GICP uses the quadratic Mahalanobis distance [180]
𝑟𝑀 for 𝑁𝐶 corresponding point pairs:

𝑟𝑀 =
1

𝑁𝐶
⋅

𝑁𝐶−1

∑
𝑖=0

(𝑟𝑖𝑗)
∗𝐂𝑀

−1 (𝑟𝑖𝑗) . (3.23)

The covariance of the Mahalanobis distances 𝑟𝑀 is obtained from

𝐂𝑀 = 𝐂𝑃𝑡
𝑖 + 𝐓𝑃𝑠

𝑃𝑡
𝐂𝑃𝑠

𝑖 (𝐓𝑃𝑠
𝑃𝑡

)∗ (3.24)

and adds a weighting to 𝑟𝑀 in Equation 3.23.
The assumption of a Gaussian distribution of the points inside the

clouds integrates the central idea of point-to-plane ICP that all point
clouds have an inherent structure. Their surface information is integrated
into the registration estimate and improves the registration performance
compared to ICP. From the assumption of structured clouds, Segal et
al. [250] deduce that real-world surfaces are two-manifolds inside a
3D Euclidean space due to at least piece-wise differentiability, and as-
sume that all surfaces inside the structured clouds are locally planar.
In proceeding, the two point clouds are treated as two surfaces being
isomorph to each other. Slightly different points are sampled from two
different perspectives, and perfect correspondences cannot be reached.
However, points provide constraints along their surface normals that are
represented inside the respective covariance matrix 𝐂𝑖. In order to model
the surface, a high covariance along the estimated, locally planar surface
is set in Equation 3.25. Furthermore, a low covariance value 𝜀𝐶 along the
direction of the estimated surface normal is assigned to each sampled
point. The covariance matrix 𝐂𝑀 is weighted in an inverse manner in-
side the minimization term given in Equation 3.22, and errors along the
surface normal notably increase the error metric, while errors inside the
estimated, locally planar surfaces hardly increase the error for a small 𝜀𝐶.

The surface normals 𝝂𝑖 and the rotation matrices 𝐑𝝂𝑖
correspond to the

points 𝐩𝑖 in source or target cloud. The covariance matrices 𝐂𝑖 for the
points 𝐩𝑖 are calculated from

𝐂𝑖 = (𝐑𝝂𝑖
)
⎛
⎜
⎜
⎝

𝜀𝐶 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠

𝐑𝝂𝑖
∗, 𝑖 ∈ {𝑠, 𝑡}. (3.25)
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The surface normal for a point set is obtained by an SVD of its covariance
matrix 𝐂𝑖. Segal et al. [250] compute 𝐂𝑖 as empirical covariance ∑̂ of the
20 closest points and independent of the density of the point clouds. The
singular vector corresponding to the smallest singular value indicates
the direction of the surface normal. The SVD of ∑̂ yields the singular
vectors inside 𝐔 with the corresponding singular values 𝐝. As ∑̂ is real
and symmetric, 𝐔 = 𝐕∗ holds for the left and right singular vectors of 𝐔
and 𝐕:

̂
∑ = 𝐔𝐝𝐕 = 𝐔𝐝𝐔∗. (3.26)

The covariance is reconstructed to

̂
∑ = ∑

2

𝑖=0(𝑑𝑖𝐮(𝑖)𝐮(𝑖)∗
), (3.27)

using the column vectors of 𝐔, the left singular vectors 𝐮(𝑖), and the
corresponding weighting in 𝑑𝑖 with 𝑑0 = 𝜀𝐶, 𝑑1 = 1, and 𝑑2 = 1 by
replacing 𝐝 with diag(𝜀𝐶, 1, 1) according to Equation 3.25.

3.11 Registration Error Metrics and Decalibration
The registration accuracy of the GICP algorithm is commonly measured
with the Euclidean fitness score 𝑒fs [123]. It represents a benchmarking
value calculated from the Euclidean distances 𝑟𝑗,𝑖 = 𝐩𝑡,(𝑗,𝑖) − 𝐩𝑠,(𝑗,𝑖) of
target points (𝐩𝑡) and transformed source points (𝐩𝑠) weighted with the
number of correspondences 𝑁𝐶:

𝑒fs =
∑𝑁𝐶

𝑖=𝑖 (𝑟𝑥,𝑖
2 + 𝑟𝑦,𝑖

2 + 𝑟𝑧,𝑖
2
)

𝑁𝐶
. (3.28)

This thesis applies two different error metrics to assess the registration
results for cross-source sensor data: the Frobenius norm 𝐹 providing an
exclusive assessment of the transformation, and the 𝐿2 norm evaluat-
ing the registration accuracy of the data. 𝐿2 can yield potentially large
errors for corresponding point pairs in major distances depending on
the absolute distance values from the sensor origin, while 𝐹 directly
rates the transformation as a registration result. The combination of both
metrics provides a comprehensive assessment of the transformation and

68



3.11 Registration Error Metrics and Decalibration

the registered data for the subsequent application. Furthermore, 𝐹 and
𝐿2 prove useful for comparing the performance of different registration
methods and combining the results using a confidence-based metric as
proposed in the UCSR method elaborated in Section 4.3.

𝐹 measures the deviation of the estimated registration result �̂� from
the reference transformation 𝐓ref directly [126]:

𝐹 = ‖𝐓ref − �̂�‖𝐹 =
√√√
⎷

4

∑
𝑖=1

3

∑
𝑗=1

|𝐓ref ,(𝑖,𝑗)
− ̂𝑇(𝑖,𝑗)|

2. (3.29)

The last row of 𝐓 is omitted due to equivalence in 4 × 4 transformation
matrices. 𝐹 is vulnerable to the scale of rotation versus translation. For
𝐹, the consideration of the translational component in meters primarily
leads to 𝐹 providing an assessment of the rotational components of the
registration results as translation errors are relatively small in comparison.
In addition, the 𝐿2 norm of corresponding point pairs is used as a second
error metric. It is equivalent to the 𝑒fs used to assess the registration
accuracy in similar-source registration. However, the source point cloud
in cross-source registration is transformed with 𝐓ref to only consider
valid corresponding pairs for 𝐿2. The source cloud transformed with
𝐓ref is then compared to the transformation of the source cloud with
�̂�. The 𝐿2 norm evaluates the corresponding point pairs after applying
the registration result. In this thesis, the analysis of 𝐿2 in meters proved
useful for a more intuitive error interpretation which is why the 𝐿2 is
defined as follows and in accordance with Eq. (6.7):

𝐿2(𝐓ref, �̂�) =
√√√
⎷

1
𝑁𝐶

𝑁𝐶

∑
𝑖=1

‖𝐓ref𝐩𝑠,𝑖 − �̂�𝐩𝑠,𝑖‖2. (3.30)

As a reference, the 𝐿2 results in the registration of unstructured data can
be compared to the 𝐿2 results of CSGM [126] that is the basis for the
proposed graph33method: the registration of two clouds of the “Stanford
Bunny”7 with artificial noise and 20% outliers by Huang et al. [126]
achieved 𝜇(𝐿2(CSGM)) = 1.792 m.

7 The Stanford 3D Scanning Repository: http://graphics.stanford.edu/data/3Dscanrep/,
access on 03.11.2021.
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𝐿2 and 𝐹, respectively 𝜇(ln 𝐹 ), measure the registration accuracy, while
standard deviation 𝜎 and variance 𝜎2 indicate the stability of the method
on several runs in this thesis similar to [55]:

𝜇(ln 𝐹 ) =
1
𝑛

𝑛

∑
𝑖=1

ln 𝐹𝑖 𝜎2(ln 𝐹 ) =
1
𝑛

𝑛

∑
𝑖=1

(ln 𝐹𝑖 − 𝜇(ln 𝐹 ))
2. (3.31)

The 𝐿2 measures 𝜇(𝐿2) and 𝜎2(𝐿2) are calculated accordingly. Low val-
ues for 𝜎2(ln 𝐹 ) and 𝜎2(𝐿2) indicate a small variation of the registration
results, indicating a high stability of the registration method to generate
comparable results on several runs of the same scenes for registration.

The training data generation for the CNN-based registration of cross-
source data with cnn23 and dsm33 utilizes three decalibration levels to
describe the applied artificial translations and rotations as demonstrated
subsequently. Level S decalibrations transform the input data with up to
±0.25m in translation and up to ±4.3° in rotation; level M applies up to
±0.50m and ±8.6°. Level L decalibrations alter the input data with up to
±1.0m in translation and up to ±17.2° in rotation.

3.12 Filtering Thresholds in Data Analysis
The threshold levels in data analysis and filtering within this thesis were
chosen according to the standard normal distribution with (𝜇 = 0, 𝜎2 = 1)
N0,1 on the basis of a normalized score between 0.0 and 1.0. Thereby, the
maximum score indicates the best and most beneficial result for the con-
ducteddata analysis process. The experimentally justifiedweak threshold
eliminates all data samples that achieve less than 68.27% (𝜇 ± 1.0𝜎) of
the possible maximum of 1.0/100%, while a medium threshold excludes
all samples from further processing that score less than 86.64% (𝜇 ± 1.5𝜎)
and hence less than 0.8664. The strong filtering threshold proposed in
this thesis only keeps samples that achieve an analysis result higher
than 95.45% (𝜇 ± 2.0𝜎). Comparing all analyzed data samples against the
weak, medium, or strong threshold eliminates detrimental samples, as
demonstrated in Section 5.3 and 6.2.1.
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Section 4.1 presents a confidence and accuracy assessment of raw 2D and
3D sensor data that facilitates a tightly coupled validation of the captured
sensor data independent of its further processing in low-, mid-, or high-
level perception. The proposed confidence assessment can be conducted
prior to all perception methods proposed in this thesis to detect sensor
failures and ensure sufficient accuracy of the perception sensor data.

Section 4.2 and 4.3 propose novel registration methods for the extrin-
sic calibration of multi-sensor perception systems. The utilization of
calibration targets, such as chessboard or retro-reflective tape detailed
in Section 2.3.3, were avoided in the unstructured, hazardous environ-
ments analyzed in this thesis as they require human intervention to
manipulate the environment. Hence, all registration methods in this the-
sis facilitate sensor data registration without calibration targets and use
only the structure of the surroundings in contrast to most state-of-the-art
methods (see Section 2.3.3). Section 4.2 presents a semi-automatic reg-
istration approach for similar-source sensor data from multiple LiDAR
sensors to determine their extrinsic calibration and their calibration to a
robotic platform by registration of the corresponding sensor data. The
unstructured cross-source registration frameworkUCSR described in Sec-
tion 4.3 [329] facilitates a confidence-based fusion of registration results
from multiple cross-source registration methods. It implies a tightly cou-
pled validation of the individual registration methods optimized for
unstructured environments via the confidence-based fusion of the regis-
tration results. Herein, cc23 and cnn23 present two registration methods
for the cross-source registration of 2D and 3D data specially optimized
for unstructured environments, as described in Section 4.3.2 and 4.3.3.
Furthermore, two customized registration methods for the cross-source
registration of 3D data from unstructured environments, graph33 and
dsm33, are presented in Section 4.3.4 and 4.3.5.
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Finally, Section 4.4 discusses a novel 2D fusion method for intensity
information from different spectral bands into one 2D image that can
provide a basis for the mid-level perception methods proposed in this
thesis, such as disparity estimation from stereo images.

4.1 Sensor Data Confidence
The confidence assessment of raw perception sensor data increases the
resilience to measurement inaccuracies and sensor faults and leads to a
more accurate understanding of the environment. Filtering of potentially
inaccurate sensor data canmitigate a detrimental influence on perception
methods, which is especially important for critical applications such as
perception for autonomous vehicles, where the sensor data is input to
object detection and obstacle avoidance. Each perception sensor yields
numerous measurements from one “single-shot” capture, as discussed
in Section 2.3.1, and each 2D pixel or 3D point is interpreted as an indi-
vidual measurement. Consequently, perception for autonomous off-road
vehicles requires a point-by-point confidence assessment to lay the foun-
dation for a trustworthy workspace monitoring and driving behavior in
unstructured environments.

The confidence assessment approach proposed in this thesis combines
local and global confidence measures: local confidence analyzes the
probability of measurement errors for individual pixels or points with
their per pixel/point confidence (PPC), while global measures evaluate
full 2D images or 3D point clouds for their global, per-sensor and scene
confidence (PSC).

The presented confidence measures are generic and independent of
the subsequent data processing. They supplement each individual mea-
surement with a confidence estimate similar to the confidence attribution
scheme of [244]. Like Wolf and Berns [296], the focus is placed on the
confidence analysis for 3Dmeasurements from LiDAR and stereo camera
systems. RGB-D cameras were considered as they also rely on disparity
matching for depth estimation and are subject to similar accuracy limita-
tions than stereo camera systems. Contrasting Wolf and Berns [296], this
thesis analyzes the individual, local and global confidence of 2D pixels
and 3D points instead of a voxel model of the environment. A 2D confi-
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4.1 Sensor Data Confidence

dence analysis for the stereo images that are input to disparity estimation
provides a tightly coupled, pre-modeling validation by deciding upon the
execution or omission of disparity estimation. The presented approach
can be regarded as a three-step approach:

1. Analysis of 2D image data providing the input for stereo vision,
2. Examine raw 3D point clouds from LiDAR, RGB-D, and stereo

camera systems,
3. Generate confidence estimate for each 3D measurement.

In order to preserve the generic and model-agnostic character of the pro-
posed confidence assessment, 3D point clouds from stereo and RGB-D
camera systems are regarded as raw sensor data hereinafter, and con-
fidence of disparity images is not analyzed here but in Section 2.4.2.
Consequently, raw sensor data comprises individual 2D images input to
stereo image disparity estimation and from RGB-D cameras, 3D point
clouds from active, rotating 3D LiDAR sensors, as well as 3D point clouds
from stereo and RGB-D cameras.

Numerous local and global confidence measures are possible. This the-
sis analyzes a combination of state-of-the-art and novel, experimentally
justified confidence measures on their contribution to an expressive con-
fidence estimate. The confidence measures proposed were designed for
a low computational effort facilitating a confidence assessment for each
“single-shot” capture of the environment where required. More complex,
global confidence measures can be calculated prior to sensing and task
execution if applicable or during run time with a lower frequency.

Cameras are sensitive to difficult lighting conditions. The depth esti-
mation accuracy of stereo cameras is inherently limited and depends on
the environmental conditions and the captured scene, while LiDAR sen-
sors yield a sparse 3D representation of the environment but reflecting
surfaces, such as smooth metallic surfaces or puddles, do not provide
measurements. The measurement principle of rotating LiDAR sensors
is related to the measurement principle of solid-state LiDAR sensors
and ToF cameras, and the presented methods are partially applicable for
those active sensor systems. However, confidence for solid-state LiDAR
sensors and ToF cameras is not analyzed here as they do not belong
to the state-of-the-art sensor setup for the perception of unstructured
environments.
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4.1.1 Sensor Outage and Temporal Consistency
Sensor outage is analyzed for all previously specified sensors with 𝑐OT,
a confidence estimate for sensor outages. For measuring the outage in
ROS, comparing the desired frequency (𝑓𝑑) and the current publishing
frequency (𝑓𝑐) of sensor messages with rostopic hz yields 𝑐OT as
𝑐OT = 𝑓𝑐/𝑓𝑑, while a sensor outage leads to 𝑐OT = 0.

The proposed temporal consistency measure evaluates the equiva-
lence of multiple, “single-shot” captures within a static environment
by comparing subsequently captured images and point clouds. Notable
differences in single pixel intensity values for 2D images and geometric
3D measurements in point clouds can indicate a limited temporal consis-
tency due to noise and thus limited sensor reliability. A high temporal
consistency can indicate low noise and hence high confidence. However,
the consistency analysis requires a static scene that is typically available
prior to the navigation or manipulation task of the autonomous off-road
vehicle. The temporal consistency for 2D images (𝑐2D

TC) exploits the SSIM
and normalized root mean squared error (NRMSE) measures to compare
multiple 2D images of a static scene, as detailed in Section 4.1.4. Alterna-
tively, similarity measures from correlation-based disparity estimation
from stereo images methods such as SAD [139] can be utilized to deter-
mine the temporal consistency. The temporal consistency of 3D point
clouds (𝑐3D

TC) is evaluatedwith a 3D registration approach such as ICP [38].
The relative position and orientation are equivalent to the identity (𝟏) as
environment and platform are static. A low result for the 𝑒fs dissimilarity
score and a high number of correspondences indicates a high temporal
consistency of two subsequent point clouds. Furthermore, an outlier
detection with kNN filtering, as described in Section 4.2.1, can be used
to evaluate the temporal consistency for 3D point clouds. The number of
filtered outliers provides a reliability estimate for the 3D measurements
inside the 3D LiDAR, stereo, and RGB-D clouds. Here, 𝑐2D

TC and 𝑐3D
TC are

calculated as PPC and integrated into Equation 4.7 to Equation 4.9.

4.1.2 Confidence for 2D Images
Six confidence measures are proposed for the 2D confidence in addition
to 𝑐OT and 𝑐2D

TC:
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𝑐2D
OE, 𝑐2D

UE (PPC): overexposure and underexposure (see also expo-
sure and saturation for MEF in Section 4.4),
𝑐2D

H (PSC): contrast and information content (IC),
𝑐2D

S (PSC): similarity of stereo image pair,
𝑐2D

T (PSC): texture analysis and range filtering,
𝑐2D

GLCM (PSC): correlation (𝐺𝑐), homogeneity (𝐺ℎ), energy (𝐺𝑒) of
GLCM matrix.

Here, 𝑐2D
S , 𝑐2D

T , and 𝑐2D
GLCM are designed to assess the probability of correct

disparity estimations in the next processing step. A confidence estimate
close or equal to 1.0 represents the highest confidence, while a confidence
estimate close to 0.0 indicates a very low confidence.

The difference to the minimum (min(𝐼) = 0) and maximum intensity
(max(𝐼)) for each spectral channel and each pixel [𝑖, 𝑗] of an RGB image
is analyzed with 𝑐2D

OE and 𝑐2D
UE:

𝑐2D
OE[𝑖, 𝑗] = 1.0 −

(𝐼𝑏)𝜒 + (𝐼𝑔)𝜒 + (𝐼𝑟)
𝜒

3.0 ⋅ (max(𝐼))(𝜒) . (4.1)

The discrete, maximum luminous intensity max(𝐼) is derived from the
bit depth of the image, e.g., max(𝐼) = 255 for 8-bit images and different
weightings are tested via the power factor 𝜒. Multiplying with max(𝐼)
allows us to derive the color information for the visual analysis with
intensities [0, max(𝐼)𝐼]. The normalization with max(𝐼) yields confidence
values in [0, 1]. Underexposure is analyzed with 𝑐2D

UE:

𝑐2D
UE[𝑖, 𝑗] =

(𝐼𝑏)𝜒 + (𝐼𝑔)𝜒 + (𝐼𝑟)
𝜒

3.0 ⋅ (max(𝐼))(𝜒) . (4.2)

The global, per-sensor confidences PSC naturally equals 𝑐2D
OE, 𝑐2D

UE, 𝑐2D
T ,

etc., according to Equation 3.31.
Dataset assessment measures the IC of a 2D image based on its Shan-

non entropy (𝑐2D
H ) and compares the similarity of two image patches

with SSIM, as discussed in Sections 3.5 and 6.2.1.1. Hence, 𝑐2D
H for an

𝑁 × 𝑀 image or image patch 𝑚 is calculated with 𝑐2D
H = 𝐻𝑚/ max(𝐻). The

similarity confidence measure 𝑐2D
S for two 𝑁 × 𝑀 images or patches 𝑚

and 𝑛 is compared with SSIM and NRMSE, as detailed in Section 6.2.1.1:

𝑐2D
S = SSIM(𝑚, 𝑛) − NRMSE(𝑚, 𝑛)/ max(NRMSE(𝑚, 𝑛)). (4.3)
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Here, NRMSE = 0.0 and SSIM = 1.0 describe the equivalence of 𝑚 and 𝑛.
Naturally, a high IC of single images and a high similarity of the input
image pairs for stereo disparity estimation algorithms indicate a high
confidence.

Regular, repetitive color and intensity patterns, and the complete ab-
sence of texture complicate an accurate disparity estimation from stereo
images for local, correlation-based methods. Horizontal stereo camera
setups require preferably different color/intensity patterns in the horizon-
tal image direction. If a high amount of horizontally repetitive patterns
or texture elements are present within an image, a high confidence of the
3D stereo camera point cloud is improbable. Hence, 𝑐2D

T for horizontal
stereo camera setups evaluates the image’s texture for repetitive patterns
in the horizontal axis.

Beyerer et al. [16] state that texture analysis does not require an explicit
texture model. Thus, 𝑐2D

T relies on a feature-based texture analysis of
the grayscale conversion of the analyzed RGB images with statistical
texture properties. Range filtering in an 𝑛 × 𝑛 neighborhood is conducted
to derive 𝑐2D

T . Range filtering derives a range image in which each output
pixel contains the intensity difference within the 𝑛 × 𝑛 neighborhood
around the analyzed pixel of the input image. The selected sizes of the
𝑛 × 𝑛 neighborhood are derived from the size of the input image patches
for the subsequent local, correlation-based stereo matching method and
𝑛 = 9 and 𝑛 = 19 are compared for UEM-CNN proposed in Section 5.1.2.

For Fourier analysis, the input image is transferred to the frequency
domain, where higher frequencies indicate abrupt intensity transitions.
Peaks at certain frequencies can indicate repetitive image patterns in the
centralized magnitude of the Fourier spectrum facilitating qualitative
texture analysis similar to range filtering. To conclude, range filtering
and Fourier analysis support a qualitative user assessment of repetitive,
periodic textures on the input confidence for the subsequent disparity
estimation from stereo images algorithm prior to the sensing task.

Furthermore, 𝑐2D
GLCM was designed to analyze the spatial dependencies

of image pixels to other image pixels with the second-order statistics
correlation, homogeneity, and energy. Correlation measures the depen-
dency of a pixel intensity on the intensity of its neighbors with a value
between [−1, 1]. A high correlation indicates a high predictability of pixel
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relationships, according to Hall-Beyer [103], and a high number of repet-
itive structures inside an image. Homogeneity analyzes the closeness
of the element distribution to the diagonal of the GLCM matrix, where
monotonous images exhibit high values in the diagonal. In contrast, im-
ages with a notable texture exhibit low diagonal values and high values
in the upper right and the lower left corners of the GLCM matrix. Energy
is also designated uniformity, and calculates the sum of squared elements
of the GLCMmatrix in a range of [0, 1]. Here, high energy indicates a con-
stant image with a little amount of repetitive texture. Evaluation showed
that neither correlation nor homogeneity facilitates a statement on an
image’s suitability for disparity estimation from stereo images, as also
demonstrated in Table 4.1, and 𝐺𝑐 and 𝐺ℎ are not considered here for
confidence analysis. An energy 𝐺𝑒 ≈ 1 indicates a constant image with
little repetitive texture, and a low 𝐺𝑒 is preferable for disparity estimation
from stereo images. Thus, 𝑐2D

GLCM combines 𝐺𝑒 for different offsets 𝑏 with
𝑐2D

GLCM = (1.0 − 𝐺𝑒(𝑏)).

4.1.3 Confidence for 3D LiDAR Point Clouds
Thrun et al. [268] analyze noise, measurement failures, random measure-
ments, and unexpected objects for range finders such as LiDAR sensors
from a more mapping-oriented perspective as discussed in Section 2.3.1.
In contrast to [268], this thesis analyzes the confidence of 3D LiDAR
measurements independent of the subsequent processing module with
the following confidence measures:

𝑐3D
A (PSC): constant accuracy beam modeling (from datasheet),

𝑐3D
Rv

, 𝑐3D
Rh

(PPC): dynamic accuracy beam modeling,
𝑐3D

S (PSC): surface variation accord. to Equation 3.12,
𝑐3D
RS (PSC): occurrence of reflecting surfaces,

𝑐3D
PI (PSC): probability of precipitation impairment.

Nevertheless, measurement noise as proposed in [268] is considered
in 𝑐3D

A , 𝑐3D
Rh

, and 𝑐3D
Rv

. A probability estimate for measurement failures,
randommeasurements, and unexpected objects is included in 𝑐3D

RS and 𝑐3D
PI

with qualitative user estimates. The constant 3D measurement accuracy
𝛼𝑟 of rotating 3D LiDAR sensors can be extracted from the datasheet
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as inspired by [296], and 𝑐3D
A is determined in relation to the desired

3D measurement accuracy 𝛼𝑟,req:

𝑐3D
A =

{
1.0 − 𝛼𝑟

𝛼𝑟,req
𝛼𝑟 ≤ 𝛼𝑟,req

1.0 𝛼𝑟 > 𝛼𝑟,req.
(4.4)

The dynamically modeled beam resolution measure 𝑐3D
Rv

is derived from
the number of diodes and the vertical FoV 𝜏𝑣 that yield the angular
resolution 𝜏′

𝑣 and the metric resolution 𝛼′
𝑣 = 𝑟 ⋅ sin(𝜏′

𝑣). The 𝑐3D
Rh

measure
for rotating 3D LiDAR sensors with 𝜏ℎ = 360° is derived from the metric
resolution 𝛼′

ℎ = 𝑟 ⋅ sin(𝜏′
ℎ):

𝑐3D
Rv

= 1.0 −
𝛼′

𝑣
max(𝑟) ⋅ sin(𝜏𝑣)

, 𝑐3D
Rh

= 1.0 −
𝛼′

ℎ
max(𝑟)

. (4.5)

This naturally results in a high 𝑐3D
Rh

for a small and favorable 𝜏′
ℎ. If a

minimum measurement range is given for the respective LiDAR sensor,
𝑐3D

Rh
and 𝑐3D

Rv
can be set to zero for too close 3D measurements.

The surface variation measure 𝑐3D
S is determined, as detailed in Sec-

tion 3.6 and demonstrated in Section 6.2.1. A high surface variation 𝑠
indicates a rather unstructured character of the environment. As a result,
the sparse LiDARmeasurement may not be able to reconstruct all surface
geometries properly. A low 𝑠 shows a high number of smooth surfaces
in the captured environment. Thus, sparse LiDAR measurements have a
higher probability for a more accurate surface reconstruction. An evalua-
tion of 𝑠 is conducted in pre-modeling XAIwith IC-ACC (see Section 6.2.1).
The maximum max(𝑠) for normalization in 𝑐3D

S can be derived from Equa-
tion 3.11: the numerator is necessarily smaller than the denominator,
thus max(𝑠) ≤ 1.0 always holds, and 𝑐3D

S is calculated as 𝑐3D
S = 1.0 − 𝑠.

The environmental conditions for 𝑐3D
RS and 𝑐3D

PI can hardly be measured
and are hence integrated into the confidence assessment as qualitative
user estimates with 𝑐3D

RS , 𝑐3D
PI ∈ {0; 0.25; 0.50; 0.75; 1.0}, if sufficient knowl-

edge on the environmental conditions is available.
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4.1.4 Confidence for 3D Point Clouds from Stereo and
RGB-D Cameras

Four confidence measures are proposed for 3D point clouds from stereo
and RGB-D camera systems:

𝑐3D
𝜀𝑧

(PPC): theoretical depth accuracy 𝜀𝑧,
𝑐3D

S (PSC): surface variation accord. to Equation 3.12,
𝑐3D

εx
(PPC): theoretical resolution in 𝑥 axis,

𝑐3D
εy

(PPC): theoretical resolution in 𝑦 axis.
The theoretical accuracies 𝑐3D

εx
, 𝑐3D

εy
, and 𝑐3D

𝜀𝑧
are analyzed separately, simi-

lar to the TVU and THU concept in the subsea domain discussed in Sec-
tion 2.3.1. Wolf and Berns [296] propose a quadratic error modeling for
disparity estimation from stereo images. The quadratic nature of 𝜀𝑧 in
𝑐3D

𝜀𝑧
takes up this idea. It is designed as anti-proportional to the stereo

camera depth estimation accuracy 𝜀𝑧 in Equation 3.17 with a predefined
maximum tolerable depth inaccuracy max 𝜀𝑧 and already includes an
estimate on the expected accuracy of the disparity estimation with 𝜀𝑑:

𝑐3D
𝜀𝑧

= 1.0 −
𝜀𝑧

max(𝜀𝑧)
for 𝜀𝑧 ≤ max(𝜀𝑧), else ∶ 𝑐3D

𝜀𝑧
= 0.0. (4.6)

The surface variation indicates a scene’s structured or unstructured char-
acter and is measured on the LiDAR cloud, as detailed for 𝑐3D

S . Here, it
is assumed that the inherent discretization in disparity estimation from
stereo images implies a less accurate 3D reconstruction of environments
with a high surface variation.

The theoretical resolutions 𝑐3D
εx

and 𝑐3D
εy

are derived from 𝜀𝑥 = Δ𝑥/𝑁 and
𝜀𝑦 = Δ𝑦/𝑀 for an image with 𝑁 × 𝑀 pixels that covers an area of Δ𝑥 m ×
Δ𝑦 m and calculated according to Equation 4.6 with max(𝜀𝑥) = max(𝜀𝑦) =
max(𝜀𝑧). However, the 3D reconstruction inaccuracies introduced by 𝜀𝑥
and 𝜀𝑦 are notably smaller than the depth estimation inaccuracy 𝜀𝑧 and
were mostly negligible in the confidence analysis of 3D stereo and RGB-D
camera clouds.
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4.1.5 2D and 3D per Sensor Confidence
The empirical mean of all PPC values yields the PSC for each 2D confi-
dence measure. The PSC estimates, designated 𝑐2D

𝑖 , for applicable confi-
dence measures 𝑖 are combined in 𝑐2D:

𝑐2D
𝑖 =

∑𝑁
𝑗=1 ∑𝑀

𝑘=1 𝑐2D
𝑖 [𝑗, 𝑘]

𝑁 ⋅ 𝑀
, 𝑖 ∈ {OE,UE,TC}, (4.7)

𝑐2D = 𝑐2D
OT ⋅ 𝑐2D

TC ⋅ 𝑐2D
𝑖 , 𝑖 ∈ {OE,UE, H, GLCM, T, S}, (4.8)

with 𝑐2D
𝑖 the empirical mean of all confidence estimates 𝑐2D

𝑖 . The esti-
mated 𝑐2D values are input to the confidence assessment of the 3D stereo
camera point cloud and provide an a priori confidence for disparity esti-
mation from stereo images. The 2D confidence estimates are designed to
assess the potential benefit of generating and integrating a 3D cloud from
the disparity estimation from stereo image results. Hence, generating
disparity estimation from stereo images for sufficiently confident images
implies a tight coupling of perception and validation.

The 𝑐3D estimates for LiDAR, stereo camera, and RGB-D camera clouds
are determinedwith conditional probabilities similar to a Bayesian fusion
approach, as proposed in [245] and discussed in Section 2.4.3:

𝑐3D
S,𝑗 = 𝑐3D

S,OT ⋅ 𝑐3D
S,TC ⋅ 𝑐2D ⋅ 𝑐3D

𝑖,𝑗 , 𝑖 ∈ {εz, S, εx, εy}, (4.9)

𝑐3D
L,𝑗 = 𝑐3D

L,OT ⋅ 𝑐3D
L,TC ⋅ (𝑐3D

𝑖,𝑗 + 𝑐3D
𝑘 ), 𝑖 ∈ {Rv, Rh}, 𝑘 ∈ {A, S,RS,PI}. (4.10)

If 𝑐TC estimates are not available, 𝑐TC = 1.0 is set.
The proposed confidence estimation process yields one confidence

measure 𝑐3D
L,𝑗 or 𝑐3D

S,𝑗 for each individual 3D measurement 𝑗. Confidence
estimates can be applied to filter raw perception data without a sub-
sequent fusion, or they can provide an input to the confidence-based
3D–3D fusion process detailed in Section 5.3. Furthermore, the estimated
confidences are also applicable for other subsequent processing steps,
such as a confidence-aware and adaptive mapping, planning, and control
discussed in Section 7.2.
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Image 𝑚GLCM 𝐺𝑐 𝐺𝑒 𝐺ℎ 𝑐2D
GLCM 𝑐2D

UE(𝜒) 𝑐2D
OE(𝜒) 𝑐2D

H 𝑐2D

Figure 4.1(a) 1 0.996 0.197 0.969 0.833 0.678 0.659 0.897*1 0.813*2

Figure 4.1(a) 9 0.963 0.160 0.879 0.833 0.678 0.659 0.897*1 0.813*2

Figure 4.1(a) 19 0.937 0.145 0.833 0.833 0.678 0.659 0.897*1 0.813*2

White image – undef. 1.0 1.0 0.0 1.0 0.0 0.0 0.375*2

Black image – undef. 1.0 1.0 0.0 0.0 1.0 0.0 0.375*2

*1 𝐻(Fig. 4.1(a)) = 7.174 with max(𝐻) = 8.0 for a 1296 × 964 px 8-bit image.
*2 𝑐2D

OT = 𝑐2D
TC = 𝑐2D

T = 1.0.

Table 4.1 2D confidence analysis with 𝑚GLCM ∈ {1, 9, 19} and 𝜒 = 3.0.

4.1.6 Proof of Concept: Sensor Data Confidence
Sensor Outage, Temporal Consistency, and Outlier Filtering. The detec-
tion of sensor outages with rostopic hz is trivial. Shannon entropy
and surface variation for 𝑐2D

H and 𝑐2D
S are illustrated in Section 6.2.1.1 and

6.2.1.4, while kNN outlier filtering for 3D point clouds is demonstrated
in Section 4.2.4.

Confidence of 2D Images. Figure 4.1 demonstrates the pixel-wise OE
and UE confidence measures for 2D images. A power factor 𝜒 ≥ 1.0 for
OE and UE yields a lower weighting of the intensity differences in con-
trast to 𝜒 = 1.0 where 𝑐2D

UE equals a grayscale image and 𝑐2D
OE an inverted

grayscale image of the RGB image. The OE and UE measures facilitate
a scalable, quantitative consideration of the sensitivity of a subsequent
disparity estimation method for overexposure and underexposure. A
higher 𝜒 weights low probabilities for overexposure and underexposure
less than 𝜒 = 1.0 and 𝜒 = 3.0 or higher has proved useful for disparity es-
timation methods that cope well with overexposure and underexposure,
such as UEM-CNN (see Section 5.1.2).

Figure 4.1(a) depicts the exemplary IOSB-Reg image chosen to demon-
strate range filtering facilitating a fast visual analysis of intensity changes
on edges and possibly repetitive patterns. As expected, range filtering
of Figure 4.1(a) did not indicate a high amount of periodic, repetitive
texture elements and 𝑐2D

T = 1.0 is set. Table 4.1 presents the results of the
confidence analysis of Figure 4.1(a).
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4 Low-level Perception

(a) Original 2D RGB image. (b) 𝑐2D
UE for 𝜒 = 3.0, 𝑐2D

UE = 0.678.

(c) 𝑐2D
OE for 𝜒 = 3.0, 𝑐2D

OE = 0.659.

(d) Range filtering 9 × 9. (e) Range filtering 19 × 19.

Figure 4.1 2D confidence measures for an exemplary IOSB-Reg image. White
with 𝐼 = max(𝐼) highlights high confidence, black color with 𝐼 → 0 indicates low
confidence. Images (d) and (e) show range filtering results for (a).
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Measure Value Justification

𝑐3D
A 1.0 𝛼𝑟 ± 2 cm, min. 𝛼𝑟,req = 5 cm

𝑐3D
Rv

(𝑟 = 10 m) 0.999 𝛼′
𝑣 = 𝑟 ⋅ sin(0.4°) = 0.07 m

𝑐3D
Rv

(𝑟 = 100 m) 0.985 𝑟 = max(𝑟) = 100 m, 𝛼′
𝑣 = 0.698 m

𝑐3D
Rh

(𝑟 = 100 m) 0.999 𝛼′
ℎ = 0.140 m

Table 4.2 3D confidence analysis for Velodyne HDL-64E point clouds with
𝜏ℎ = 360°, 𝜏𝑣 = 26.9°, 𝜏′

ℎ = 0.08°, 𝜏′
𝑣 = 0.4°, and max. measurement range max(𝑟).

Confidence of 3D LiDAR Point Clouds. Table 4.2 demonstrates that
comparatively high confidence is estimated for 3D LiDAR point clouds
if no sensor outage occurs. This corresponds with the high importance
of rotating 3D LiDAR sensors in the perception sensor setup for off-road
vehicles in unstructured environments. Equidistant beam distribution
for the HDL-64E sensor with 64 diodes confirms 𝜏′

𝑣 = 26.9°/64 = 0.420° ≈
0.4°. Qualitative user estimates are required for 𝑐3D

RS and 𝑐3D
PI . For instance,

𝑐3D
RS = 0.50 proved useful for a rainy daywith small puddles and 𝑐3D

RS = 0.0
for heavy snowfall. For amedium or high presence of reflecting surface in
the close range of the vehicle, 𝑐3D

PI = 0.50 or 𝑐3D
PI = 0.25 provide satisfying

results, while 𝑐3D
PI = 1.0 is recommended in their absence.

Confidence of 3D Stereo and RGB-D Clouds. An exemplary 𝑐3D
𝜀𝑧

value for a JAI AD-130GE camera, as discussed in Section 3.8 is de-
rived as 𝜀𝑧 = 0.704 m, 𝜀𝑑 = 3 px, and an exemplary max(𝜀𝑧) = 1.0 m yield
𝑐3D

𝜀𝑧
(𝑟 = 10 m) = 0.296. The surface variation measure 𝑐3D

S,S is equivalent
to the LiDAR cloud L. The theoretical accuracies 𝑐3D

εx
and 𝑐3D

εy
can be

demonstrated on an exemplary, captured area of 13.0 m × 9.67 m with
𝜀𝑥 = 𝜀𝑦 = 0.01 m and yields 𝑐3D

εx
= 𝑐3D

εy
= 1.0.

4.2 3D–3D Registration of Similar-Source Data
Direct registration approaches facilitate the registration of similar-source
LiDAR sensor data [323] and are thus preferred to register multiple
LiDAR sensors to a common vehicle coordinate system as they yield
accurate, stable results with comparatively low computation effort. As
discussed Section 2.3.3, more complex cross-source registration methods
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Multiple LiDAR
sensors

Extrinsic
calibration of
merged cloud
to next LiDAR

cloud

Extrinsic
calibration

of first
LiDAR pair

Pick 
first pair

Merge clouds
with calibration

result
…

Merge

Extrinsic calibration for all LiDAR sensors
Result: one merged point cloud that contains all LiDAR measurements

Calibration to
vehicle frame

Point cloud
of 3D model

Figure 4.2 Registration approach according to [323]: the LiDAR clouds colored
yellow and green are the first pair for extrinsic calibration, subsequently the
merged LiDAR cloud (yellow and green) is registered to the LiDAR represented
by the purple circle, etc. After extrinsic calibration and sensor data registration,
the merged LiDAR cloud is registered to the vehicle frame.

are not required for similar-source data. This thesis avoids methods with
calibration targets [49, 78, 158, 207] or additional sensor data as proposed
in [247] to facilitate a generically applicable sensor calibration for different
sensor setups and platforms and without human intervention, especially
in hazardous environments.

This thesis proposes an enhanced GICP: a combination of GICP [250]
registration, as detailed in Section 3.10, with customized preprocessing
and enhanced surface estimation for registration to determine the ex-
trinsic sensor calibration of multiple 3D LiDAR sensors to an off-road
vehicle. The registration of the LiDAR sensors to the vehicle frame ex-
ploits a synthetically generated point cloud from the vehicle’s 3D model
via the platform’s computer-aided design (CAD) data. Figure 4.2 provides
an overview of the subsequently discussed registration approach [323].
Rough estimates of the relative sensor poses and the rough estimate of
one sensor relative to the vehicle coordinate system present the single
user-generated step in the presented registration procedure. The captured
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LiDAR data is visualized with rviz1, bound to so-called 3D interactive
markers, and the user moves and rotates the markers until the clouds
are roughly visually aligned. These initial pose estimates were utilized
during preprocessing and also achieved a useful initial cloud alignment
for the locally operating GICP algorithm that provided an optimization
constraint to limit faulty local convergence without the need for on-site
measurements by hand. This way, the sole manual step in calibration
can also be performed on recorded sensor data and thus decentralized
after data capture. Further on, registration is also designated as merge
highlighting the merge process of point clouds.

4.2.1 Preprocessing
Three preprocessing steps are proposed to optimize the registration
process for similar-source 3D–3D data. Most LiDAR sensors require a
minimum distance 𝑟min for valid measurements. If so, only points
𝐩𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]∗ with

‖𝐩𝑖‖ = 2
√(𝑥2

𝑖 + 𝑦2
𝑖 + 𝑧2

𝑖 ) ≥ 𝑟min (4.11)

are kept for further processing. Outliers do not benefit registration ac-
curacy, and their elimination improves the registration accuracy, which
yields more robust registration results. To this end, separate preprocess-
ing (SPP) treats each cloud independently of the other clouds [323] and
is conducted for all LiDAR clouds during extrinsic calibration: outliers
are filtered using a kNN search for each 𝐩𝑖 in a search sphere of ratio 𝑟.
A minimum number of neighbors inside this sphere is required so that
the analyzed point is not eliminated as outlier.

A third preprocessing step removes areas only captured in one of the
two point clouds and thus non-applicable for registration. This prepro-
cessing is denoted as initial transformation preprocessing (ITP) as it
exploits the user-generated initial transformation estimates to align the
clouds roughly. Similar to SPP, different sphere ratios for the kNN search
and minimum numbers of neighbors were evaluated. ITP is conducted
for all pairs in the first calibration step, and only points fulfilling the

1 wiki.ros.org/rviz, access on 30.12.2021.
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constraint specified in Equation 4.11 are kept for the GICP registration
step.

Furthermore, a maximum distance of the points in the merged LiDAR
cloud from the origin can be derived from the vehicle’s geometry for the
registration to the vehicle frame. A maximum of 𝑟 = 2.5 m was applied
for the IOSB.BoB platform because it is a small platform, and no sensor
can ever be further away. In addition, filtering 3D points that cannot be
detected by the LiDAR sensors from the 3D model cloud with backface
culling, a method to determine whether a polygon is visible from a
certain viewpoint, further improved the calibration result. The normal
information for backface culling is extracted from a COLLADA file, and
contains the direction and sign of the normal vector.

One-to-many correspondences assign one point of the target cloud
to multiple points in the source cloud. They lead to a high 𝑒fs despite a
proper registration result and can be analyzed for additional verification
of the selected GICP parameters, as elaborated in Section 4.2.4. One-to-
many correspondences especially occur in point clouds with notably
different point densities or numbers of points.

4.2.2 Extrinsic Calibration with Enhanced GICP
The preprocessed 3D point clouds are input to the registration process
outlined in Figure 4.2, and registration using the extrinsic sensor cali-
bration results facilitates the fusion of all individual point clouds into
one point cloud. This fused point cloud is subsequently referenced to
the coordinate system of the platform by registering it to the 3D cloud
extracted from its 3D CADmodel, as detailed in Section 4.2.3. At first, the
obtained point clouds are registered in pairs to determine the extrinsic
calibration of the respective sensors using the GICP algorithm [250]. The
sensor order is crucial, and the GICP registration accuracy is measured
with the Euclidean fitness score given in Equation 3.28. A sufficiently
large FoV has to be shared for proper registration; otherwise, inaccurate
registration results or too little correspondences for convergence of GICP
are found. Using an appropriate selection and merging instead of single
point clouds for registration, the 𝑒fs can be reduced bymore than 60%, as
demonstrated in [323]. The LiDAR that provides the largest, most dense
point cloud is selected as the target LiDAR sensor and determines the
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coordinate system for the subsequent merge processes. The respective
source cloud is merged in the coordinate system of the target LiDAR
using the GICP registration result. The merged source-target cloud is
registered to the next point cloud that shares a maximally large com-
mon FoV. Again, the registered point clouds are merged in the frame
of the target LiDAR. This procedure is repeated until all LiDAR clouds
are merged into one cloud. An additional visual assessment is applied
within this thesis to check for faulty convergence in local minima.

Furthermore, this thesis proposes an enhanced GICP parameterization
optimized for the registration of 3D LiDAR point clouds from unstruc-
tured environments. A special focus is on the point set considered for
the normal estimation with SVD. Consequently, the following parameter-
izations were evaluated on real-world data, as detailed in Section 4.2.4:

1. Correspondence randomness (CR),
2. The maximum of the correspondence distance (𝑟𝐶),
3. GICP convergence criterion 𝜀EF: Euclidean fitness epsilon,
4. GICP convergence criterion 𝛿: maximum difference of two consec-

utively estimated transformations,
5. GICP convergence criteria 𝜀𝑅,𝜀𝑇: maximum difference of two con-

secutive rotations (R) or translations (T) in 𝛿.
Here, CR defines the number of nearest neighbor points considered in
calculating the empirical covariance ∑̂. The maximum distance between
a point set 𝐩𝑠 and 𝐩𝑡 to be accepted as correspondences is designated
max(𝑟𝐶), while 𝜀EF defines the maximum 𝐿2 error of consecutive trans-
formation estimates weighted with the number of correspondences, as
detailed in Equation 6.7. The convergence criterion 𝛿 is the maximally
allowed difference of consecutively estimated transformations, weighted
with 1/𝜀𝑅 and 1/𝜀𝑇. The weighting parameters 𝜀𝑅 and 𝜀𝑇 are input to the
convergence criterion 𝛿.

4.2.3 Registration to the Vehicle Frame
The calibration to the vehicle coordinate system exploits a registration of
the synthetically generated point cloud from CAD data and the LiDAR
measurements in themerged cloud from extrinsic calibration. Technically,
the registration of the merged cloud to the 3D model cloud is a cross-
source 3D–3D registration. However, the 3D model and the LiDAR cloud
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are both accurate and structurally similar, and the point density of the
3D model cloud can be adjusted to the cloud density of the LiDAR cloud.
The merged LiDAR cloud is generated from multiple, rotating 3D LiDAR
sensors in different orientations, and the LiDAR ring structure is lost.
Hence, customized preprocessing for both 3D point clouds facilitates
the direct registration of a 3D cloud from multiple LiDAR sensors to a
3D cloud extracted from CAD data with the proposed enhanced GICP
algorithm.

The merged LiDAR cloud contains all LiDAR measurements in the
coordinate system of one selected LiDAR sensor and constitutes the reg-
istration source. The source cloud primarily contains points representing
vehicle elements within the FoV of the merged LiDAR cloud, such as the
boom, dipper stick, and excavator bucket. ITP preprocessing removes all
LiDAR points that do not benefit the registration step using the initial
transformation estimate. The preprocessed source cloud is then regis-
tered to the 3D model cloud with ground truth normal information. The
optimal alignment of these clouds estimates the pose of the main LiDAR
sensor in relation to the vehicle frame. From here, the extrinsic calibra-
tion results facilitate the determination of all sensor poses relative to the
common vehicle frame.

The 3Dmodel of the platform provides accurate geometric information
for the target cloud, as proposed in [75]. The SVD of the covariance
matrix estimates the normal information for the merged LiDAR cloud,
as discussed in Section 3.6. A fixed number of neighboring points for
calculating the covariance matrix is compared to the consideration of
all neighboring points inside a sphere with ratio 𝑟 around a point 𝐩𝑖
according to Equation 4.11. Contrasting extrinsic calibration, the normal
information from the CAD model replaces the normal estimation via
SVD.

CAD models commonly contain geometric information as triangle
structures, and 3D vertices specify the locations of the triangle corners.
Depending on the structure of the CAD model, each element of the
platform, such as dipper stick, boom, or undercarriage for an excavator, is
given separately or already integrated into one complete model. In either
case, the generation of a point cloud from the vertices is not sufficiently
dense to register another point cloud onto it. Densification is required
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to fill the areas inside the vertex triangles with additional points. The
parameter form of the plane equation specifies a plane 𝑃3𝐷 in 3D space
that contains the points 𝐩𝑎, 𝐩𝑏, and 𝐩𝑐 as

𝑃3𝐷 = 𝐩𝑎 + 𝑟(𝐩𝑏 − 𝐩𝑎) + 𝑠(𝐩𝑐 − 𝐩𝑎), (4.12)

with the scalar values 𝑟 and 𝑠. The straight line 𝐿3𝐷 through 𝐩𝑏 and 𝐩𝑐 is
defined by 𝐿3𝐷 = 𝐩𝑏+𝑡(𝐩𝑐−𝐩𝑏). For 𝑡 ∈ [0, 1], the points lie between 𝐩𝑏 and
𝐩𝑐. The distance of an arbitrary point 𝐩𝑒 from a straight line 𝐿3𝐷

𝑓 through
𝐩𝑓 is calculated from (𝐩𝑐 − 𝐩𝑏)(𝐩𝑓 − 𝐩𝑒) = 0 using the perpendicular
line 𝐿3𝐷

𝑒𝑓 with 𝐿3𝐷
𝑒𝑓 ⟂ 𝐿3𝐷

𝑓 . For a fixed 𝑡, 𝐩𝑓 can also be calculated from
𝐩𝑓 = 𝐩𝑏 + 𝑡 ⋅ (𝐩𝑐 − 𝐩𝑏). Furthermore, 𝐩𝑒 is also described by

𝐩𝑒 = 𝐩𝑎 + 𝑟 ⋅ (𝐩𝑏 − 𝐩𝑎) + 𝑠 ⋅ (𝐩𝑐 − 𝐩𝑎). (4.13)

This can be transformed to

𝑡 =
(𝐩𝑏 − 𝐩𝑎 − 𝑟(𝐩𝑏 − 𝐩𝑎) − 𝑠(𝐩𝑐 − 𝐩𝑎))(𝐩𝑐 − 𝐩𝑏)

‖𝐩𝑐 − 𝐩𝑏‖
2 (4.14)

with fixed values 𝑟 and 𝑠. The centroid of all triangles 𝐩𝑎, 𝐩𝑏, and 𝐩𝑐, as
well as points with 𝑡 ∈ [−1, 1], lie inside the triangle area. The point 𝐩𝑒
with 𝑡 ∈ [−1, 1] lies in the vertex triangle defined by the vertex points 𝐩𝑎,
𝐩𝑏, and 𝐩𝑐 for

|𝐩𝑒𝐿3𝐷
𝑒𝑓 | ≥ √(𝐿3𝐷

𝑎𝑓 )2 + (𝐿3𝐷
𝑎𝑒 )2. (4.15)

For 𝑡 ∈ [−1, 1] and the constraint in Equation 4.15, the vertex triangles can
be filledwith points, and a dense point cloud is generated as a registration
target. If single platform elements are given, dense clouds are generated
for all individual platform elements and subsequently fused into one
coordinate system to form a 3D model cloud for registration.

Two vectors, which are orthonormal to the given surface normal vector
𝐧, are calculated. The first two elements of one orthonormal vector 𝐚 (𝑎(0),

89



4 Low-level Perception

𝑎(1)) as well as the first element of the second orthonormal vector 𝐛 (𝑏(0))
can be chosen randomly. The other elements are calculated with

𝑎(2) =
−(𝑛(0)𝑎(0) + 𝑛(1)𝑎(1))

𝑛(2)
(4.16)

𝑏(1) =
−(𝑏(0)𝑎(0) + 𝑏(2)𝑎(2))

𝑎(1)
(4.17)

𝑏(2) =
𝑏(0)(𝑛(1)𝑎(0) − 𝑛(0)𝑎(1)

𝑎(1)𝑛(2) − 𝑎(2)𝑛(1)
, (4.18)

and 𝐚 and 𝐛 are normalized and form an orthonormal basis with 𝐧.
Furthermore, an arbitrary point 𝐩𝑠 cannot lie on a platform element and
is eliminated if its surface normal 𝐧𝑠 does not fulfill

𝜋
2

≤ arccos ‖𝐧𝑠 • (𝐩𝑠 − 𝐩𝑜)‖
‖𝐧𝑠||(𝐩𝑠 − 𝐩𝑜)‖

, (4.19)

with • the dot product and 𝐩𝑜 the origin of the sensor coordinate system.
The ground surface can be used as an additional registration element

besides the platform parts captured by the LiDAR sensors, and this can
increase the accuracy and robustness of the registration. It requires the
assumption of a flat ground surface and the integration of an artificial
ground plane in the 3D model cloud. The orientation of the undercar-
riage in the 3D model determines the orientation of the artificial ground.
Alternatively, the ground plane can be eliminated from the source point
cloud using the RANSAC algorithm with a 2D plane model [323].

4.2.4 Proof of Concept: Extrinsic Calibration
The proposed 3D–3D registration method with extrinsic sensor calibra-
tion is demonstrated for three Velodyne VLP-16 LiDAR sensors on the
IOSB.BoB platform, as shown in Figure 1.3. The LiDAR clouds are prepro-
cessed prior to extrinsic calibration with SPP, ITP, and an experimentally
justified minimum distance 𝑟min = 0.85 m as a trade-off between close
range measurements and the minimum distance for valid measurements
indicated in the datasheet2. Figure 4.3 shows the outlier filtering re-

2 Velodyne LiDAR: https://velodynelidar.com/products/puck/, access on 24.04.2022.
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SPP result in bird’s-eye view.

Figure 4.3 Outlier filtering with SPP conducted with a min. of 10 neighbors in
𝑟 = 0.15 m and points inside the red box were removed as outliers.

sults with SPP, and Table 4.4 shows that SPP notably reduces the 𝑒fs of
the GICP-registered point cloud. A minimum of 10 neighbors within
a sphere of 𝑟 = 0.15 m achieved the lowest 𝑒fs with manually verified
alignment and a sufficient number of correspondences. ITP yielded the
lowest 𝑒fs in combination with a visually verified transformation result
for a minimum of 400 neighboring target points in 𝑟 = 1.5 m and reduced
the 𝑒fs to less than 2% compared to the 𝑒fs without preprocessing [323].

The point clouds from the left and right LiDAR sensor were registered
at first as they shared the largest common FoV. Subsequently, the clouds
of the left and right LiDAR were fused into one cloud. This fused cloud
provided the registration target for the point cloud from the LiDAR sensor
mounted to the boom of IOSB.BoB. Table 4.3 summarizes the proposed
enhanced GICP parameterization to register multiple 3D LiDAR sensors
without calibration targets in unstructured environments and compares
them to the parameter recommendations of [250].

The influence of one-to-many correspondences was examined for reg-
istering the left LiDAR cloud to the right LiDAR cloud and showed that
eliminating the target points with more than 50 one-to-many correspon-
dences reduces the 𝑒fs from 2.167m2 to 0.060m2 (see also Table A.1).
Allowing up to 100 one-to-many correspondences per target point did
not further decrease the 𝑒fs. This filtering did neither influence the con-
vergence nor the registration result, so it is not used in the final 3D–3D en-
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Registration using the extrinsic calibration result.

Figure 4.4 Registration using the extrinsic calibration result of first LiDAR pair
in bird’s-eye view; side walls and polystyrene blocks next to the bucket illustrate
the registration accuracy. The 𝑥 axis is colored red, 𝑦 green, and 𝑧 blue.

hanced GICP registration for similar-source clouds. However, it showed
the limits of the 𝑒fs metric to assess the registration accuracy and verified
the parameter selection for the presented, enhanced GICP.

Table 4.4 shows the achieved calibration accuracy in terms of 𝑒fs. Par-
tially unstructured outdoor environments (PUO) and structured outdoor
environments (SO) were evaluated separately. The selection of the boom
and left LiDAR sensors as the first calibration pair did not yield satisfac-
tory results, and a large common FoV for the left and right LiDAR clouds
notably lowered the 𝑒fs. Both proposed preprocessing methods lowered
the 𝑒fs and increased the registration accuracy. The lower registration
accuracy for the PUO scene compared to the SO scene highlights the
difficulty of registering sensor data from unstructured environments.

The measurement accuracy of Velodyne VLP-16 LiDAR sensors3 is
±0.03m. For the left and right LiDAR sensor, the relative translation
could be measured by hand and amounted to 1.07m. The registration
accuracy achieved with the proposed enhanced GICP equaled the sensor

3 Velodyne LiDAR: https://velodynelidar.com/products/puck/, access on 24.04.2022.
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Figure 4.5 Registration result exploiting the determined extrinsic calibration of
the LiDAR mounted below the excavator boom (red, source) to the merged point
cloud from first LiDAR pair (green, target) with three side walls [323].

measurement noise with a registration result of 1.07m ± 0.03m for the
relative translation on different datasets.

Figure 4.4 shows the registration results exploiting the extrinsic cali-
bration for the first (left) and second (right) LiDAR sensor mounted to
the sides of the excavator cabin, and Figure 4.5 depicts the registration
results of the third LiDAR sensor mounted on the boom in a different
orientation to the left and right LiDAR sensors.

To conclude, a valid extrinsic calibration of multiple LiDAR sensors
with a correct and robust estimation of translation and rotation could be
achieved with the proposed preprocessing and GICP enhancements in
unstructured environments. At least one surface not being aligned with
the roll or yaw axis of the vehicle had to be captured by all LiDAR sen-
sors in addition to the ground plane. With these requirements, accurate
extrinsic calibration of LiDAR sensors without additional calibration ob-
jects and manual measurements in a partially unstructured environment
could be provided.

4.2.5 Proof of Concept: Registration to the Vehicle Frame
The CAD model point cloud was extracted from the COLLADA data of
the IOSB.BoB platform, and a dense point cloudwith normal information
was generated as described in Section 4.2.3. SPP of the merged LiDAR
cloudwith aminimumof 1000 neighboring points in 𝑟 = 0.15m preserved
the LiDAR measurement points lying on the excavator boom, dipper
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Parameter Segal et al. [250] Extrinsic Vehicle

𝑟, SPP – 0.15m 0.15m
min(NN), SPP – 10 1000
𝑟, ITP – 400 –
CR 20 100 –1

𝑟, SVD1 – – 0.40m
𝜀EF 1 m2 1.0m2 1.0m2

max(𝑟𝐶) 5m 1.5m 1.0m
𝛿 1 1 1
𝜖𝑅, 𝜖𝑇 0.001 10−4 10−4

1 SVD normal estimation in sphere of 𝑟.

Table 4.3 Enhanced GICP parameterization for the 3D–3D registration of similar-
source data from unstructured environments to extrinsically calibrate (and regis-
ter) multiple Velodyne VLP-16 3D LiDAR sensors without additional calibration
targets: extrinsic LiDAR calibration and registration (Extrinsic) and registration
to the excavator vehicle frame (Vehicle).

stick, and bucket and eliminated most (around 78%) of the LiDAR points
lying outside the region of interest for registration. The normal estimation
for the merged source LiDAR cloud inside a specified sphere with ratio
𝑟 lowered the 𝑒fs and also increased the number of correctly estimated
DoF for all evaluated diameters 𝑟 ∈ {0.10 m; 0.25 m; 0.40 m} in contrast to
the normal estimation proposed by [250]. The lowest 𝑒fs of 0.022m2 and
highest number of correctly estimated DoF was achieved with 𝑟 = 0.25 m
and a lowered excavator arm. Only the assumption of a flat ground
surface and the addition of an artificial ground plane inside the CAD
model cloud achieved a stable and valid registration with a low 𝑒fs score
for all evaluated diameters 𝑟. The lowest mean 𝑒fs with a virtual ground
surface was 0.014m2 with 𝑟 = 0.40 m, while 𝑟 = 0.10 m and 𝑟 = 0.25 m
yielded a mean 𝑒fs of 0.015m2. Figure 4.6 illustrates the registration
result exploiting the determined calibration to the vehicle frame of the
IOSB.BoB platform.

For the presented application on the IOSB.BoB excavator, at least one
LiDAR sensor had to capture parts of the boom, the whole bucket, and
a sufficiently large part of the dipper stick. It was necessary to perform
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Source Target 𝑒fs Preprocessing Data

Left Right 4.340m2 – SO
Left Right 2.169m2 SPP SO
Left Right 2.566m2 SPP PUO
Left Right 0.064m2 SPP, ITP PUO
Left Boom 20.016m2 – SO
Boom Left 0.319m2 – SO
Boom Merged Left–Right 0.294m2 – SO
Boom Merged Left–Right 4.661m2 – PUO
Boom Merged Left–Right 0.292m2 SPP SO
Boom Merged Left–Right 0.186m2 SPP PUO
Boom Merged Left–Right 0.137m2 SPP, ITP PUO

Table 4.4 Similar-source 3D–3D registration accuracy exploiting extrinsic calibra-
tion with enhanced GICP according to Table 4.3 for different source and target
clouds captured in outdoor environments. The 𝑒fs values are empirical mean
values from different SO and PUO scenes. SPP with a min. of 10 neighbors in 𝑟 =
0.15m, ITP with a min. 400 neighbors in 𝑟 = 1.5m.

the registration on flat ground with an artificial, flat ground plane inside
the model cloud to achieve valid and accurate registration to the vehicle
frame, and a sufficiently lowered arm is required to capture the dipper
stick. As the position of the excavator’s arm can also be adjusted in
autonomous or teleoperation from a distance, this requirement could
always be met.
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Figure 4.6 Registration to the vehicle frame [323]: the preprocessed LiDAR source
cloud (gray) was registered to the 3D model target cloud assuming an approxi-
mately flat ground (red).

4.3 UCSR: Confidence-Based Registration
Framework for Cross-Source Sensor Data

The unstructured cross-source registration framework UCSR facilitates a
confidence-based fusion of registration results from different registration
methods. This implies the tightly coupled validation of the registration
results and yields higher robustness in case of errors or inaccuracies,
such as noise or difficult environments, compared to the registration
with individual methods as the results of more accurate methods are
considered with a higher weighting.
UCSR includes the presented cc23, cnn23, and graph33 methods as

summarized in Figure 4.7. The graph33 method is integrated as one 3D–
3D registration method that requires the availability of a stereo camera
system and comes with the inherent depth estimation inaccuracies dis-
cussed in Section 3.8, while dsm33 is intended as a first proof of concept
for the successful 3D–3D registration of data from unstructured envi-
ronments with neural networks. It was not integrated in UCSR as it cur-
rently implies similar depth estimation inaccuracies as graph33 limiting
its contribution to a higher registration accuracy. Section 4.3.1 details the
confidence-based fusion of individual registration results. The individ-
ual registration methods developed cc23, graph33, cnn23, and dsm33 are
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introduced and demonstrated in Section 4.3.2 to 4.3.5. Section 4.3.6.1 com-
pares the two proposed, classic registration methods cc23 and graph33,
while Section 4.3.6.2 contrasts the cnn23 and dsm33 methods that rely
on neural networks. Finally, Section 4.3.7 demonstrates the proposed,
confidence-based UCSR registration framework [329].

4.3.1 Tight Coupling to Validate Registration Results
UCSR analyzes the strengths and weaknesses of individual registration
methods and their correlations to the input data characteristics. It com-
bines the registration results for equivalent sensor setups in multi-sensor
systems estimated from different registration methods into one validated
extrinsic sensor calibration by sensor data registration. The estimated
accuracy, reliability, and tolerance to noise measure the confidence of the
registration results determining the weights in the fusion process and
improves the registration of cross-source data qualitatively and quantita-
tively.

Each registration method included in the UCSR framework yields one
independent registration solution, a relative pose from camera to LiDAR.
The discussed visual overlay can confirm the validity of each registration
result, and only valid registration results are considered in UCSR. The
best transformations in terms of the Frobenius norm 𝐹 are used for the
confidence-based fusion inUCSR as 𝐹 directly evaluates the difference be-
tween the different transformations achieved by the multiple registration
methods in UCSR. Prior empirical evaluations showed that accuracies
in the range of single-digit centimeters could provide a functional re-
construction of the environment for autonomous off-road vehicles [216,
323, 324]. Consequently an accuracy, as illustrated in Figure 4.12, proved
sufficient for most navigation and manipulation tasks.

Two empirically justified weighting options 𝑤𝑖,1 and 𝑤𝑖,2 were com-
pared for the confidence-based fusion of the registration results. Both
weightings are developed to indicate the importance of the respective
registration result 𝑖 within the confidence-based UCSR framework with
a high weighting for high registration accuracy. Therefore, Equation 4.20
ensures that registration methods with lower accuracy of transforma-
tion estimates are considered less than registration results from highly
confident methods. The relative size of the non-logarithmic values of 𝐹

98



4.3 UCSR: Confidence-Based Registration Framework

yielded a very low relative influence of 𝐹 for the weight calculation, while
ln 𝐹 achieved a balanced weighting of 𝐹 and 𝐿2. The standard deviations
𝜎(ln 𝐹 ) and 𝜎(𝐿2) in 𝑤𝑖,1 were compared to 𝜎2(𝐹 ) and 𝜎2(𝐿2) in 𝑤𝑖,2, as
also proposed for uncertainty modeling in [55] to fuse implicit surfaces
in surface inspection sensor data:

𝑤𝑖,𝑘 =
1

𝜇(𝐿2,𝑖)
+

1
𝜎𝑘(𝐿2,𝑖)

+
1

𝜇((ln 𝐹 )𝑖)
+

1
𝜎𝑘((ln 𝐹 )𝑖)

, 𝑘 ∈ [1, 2]. (4.20)

The cc23 method exhibited the highest difference between the weighting
options in Equation 4.20 due to low values for 𝜇(𝐿2) and 𝜇(ln 𝐹 ) with
a higher variation in terms of 𝜎, 𝜎2, and especially in terms of 𝐿2. Low
mean values are of greater importance than low variances or standard
deviations as the primary focus is accurate registration. Furthermore, the
inclusion of the inverse quadratic 𝜎2 in UCSR yielded a lower weighting
in relation to the mean values along with low distances between cor-
responding points or pixels (𝐿2). In addition, low deviations from the
ground truth transformation (𝐹) are weighted higher than a low varia-
tion of the results. Concluding, the confidence-based weights 𝑤𝑖 for each
individual and valid registration result 𝑖 in UCSR are calculated with the
empirically justified 𝑤𝑖,2 inspired by [55].

In order to avoid the singularity problems discussed in Section 3.2,
only singularity-free representations are considered in UCSR. The trans-
formations are represented as 3 × 1 translation vector 𝐭 and a quaternion
𝐪 that contains the rotational information. Translation 𝐭 and rotation 𝐪 are
weighted according to 𝑤𝑖 = 𝑤𝑖,2 to fuse the calibration results. The fusion
is conducted for each element of 𝐭 and 𝐪 separately, and the weights 𝑤𝑖
of 𝑚 included registration methods are normalized with 1/ ∑𝑚

𝑖=1 𝑤𝑖 to

𝐭𝑗,conf =
1

∑𝑚
𝑖=1 𝑤𝑖

𝑚

∑
𝑖=1

𝐭𝑗,𝑖 ⋅ 𝑤𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}. (4.21)

The rotational information described by 𝐪𝑗,conf, 𝑗 ∈ {𝑤, 𝑥, 𝑦, 𝑧} cannot
be calculated equivalently to the translation due to the mathematical
characteristics of quaternions [182]. It is assumed that the rotation 𝐪 is
only changes slightly in a locally planar manner due to a sufficiently high
registration accuracy of the considered registration methods, and the
representation of 𝐪 in Euler angles is assumed as singularity-free. The
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weighted fusion of 𝐪 is performed in Euler angles according to Equa-
tion 4.21 and converted back to a quaternion 𝐪 afterwards.

Concluding, UCSR presents a flexible approach for the accurate regis-
tration of 2D and 3Dmulti-sensor systems in unstructured environments.
Other approaches for 2D–3D or 3D–3D registration can be integrated
flexibly due to the generic design of the UCSR framework. With cnn23,
a CNN-based 2D–3D registration approach is combined with a classic
2D–3D registration approach (cc23) and a classic 3D–3D registration
method for cross-source point clouds (graph33) [329]. Combining the
proposed registration methods in UCSR can achieve improved, accurate,
and stable registration results in challenging, unstructured, and also in
manufactured, structured environments.

4.3.2 cc23: Classic 2D–3D Cross-Source Registration
The presented, classic 2D–3D registration approach cc23 is inspired by the
contour cues approach of Pujol-Miro et al. [219] for structured scenes and
was optimized for the registration of 2D and 3D cross-source data from
unstructured outdoor environments in this thesis. The feature detections
of cc23 are based on the assumption that contours can be detected by
intensity changes in 2D images and changes in the estimated surface
orientations in 3D point clouds similar to [219]. Features from the 2D im-
age and the 3D point cloud, so-called contour cues, are extracted for the
cross-source registration inside a common feature space.

4.3.2.1 Projection and Contour Cues

The camera is modeled as an ideal pinhole camera, and the 2D RGB
images are undistorted using the camera calibration matrix 𝐊. The pro-
jection vectors 𝐯𝑚 describe the ray of possible 3D locations for each pixel
𝑚 = [𝑖, 𝑗] and relate the original 2D image to the 3D scene. Each vector
represents the 3D line connecting the optical center of the camera at the
origin 𝐩3D

or = [0 0 0]∗ to the corresponding 2D point 𝐩2D
𝑚 = [𝑥𝑚𝑦𝑚]∗ of the

pixel 𝑚 inside the optical plane of the camera. Hence, the respective 𝐯𝑚
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describes all possible locations of 𝐩2D
𝑚 in 3D space. With 𝐩3D

or = [0 0 0]∗,
and 𝑧3D

𝑚 = 1, 𝐩3D
𝑚 is calculated with:

⎛
⎜
⎜
⎝

𝑥𝑚
𝑦𝑚
1

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

𝑖−𝑜𝑥
𝑓𝑥𝑗−𝑜𝑦
𝑓𝑦
1

⎞
⎟
⎟
⎟
⎠

. (4.22)

A gradient threshold 𝑡gr and an intensity threshold 𝑡in are defined, and
only features fulfilling 𝑤gr,𝑚 ≥ 𝑡gr and 𝑤in,𝑚 ≥ 𝑡in are selected as contour
cues. This yields a set of 3D gradient features from the 3D cloud and a set
of 2D intensity features from the 2D image as an input to image-to-cloud
ICP.

2D contour cues. Canny edge detection analyzes the intensity dis-
tribution of neighboring pixels to detect 2D image features. A score
𝑤in,𝑚 is estimated for each pixel 𝑚 = [𝑖, 𝑗] that corresponds to the pro-
jected 3D point 𝐩3D

𝑚 depending on the intensity differences of the pixel
and its neighboring points. The 3D correspondences for 2D image con-
tours are denoted as 𝐩3D

in,𝑚. A strong change in intensity is detected by
analyzing the luminance values 𝑌𝑚 of each 3D representation 𝐩3D

in,𝑚 and
its neighbors in 3D space. The luminance 𝑌 is calculated according to
the BT709 luminance definition of the International Telecommunica-
tion Union4 to compare intensity values 𝐼𝑅, 𝐼𝐺, and 𝐼𝐵 of each channel:
𝑌 = 0.2126 ⋅ 𝐼𝑅 + 0.7152 ⋅ 𝐼𝐺 + 0.0722 ⋅ 𝐼𝐵.

The distance of the center of mass of the luminance values 𝐦𝑌 ,𝑚 and
the geometrical center 𝐦𝐺,𝑁,𝑚 of the observed point neighborhood with
𝑁𝑖𝑛 points is measured with 𝑁𝑖𝑛 = 𝑁 for clarity

𝐦𝑌 ,𝑁,𝑚 =
1

∑𝑁
𝑚=1 𝑌𝑚

𝑁

∑
𝑚=1

𝑌𝑚 ⋅ 𝐩3D
in,𝑚 (4.23)

𝐦𝐺,𝑁,𝑚 =
1
𝑁

𝑁

∑
𝑚=1

𝐩3D
in,𝑚 (4.24)

𝑤in,𝑁,𝑚 = ‖𝐦𝐺,𝑁,𝑚 − 𝐦𝑌 ,𝑁,𝑚‖ . (4.25)

4 Recommendation ITU-R BT.709-6: https://www.itu.int/dms_pubrec/itu-r/rec/bt/R
-REC-BT.709-6-201506-I!!PDF-E.pdf, access on 07.11.2021.
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4 Low-level Perception

If a sharp contour – a steep change in the intensity level – is located
close to the analyzed 𝐩3D

in,𝑚, a shift between the center of mass and the
geometrical center occurs. An additional center of mass is calculated
that considers the relative and not the absolute changes in intensity, and
distinguishes between thin and thick contours according to [219] with

𝐦(1−𝑌 ),𝑁,𝑚 =
1

∑𝑁
𝑚=1(1 − 𝑌𝑚)

𝑁

∑
𝑚=1

(1 − 𝑌𝑚) ⋅ 𝐩3D
in,𝑚. (4.26)

The final score for each 2D feature is calculated with 𝑁 = 𝑁𝑖𝑛 =∈
{4, … , 8} using

𝑤in,𝑁,𝑚 = min ( ‖𝐦𝐺,𝑁,𝑚 − 𝐦𝑌 ,𝑁,𝑛‖ , ‖𝐦𝐺,𝑁,𝑚 − 𝐦(1−𝑌 ),𝑁,𝑚‖ ) (4.27)

to determine the weight 𝑤in,𝑁,𝑚 for each 𝐩3D
𝑁,𝑚 within the connectivity

neighborhood 𝑁. The average distance of the 𝑁 neighbors to the analyzed
𝐩3D

in,𝑚 is calculated with ∑𝑁
𝑜=1 𝑟𝑁, 𝑁min = 4, and 𝑁max = 8, and a normal-

ized intensity score 𝑤in,𝑚 combines the scores to achieve comparable
results:

𝑤in,𝑚 =
1

(𝑁min − 𝑁max)

𝑁max

∑
𝑁=𝑁min

𝑤in,𝑁,𝑚 ⋅
1

∑𝑁
𝑜=1 𝑟𝑁

. (4.28)

Pujol-Miro et al. [219] propose an optional extraction of intensity features
from LiDAR reflectance measurements that can be integrated similar to
2D intensity features. This is not included in cc23 to preserve its generic
applicability for point clouds generated from the fusion of multiple and
potentially different LiDAR sensors.

3D contour cues. 3D gradient features in the point cloud are identified
by a multiscale analysis, as proposed in Pauly et al. [213]. Points with
high variation in the surface normals’ direction are considered as points
of major importance, such as object boundaries. The local neighborhood
of 𝐩3D

gr,𝑚 is mapped inside a scatter matrix that is interpreted as covariance
matrix 𝐂gr using its 𝑁gr neighboring points. The estimation of surface
orientations from the covariance matrix is conducted, as described in Sec-
tion 4.2.2. An SVD of 𝐂gr yields the estimated surface orientation for
each point 𝐩3D

gr,𝑚. The surface variation 𝑠𝑁(𝐩3D
gr,𝑚) is calculated according

to Equation 3.11. The stepwise increase of the number of neighbors 𝑁
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introduces the multi-scale character of the method described in [213].
Each point 𝑁 with a threshold 𝑡gr ≤ 𝑠𝑁(𝐩3D

gr,𝑚) is counted by the persis-
tence of the surface variation 𝑠𝑁. Hence, the persistence 𝑤gr,𝑚 maps the
dependency of the surface variation for a point 𝐩3D

gr,𝑚 of the number of
included neighboring points 𝑁. It also constitutes the selection criteria
for a 3D point 𝐩3D

gr,𝑚 of the cloud as a 3D feature by requiring a persistence
that exceeds the threshold 𝑡gr.

Image-to-Cloud ICP. The cc23 method utilizes image-to-cloud ICP for
registration as proposed in [219]. Contrary to the classic ICP approach
of [15], image-to-cloud ICP minimizes the distance 𝑟 between 2D image
pixels using the 3D points lying on the projection vectors 𝐯𝑚 and the
3D points 𝐩3D

gr,𝑛 of the point cloud for each correspondence with

𝑟 = ‖𝐩3D
gr,𝑚 • (𝐩3D

gr,𝑚 − 𝐯𝑚)‖
‖𝐯𝑚‖

. (4.29)

4.3.2.2 Proof of Concept: Unstructured Environments

The cc23method is demonstrated on 2DRGB images and 3D LiDAR point
clouds (L) of the IOSB-Reg dataset. Table 4.5 specifies the cc23 parameter-
ization that presented the most promising results for registering 2D RGB
images from a JAI AD-130GE camera and 3D point clouds of a Velodyne
HDL-64E (L) in unstructured outdoor environments. For the Canny edge
detection of 2D intensity features, a kernel size of 3, a low threshold of 100,
and an upper threshold of 300 proved useful for the analyzed data from
unstructured environments. With a step size Δ𝑁 = 1 for intensity and
gradient features, 𝑁 is increased by one for 𝑁in ∈ {𝑁min,in, … , 𝑁max,in}
and 𝑁gr ∈ {𝑁min,gr, … , 𝑁max,gr}. Figure 4.8 shows the cc23 feature extrac-
tion results from the intensity values of two exemplary 2D RGB images
and the gradients of the corresponding Velodyne HDL-64E 3D point
clouds. Table 4.6 and Table 4.8 demonstrate that cc23 clearly outperforms
other classic registration approaches on data from unstructured environ-
ments: ICP, CSGM (𝑙vox = 0.24 m [126]), and the subsequently discussed
graph33.
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(a) Original 2D RGB image. (b) Original 2D RGB image.

Abteilung MRD
aunhofer IOSB

24. Dezember 202125

(c) 2D int. features image for (a). (d) 2D int. features image for (b).

Abteilung MRD
Fraunhofer IOSB

Maximilian Sauer - Registrierung und Fusion von Kamerabildern und 
Tiefeninformation zur 3D-Rekonstruktion unstrukturierter Umgebungen

24. Dezember 202125

Oberflächenänderung

(e) 3D grad. features L for (a). (f) 3D grad. features L for (b).

Figure 4.8 Contour cue extraction and registration in cc23. Blue color indi-
cates a low and red a high feature relevance (𝑤in,𝑚, 𝑤gr,𝑚) for registration. L
is projected onto the 2D image plane and colored according to the associated
depth. The background contrast in (d) is chosen to highlight the difficulty
of the 2D contour cue extraction in images from unstructured environments.
Images (a)–(f) © Fraunhofer IOSB.
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Parameter UO SI Description

𝑁min,in 3 5 Min. neighbors for 2D intensity features
𝑁max,in 10 25 Max. neighbors for intensity features
𝑁min,gr 20 5 Min. neighbors for 3D gradient features
𝑁max,gr 100 75 Max. neighbors for gradient features
𝑡min,in 0.25 0.30 Lower threshold for intensity features
𝑡max,in 0.60 0.80 Upper threshold for intensity features
𝑡w,in 0.04 0.01 Weight threshold for intensity features
𝑡min,gr 0.30 0.30 Lower threshold for gradient features
𝑡max,in 0.70 0.80 Upper threshold for gradient features
𝑡w,gr 0.04 0.05 Weight threshold for gradient features

Table 4.5 Experimentally justified parameterization for cc23 feature extraction to
register 2D and 3D cross-source data from structured indoor (SI) and unstruc-
tured outdoor (UO) environments.

4.3.2.3 Proof of Concept: Structured Environments

The cc23 method is also applicable for structured indoor environments,
e.g., for registering 360° images to 3D models of a building. Digital repre-
sentations of buildings are typically modeled in the Building Information
modeling (BIM) format saved in the Industry Foundation Classes format
(IFC). The feature extraction from a BIM model can be conducted error-
free as it directly contains the ground truth features, and a dense 3D point
cloud can be generated from the BIM model, as detailed in Section 4.2.3.
In contrast to the intensity feature extraction from unstructured environ-
ments, a preprocessing that filters short and strongly curved contours
benefited the feature extraction step. Subsequently, the contour cues were
passed on to the point-to-line ICP step for registration. Figure 4.9 shows
an example of the contour cue extraction from non-rectified 360° images
of the same indoor scenery. In the special case of non-rectified 360° im-
ages, the representation as a cube can limit the influence of distortion
effects in feature extraction. Both results showed satisfactory intensity
features with proper feature extraction for structured indoor environ-
ments. This experimentally justifies the cc23 parameters for structured
indoor environments given in Table 4.5.
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(a) 2D int. feature extraction. (b) 2D int. features for cube representation.

Figure 4.9 cc23 feature extraction in structured indoor environments with two
different representations: Image (a) shows the extracted intensity features from
the original, non-rectified 360° image, while (b) shows the intensity feature ex-
traction for the alternative cube representation. Images © Fraunhofer IOSB.

4.3.3 cnn23: 2D–3D Cross-Source Registration with
Neural Networks

The 2D–3D cnn23 method relies on neural networks to register 2D–
3D cross-source data and is inspired by RegNet proposed in [246]. Reg-
Net was the first CNN providing an extrinsic calibration of multimodal
sensors with six DoF. It achieves accurate and promising results and out-
performs classic 2D–3D approaches in terms of accuracy on data from
structured outdoor environments. Schneider et al. [246] train different
RegNet-type CNNs for different magnitudes of artificial decalibration.
Contrasting the iterative refinement approach of Schneider et al. [246],
cnn23 only trains one network for a maximum decalibration of 20° and
1.5m. This provides a flexible, generic, and robust approach for multi-
sensor registration in the application on off-road vehicles as the initial de-
calibration is not always known in sufficient detail. The presented cnn23
method is optimized for unstructured environments with an in-depth
data augmentation as well as transfer training on data from unstructured
environments.
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4.3.3.1 Preprocessing and Network Architecture

At first, the cnn23 method projects the 3D LiDAR point cloud on the
sensor image plane as depth image with pixels [𝑖, 𝑗] for the registration
of a 2D image to a 3D point cloud in 2D space:

𝑧𝒸
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. (4.30)

Each 3D point in the camera frame 𝒸 relates the corresponding pixel 𝑚 =
[𝑖, 𝑗] to the sensor origin with the initial transformation estimate 𝐓𝑖 and
keeps themeasured LiDAR distance as inverse depth in 𝑧𝒸. Consequently,
the projected LiDAR depth map contains 𝑧𝒸 from LiDAR data or 𝑧𝒸 = 0
for pixels without a corresponding 3D LiDAR point.

The depth image can be reconstructed using the corresponding inverse
depth 𝑧𝒸 for each pixel 𝑚. With non-inverse depth values, the maximum
pooling layer at the input to the cnn23 architecture uses the highest depth
value of a neighborhood as a reference pixel. This leads to the assign-
ment of greater depth values to neighboring pixels with an originally
smaller depth value. Inverse depth values 𝑧𝒸 avoid occlusion errors and
reduce artifacts in the maximum pooling stage. Figure 4.10 shows the
projected depth image prior to and after two maximum pooling layers
that generated a notably denser image.

Furthermore, the input data – camera image and LiDAR depth image –
are centered to achieve a similar scaling in the training data. Schneider et
al. [246] state that Network-in-Network (NiN) blocks havemore favorable
convergence characteristics than standard convolutional layers. Weight
initialization for LiDAR depth image feature extraction, feature matching,
and regression is conducted with the Xavier initialization method [90].
Furthermore, feature extraction and matching in cnn23 are conducted in
NiN blocks, as proposed in [170]. Here, three convolutional layers form
a NiN block with ReLU activation functions followed by a maximum
pooling layer. The first convolutional layer in the NiN block defines its
filter size such that a NiN3 block has a 3 × 3 convolutional layer as a first
layer. The second and third convolutional layers inside a NiN block are
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(a) Sparse, raw depth image.

(b) Densified depth image after two max poolings.

Figure 4.10 Projected LiDAR depth input images. Images © Fraunhofer IOSB

fully connected (with filter sizes 1 × 1), and the number of filters inside
each of these three layers is identical.

Feature Extraction. The LiDAR depth image is subject to two max-
imum poolings before feature extraction, which notably increases the
density of the LiDAR feature map and approximates it to the density of
the pixel-wise dense RGB image. Feature extraction for RGB image and
LiDAR depth map uses NiN11 blocks followed by NiN5 and NiN3 blocks.
Two NiN blocks match the features after concatenating the results from
RGB and depth image extraction, and a last NiN block with a depth of
512 concludes the feature extraction of both RGB and depth images. The
initial weights for the feature extraction from RGB images were chosen as
proposed by Lin et al. [170] for their participation in the ImageNet chal-
lenge [47, 233] with NUS-BST. As ImageNet aims at image classification,
the last NiN block of [170] for classification was omitted. Furthermore,
feature extraction weights for RGB and depth features were not shared
as a different number of filters were used.

Feature Matching. Feature matching combines the extracted features
from the RGB and the interpolated LiDAR depth image and finally de-
termines matching pairs of RGB–depth features for the global regression
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step. It concatenates the feature maps from the NiN3 block inside a
NiN5 and NiN3 block, which yields 512 feature channels for regression
succeeding the second NiN block in feature matching.

Regression. The global regression step pools the information from
both sensors inside two fully connected layers succeeded by an Euclidean
loss function. Schneider et al. [246] state that quaternion representations
clearly outperform the representation in Euler angles. Hence, cnn23 rep-
resents the translation as three element vector 𝐭 and the rotation as a four
element quaternion 𝐪. Regression is built with a fully connected layer of
depth 512 and two separated paths for translation and rotation with two
fully connected layers for both translation and rotation. The first NiN
block of depth 512 uses 5 × 5 filters, and the two separated paths consist
of NiN blocks with 3 × 3 filters. Regression estimates the translation in
two fully connected layers of depth 256 and 3, while rotation is estimated
with layers of 256 and 4 depth.

4.3.3.2 Training, Validation, and Testing

Pre-training for cnn23was conducted on the KITTI 2012 dataset [80]. Fine-
tuning was performed on the IOSB-Reg dataset described in Section 7.4
to adapt cnn23 to unstructured environments. KITTI contains 13,084 2D–
3D pairs for training, and IOSB-Reg provides 146 2D–3D pairs for the
fine-tuning of cnn23. A validation split of 15/146 = 0.103 proved useful
for IOSB-Reg in domain adaption, and 115 image–cloud pairs from KITTI
were excluded from training. Testing was only conducted on IOSB-Reg
data as the focus is the registration of 2D and 3D data from unstructured
environments.

The cnn23 method was trained in a supervised manner, and training
data was generated by the artificial rotation and translation of 2D im-
ages and 3D point clouds. The decalibration range [− max (𝐓𝑑), max (𝐓𝑑)]
defines the interval for the extraction of randomly decalibrated train-
ing data. For a proper training of cnn23, decalibration with a maximum
translation of 50 px and a maximum rotation of 15° proved useful. The
translation shift in pixels is applied inside the image plane of the 2D RGB
and depth images along the 𝑥 and 𝑦 axes, while the rotation is applied
around the 𝑧 axis that captures the depth in the corresponding intensity
value of the depth image pixel. The input size of the images was restricted
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to 255 × 942 px as indicated by the green box in Figure 4.12 to facilitate a
proper data augmentation.

The ground truth transformation of the IOSB-Reg dataset 𝐓GT wasmea-
sured by hand and validated by the visual assessment (see Section 3.9).
The known decalibration 𝐓𝑑 was generated by adding the randomly gen-
erated decalibration 𝐓𝑑 ∈ [− max (𝐓𝑑), max (𝐓𝑑)] to the ground truth 𝐓GT
and set as initial transformation 𝐓𝑖. The desired registration output is
equivalent to the decalibration 𝐓𝑑 described with the translational ele-
ments 𝐭 and rotational elements 𝐪. Both datasets KITTI and IOSB-Reg
were augmented using rotation and shifting. Here, the augmentation
according to [246] tripled the size of the datasets. The 𝐿2 and 𝐹 norms
measure the registration performance of cnn23 on the test splits of the
KITTI and the IOSB-Reg datasets, as described in Section 3.11.

The ADAM optimizer [151] was chosen for training as the adaptive
determination of the learning rate for each parameter depending on
floating mean value and squared gradient proved favorable. The state-
of-the-art parameters in [151] proved useful and were selected to train
cnn23: 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜂 = 10−8. Euclidean loss is applied for
translation 𝐭 and rotation 𝐪. Hence, the Euclidean distance between the
network-estimated decalibration vectors ̂𝐭𝑑 and �̂�𝑑 and the randomly
applied decalibrations 𝐭𝑑 and 𝐪𝑑 are combined into a 7D vector 𝐥𝑑 to
calculate the loss 𝐿𝑐𝑛𝑛23, according to Schneider et al. [246]:

𝐿𝑐𝑛𝑛23 = 2

√

7

∑
𝑖=1

( ̂𝐥𝑑 − 𝐥𝑑)
2
, (4.31)

with 𝐥𝑑 = [𝑡1, 𝑡2, 𝑡3, 𝑞1, 𝑞2, 𝑞3, 𝑞4]. (4.32)

Training, activations, iterative registration, and augmentation were an-
alyzed on the KITTI 2012 and the IOSB-Reg dataset on the basis of a
right-handed coordinate system5: depth is measured positively along
the 𝑧 axis, 𝑥 points to the right and 𝑦 downwards.

The training of the cnn23 network on the KITTI dataset with the aug-
mentation methods proposed in [246] (cnn23-K) was evaluated initially

5 Sensor setup: http://www.cvlibs.net/datasets/kitti/images/setup_top_view.png,
access on 24.12.2021.
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with a learning rate of 10−5 and a validation split of 115/13, 084 = 0.0089.
Here, the training and validation losses showed signs of over-fitting for
large initial decalibrations, and in some cases the global regression result
did not properly correct the decalibration of the input data. Thus, it is
assumed that with the training according to [246] the network tends to
learn the ground truth rather than a proper analysis of the input data.
Furthermore, it is assumed that these erroneous characteristics are re-
lated to the data structure of the KITTI dataset. KITTI was captured with
one vehicle in urban and suburban environments as well as on highways,
and the distribution of structured and unstructured areas in relation to
the vehicle orientation is often identical: the front and back areas mainly
have a structured character, and the road with a rather smooth surface
and uniform color mostly dominates the center of the image, while the
sides of the captured area can mostly be characterized as unstructured
environments, as further discussed in Section 6.2.1. Hence, the structure
of all RGB and depth input images is very alike and probably too similar
to allow correct learning of the feature extraction and matching process
required for proper registration. The domain transfer discussed in Sec-
tion 6.1.4 justifies the critical influence of too similar image and point
cloud structure on CNN training. Figure 4.11 compares the inference re-
sults obtained with data augmentation and training, as described in [246]
(cnn23-K), to the proposed enhanced augmentation [335] (cnn23-K-e) for
large decalibrations.

In order to prevent over-fitting here, the enhanced data augmenta-
tion cnn23-K-e is proposed instead of cnn23-K optimizing cnn23 for the
registration of cross-source data from unstructured environments [335].
2D images and 3D point cloud data after conversion to depth images
are normalized with the standard deviation of the complete image or by
scaling the pixel intensity values within [0, 1] or [−1, 1] to become inde-
pendent of different exposure conditions and depth ranges. Furthermore,
the input data – LiDAR depth image and camera image – is normalized
by subtracting the mean value of all pixel intensities from the value of
each single pixel. Each pairing of a projected depth image and an RGB
image is augmented with additional and suitable translational shifts and
rotations to achieve a uniform distribution in [− max (𝐓𝑑), max (𝐓𝑑)]. The
occurrence of invalid image areas due to missing pixel information from
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(a) Registration with augmentation according to [246] (cnn23-K).

(b) Registration with proposed enhanced augmentation for cnn23-K-e.

Figure 4.11 Comparison of the registration results with the two analyzed data
augmentation strategies to train cnn23: Image (a) depicts the registration result
with augmentation as proposed by Schneider et al. [246], while (b) shows the
cnn23 registration results for a training with the enhanced augmentation pro-
posed in this thesis (cnn23-K-e). Only cnn23-K-e achieved a valid registration
result. The initial decalibration was -4 px along 𝑥, -32 px along 𝑦, and a rotation
with −5.59° around 𝑧 (clockwise).

the RGB or the depth image limits the maximum decalibration range
of the input data, and the image area is reduced as visualized with the
green box in Figure 4.12.

Experimental evaluation showed that fine-tuning on IOSB-Reg (cnn23-
I) and the proposed enhanced augmentation of the training data could
prevent over-fitting of cnn23-I and cnn-K-e such that regularization and
dropout are not required [335]. The number of epochs was not fixed
due to the generation of new training data during training by random
decalibration. The most effective iterations were selected using a batch
size of one to also facilitate network training with limited computation
capacity. The number of iterations varied from one to three million.

To conclude, the cnn23 model was pre-trained on KITTI with the pro-
posed enhanced augmentation (cnn23-K-e) and subsequently trained on
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(a) Decalibrated input. (b) Ground truth.

(c) cnn23 registration result.

Figure 4.12 Decalibrated input, ground truth, and 2D–3D cnn23 (cnn23-K-e)
registration results on IOSB-Reg data after enhanced, uniform augmentation
training on KITTI 2012 and fine-tuning on IOSB-Reg. Images © Fraunhofer IOSB.

146 unstructured scenes of the IOSB-Reg dataset for a domain adaption
to unstructured environments (cnn23-I, see Figure 4.14). The reduction
of the learning rate on the IOSB-Reg data to 10−6 prevented the loss of
the trained feature filters, and cnn23 with pre-training on KITTI showed
a promising generalization performance, as demonstrated subsequently.

4.3.3.3 Proof of Concept: cnn23

The cnn23 training was conducted on a cluster of eight NVIDIA Tesla
V100 GPUs for 5,000,000 iterations (around 79 hours) and on an NVIDIA
RTX 2080S GPU for 321,200 iterations. The cnn23 method was tested on
different decalibrations with up to 2.0m translation along each axis and
20° around each axis. Even if only a small overlap of the 2D image and
the respective 3D cloud was available, as is the case for decalibration
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(a) 2D RGB input to cnn23.

(b) 1st filter (i=1) of 1st cnn23 layer for RGB image feature extraction.

(c) 2nd filter (i=2) of 1st cnn23 layer for RGB image feature extraction.

Figure 4.13 Image (b) and (c) visualize selected filter activations of the first
cnn23 layers (96 filters with 11 × 11 kernels) extracting 2D features from the
image depicted in (a). The activations show a preference for structured elements.
Images © Fraunhofer IOSB.

with 2.0m and 20° on an image with 942 × 225 px, a registration accuracy
of ln 𝐹 = -0.463 and 𝐿2 = 2.566m was achieved. Figure 4.12 depicts the
registration result with cnn23 on exemplary 2D image and 3D point cloud
data from the IOSB-Reg dataset. Enhanced augmentation was performed
with a maximum of 15° rotation and with up to 50pixels translation in
the horizontal and vertical direction of the 2D data, and cnn23 achieved
a mean translation error of 4.9 cm in 𝑥, 3.0 cm in 𝑦, and 7.6 cm in 𝑧, as
well as a mean rotational accuracy of 1.24° around 𝑥, 0.43° around 𝑦, and
1.47° around 𝑧.

An analysis of the layer activations in 2D RGB and LiDAR depth im-
age feature extraction underlines the difficulty of registering data from
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unstructured environments compared to structured environments. Fig-
ure 4.13 shows the first layer activations in 2D RGB feature extraction.
Here, the artificial, structured test objects provide the expected insight
that structured elements and clearly separated objects with defined bor-
ders are preferred for registration, while bush elements with similar
texture and close to the sensors only contributed very little to the registra-
tion. In contrast, higherweightswere assigned to the slightly overexposed
grassland part of the image rather counter-intuitive for human vision.
For LiDAR depth images, the characteristic ring structure of rotating
3D LiDAR sensors was still dominant in the activations of the initial
layers but lost its influence in subsequent layers with a higher focus
on global characteristics. Naturally, the preference for structured ele-
ments adds to the challenge of registering cross-source data. However,
the proposed customizations within the analyzed methods facilitated
the registration without calibration targets and human intervention in
hazardous environments.

Figure 4.14 compares the performance of cnn23 with training accord-
ing to [246] on both the KITTI dataset (denoted cnn23-K) and the KITTI
dataset with fine-tuning on IOSB-Reg (cnn23-I). The initial decalibration
is given as a reference. As expected, the domain adaption training on the
IOSB-Reg dataset improved the validation performance on the IOSB-Reg
dataset with data fromunstructured environments and slightly degraded
the performance on the KITTI validation data. Furthermore, Figure 4.14
analyzes the influence of the proposed enhanced augmentation by com-
paring the validation results on the KITTI dataset’s augmented validation
data with non-augmented validation data. It shows that the enhanced
augmentation of the training data improved the performance of cnn23 in
both cases. Hence, the notably higher registration accuracy of cnn23with
an enhanced augmentation of the training data justifies the enhanced
augmentation. Furthermore, a more stable performance for different de-
calibration scenarios of the input data is indicated. Table 4.8 compares the
resulting error metrics of the proposed cnn23method to cc23 and graph33
and shows that cnn23 clearly outperforms the two classic approaches.

Furthermore, Schneider et al. [246] applied an iterative registration
approach and executed RegNet several times with increasing registration
accuracy. This approach was evaluated for cnn23 with a special focus
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Figure 4.14 Registration accuracy of cnn23 in terms of 𝐿2 on the chosen validation
data: image (a) compares the cnn23 accuracy on KITTI (cnn23-K, K) and IOSB-Reg
(cnn23-I, I) data with standard augmentation according to [246] on the KITTI
dataset, while image (b) compares the accuracy on K and I for training on KITTI
according to [246] with fine-tuning on IOSB-Reg data, and image (c) shows that
the cnn23 registration accuracy with the proposed enhanced augmentation (K-
e) notably increases the registration accuracy of cnn23 in comparison to the
augmentation according to [246] (K).

on registering multimodal data from unstructured environments for up
to five iterations of cnn23 and after fine-tuning on the IOSB-Reg dataset.
The iterative approach did not improve the registration accuracy for
level S and M decalibrations (see Section 3.11). However, a second run of
cnn23 that builds on the registration result of the first cnn23 run slightly
improved the registration accuracy for level L decalibrations.

CalibNet [105] achieved a mean accuracy of 0.043m and 0.41° for a
rather small maximum decalibration of ±20° and 0.2m (see Section 2.3.3),
while Schneider et al. [246] evaluated a maximum translation of 1.5m
and a rotation of 20° and achieved a mean calibration error of 0.06m and
0.28° on the KITTI 2012 data from structured environments [83]. How-
ever, the proposed cnn23 method outperformed RegNet [246] on data
from unstructured environments, as depicted in Figure 4.14. CalibNet of
Handa et al. [105] achieved a slightly more accurate registration on KITTI
2012 than cnn23 but for notably lower initial decalibrations. Concluding,
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cnn23 can provide valid and robust results for 2D and 3D cross-source
data from unstructured environments. A mean registration accuracy of
0.052m in translation, 1.24° around 𝑥, 0.43° around 𝑦, and 1.47° around
𝑧 was achieved on the IOSB-Reg test data with level L decalibrations
(±1.0 m, ±17.2°). Hence, cnn23 achieved sufficient accuracy to register
cross-source sensor data from unstructured environments for off-road
vehicles, as detailed in [323] and [324].

4.3.4 graph33: Classic 3D–3D Cross-Source Registration
Deng et al. [48] state that Gaussian Mixture model approaches fail in
registering clouds with different densities, thus making them unsuitable
for cross-source registration. The authors [48] state that their approach
is less sensitive to noise and outliers than Gaussian Mixture models but
it also indicated high sensitivity to those problems on the evaluated,
structured, similar-source data. The approach of [189] with RANSAC
and downsampling achieved promising results for highly dense point
clouds but proved difficult for less dense point clouds due to missing
data and their different noise characteristics.

Huang et al. [126] propose the transformative CSGM registration ap-
proach with a combination of local and global characteristics that pro-
vides a promising approach to reduce the influence of cross-source data
characteristics, such as notably different point densities, artifacts, and
outliers. Hence, CSGM is chosen as a basic method for graph33 – a classic
3D–3D registration method for cross-source point clouds from unstruc-
tured environments prevailing in off-road robotics. The authors [126]
demonstrate CSGM on different types of 3D point clouds from struc-
tured environments, and themultitude of challenging conditions encoun-
tered in registering cross-source data from unstructured environments
in graph33 require an adaption and extension of the basis CSGM method
proposed in [126]. Depth estimation inaccuracies, such as in stereo image
3D reconstruction, further complicate the registration process. Hence,
graph33 extends and optimizes CSGM for the registration of point clouds
from rotating 3D LiDAR sensors (L) and point clouds from stereo image
disparity estimation (S) from unstructured environments. The graph33
method works as follows:

1. Over-segmentation with VCCS supervoxels,
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2. Encode local details in ESF640 descriptors,
3. Extract global graph structure,
4. Factorized graph matching (FGM).
Contrasting CSGM [126], graph33 includes multiple optimizations for

cross-source data from unstructured environments:
Condensation of L (prior to over-seg.),
Transformation to homogenization coordinates (prior to over-seg.),
Additional descriptors including prior knowledge (Section 4.3.4.2),
And customized correspondence rejection following FGM.

4.3.4.1 Feature Extraction and Homogenization

The supervoxel adjacency graph represents the global structure with the
local voxel centroid points as nodes. ESF640 descriptors [295] describe the
local structure of the point set inside each extracted VCCS supervoxel for
further processing. The authors [295] state that ESF640 surface approxi-
mation increases the robustness to noise, outliers, and different densities
for cross-source data. Hence, they were chosen to register sensor data
from unstructured environments.

At first, L is condensed by a fusion of subsequently captured “single-
shot” clouds to obtain a higher point density for the subsequent reg-
istration process. Here, eleven point clouds were captured in a static
environment to inhibit inaccuracies due to motion blur or moving objects.
Their condensation, as detailed in Section 4.2.2, proved useful, and addi-
tional registration was not required in contrast to [82] (see Figure A.6).

In order to overcome the problem of notably different densities, both
point clouds are transformed into homogenized coordinates prior to the
supervoxel clustering [329]. Contrasting Huang et al. [126] working with
a Cartesian point representation, this thesis proposes homogenization
with

𝑟 =
𝑧

10
, 𝜙 = arctan

𝑦
𝑥

, 𝜓 = arctan
√𝑥2 + 𝑦2

𝑧
(4.33)

which achieved a rather uniform distribution of the points, especially
inside 3D LiDAR point clouds. This homogenization procedure is similar
to the geometric 3D analysis described in Section 3.6 with an additional
reduction of the scale of 𝑧 and a dependency of 𝜓 on 𝑧. This dependency
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leads to an increasing cluster size of the voxels linearly dependent on
their distance to the sensor origin.

After densification and homogenization, the clouds are subdivided
into VCCS supervoxels via the normalized distance measure 𝐷 of two
supervoxels:

𝐷 =
√

𝜆𝑐𝐷2
𝑐

𝜁2 +
𝜈𝐷2

𝑠

3𝑅2
seed

+ 𝜅𝐷2
FPFH. (4.34)

𝑅seed is the initial seed resolution of the voxels and normalizes the spatial
component. 𝐷𝑐 denotes the Euclidean distance of the color information in
CIELAB color space and is normalized by a fixed constant 𝜁 [209], while
𝐷𝑠 is the spatial distance. FPFH features are only utilized for supervoxel
extraction as proposed in [126], and 𝐷FPFH denotes the distance between
the FPFH features calculated according to [8].

Different parameters for the size as well as for the weights of the voxel
criteria were evaluated. For Cartesian coordinates, appropriate results
were achieved by setting a voxel size of 𝑙vox = 0.10 m. Over-segmentation
weights for VCCS supervoxels extraction are color information (𝜆𝑐), nor-
mal direction (𝜈), and spatial distribution (𝜅). The best results were ob-
tained with 𝜆𝑐 = 0.6, 𝜈 = 1.0, and 𝜅 = 0.6 for S and with 𝜈 = 1.0 and
𝜅 = 0.6 forLwithout color information. An 𝑙vox/𝑅seed ratio of 2/25 follows
the suggestions of [126, 209] and yields 𝑅seed = 1.25 m for Cartesian coor-
dinates. For homogenized coordinates, 𝑙vox = 0.04 rad achieved a rather
uniform point distribution.

The proposed homogenization prior to over-segmentation increased
the robustness of graph33 to artifacts, noise, and the limited estimation
accuracy itself. Hence, both input clouds are transformed into homoge-
nized coordinates prior to over-segmentation in graph33. Clusters close
to the origin were small, whereas large distances lead to the formation of
big clusters. With the registration of L to S clouds, the over-segmentation
in homogenized coordinates also increased the robustness of graph33
as it coped well with the quadratically increasing inaccuracy in stereo
image disparity estimation.
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4.3.4.2 Descriptors, Graph Representation, and Correspondence
Rejection

Descriptors. CSGM of [126] relies on an automated scaling of the point
clouds via bounding boxes. However, this bounding box approach re-
quires clearly separated objects with well-defined boundaries that are not
present in unstructured environments. Hence, the bounding box method
of [126] is not applicable in graph33, and a priori knowledge is integrated
to substitute the automated scaling.

It is known that the sensors are mounted onto the same platform,
which ensures that they approximately observe the same part of the scene.
Three additional descriptors are proposed in this thesis complementing
the ESF640 descriptor (𝐀𝐸) to represent this knowledge in the graph
matching problem:

𝐀𝑁: estimated normal orientation of the voxel centroid,
𝐀𝑅: distance of respective voxel centroid point to sensor origin,
𝐀𝑍: angle of the vector that connects the voxel centroid to the sensor
origin in relation to the 𝑧 axis of the camera frame 𝒸 (negative
depth).

An affinity matrix is generated for each descriptor: ESF640 (𝐀𝐸), distance
to origin (𝐀𝑅), angle to 𝑧 (𝐀𝑍), and normal (𝐀𝑁). Normalization and
merging of the affinity matrices into one affinity matrix 𝐀 by an element-
wise summation of the matrices proved useful to combine the proposed
descriptors in graph33. Each merged descriptor 𝐀 is again normalized for
further processing and represented with its affinity matrix 𝐀 as a node
in the subsequent graph. As a results, registration is turned into a graph
matching problem in feature space.

Graph Matching. The global graph structure consists of graph nodes
and edges, and the graph matching problem is solved with FGM, as
proposed in [126, 314]. The merged descriptors 𝐀 constitute the nodes 𝑊
and are derived from the voxel centroid points. The edges 𝑄 represent
the adjacent relations between the supervoxels. The normalized distance
𝐷 between the descriptors is computed according to Equation 4.34. The
distance 𝑟𝑖,𝑗 of two nodes 𝑊𝑖 and 𝑊𝑗 is given by

𝑟𝑖,𝑗 =
𝑟𝑊

𝑅seed
,with 𝐿2 distance 𝑟𝑊 = ‖𝐖𝑖 − 𝐖𝑗‖2 . (4.35)
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The Euclidean distance 𝑟𝑖,𝑗 and the Euler angles 𝜽 between 𝑊𝑖 and 𝑊𝑗
are combined into a descriptor 𝜽𝐖(𝜽, 𝑟𝑖,𝑗).

A graph is described by G = {𝐖, 𝐐, 𝐆} with 𝑛 nodes, 𝑚 directed edges,
and the feature matrices

𝐖 = [𝐰1, … , 𝐰𝑛] ∈ 𝐑𝑑𝐰×𝑛 and 𝐐 = [𝐪1, … , 𝐪𝑚] ∈ 𝐑𝑑𝐪×𝑚 (4.36)

with 𝐝𝑤 = dim(𝐰) and 𝐝𝑞 = dim(𝐪).
A node-edge incidence matrix 𝐆 ∈ [0, 1]𝑛×𝑚 specifies the graph’s topol-

ogy. The node affinity matrix 𝐀𝐖 ∈ 𝐑𝑛1×𝑛2 measures the similarity of
each possible node pair of G1 (𝐰𝑖) and G2 (𝐰𝑗) in feature space with

𝐀𝑊 (𝑖,𝑗) =
𝑟𝑖,𝑗

max𝑖,𝑗 𝑟𝑖,𝑗
. (4.37)

The edge affinity matrix 𝐀𝑄 ∈ 𝐑𝑚1×𝑚2 quantifies the similarity between
all possible edge pairs of G1 and G2. The graph edges are represented
with the descriptor 𝜽𝐖(𝜽, 𝑟𝑖,𝑗) to ensure a correct representation of the
graph structure. The relative orientation of the two merged descriptors
for G1 and G2 with affinity matrices 𝐀1 and 𝐀2 in the feature space is
represented with

𝜽𝐖(𝜽, 𝑟𝑖,𝑗) =
⎛
⎜
⎜
⎜
⎝

𝜙𝑥
𝜙𝑦
𝜙𝑧
𝑟𝑖,𝑗

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

arccos( 𝑥
𝑟𝑖,𝑗⋅sin(𝜙𝑧) )

arccos( 𝑦
𝑟𝑖,𝑗⋅sin(𝜙𝑧) )

arccos( 𝑧
𝑟𝑖,𝑗

)

‖𝐖𝑖 − 𝐖𝑗‖2

⎞
⎟
⎟
⎟
⎟
⎠

, (4.38)

and 𝜽 provides the input for the edge affinity matrix

𝐀𝜽𝐖(𝜽,𝑟𝑖,𝑗) =
‖𝜽𝐖(𝜽, 𝑟𝑖,𝑗)𝑖 − 𝜽𝐖(𝜽, 𝑟𝑖,𝑗)𝑗‖2

max𝑖,𝑗(‖𝜽𝐖(𝜽, 𝑟𝑖,𝑗)𝑖 − 𝜽𝐖(𝜽, 𝑟𝑖,𝑗)𝑗‖2)
. (4.39)

Graph matching aims at finding correspondences between the nodes
of G1 and G2 maximizing the global consistency score 𝐽𝑔𝑚, as elaborated
in [314]. 𝐽𝑔𝑚(𝐗) is represented in the quadratic form as non-convex, global
objective function

𝐽𝑔𝑚(𝐗) = 𝐱∗𝐀𝐺 𝐱 (4.40)

121



4 Low-level Perception

and 𝐱 is the vectorization of 𝐗 ∈ {0, 1}𝑛1×𝑛2. 𝐗 contains the correspon-
dence information of the nodes from G1 and G2 with 𝑥𝑖1𝑖2 = 1 if the 𝑖1-th
node of G1 corresponds to the 𝑖2-th node of G2. The global affinity matrix
𝐀𝐆 ∈ 𝐑𝑛1𝑛2×𝑛1𝑛2 represents the pair-wise similarity of nodes 𝐖 and edges
𝐐. FGM presented in [314] does not require an explicit computation of
the affinity matrix due to its factorization.

With 𝐀 ∈ 𝐑𝑛1𝑛2×𝑛1𝑛2 the quadratic assignment problem can be opti-
mized with

max𝐱 𝐱∗𝐀𝐆𝐱, s.t. 𝐘𝐱 ≤ 𝐛, 𝐱∗𝐘𝐱 ∈ {0, 1}𝑛1𝑛2 and 𝐘 = (
𝟏∗

𝑛2
⊗ 𝐈𝑛1

𝟏𝑛2
⊗ 𝐈∗

𝑛1
)

(4.41)
with 𝟏𝑛2

a vector of ones, 𝐈𝑛1
∈ 𝐑𝑛1×𝑛1 an identity matrix, and 𝐛 equal to a

vector of ones with 𝐛 = 𝟏𝑛1+𝑛2.
The factorization proposed in [314] optimizes graphmatchingmethods

and divides 𝐀𝐆 into smaller matrices such that the optimization can be
conducted iteratively using

max
𝐗

𝐽𝛼(𝐗) = (1 − 𝛼)𝐽vex(𝐗) + 𝛼𝐽cav(𝐗). (4.42)

𝐽vex(𝐗) denotes the convex relaxation, while 𝐽cav(𝐗) is the concave relax-
ation introduced in [314]. The energy function in graph33 is adapted to

max
𝐗

𝐽𝛼(𝐗) = (1 − 𝛼)𝐽vex(𝐗) + 𝛼𝐽cav(𝐗) + 𝐽smooth(𝐗). (4.43)

𝐽smooth(𝐗) is an additional regulation term that considers the rigid nature
of rotation and translation in registration with the projection difference
of neighboring correspondence points:

𝐽smooth(𝐗) = − ∑
𝑖∈𝐗

∑
𝑗∈𝐃

‖𝐰𝑖 − 𝐰𝑗‖2 − ‖𝐰𝑖,𝑐 − 𝐰𝑗,𝑐‖2
(𝑛1 ⋅ 𝑛2)

. (4.44)

𝐃 contains the neighbors of point 𝐰𝑖 and the correspondences to 𝐰𝑖
and 𝐰𝑗 are denoted 𝐰𝑖,𝑐 and 𝐰𝑗,𝑐. As a result, FGM yields a correspon-
dence matrix, as depicted in Figure 4.17, where correspondence or non-
correspondence are encoded binarily.

Zhou and de la Torre [314] also discuss the problem of local and global
optimality. Local maximization of 𝐽𝛼 in convex space does not guarantee
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a globally optimal solution of the non-convex, global objective function
𝐽𝑔𝑚(𝐗). The authors of [314] cope with this problem by discarding tem-
porary solutions with a bad score for 𝐽𝑔𝑚(𝐗). This achieved a notable
optimization of the convergence of the quadratic assignment problem,
according to [314]. Hence, FGM in graph33 can effectively deal with local
minima and can lead to a higher registration accuracy similar to the
utilization of other graph matching techniques evaluated in [314].

Correspondence Rejection. Huang et al. [126] utilize RANSAC for
correspondence rejection but this is not applicable for data from unstruc-
tured environments due to the absence of a clear geometric structure.
Consequently, a novel correspondence rejectionmethodwas designed for
graph33: all possible correspondences between source and target points
are considered and mapped into a Euclidean 3D space as hypotheses.
The highest density of hypotheses inside this 3D space is determined,
and all correspondences lying outside a preliminarily defined sphere
are rejected. This correspondence rejection is performed for each source
point and achieved a notable reduction of the set of possible correspon-
dences. Different radii for the rejection sphere were examined, and a
radius of 2.0m yielded very promising results with a proper but not too
strict, rejection of false correspondences in graph33.

4.3.4.3 Proof of Concept: graph33

The proposed graph33 method is demonstrated on the IOSB-Reg dataset
(Section 7.4). 3D point clouds of a Velodyne HDL-64E LiDAR (L) were
registered to 3D point clouds from stereo image disparity estimation
with SGBM (S) parameterized, as described in Section B.1.1. L is selected
as source cloud due to its sparsity and higher accuracy, while S is the
registration target. Figure 4.15 compares the LiDAR cloud in Cartesian
coordinates to the LiDAR cloud after the proposed homogenization that
achieved an approximately uniform distribution of the LiDAR points.
The OpenCV implementation6 of SGBM [118] was applied to estimate
disparity in stereo camera images, and 3D point clouds were generated

6 OpenCV: cv::stereo::StereoBinarySGBM Class Referencecv::stereo::StereoBinarySGBM
Class Reference, https://docs.opencv.org/3.4/d1/d9f/classcv_1_1stereo_1_1StereoBi
narySGBM.html, access on 07.11.2021.
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(a) L Cartesian.
(b) L homogenized.

(c) S Cartesian. (d) S homogenized.

Figure 4.15 Front views of the source and target clouds in graph33: the LiDAR
cloudsL are colored according to the reflectance measured by the LiDAR sensors.
Images © Fraunhofer IOSB.

SGBM S. Supervoxel graph.

Figure 4.16 Over-segmentation in graph33: S from SGBM is registered to the L.
The supervoxel graph is extracted from the stereo camera cloud with the voxel
centroid points as nodes and their connections as edges for the scene of FigureD.3.
Images © Fraunhofer IOSB.
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(a) ESF 640 descriptor (𝐀𝐸). (b) Distance to origin (𝐀𝑅).

(c) Merged descriptor (𝐀). (d) Correspondence matrix FGM.

Figure 4.17 Exemplary descriptor affinity matrices 𝐀𝐸, 𝐀𝑍, 𝐀𝑅, and 𝐀𝑁 combined
into one merged, normalized descriptor ((c), 𝐀). The corresponding affinity ma-
trices 𝐀𝑍 and 𝐀𝑁 are depicted in Figure A.7. Vertical axes represent source nodes,
horizontal axes target nodes. The color scaling in (a)–(c) indicates the affinity val-
ues between the source and target nodes, and a value of one describes complete
affinity between two nodes. Image (d) depicts exemplary FGM estimated corre-
spondences in graph33, and white matrix elements in (d) indicate correspondence
between the respective source and target nodes. Images © Fraunhofer IOSB.

with SGBM parameterization according to Section B.1.1. Camera cal-
ibration was also performed with OpenCV. The disparity estimation
errors of SGBM produced streaks in the point cloud, which addition-
ally complicated proper 3D–3D registration. Figure 4.16 illustrates the
over-segmentation of the stereo camera point cloud with the resulting
nodes and edges of the graph. 𝐀 combines the affinity matrices of the
four descriptors 𝐀𝐸, 𝐀𝑍, 𝐀𝑅, and 𝐀𝑁, as illustrated in Figure 4.17.

ICP [15] or GICP [250] hardly achieved valid registration results for
cross-source data with a large initial decalibration. In order to compare
ICP and graph33, both methods were tested in the registration of similar-
source LiDAR clouds captured in unstructured environments. Here,
graph33 clearly outperformed ICP in the similar-source registration on
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Figure 4.18 3D–3D registration result with graph33 on exemplary IOSB-Reg scene.
The visual overlay shows the projection of L onto the RGB image reduced to the
region of interest for clarity. Blue color for L indicates small depth, while red
shows high depth. The contour alignment on the trunk structures qualitatively
validates the graph33 registration accuracy.

two artificially decalibrated LiDAR clouds of an IOSB-Reg scene: ICP
achieved ln 𝐹 = 0.225 and 𝐿2 = 2.26m, while graph33 yielded ln 𝐹 ≤ -7 and
𝐿2 = 3 cm. An in-depth evaluation of graph33 and the enhanced GICP
algorithm presented in Section 4.2.2 on cross-source data from unstruc-
tured environments was not conducted as the plate-shaped discretization
errors in SGBM point clouds led to inaccurate registration results with
GICP in prior experimental evaluations. Consequently, graph33 lends
itself well as a method for registering 3D cross-source data from unstruc-
tured environments.

The presented, classic 2D–3D registration method cc23 outperformed
graph33 and yielded lower errors for the 𝐹 and 𝐿2 metrics. The graph33
method achieved the least accurate result in a scene with more than 25m
of distance to the elements contributing to the registration in the scene.
It is thus assumed that the major cause for this was the limited depth
accuracy of the stereo camera point cloud. As a reference, 𝑧 = 25 m with
an accepted three pixel error limit in disparity estimation corresponds
to 𝜀𝑧 = 4.4m. Nevertheless, graph33 yielded a higher registration accu-
racy in a few cases where cc23 experienced difficulties achieving valid
registration results.

Further comparison of cc23, graph33, and CSGM is presented in Sec-
tion 4.3.6.1. Figure 4.18 shows an exemplary registration result of graph33
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on two images of the IOSB-Reg dataset. Concluding, graph33 with the
optimizations proposed in this thesis clearly outperformed CSGM as
proposed in [126] on data from unstructured environments. The graph33
method can achieve successful registration results under the different
exposure and light conditions as well as in the different seasons captured
in the IOSB-Reg dataset.

4.3.5 dsm33: 3D–3D Cross-Source Registration with
Neural Networks

The dsm33 method facilitates the 3D–3D registration of cross-source
data with CNNs and is inspired by the work of Haskins et al. [109] in
medical imaging. It was methodically elaborated in collaboration with
Leitritz [335] who primarily conducted the proof of concept detailed
in Section A.3.4. The dsm33method is intended as a first step towards the
3D–3D registration with neural networks and as an impulse for further
research in this direction. Figure 4.19 illustrates the workflow of the pro-
posed dsm33 method that registers 3D cross-source data by combining
a learned deep similarity metric (dsm) and a classic, evolutionary opti-
mization algorithm. It does not use correspondences in contrast to other
3D–3D registration methods on the basis of CNNs [57, 126]. The dsm33
method registers 3D LiDAR clouds (L) to SGBM stereo camera point
clouds (S) and is designed and optimized to register 3D cross-source
point clouds captured in unstructured environments similar to graph33.
L is selected as the registration target due to its higher measurement
accuracy. Consequently, the source S is subject to augmentation to train
the similarity metric. The similarity between the considered 3D cross-
source clouds is represented as a CNN-based regression problem, and
the transformation between source and target point cloud is estimated
on the basis of the learned similarity metric.

However, dsm33 comes with the inherent accuracy limitation of stereo
camera depth estimation like graph33. At this point in time, the 2D reso-
lution of images and the available computing power cannot provide a
sufficiently high level of accuracy in stereo image disparity estimation
to replace the 3D LiDAR sensors in unstructured environments, and
sub-pixel stereo methods are no alternative for increased depth estima-
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Figure 4.19 dsm33 workflow: the CNN highlighted in blue contains the 3D simi-
larity metric, classic processing steps are colored in yellow, input data in gray.

tion accuracy. The dsm33 method is presented as a 3D–3D registration
method relying on neural networks within this thesis but not integrated
into UCSR by now. The increase of computing power and cameras with
higher resolution in the future will decrease the depth inaccuracies in
stereo camera disparity estimation and notably improve the registration
accuracy in 3D–3D cross-source registration.

4.3.5.1 Preprocessing and Network Architecture

The 3D clouds are mapped onto a voxel grid to enable the similarity
metric estimation inside a CNN architecture. The voxel size depends on
the geometric expansion of the input data, and a too coarse voxelization
leads to a loss of accuracy and information content, while a too fine
voxelization leads to an exploding consumption of memory.

The S and L input clouds are represented as 3D images with two chan-
nels and cropped into a cuboid of 20 m × 20 m × 10 m prior to voxelization.
This cuboid is centered around the origin of the respective clouds to fit
the camera FoV. This considers the different nature of the dsm33 data in
contrast to [109] and generates a consistent data representation despite
the cross-source point sets subject to registration. An additional bound-
ing box is laid around the extracted cuboid of S to determine the voxel
size. The bounding box limits are multiplied by a factor of 1.1 to preserve
the input data in case of decalibrations. Hence, the maximum size of the
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bounding box is 𝑙𝑏𝑥 × 𝑙𝑏𝑦 × 𝑙𝑏𝑧 = 22 m × 22 m × 11 m. The 3D voxel size 𝐥vox
is determined by

𝐥vox,𝑖 = max (
𝑙𝑏𝑖
𝑙𝑣𝑖

), 𝑖 ∈ {𝑥, 𝑦, 𝑧}, (4.45)

with 𝑙𝑣𝑖, 𝑖 ∈ {𝑥, 𝑦, 𝑧} the maximum dimension of the respective 3D cloud.
3D cloudswith binary information are utilized in dsm33 instead of 3D vox-
els with grayscale information in [109], and the encoded binary informa-
tion specifies the voxel occupancy.

In addition to the 512 × 512 × 32 voxelization proposed in [109], a
voxelization of the input point cloudswith 256×256×32 and 128×128×32
was proposed and evaluated in dsm33. The RGB intensities of S and the
intensity measurements of L were not considered in dsm33 to preserve
the generalization of the method to other kinds of input data. After
preprocessing, the voxelized, cuboid-structured 3D volume data is input
into the CNN in dsm33.

The input layer of dsm33 processes the 3D volumes, and the nine sub-
sequent volumetric convolutional layers perform the feature extraction
step. The 3D cloud pair forms one cloud with two channels as proposed
in [109], and the convolutional layers compute the inner product be-
tween all filters and the corresponding cloud patches with a stride of
1 in each direction for feature extraction. A ReLU activation function
layer follows each convolutional layer and suppresses negative values
in the output feature maps of the convolutional layer. Maximum pool-
ing layers are inserted for downsampling: the first pooling layer with
2 × 2 × 2 is inserted after the first convolutional layer with a subsequent
ReLU activation. A second pooling layer with 1 × 2 × 2 succeeds the third
convolutional–ReLU layer. A skip connection concatenates the second
maximum pooling layer’s result with the sixth convolutional–ReLU layer
combination. A final fully-connected layer outputs the estimated deep
similarity metric as a scalar value. The estimated similarity indicates the
quality of the registration. The weights are not shared between S and L
as different numbers of filters are used.

In order to choose a suitable similarity metric for binary 3D images,
MI [291] was compared to the learned similarity metric in dsm33 for
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the analyzed cross-source data, as described in [109]. MI measures the
mutual dependency of two variables 𝑋 and 𝑌 as

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) − 𝐻(𝑋|𝑌 ) = ∑𝑥,𝑦
𝑝(𝑥, 𝑦) log (

𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)). (4.46)

Here, 𝐻 is the Shannon entropy that analyzes the information content,
according to Equation 3.10, while 𝑝(𝑥, 𝑦), 𝑝(𝑥), and 𝑝(𝑦) are the respective
probabilities. Each voxelized 3D image is considered as a randomvariable
of a sample consisting of several 3D images to calculate the MI. Each
voxel is a binary, random experiment as a voxel can be full or empty in
dsm33. The probabilities can be determined by counting the number of
occurrences of 𝑋 = 0 with 𝑌 = 0 or 𝑌 = 1 and 𝑋 = 1 with 𝑌 = 0 or
𝑌 = 1 in the corresponding voxels of two images to be registered. The
proof of concept detailed in Section A.3.4 demonstrates that the learned
similarity metric outperformedMI on 2D and 3D data from unstructured
environments (see Figure A.8).

4.3.5.2 Training and Augmentation

Haskins et al. [109] use the target registration error as a loss function
for training (see Section 2.3.3). In contrast, dsm33 utilizes the 𝐿2 norm
between the ground truth and the registration result as the approach
of [109] is neither comfortable nor suitable for cross-source sensor data
registration requiring manual user intervention. The 𝐿2 norm proved
additionally favorable as it models translation and rotation errors within
one value that considers the effective distance of the points after applying
the registration result.

At first, the LiDAR cloud is transformed into the coordinate system of
S by applying the ground truth reference transformation. Secondly, the
predefined training decalibration is applied to L in stereo coordinates.
Before the cuboid extraction, the input clouds are transformed with the
ground truth to train the CNN for similarity estimation. Level S, level
M, and level L decalibrations are applied subsequently. The 𝐿2 norm is
purely measured on L to ensure the selection of corresponding points
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that map the same 3D point within the 𝐿2 calculation. It provides a scalar
output:

𝐿dsm33 =
1
𝑁

𝑁

∑ (�̂�2(L,Ldec) − 𝐿2(L,Ldec))2. (4.47)

The desired value – the ground truth 𝐿2 norm between equivalent points
in L prior to decalibration and Ldec after decalibration – is encoded in
𝐿2(L,Ldec). Hence, 𝐿2(L,Ldec) is defined by the input data decalibration.
�̂�2(L,Ldec) denotes the CNN-estimated 𝐿2 between L and Ldec.

Furthermore, the impact of different augmentation strategies was eval-
uated in dsm33. Here, a customized augmentation strategy that yielded a
uniform distribution of decalibrations (dsm33-U) in the training, testing,
and validation data proposed in [335] was compared to an augmentation
strategy with an approximately Gaussian distribution of the decalibra-
tions. At first, the source clouds are transformed to target coordinates.
Secondly, different decalibrations between the source and the target cloud
were generated on the basis of the ground truth information from step
one. The standard augmentation strategy proposed in [109] (dsm33-N)
transforms both source and target with a random decalibration to ob-
tain different point distributions in 3D space. The uniform augmentation
dsm33-U proposed in this thesis outperforms the augmentation proposed
by Haskins et al. [109]. Furthermore, only dsm33-U correctly estimates
translational decalibrations, as depicted in Figure A.8(d).

Haskins et al. [109] evaluated different optimizers: SGD, SGD with
Nesterov momentum, RMSprop, Adagrad, Adam, and Adadelta. The
Adam optimizer yielded a superior performance with a learning rate of
10−5 and was therefore selected to train the deep similarity metric CNN
in dsm33.

4.3.5.3 Differential Evolution Optimization

A suitable optimization strategy must be selected as the learned similar-
ity metric is neither convex nor smooth. Truncated differential evolution
is selected as recommended by Haskins et al. [109] as it does not require
the optimization problem to be differentiable [260]. Furthermore, evolu-
tionary optimization algorithms are especially well-suited for problems
with a higher dimensionality, such as registration. With the learned sim-
ilarity metric in dsm33 as target function, the exploration of the search
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space was achieved in a rapid and holistic manner, and a solution close
to the optimum was mostly found. Haskins et al. [109] applied a differen-
tial evolution initialized Newton-based optimization (DINO) where the
differential evolution results are subject to further BFGS optimization.

Truncated differential evolution generates multiple parameter vec-
tors for the wanted transformations in each iteration and transforms the
source clouds to estimate the registration error. Parameter vectors with
favorable results are selected as a parent for the reproduction in the next
population. This yielded a convergence of the algorithm within a small
number of iterations. The population energies 𝐄𝑝 contain the 𝐿2(L,Ldec)
values of the individual transformations making up the population as po-
tential solutions inside an array structure. Convergence is examined after
each generation and terminates the differential evolution optimization if

𝑀DE = 𝜎(𝐄𝑝) ≤ 0.01 ⋅ ‖𝐄𝑝‖1 (4.48)

is fulfilled or the maximum number of iterations are reached.
The experimental evaluation of dsm33 on data from unstructured envi-

ronments showed that in contrast to [109], a local, Newton-based opti-
mization such as BFGS did not improve the differential evolution opti-
mization results. Thiswas probably caused by the different characteristics
of the medical data of [109] and the IOSB-Reg data from unstructured
environments. S suffered from notably higher inaccuracies due to the
limited depth estimation accuracy. 3D data from stereo image disparity
estimation has a high density, whereas LiDAR data is accurate but sparse.
With these training samples, the model is non-convex and non-smooth
in many areas, and the local BFGS optimization was probably unable
to escape from this local optima towards a global optimum. However,
neither the meta-heuristic nature of differential evolution nor the local,
Newton-based BFGS optimization can guarantee a globally optimal so-
lution, and dsm33 utilizes a truncated differential evolution without an
additional BFGS optimization as it proved useful for the registration of
3D–3D cross-source data from unstructured environments. Naturally,
increased estimation accuracy of the CNN on the basis of the learned sim-
ilarity metric increased the probability for the optimization to converge
into a global optimum.

Experimental evaluation in [335] showed that the registration results
of dsm33 proved to be very likely to be close to the global optimum using
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the truncated differential evolution of SciPy with different parameter con-
figurations for each iteration. The multi-pass approach proposed in [109]
conducts each inference multiple times and achieves a higher registra-
tion accuracy for the medical imaging data of [109] but also requires
a notably higher computation effort prior to optimization. A thorough
experimental evaluation of the multi-pass approach on the cross-source
data regarded in this thesis did not improve the registration accuracy.
Hence, multiple iterations of the inference step are not conducted in
dsm33, and the deep similarity metric is only estimated once prior to
optimization.

Furthermore, differential evolution optimization requires a similarity
metric that can also achieve a high validation error as long as the valida-
tion error does not rise again after a certain number of epochs, and the
CNN-based similarity metric estimation in dsm33 proved useful for the
subsequent processing steps.

The dsm33-N similarity metric still yielded a higher registration ac-
curacy than MI. The notably lower standard deviation for both dsm33
configurations underlines the higher robustness of the proposed CNN-
based similarity metric.

4.3.6 Comparison of Individual Cross-Source Registration
Methods

A ground truth reference transformation was available for all use cases
within this thesis. A visual overlay can provide a qualitative assessment of
the registration accuracy for use cases without a reference transformation.
As proposed in Section 4.2.1, kNN filtering facilitates preprocessing or a
qualitative accuracy assessment for registered 3D point clouds.

4.3.6.1 Classic Registration Methods

Table 4.6 compares ICP and CSGM according to [126] with the proposed
classic graph33 and cc23 methods on the IOSB-Reg dataset. The cc23
methods yielded lower and better 𝐹 and 𝐿2 results than graph33, and
it is assumed that the major cause for this is the already limited depth
estimation accuracy in stereo camera clouds. The proposed cc23 and
graph33 methods were also compared to CSGM as proposed in [126]
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Error Metric ICP CSGM graph33 cc23
Best result on single image

ln 𝐹 -0.424 1.852 1.215 0.400
𝐿2 3.695 4.316 1.626 2.858

Average registration accuracy and robustness
𝜇(ln 𝐹 ) 2.635 4.410 3.755 1.520
𝜇(𝐿2) 5.760 8.716 9.248 5.672
𝜎2(ln 𝐹 ) 1.221 1.362 2.312 0.296
𝜎2(𝐿2) 0.927 5.049 4.888 16.607
Weights 𝑤𝑖 for UCSR fusion (according to Equation 4.20)
𝑤𝑖,1 2.477 1.244 1.232 2.913
𝑤𝑖,2 2.451 0.885 0.849 4.274
𝐿2 is given in m. ln is the natural logarithm in m.

Table 4.6 Registration accuracy of cc23, graph33, CSGM, and ICP on 27 IOSB-Reg
validation and test images. CSGM is parameterized with 𝑙vox = 0.30 m.

and the graph33method optimized for unstructured environments. Here,
both methods clearly outperformed CSGM of [126] on data from these
environments. ICP was included as a reference for the accuracy of the
proposed methods and achieved a lower 𝜎(𝐿2) and a higher 𝜎2(𝐹 ). 𝐿2
is similar to the 𝑒fs metric optimized by the BFGS algorithm in the ICP
algorithm’s inner loop, which explains its low 𝜎 and the relatively low
𝐿2 error compared to the 𝐹 results with other methods. Furthermore,
the low 𝜎 and 𝜎2 values of the ICP algorithm with a high 𝐿2 error can
indicate a faulty convergence within a local minimum.

Table 4.6 shows that graph33 outperformed CSGM according to [126]
on data from unstructured environments. Hence, the adaptions and
optimizations proposed in Section 4.3.4 provide the desired improvement
for unstructured environments. Nevertheless, the registration accuracy
of graph33 alone is not sufficient to register multi-sensor systems on
off-road vehicles. The graph33 method achieved the third-best result
in terms of 𝐹 and 𝐿2 (ln 𝐹 = 1.215, 𝐿2 = 1.656 m) on an S–L cloud
pair that captured many planar surfaces from industrial buildings and
cobblestone pavement with a similar texture. However, cc23 achieved
the most accurate registration result on mainly unstructured images
that mainly captured grass, trees, and bushes, while it achieved the
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worst results on the above mentioned S-L cloud pair with industrial
buildings and cobblestone pavement. Concluding, cc23 achieved the
most promising results to register 2D cameras to 3D LiDAR sensors from
unstructured environments in a classic manner and outperformed ICP,
CSGM, and graph33 in terms of 𝐹 and 𝐿2. However, cc23 and graph33
showed different strengths that mutually complement each other and
facilitate a higher registration accuracy than the individual application
of only one method.

4.3.6.2 Registration Methods with Neural Networks

Table 4.7 compares the registration performance of the dsm33 configu-
ration with the highest accuacy (dsm33-U) with cnn23 and classic ICP
for level S decalibrations according to Section 3.11. In terms of 𝐹 and 𝐿2,
cnn23 achieved the highest registration accuracy, while dsm33 yielded the
most accurate estimation of the rotation 𝐫. The achieved Δ𝐭 = 6.9 cm for
level S and a Δ𝐭 = 5.2 cm for level L decalibrations were slightly higher
than the registration accuracy achieved in similar-source registration
that equals the noise of rotating 3D LiDAR sensors (±3 cm). However, a
mean registration error in the range of single-digit centimeters proved
useful for the environment perception of off-road vehicles in previous
works [323, 324]. Figure 4.20 visualizes the registration results for cnn23,
dsm33-U, and classic ICP on an exemplary scene of the IOSB-Reg test
dataset as projections in 2D space and further justifies the applicability
of the achieved registration results to register multi-sensor systems for
the perception of unstructured environments. 3D stereo camera point
clouds generated with SGBM are registered to 3D LiDAR point clouds
with dsm33 and ICP, while cnn23 matches 2D RGB images to 3D LiDAR
point clouds. ICP could not improve the registration accuracy, especially
not for small decalibrations. The cnn23method yielded the most accurate
translation estimates for level S and L decalibrations. The analyzed cnn23
architecture has more than 17M network parameters, while dsm33 has
more than 22M parameters. The runtime for one registration with cnn23
on a PC with 32GB RAM CPU and an RTX 2080S GPU amounted to
20ms, while the registration of two cross-source clouds with dsm33 could
require more than ten minutes. This does not exclude the applicability
of dsm33 in the registration of cross-source sensor data in the field, as
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Error Metric cnn23 dsm33-U ICP Decalib.

Average registration accuracy and robustness (𝑛 = 15).

𝜇(ln 𝐹 ) -1.187 -1.171 -0.041 -1.259
𝜇(𝐿2) 0.491 0.556 1.197 0.724
𝜎(ln 𝐹 ) -2.244 -2.129 -0.860 -2.659
𝜎(𝐿2) 0.461 0.259 0.454 0.150
min(𝐿2) 0.120 0.184 0.736 0.492
min(ln 𝐹 ) -3.147 -2.453 -0.553 -1.864

Registration accuracy for selected DoFs.

Δ𝐭 along 𝑧 axis 0.037 0.097 0.597 0.148
Δ𝐫 around 𝑥 axis 0.826 0.770 3.682 2.414
Δ𝐫 around 𝑧 axis 1.783 1.731 1.811 1.887
Δ𝐭 0.069 0.141 0.455 0.138
Δ𝐫 1.241 1.007 2.525 2.138
𝐿2 is given in m. Rotations are given in degrees.

Table 4.7 Registration results of cnn23, dsm33-U, and classic ICP for level S
decalibrations on 14 IOSB-Reg test images. Registration on each test scene is
performed 𝑛 = 15 times to estimate accuracy and robustness.

sensor calibration is not required in real-time. However, it becomes clear
that the suitability of dsm33 in the practical application for the presented
use cases is still limited.

Concluding, cnn23 estimated relative translations with the highest
accuracy, while dsm33 determines relative rotations with higher accuracy
than cnn23. Equivalent to graph33, dsm33 requires the availability of two
cameras and an a priori generation of a 3D stereo camera point cloud.

4.3.7 Proof of Concept: UCSR
The applicability ofUCSR to register 2D RGB cameras and a 3D LiDAR is
demonstrated on IOSB-Reg data from unstructured environments with-
out calibration targets. Table 4.8 compares the individual registration
methods in UCSR as well as the confidence-based fusion of cc23, cnn23,
and graph33 inside theUCSR framework on the basis of the 𝐹 and 𝐿2 error
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4.3 UCSR: Confidence-Based Registration Framework

(a) Ground truth. (b) Decalibrated input.

(c) cnn23 registration result. (d) dsm33-U registration result.

Figure 4.20 Registration results for an IOSB-Reg scene with cnn23-I and dsm33-U
for a level M decalibration ([-0.347m; -0.082m; -0.142m]; [8.03°; 5.97°; 8.03°]).
Images © Fraunhofer IOSB.

metrics. It is shown that UCSR achieves a considerably lower mean accu-
racy in terms of 𝐿2(UCSR) = 0.868 m in unstructured environments than
CSGM in the registration of the “Stanford Bunny” (see Section 3.11 [126]).

The combination of cc23, cnn23, and graph33 increased the accuracy
and robustness of the registration as well as the range of possible input
data for valid registration scenarios. Out of the unstructured images of
the IOSB-Reg dataset, 15 image-LiDAR pairs were selected for validation
and 15 for testing. Each individual registration method was run for 15
times (𝑛 = 15) on each scene to determine the accuracy and robustness
results for the respective error metrics as some of the evaluated registra-
tion methods rely on local, Newton-based optimization (cc23) or neural
networks that require a more in-depth analysis than classic methods due
to their black box character.
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Error Individual methods in UCSR UCSR
Metric cc23 cnn23 graph33

Best result on validation data.

ln 𝐹 0.306 -1.514 0.901 -1.616
𝐿2 2.126 0.342 3.495 0.709

Accuracy and robustness on all test scenes with 𝑛 = 15.

𝜇(ln 𝐹 ) 1.224 -1.016 3.189 -1.446
𝜇(𝐿2) 3.636 0.695 6.287 0.868

𝜎2(ln 𝐹 ) 0.525 0.245 1.331 0.028
𝜎2(𝐿2) 3.448 0.256 3.859 0.059

𝑤𝑖,2 for UCSR fusion according to Equation 4.20 and Equation 4.21

𝑤𝑖,2 1.451 8.890 0.724 –
𝐿2 is given in m. ln is the natural logarithm in m.

Table 4.8 Registration accuracy with individual methods and with UCSR for
level L decalibrations according to Section 3.11.

The cnn23 method outperformed classic cc23 and graph33 in terms of
accuracy and robustness. However, it has to be considered that CNNs
require a huge amount of training data that is often hard to find, espe-
cially in unstructured environments. UCSR performed better than the
best registration result of its individual components cc23, cnn23, and
graph33. The combination of classic and CNN-based registration meth-
ods in UCSR provided valid, verifiable, and accurate registration results
and can concurrently validate CNN methods in critical applications such
as autonomous off-road vehicles.

Schneider et al. [246] achieved a mean calibration error of 6 cm in
translation and 0.28° in rotation on the KITTI 2012 dataset [83]. However,
structured environments with smooth surfaces are notably more favor-
able for cross-source registration without calibration targets than the
unstructured environments regarded in this thesis. With an empirical
mean of 5.10 cm in translation, theUCSR translation registration accuracy
was higher for unstructured environments than the accuracy achieved
by Schneider et al. [246] in the less-challenging, structured environments
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captured in KITTI. The UCSR-achieved mean rotational error of 0.956°
for unstructured environments was higher than the rotation error of [246]
and CalibNet [131] in registering KITTI data from structured environ-
ments. This higher rotational error of UCSR is assumed to be caused by
the notably smaller number of smooth surfaces complicating sensor data
registration in unstructured environments. TheUCSR framework yielded
a lower variance and thus an increased robustness of the registration
compared to the evaluated, individual registration methods. Hence, it
can provide valid registration results in a wide range of different envi-
ronments, especially for autonomous off-road vehicles in unstructured
environments.

4.4 2D Image Fusion
The fusion of different spectral channels or differently exposed images
into one image leads to an increased information density in one image
for subsequent processing steps, such as visual SLAM, with similar
calculation time. This indicates that visual SLAMwithmulti-spectral and
HDR images can lead to a more accurate localization and mapping, and
it paves the way for their application in more challenging, unstructured
outdoor environments. Figure 4.21(a) depicts the processing pipeline for
images from multi-spectral prism cameras.

4.4.1 2D Fusion of Multi-Spectral Images
Multi-spectral prism cameras capture intensity information from multi-
ple spectral channels in different images but with identical characteristics
in terms of lens, resolution, and FoV. RGB images in the visible spectrum
(400 nm to 650 nm) and in NIR spectrum covering the wavelengths from
750 nm to more than 1000 nm are provided. Different fusion approaches
for multi-spectral images are known, as discussed in Section 2.3.4. PCA
only produces the channels with the highest variance, as detailed in
Section 3.4, and is hence not suitable if the information from all channels
shall be preserved.

HDR image fusion fuses multiple images of identical spectral informa-
tion that depict different image areas in different qualities into one image.
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4 Low-level Perception

The fusion of RGB and NIR images is similar as different image areas
are captured with different image qualities. Thus, the idea of selecting
favorably depicted image areas for the final image is similar in HDR and
multi-spectral image fusion. Albrecht and Heide [320] compare different
HDR fusion methods for feature-based visual SLAM for person indoor
navigation and use MEF [192] to merge differently exposed images on
the basis of saturation, well-exposedness, and contrast quality measures.
Here, the contrast quality measure provided the most promising results
on grayscale HDR images for feature-based visual SLAM with gradient-
based feature extraction [320].

This thesis proposes the application ofMEF to fuse RGB andNIR image
information due to the discussed similarities to HDR fusion, where MEF
is well-established and provides accurate, satisfactory results. To the best
of the author’s knowledge, MEF was not used previously to provide
fused RGB–NIR images. MEF uses saturation 𝑆, contrast 𝑂, and well-
exposedness 𝐸 quality measures to generate the scalar-valued weight
map to blend the input images. For each pixel [𝑖, 𝑗] in the 𝑘-th image, the
weight is calculated:

𝑤𝑖𝑗,𝑘 = (𝑂𝑖𝑗,𝑘)𝜔𝑂(𝑆𝑖𝑗,𝑘)𝜔𝑆(𝐸𝑖𝑗,𝑘)𝜔𝐸, (4.49)

with 𝜔𝑂, 𝜔𝑆, and 𝜔𝐸 the corresponding weighting exponents defined
according to the importance of the respective quality measure. Contrast
is measured with a Laplacian filter on the grayscale conversion of each
image. The standard deviation within each channel is computed at each
pixel for the saturation measure. The well-exposedness measure weights
each intensity based on its closeness to 0.5 using a Gauss curve with
𝜎 = 0.2:

exp ( −
(𝑖 − 0.5)2

2𝜎2 ). (4.50)

Two RGB and two NIR images are captured by the stereo camera setup,
and the RGB and NIR images from each camera are fused using MEF.
Well-exposedness is used as a second quality measure in addition to
contrast to take different imaging characteristics of RGB and NIR into
account during the fusion process. NIR images contain only one channel,
while the RGB images are converted to grayscale images. Subsequently,
the RGB and the NIR image from one camera are fused using the experi-
mentally justified combination of the well-exposedness 𝐸 and contrast 𝑂
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quality measures with equivalent weighting 𝜔𝑂 = 𝜔𝐸 = 0.5 according
to Equation 4.49 for each pixel [𝑖, 𝑗] in image 𝐈𝑘.

The image is decomposed using a Laplacian pyramid 𝐋MEF as dis-
cussed in Mertens et al. [192]. Pyramid coefficients are not processed
directly but blended depending on the value inside the scalar weight
map saved as a Gaussian pyramid. Each level 𝑙 of the Laplacian pyramid
is the weighted mean value of the Laplacian compositions of sequence 𝑘,
the 𝑘-th input image of the sequence that is subject to exposure fusion
in [192] (𝐈𝑘), and 𝑙 from the normalized weight map �̂�𝑖𝑗,𝑘:

�̂�[𝑖,𝑗],𝑘 = [𝑊[𝑖,𝑗],1 + 𝑊[𝑖,𝑗],2]
−1

𝑊[𝑖,𝑗],𝑘. (4.51)

The resulting image 𝐑MEF is calculated from the NIR and grayscale input
images using the weighting �̂�[𝑖,𝑗],𝑘:

𝑅MEF[𝑖, 𝑗] =
𝑁

∑
𝑘=1

�̂�[𝑖,𝑗],𝑘𝐼[𝑖,𝑗],𝑘. (4.52)

The RGB–NIR fusion utilizes 𝑁 = 2 with 𝐈1 the grayscale and 𝐈2 the
NIR image. This fuses the images by blending image features instead of
intensities, which addresses the seam problem.

MEF for images from two multi-spectral cameras provides two fused
RGB–NIR images for visual SLAMor disparity estimation from stereo im-
ages. The benefits of the utilization of fused RGB–NIR images in feature-
based visual SLAM are described in Section A.4.

4.4.2 Proof of Concept: RGB–NIR Fusion
The application of MEF on RGB and NIR images is independent of the
captured environment, and the proposed MEF 2D fusion approach was
demonstrated on structured indoor environments with a large window
facade to include outdoor elements. The RGB andNIR images for the pre-
sented image fusion were captured with the sensor setup of the IOSB-Reg
dataset and showed promising results in the fusion of RGB and NIR im-
ages, as depicted in Figure 4.21(b). The outdoor elements in Figure 4.21(b)
illustrate the straightforward application of the presented 2D fusion
method for arbitrary structured and unstructured application scenar-
ios. The fusion of the intensity information of the three RGB channels
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4 Low-level Perception

and the monocular NIR images facilitates the use of these fused images
for fast processing in visual SLAM or disparity estimation from stereo
camera images. Section A.4 discusses the benefits of fused multi-spectral
and HDR images for visual SLAM for primarily structured indoor and
outdoor environments.

Prism 
Cameras

RGB and NIR 
Images

Fused RGB-NIR 
Images

Utilization, e.g., 
Visual SLAM

(a) Setup for RGB–NIR fusion. (b) Fused RGB–NIR image.

Figure 4.21 Hardware setup and 2D image fusion result with MEF for RGB–
NIR images from a JAI AD-130GE camera with 𝜔𝐸 = 𝜔𝑂 = 0.5. Benefits from
RGB–NIR fusion included that the captured outdoor elements are clearly visible
through the window structure in the fused image, as highlighted in yellow.
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5 Mid-Level Perception

This thesis proposes two stereo image disparity estimation methods for
unstructured environments: a classic stereo image disparity estimation
method for hyperspectral images in Section 5.1.1 [324], and the UEM-
CNN method [327] in Section 5.1.2 providing a disparity estimation
from stereo images on the basis of CNNs. Furthermore, Section 5.2.1 of
this thesis proposes novel error metrics to validate disparity estimation
methods in a loosely coupled manner and with a special focus on their
application for off-road vehicles in unstructured environments [327]. In
addition, the Stereo Evaluation Toolbox (SET) approach [325] presented
in Section 5.2.2 allows a loosely coupled validation of 3D reconstruction
results from arbitrary stereo image disparity estimation methods.

Section 5.3 proposes multiple sensor data fusion approaches combin-
ing information from 2D image and 3D point cloud data. The achieved
3D–3D fusion results in the form of 3D point clouds can constitute a direct
input to the subsequent mapping and planning steps or also be subject
to high-level interpretation, depending on the design of the perception
pipeline of the respective off-road vehicle.

5.1 Disparity Estimation from Stereo Images
Horizontal stereo camera setups were selected for 3D reconstruction
in this thesis as they provide a wider overlap for the horizontal FoV.
Kallwies et al. [147] confirm this choice demonstrating that horizontal
outperforms vertical stereo image disparity estimation for autonomous
off-road vehicles.
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MCCT

SGD

SAD CCo

GF (Left to right)

GF (Right to left)

LRC Post-processing

DS

DS

Figure 5.1 Processing pipeline of CCRADAR algorithm. MCCT: Modified Color
Census Transform, GF: Guided Filter, DS: Disparity Selection.

5.1.1 Disparity Estimation on Hyperspectral Images
Hyperspectral image data provides more detailed spectral information
than RGB images. As a results, it is expected that hyperspectral images
achieve an enhanced depth reconstruction in unstructured environments.
However, additional channels imply a higher computational effort, and
local, correlation-based similarity measures are preferable as computa-
tions can be conducted in parallel and sped up notably.

5.1.1.1 CCRADAR for Hyperspectral Images

The local, correlation-based CCRADAR stereo method [139] was ex-
tended to hyperspectral image data in this thesis [265, 324]. To the best
of the author’s knowledge, a real-time capable approach for disparity
estimation from stereo images on hyperspectral images to passively per-
ceive unstructured environments was not known prior to the publica-
tion of [324]. Figure 5.1 provides an overview of the disparity estima-
tion process in CCRADAR. The extended, hyperspectral CCRADAR
method is demonstrated on Ximea xiSpec MQ022HG-IM-SM4X4-VIS
cameras with 16 channels between 465 nm and 630 nm and a resolution of
2048×1088 px [324]. The Ximea stereo camera pair combines the intensity
information from 16 channels into a 4 × 4 px mosaic representation that
provides an image resolution of 512 × 272 mosaic pixels [324].

The local, hyperspectral CCRADAR algorithm operates on the mosaic
pixels and performs numerous, simple similarity matching calculations
in local window structures. This favors a parallel calculation on a General
Purpose Computation on Graphics Processing Unit (GPGPU) on the
basis of Compute Unified Device Architecture (CUDA) programming
interface, as described in Section 5.1.1.2, to copewith the computationally
expensive depth reconstruction due to many channels.
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Different CCRADAR parameterizations and post-processing methods
were evaluated to identify the most favorable CCRADAR configuration
for unstructured environments. Table 5.1 provides an overview on the
CCRADAR parameterizations for hyperspectral images from unstruc-
tured environments evaluated in this thesis and the configuration that
achieved the most accurate 3D reconstruction results [324].

The 3D stereo clouds (S) were generated from the estimated disparity
images and compared against LiDAR clouds (L) of the same, static scene
for an accuracy evaluation: S was transformed in the coordinate system
of the LiDAR sensor so that S and L were both present within the same
coordinate system. Outliers were primarily introduced by depth estima-
tion inaccuracies, and kNN outlier filtering explained in Section 4.2.1
allowed a more targeted accuracy assessment of S.

The 3D reconstruction results S were assessed according to nine cri-
teria. Here, ICP determines point-by-point correspondences between
S and L, and measures the 3D reconstruction accuracy in hyperspectral
CCRADAR. ICP was chosen instead of GICP [323] as point-by-point
distance measures from different sensor types were required here. The
S–L cloud pair was analyzed prior to (S𝑜) and after (S𝑓) outlier filtering
on the basis of the following criteria:

I (S𝑜), V (S𝑓): 𝑒fs result of ICP registration with accurate L (target)
and S (source) for accuracy assessment (𝑊𝐼,𝑉 = 0.25).
II (S𝑜), VI (S𝑓): correspondences in ICP (𝑊𝐼𝐼,𝑉 𝐼 = 0.075).
III (S𝑜), VII (S𝑓): 𝐿2 deviation of 𝐭ICP from 𝟏 (𝑊𝐼𝐼𝐼,𝑉 𝐼𝐼 = 0.05).
IV (S𝑜), VIII (S𝑓): 𝐿2 deviation of 𝐫ICP from 𝟏 (𝑊𝐼𝑉 ,𝑉 𝐼𝐼𝐼 = 0.05).
IX: percentage of kNN-filtered outliers (𝑊𝐼𝑋 = 0.15).

𝑊𝑖, 𝑖 ∈ [𝐼; ...; 𝐼𝑋] specifies the experimentally justified weighting factor
for the respective criterion. The 𝑒fs approximates the absolute depth es-
timation error for CCRADAR. A low absolute error (I, V) and a small
number of outliers (IX) are the most important features of a point cloud
in depth reconstruction for off-road vehicles, while a high number of
correspondences between S and L (II, VI) indicates a reliable 3D recon-
struction of the environment in S . A high 𝐿2 distance for 𝐭 and 𝐫 from the
identity reference transformation (III, IV, VII, VIII) implies an inaccurate
3D reconstruction as the ICP registration optimizes the quadratic dis-
tances of corresponding point pairs. An accuracy-based, experimentally
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justified ranking for the analyzed CCRADAR clouds was established for
each criterion 𝑖 ∈ [𝐼; … ; 𝐼𝑋] on the basis of the measured values. The
final scoring includes the achieved rank for each criterion 𝑖 as a penalty
score. The penalty points 𝑃 𝑗

𝑖,𝑘 for each criterion 𝑖 in CCRADAR config-
uration 𝑘 on evaluation image 𝑗 are combined with the weightings 𝑊𝑖:

𝑃 𝑗
𝑘 =

𝐼𝑋

∑
𝑖=𝐼

(𝑃 𝑗
𝑖,𝑘𝑊𝑖). (5.1)

The penalties 𝑃 𝑗
𝑘 are summarized for all evaluation images to determine

the CCRADAR configuration 𝑘 with the lowest penalty 𝑃𝑘: 𝑃𝑘 = 2⋅𝑃 1
𝑘 +2⋅

𝑃 2
𝑘 + 𝑃 3

𝑘 . Here, double importance was assigned to the images primarily
representing unstructured environments (𝑗 ∈ [1; 2]). A low penalty 𝑃𝑘
indicates a high 3D reconstruction accuracy of hyperspectral CCRADAR.

5.1.1.2 Proof of Concept: Real-Time Capable Stereo Image Disparity
Estimation on Hyperspectral Images

All images are preprocessed and rectified prior to their input into hy-
perspectral CCRADAR. Detailed evaluation was conducted on three
image pairs (see Figure B.2), and structured environments were included
to take partially structured areas, such as walls or streets, into account.
Furthermore, structured test objects in 5 – 10m reference distance were
utilized to assess the 3D reconstruction accuracy and a mean squared er-
ror of 0.0267m2 was achieved with the hyperspectral CCRADARmethod
proposed. Table 5.1 describes the CCRADAR configurations achieving
the lowest penalties and, hence, the highest 3D reconstruction accuracy
on hyperspectral images. Post-processing with median filtering did not
prove useful as it smoothed transitions in disparity images and reduced
the disparity estimation accuracy of hyperspectral CCRADAR. Figure 5.2
shows the evaluation image that was used to compare the results from
the central processing unit (CPU) and the GPGPU processing with its
corresponding disparity image. A quadratic 𝐿2 error of 0.0267m2 was
measured for the estimated distances to the test objects in 5 – 10m. Fur-
thermore, the 3D reconstruction from hyperspectral images was also
evaluated with the SET approach discussed in Section 5.2.2.

Faster calculations with GPGPU parallelization require adaptations to
the CCRADAR algorithm with memory access being the most critical
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5.1 Disparity Estimation from Stereo Images

(a) Grayscale image. (b) CCRADAR disparity image.

Figure 5.2 Grayscale image of test scenery (a) and CCRADAR disparity image
with final configuration (b). Invalid pixels are colored black.

issue. Therefore, access to the global memory was minimized by repeti-
tively consolidating overlapping windows inside the local memory [265,
324]. Single instruction and multiple thread (SIMT) groups allowed the
sharing of local memory allocations, and the provisioning of overlapping
SIMT group elements further optimized memory access with tile struc-
tures including the edges of neighboring pixel structures of the SIMT
window. The CPU implementation of CCRADAR used the OpenCV
matrix structure row–column–channel, while the matrix structure was
changed to channel–row–column on the GPGPU, and the channel infor-
mationwas imported block-wise to prevent stride inefficiency. Additional
adaptions to reduce the calculation effort on the GPGPU included ex-
changing the 𝐿2 norm with the 𝐿1 norm, utilizing division instead of
square root calculation, as well as a linear instead of an exponential
weighting in the Census Transform.

An NVIDIA Quadro M6000 with 12GB RAM, 317GB/s throughput,
and 3072 CUDA kernels was used for an exemplary parallelization. This
can speed up the disparity estimation by more than 27× on the GPGPU
compared with an Intel Xeon E5-2640 CPU that has eight cores and exe-
cutes up to 16 threads in parallel [324]. Table 5.2 compares the calculation
times on GPGPU and CPU with the acceleration factor 𝑛𝐺 indicating the
computation reduction on the GPGPU. Here, preprocessing required
52ms, while rectification took 26ms.
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Parameter Eval. Top 4 Chosen

Weighting MCCT 0-1 0.70 0.70
Weighting SAD 0-1 0/0.15 0.15
Weighting SGD𝑥 0-1 0.10 0.10
Weighting SGD𝑦 0-1 0/0.05 0.05

Perform GF false/true true true
GF regularization 0.001/0.004 0.004 0.004
GF window size 2-25 7/10 7

Perform LRC false/true true true
Perform CBIV false/true false false
Perform MF false/true false/true false
MF window size 3-7 5 –
CBIV: Cross-based Iterative Voting according to [139].

Table 5.1 Evaluated hyperspectral CCRADAR parameterizations (Eval.), param-
eterizations of the four most accurate 3D reconstruction results (Top 4), and
chosen, most accurate hyperspectral CCRADAR parameterization (Chosen).

5.1.2 UEM-CNN : Disparity Estimation with CNNs
The Unstructured Environment Matching-CNN [327] (UEM-CNN) ap-
proach proposes three CNN architectures for a local, correlation-based
disparity estimation from grayscale stereo images in unstructured en-
vironments [327]. The fast MC-CNN architecture of Žbontar and Le-
Cun [309, 310] was chosen as basic architecture due to its promising
generalization performance in different domains. The considerably lower
computational effort of fast MC-CNN outweighed the minor decrease
in depth estimation accuracy relative to accurate MC-CNN. Moreover,
Žbontar and LeCun [309, 310] state that fast MC-CNN is less sensitive
to major differences between training and testing data. Both faster pro-
cessing and reduced performance degradation for different domains are
beneficial for unstructured environments as the availability of training,
validation, and test data is limited here.

Luo et al. [177] propose an evolution of MC-CNN that interprets dis-
parity estimation from stereo images as multi-class classification. The
authors [177] evaluated different receptive field sizes from 9 × 9 to 37 × 37.
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Step 𝑡𝐶,80 𝑡𝐶,174 𝑡𝐺,80 𝑡𝐺,174 𝑛𝐺,80 𝑛𝐺,174
in ms in ms in ms in ms

Init 3.68 2.88 2.05 1.84 1.80 1.57
MCCT 502.79 486.29 4.76 5.05 105.56 96.22
SAD 228.34 404.16 1.04 1.34 218.76 301.95
SGD𝑥 155.60 272.86 2.80 3.31 55.62 82.55
SGD𝑦 144.50 272.88 3.39 3.74 42.64 72.85
CCo 43.66 94.65 4.66 8.06 9.36 11.74
GF (L → R) 434.32 913.87 25.56 47.80 16.99 19.12
DS (L → R) 25.89 49.00 1.37 1.39 20.28 35.15
GF (R → L) 432.46 902.03 25.47 47.73 16.98 18.90
DS (R → L) 26.55 48.46 1.37 1.43 19.33 33.95
LRC 0.74 0.67 0.85 0.74 – –

Total 1998.53 3447.75 73.32 122.43 27.26 28.16
CCo: Cost Computation, GF: Guided Filter, DS: Disparity Selection.

Table 5.2 CPU (𝑡𝐶) and GPGPU (𝑡𝐺) calculation times, max(𝑑) = {80; 174}, 𝑛𝐺 =
𝑡𝐶
𝑡𝐺
.

Luo et al. [177] do not estimate each disparity value independently in
contrast to [309, 310] but combine disparity values for each pixel inside a
probability distribution centered around the reference during training.

The three UEM-CNN architectures proposed in this thesis – UEM-
CNNbase, UEM-CNN9, and UEM-CNN19 – estimate disparity on stereo
camera images from unstructured environments. The UEM-CNN archi-
tectures proposed were trained on the KITTI 2012 training dataset [83],
and five images from KITTI 2012 depicting unstructured environments
were selected to assess the performance of UEM-CNN for unstructured
environments. All UEM-CNN architectures require rectified, grayscale
images. The images for training and testing were normalized to a mean
intensity value of zero and a standard deviation of one. Furthermore,
the images were subdivided into patches prior to the training process.
Data filtering with an accuracy validation of the disparity information for
extracted image patches was conducted prior to training, validation, and
testing to exclude detrimental image patches, according to Section 6.2.1.
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5.1.2.1 UEM-CNN Architecture

The proposed UEM-CNN networks mainly differ in the input patch size
and in their training procedure. The two stereo image input patches are
analyzed by Siamese layers with shared weights, and on the basis of a
similaritymetric learned in the training process. 3D tensors are generated
after the fusion of the Siamese branches of the networks and contain the
matching costs of image patches. Here, each element of the 3D tensor
contains a similarity measure 𝑠𝑑 for each possible disparity value 𝑑 of
the pixel 𝑝. This yields the matching cost

𝐶(𝑝, 𝑑) = −𝑠𝑑⟨𝐼𝐿(𝑝), 𝐼𝑅(𝑝 − 𝑑)⟩ (5.2)

𝐼𝐿(𝑝) denotes the intensity of 𝑝 from left input patch (𝐿), while 𝐼𝑅(𝑝 − 𝑑)
denotes the respective intensity values of the input patch from the right
image (𝑅). The similarity measure is evaluated by the last network layer,
and the disparity is chosen according to the winner-takes-it-all strategy.
Hence, the disparity value with the lowest matching cost determines
disparity of the respective pixel. Two feature vectors 𝐮𝐿 and 𝐯𝑅 constitute
the output of the Siamese network layers from the two input patches.
They are compared inside a cosine similarity metric for all UEM-CNN
architectures:

cos(𝐮𝐿, 𝐯𝑅) =
𝐮𝐿 ⋅ 𝐯𝑅

‖𝐮𝐿‖ ⋅ ‖𝐯𝑅‖
. (5.3)

The output of the last network layer during the training process is in-
terpreted by a softmax that derives a probabilistic representation of all
disparity values from the numeric output of the last layer. This facilitates
the back-propagation during the training of the network. Validation and
testing with argmax instead of softmax is possible, as validation and
testing do not require differentiability, and proved useful to speed up
the disparity estimation in all UEM-CNN architectures.

UEM-CNNbase is inspired by theMC-CNN [309, 310] andworks on 9×9
image patches. It is trained for the binary classification of image patches
as matching or non-matching patches. UEM-CNN9 and UEM-CNN19
are trained for multi-class classification, as proposed in [177]. Here, the
matching of pixel patches for stereo image disparity estimation is treated
as a multi-class classification problem in contrast to the binary classifica-
tion in UEM-CNNbase. Each possible disparity value represents one class
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5.1 Disparity Estimation from Stereo Images

(a) KITTI image 88.

(b) UEM-CNNbase 9 × 9.

(c) UEM-CNNbase 19 × 19.

(d) UEM-CNN9 9 × 9.

(e) UEM-CNN19 19 × 19.

Figure 5.3 Disparity estimation on KITTI with 𝐷1,max = 100 [327]. UEM-CNNbase
with 19 × 19 (c) provided a slightly denser disparity estimation in comparison to
UEM-CNNbase 9 × 9 due to the increased receptive field. UEM-CNN19 (e) yielded
the most dense and accurate estimates, and particularly difficult, unstructured
image parts, such as grass and bush structures, were well-reconstructed. Invalid
disparities removed in post-processing are colored black.
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andUEM-CNN9 andUEM-CNN19 analyze the local neighborhood of the
image patches for a similarity assessment. Correlations with neighboring
pixels are considered via the integration of all possible disparity values
inside a probability distribution learned during training.
UEM-CNN9 processes image patches of 9 × 9 px and allows a direct

comparison to UEM-CNNbase. UEM-CNN19 takes input patches of 19 ×
19 px inspired by the evaluation results of [177] that achieved the most
accurate results for a receptive field of 19 × 19. The comparison of UEM-
CNN9 and UEM-CNN19 facilitates the evaluation of the most suitable
receptive field size for the first layer of UEM-CNN for unstructured
environments. The Siamese network branches with shared weights in
UEM-CNN9 and UEM-CNN19 are fused using a dot product. This yields
the cosine similarity measure specified in Equation 5.3. The maximum
similarity indicates the disparity value with the highest probability for a
correct matching of a pixel 𝑝 with intensity 𝐼𝐿(𝑝) and a pixel 𝑝 − 𝑑 with
𝐼𝑅(𝑝 − 𝑑) equivalent to UEM-CNNbase.
UEM-CNN9 and UEM-CNN19 integrate all possible disparity values

inside a probability distribution and achieved an implicit consideration
of the correlation between different disparity values and the local pixel
neighborhood. This probability distribution is learned during training:
the left and reference image patches are sized according to the receptive
field of the first layer, while the height of the right input patches corre-
sponds to the height of the receptive field of the first layer, and the width
of the right input patches is equal to the maximum disparity value.

5.1.2.2 Proof of Concept: UEM-CNN

UEM-CNN is demonstrated on KITTI2012 [83] and IOSB-Reg (see Sec-
tion 7.4). The KITTI 2012 training set contains 194 grayscale images and
corresponding reference data from a Velodyne HDL-64E [83] and was
used for training and testing with a validation split of 0.2. The HDL-64E
has a vertical FoV of 26.9° and reference disparities were only available
for about 70% of each image. Rectifying the images yielded a resolution
of 1260 × 375 px. More than 600,000 image patches were extracted for
a receptive field of 9 × 9 in UEM-CNNbase and UEM-CNN9 on KITTI,
and a receptive field of 19 × 19 yielded more than 142,000 patches. The
maximum disparity value 𝑑(max) was set to 100 for images of KITTI 2012,
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5.1 Disparity Estimation from Stereo Images

according to [83], and to 255 for IOSB-Reg images to minimize disparity
value quantization effects.

The five most challenging, unstructured images of the KITTI train-
ing dataset1 were selected to validate the three presented UEM-CNN
architectures for unstructured environments. Additional evaluation was
conducted on the IOSB-Reg dataset. Here, challenging IOSB-Reg images
were selected, such as image 03 with overexposed cobblestones, and
image 13 dominated by green color and including far off, unstructured
elements (see Figure D.3).

The UEM-CNN architectures presented were directly evaluated on
the disparity maps to facilitate in-depth assessment of each architecture.
Pixel-wise error metrics measure the number of pixels whose disparity
values diverge from the ground truth with more than the error threshold.
Well-known benchmarks for disparity estimation methods, such as the
KITTIVision Benchmark [82] and theMiddlebury Stereo Evaluation [240],
compare the relative amount of pixel errors within three pixel error (3PE),
five pixel error (5PE), or eleven pixel error (11PE). These pixel-wise error
metrics were also exploited to analyze and compare the proposed UEM-
CNN architectures.

Post-processing was evaluated with different thresholds for LRC and
different filter sizes for median filtering. Furthermore, different combina-
tions of median filtering and LRC in relation to their order of application
were tested and yielded the presented evaluation results.

Figure 5.3 and Figure 5.4 depict disparity estimation results on the
KITTI validation data. Figure 5.5 shows the disparity estimation results
ofUEM-CNN19 on challenging IOSB-Reg dataset images. Table 5.3 shows
a superior disparity estimation accuracy of all proposed UEM-CNN
architectures in contrast to classic SGBM: the 3PE for unstructured KITTI
validation images and the empirical mean 3PE are lower for all UEM-
CNN architectures, while the 3PE in relation to the prediction density
(PD) detailed in Section 5.2.1 ( 3PE

PD ) is higher forUEM-CNN.UEM-CNNbase
achieved a slightly lower 3PE than UEM-CNN9 and UEM-CNN19 on the
five unstructured images. However, UEM-CNNbase presented a low PD
after post-processing with median filtering and LRC and also yielded

1 KITTI training images 09, 13, 30, 36, 45.
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Metric, Image SGBM UEM-CNNbase UEM-CNN9 UEM-CNN19

3PE, 09 22.03 11.89 10.94 10.78
3PE, 13 33.97 16.88 19.16 19.50
3PE, 30 60.48 19.80 21.48 18.09
3PE, 36 32.29 18.70 19.90 21.13
3PE, 45 31.12 17.80 15.46 16.76

3PE, unstruct. 35.98 17.01 17.38 17.25
3PE
PD , unstruct. 39.87 34.71 27.59 24.64

3PE, all img. 25.50 15.97 14.74 14.26
3PE
PD , all img. 26.84 32.59 23.40 20.37

Table 5.3 3PE of classic SGBM and UEM-CNN on the selected, unstructured
images and on all KITTI 2012 images.

the lowest 3PE
PD on the full KITTI validation dataset composed of random

KITTI image patches. UEM-CNN19 achieved the highest 3PE
PD results on

the five images from unstructured environments and on the validation
set in terms of 3PE. UEM-CNN19 also showed a superior performance
in terms of 3PE, 5PE, and 11PE: SGBM achieved 25.50% 3PE, 17.21%
5PE, and 9.84% 11PE, while UEM-CNN19 achieved 14.26%, 6.71%, and
3.50%, respectively.

OpenCV SGBM [119]2 was selected to compare UEM-CNN to classic
stereo image disparity estimation methods as the block matching ap-
proach of SGBM works similarly to the patch matching in UEM-CNN.
OpenCV SGBM worked with three channel RGB images and the pa-
rameterization specified in Section B.1.1 that already proved useful for
IOSB-Reg images in other applications within this thesis. Table 5.3 and
Table 5.4 show that SGBM achieved a higher prediction density by an
extensive interpolation of disparity estimates but the accompanying
smoothness yielded a notably lower depth estimation accuracy than the
proposedUEM-CNN networks. Disparity estimation errors became espe-
cially evident in unstructured environments with pasture or bushes, as

2 cv::stereo::StereoBinarySGBM: https://docs.opencv.org/4.5.3/d1/d9f/classcv_1_1ster
eo_1_1StereoBinarySGBM.html, access on 04.11.2021.
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Disparity estimation method 3PE in % R3PE in % PD in %

SGBM LRC 25.50 17.14 95

UEM-CNNbase no post-proc. 39.49 32.33 96
UEM-CNNbase LRC 17.43 10.82 50
UEM-CNNbase median 34.57 27.56 96
UEM-CNNbase median, LRC 15.97 9.59 49
UEM-CNNbase LRC, median 16.66 9.20 55
UEM-CNNbase LRC, median, LRC 15.88 9.04 55

UEM-CNN9 no post-proc. 31.37 24.7 96
UEM-CNN9 median, LRC 14.74 8.71 63

UEM-CNN19 no post-proc. 25.10 17.70 98
UEM-CNN19 LRC 14.90 7.65 69
UEM-CNN19 median, LRC 14.26 7.19 70

Table 5.4 3PE, reference-weighted 3PE (R3PE), and PD according to Section 5.2.1
for SGBM and UEM-CNN on KITTI 2012. LRC and median filtering were con-
ducted with 3 px.

depicted in Figure 5.5 and Figure 5.10, which proved the limited suitabil-
ity of SGBM for the 3D reconstruction from stereo images in unstructured
environments.

Furthermore, an additionalUEM-CNNbase architecturewith a receptive
field of 19 × 19 instead of 9 × 9 was trained and evaluated to facilitate
a comparison to UEM-CNN19 with an equivalent receptive field size.
As expected, the consideration of the local pixel neighborhood in UEM-
CNN9 and UEM-CNN19 clearly outperformed UEM-CNNbase with a 19 ×
19 receptive field. Thus, further training and evaluation of UEM-CNNbase
with 19 × 19 patches was not conducted.

The consideration of the probability distribution of neighboring pixels
in UEM-CNN9 and UEM-CNN19 generally provided a denser disparity
estimation with higher accuracy. The inclusion of the local pixel neigh-
borhood especially improved the disparity estimation in image parts
with predominant coloring such as image 88 from KITTI 2012. This as-
sumption was verified by comparing the special purpose UEM-CNNbase
with a 19 × 19 receptive field to UEM-CNN19 illustrated in Figure 5.3.
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(a) Disparity map UEM-CNNbase.

(b) Confidence map UEM-CNNbase.

(c) Disparity map UEM-CNN19.

(d) Confidence map UEM-CNN19.

Figure 5.4 Disparity and left confidence maps for image 09 of KITTI 2012,
𝐷1,max = 100 [327]. Dark blue indicates low confidence, yellow symbolizes high
confidence. UEM-CNN19 achieved a higher confidence than UEM-CNNbase.

156



5.1 Disparity Estimation from Stereo Images

Figure 5.5 Disparity and left confidence maps for image pair 03 and 06 of
IOSB-Reg [327], generated with UEM-CNN19 using the left camera as reference,
𝐷1,max = 255. Invalid disparity values are removed during post-processing and
the respective pixels are colored black. Yellow indicates high and blue low confi-
dence.

Post-processingwith LRC andmedian filtering are lightweight in terms
of computational effort and presented very effective results in the identi-
fication of estimation errors and a suitable smoothing of the disparity es-
timation results. Table 5.4 shows the evaluation results of UEM-CNNbase,
UEM-CNN9, and UEM-CNN19 for different post-processing configura-
tions, while more extensive evaluation results are given in Table B.1.
Experimental evaluation yielded the best combination of accuracy and
prediction density for stereo image disparity estimation from unstruc-
tured environments with a median filter window of 3 × 3 px and an LRC
threshold of 3 px. Consequently, all UEM-CNN architectures apply me-
dian filtering with a window of 3 × 3 px and LRC with a threshold of 3 px
for testing and validation.

To conclude, the superior performances of UEM-CNN9 and UEM-
CNN19 show that treating stereo image disparity estimation as a multi-
class classification problem achieves more accurate results than the CNN

157



5 Mid-Level Perception

training for stereo matching with binary predictions. Furthermore, this
thesis recommends the UEM-CNN19 architecture for stereo image dis-
parity estimation in unstructured environments as it yielded the most
accurate estimation results.

5.2 Validating Stereo Image Disparity Estimation
Stereo image disparity estimation results can be assessed on both the dis-
parity maps and the resulting 3D point clouds. The in-depth evaluation
of disparity maps for off-road vehicles in unstructured environments
is hereinafter, while 3D reconstruction assessment is described in Sec-
tion 5.2.2.

5.2.1 Customized Error Metrics for Disparity Maps
Autonomous off-road vehicles must be capable of accurately detecting
navigation obstacles and manipulation objects that can also be deduced
from stereo camera 3D reconstruction. Here, incorrect detection of nearer
objects constitutes a notably higher risk to the vehicle, and the detection of
near objects is more important than the detection of objects farther away.
Depending on the subsequent application of the estimated depth values,
pixel error metrics such as 3PE do not contain sufficient information to
assess the performance of stereo image disparity estimation methods in
unstructured environments. For this reason, this thesis proposes eight
additional error metrics to assess the disparity estimation results.

5.2.1.1 Novel Error Metrics for Unstructured Environments

The novel disparity error metrics presented focus on stereo image dis-
parity estimation for off-road vehicles [327], and permit to determine
potential optimizations for unstructured environments:

Confidence maps,
Tile error,
Median-filtering the difference map,
Doubling of negative errors/reference-weighted pixel error,
Weighting related to the distance from the camera,
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Range-limit error weighting function,
Prediction density (PD), and
Pixel error in relation to prediction density ( 3PE

PD ).
The difference map 𝐃diff measures the deviation of the estimated dispar-
ity values (𝐃1) from the reference disparity extracted from the LiDAR
reference data (𝐃2) for each pixel [𝑗, 𝑘] of an image pair with 𝑀 × 𝑁
pixels:

𝐃diff[𝑗, 𝑘] = 𝐃1[𝑗, 𝑘] − 𝐃2[𝑗, 𝑘] (5.4)

The disparity is anti-proportional to the estimated depth and high dis-
parity values indicate low depth values. Thus, if the estimated 𝐃1[𝑗, 𝑘]
is lower than the reference 𝐃2[𝑗, 𝑘], the related pixel is estimated to be
farther away than it is in reality, and negative values in 𝐃diff can be dan-
gerous in collision avoidance. Subsequently, the maximum disparity is
abbreviated with 𝑑𝑥(max) = max𝑀,𝑁

𝑗=1,𝑘=1(𝐃𝑥[𝑗, 𝑘]), 𝑥 ∈ 1, 2 for clarity.
Confidence maps, as proposed in [281], facilitate a validation of the es-

timated disparities, error visualization, and the detection of problematic
image characteristics for disparity maps. The proposed confidence maps
are inspired by the peak ratio measure [218], where a high reliability of
the disparity assignment is indicated by a high peak ratio. For both clas-
sic and CNN methods, the confidence can be obtained by determining
the probability of a chosen disparity value in relation to other possible
disparity values. For CNNs, the probability 𝑃 of the disparity 𝐃1[𝑗, 𝑘]
can be derived from the costs for 𝐃1[𝑗, 𝑘] in the activation function of the
last CNN layer:

softmax(𝐃1[𝑗, 𝑘]) =
exp (𝐃1[𝑗, 𝑘])

∑𝑀,𝑁
𝑗,𝑘 exp (𝐃1[𝑗, 𝑘])

. (5.5)

Here, the confidence map visualizes the probability corresponding to
the chosen disparity by applying an argmax function. It is illustrated
together with the estimated disparity maps in Figure 5.4 and Figure 5.5.

The tile error metric rewards true estimations and punishes false es-
timations using a predefined window of 3 × 3 px. The minimum single
pixel error value within this tile window determines the value of the
respective pixels inside the tile, and correctly estimated disparities are
rewarded higher than falsely estimated disparity values. This assesses
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the disparity estimation of the evaluated method in smaller areas instead
of single pixels and also allows a more global analysis if challenging
images for disparity estimation are present.

The application of amedian filter on 𝐃diff smooths pixel-wise errors but
preserves errors on the edges and in larger scale. The doubling of negative
errors, also referred to as reference-weighting pixel error, penalizes depth
estimations that assume pixels or areas to be farther away than they are
in reality. The weighting of negative values in Equation 5.4 is doubled
for this purpose. Table 5.4 demonstrates its application using a reference-
weighted 3PE (R3PE). It highlights critical estimation errors and assesses
disparity estimation methods with a special focus on collision avoidance.

The range-limit error weighting W allows an even more customized
error weighting. Here, the elements of 𝐃diff are multiplied with the cor-
responding elements of an 𝑁 × 𝑀 weight map W :

W[𝑗, 𝑘] =
1

𝑑2,max

⎧⎪
⎨
⎪⎩

𝑏, D2[𝑗, 𝑘] ≤ 𝑇𝐿

𝑏 + 𝑂, 𝑇𝐿 < 𝐃2[𝑗, 𝑘] < 𝑇𝑈

𝑑2,max, 𝑇𝑈 ≤ 𝐃2[𝑗, 𝑘]
(5.6)

𝐎[𝑗, 𝑘] = (𝑑2,max − 𝑏)(
𝐃2[𝑗, 𝑘] − 𝑇𝐿

𝑇𝑈 − 𝑇𝐿
)

𝜒
. (5.7)

Offset 𝑏, upper threshold 𝑇𝑈, and lower threshold 𝑇𝐿, as well as power
factor 𝜒 facilitate its customization. Here, 𝑏, 𝑇𝑈, and 𝑇𝐿 limit the quadratic
function to the relevant disparity range. The recommendations for 𝑏, 𝑇𝑈,
and 𝑇𝐿 depend on the sensor setup and the perceived environment, as the
disparity values occur only in a limited range. A weighting related to the
distance from the camera specifically takes the estimated distance from
camera and robot into account and can be derived from Equation 5.6 with
𝜒 = 1, 𝑇𝐿 = 0, and 𝑇𝑈 = 𝑑2,max. In this case, W contains high weighting
values for high disparities close to the origin of the camera frame, and
also rescales disparity values of the reference 𝐃2 using the offset 𝑏. In
order to specially consider the theoretical depth estimation limitations in
stereo camera setups according to Equation 3.17, the utilization of 𝜒 = 2
proved useful (see Figure B.3).

Prediction density (PD) measures the ratio of pixels with a valid dispar-
ity estimate in a disparity map and quantifies the capability of different
disparity estimation methods to provide a dense disparity map. Using a
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3PE for instance, a disparity estimate is valid if it deviates three pixels or
less from the reference disparity. Here, PD only counts the number of pix-
els that lie inside the joint FoV of the stereo camera system, as only those
can achieve a potentially correct disparity estimate with non-overlapping
image areas being disregarded. Experimental evaluation showed that
post-processing decreases the PD but generally increases the average
estimation accuracy as expected.

The combination of PD and 3PE provides an additional error measure:
the 3PE

PD measure relating the ability of a disparity estimation method to
provide intrinsically valid estimates to the accuracy of its estimated dis-
parity values. Thus, 3PE

PD combines the density and accuracy assessment
of stereo image disparity estimation in one metric. Depending on the
application scenario, an accurate disparity estimation is more important
than a high PD with lower accuracy. For instance, PD is regarded as less
important than accuracy for critical applications, such as the navigability
analysis for autonomous off-road vehicles.

5.2.1.2 Proof of Concept: Novel Error Metrics

Figure 5.6 demonstrates a selection of the proposed disparity error met-
rics on image 88 of the KITTI 2012 dataset. Here, the tile error highlights
image parts with a predominantly valid disparity estimation. Figure 5.5
shows the disparity and confidence maps of image 03 of the IOSB-Reg
dataset. The yellow areas around edges and well-textured areas show
a high confidence of the estimated disparities. Non-overlapping or par-
tially overlapping image parts, such as the left margin of the left camera
image, present the expected decreasing confidence values. The raw 5PE
on all images of the KITTI 2012 training set amounted to 26.80% for
UEM-CNN19 without post-processing, while the tile 5PE decreased to
21.70% with a 3 × 3 pixel tile window with the seemingly correct re-
constructions of the grass and bush areas in image 88 of KITTI being
emphasized. Median filtering smoothed the difference map and single
pixel estimation errors were discarded. This especially highlighted image
parts with predominantly valid disparity estimation results. A 3 × 3 me-
dian filtering on all disparity estimation results of the KITTI 2012 training
dataset yielded a 5PE of 43.90% for UEM-CNN19 [327]. The effect of me-
dian filtering with a 3 × 3 filter mask is depicted in the highlighted part
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(a) Raw 5PE: disparity errors with 𝑑 >5PE are colored red.

(b) Difference map 𝐃diff for UEM-CNN19 with MF.

(c) Range-limit error function W mapped onto L (see Equation 5.6).

Figure 5.6 Evaluation of the proposed error metrics for UEM-CNN disparity
estimation on Figure 5.3 [327]: (a) Green indicates estimated 𝑑 ≤ 5PE. Especially
areas with low and high exposure or low texture introduce high estimation errors.
The red box in (b) highlights the effect of a 3 × 3 median filter. White pixels mark
𝑑 errors ≤ 5PE. Dark coloring illustrates higher estimation errors. Yellow in (c)
symbolizes close ranges with high weighting, dark blue indicates lower weights.

of Figure 5.6(b): it clearly emphasized that the problematic, overexposed
grass parts in image 88 mainly produce high disparity estimation errors.
If only non-occluded errors are considered, as proposed in [82], the 5PE
decreased to 6.70%, compared to the raw 5PE of 26.80% which showed
the dominant influence of occlusion problems in stereo image depth
estimation.

The doubling of negative errors yielded a 5PE of 29.00 % for UEM-
CNN19 on the KITTI 2012 training images. Disparity values estimated
lower than the LiDAR reference are penalized quadratically. A too high
depth was estimated for the overexposed grass parts as well as for low-
textured parts of the bushes in image 88. The weighting related to their
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distance from the sensor origin yielded a 5PE of 24.30%. The comparison
of this weighted 5PE for different stereo methods analyzes the depth esti-
mation accuracy in relation to the distance to the camera. The range-limit
error weighting provides a comparison method similar to 5PE, but with
the possibility to customize the weighting parameters, as stated in Equa-
tion 5.6. Figure 5.6(c) shows an exemplary range-limit error weighting.

Furthermore, Table 5.4 compares the PD of SGBM and the proposed
UEM-CNN architectures. Here, SGBM had a high PD of 95% compared
to UEM-CNNbase with 49%, while UEM-CNN19 achieved a sufficiently
high prediction density with a suitable depth estimation accuracy in
terms of 3PE.

In conclusion, confidence maps presented a well-suited measure to
indicate the reliability of the estimated disparity values and to iden-
tify difficult image areas for stereo image disparity estimation, such as
overexposed cobblestones in Figure 5.5. Tile error and median filtering
highlighted image areas that were very easy or very difficult to recon-
struct, which facilitates a special focus on these areas in the analysis of
the examined disparity estimation method.

5.2.2 SET : Stereo Evaluation Toolbox
The SET approach contributes to the interpretation and validation of
mid-level perception results and answers questions such as: “Which cam-
era system performs best with a defined reconstruction algorithm in a
particular application environment?” and “How does a specific camera
system influence reconstruction performance of an algorithm?” [325, p.1].
As the development of a stereo camera setup requires the consideration
of many individual system characteristics, SET facilitates a well-founded
selection of a suitable camera–algorithm combination for a specific ap-
plication environment on the basis of comparable criteria. As a result,
SET assesses the combination of all modular system components with
their respective characteristics: camera specifications, image resolution,
image noise, camera calibration, stereo image disparity estimation algo-
rithm, and the specific application environment. Each of these individual
characteristics has its measurements that can be utilized to optimize
its individual performance. For a flexible integration in the perception–
validation pipeline in this thesis, SET is designed for a fast integration of
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arbitrary stereo camera systems and disparity estimation methods as it
evaluates the generated stereo camera point clouds.

Several benchmarks for disparity estimation from stereo images ex-
ist, such as Middlebury Stereo Evaluation [240], KITTI Vision Bench-
mark [82], and others discussed in Section 2.6.4. They typically assess
stereo image disparity estimation algorithms on provided artificial and
partially stereo-beneficial images, and the benchmark evaluation does
not consider the influences of different camera systems or application en-
vironments. As a result, most benchmark evaluations do not necessarily
reflect the performance of stereo image disparity estimation algorithms
in challenging application environments. The SET approach is proposed
to overcome this and complements well-known stereo vision benchmarks
with an analysis of the 3D reconstruction performance of stereo camera
systems. Complementary to these benchmarks, the evaluation images
for SET are captured in the targeted application scenario by a real stereo
camera setup, and one generic overall score is provided for 3D stereo
point clouds. This facilitates the comparison of different combinations of
individual modules in the final application scenery.
SET is divided up into a static and a dynamic evaluation step. Static

evaluation denotes the assessment of 3D stereo point clouds generated
from a single stereo image pair in static scenes. In addition, the dynamic
evaluation in SET [325] analyzes camera-based visual SLAM on its po-
tential to provide accurate and suitable 3D reconstruction results for
subsequent localization and mapping tasks (see Section B.2.1).

Summarizing, SET proposes a modular concept to assess camera sys-
tems in combination with their algorithms for 3D reconstruction and
complements the existing, individual measures with one holistic 3D re-
construction score.

5.2.2.1 Static Evaluation: 3D Reconstruction Assessment

The static evaluation is separated in qualitative and quantitative crite-
ria, as summarized in Table 5.5. Stereo image disparity estimation was
evaluated in structured indoor, structured outdoor, and unstructured
outdoor environments highlighting the generalization performance of
the SET approach. The proposed qualitative criteria measure the suit-
ability of the 3D reconstruction for human operators in use cases such as
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Criterion Identifier 𝑤𝑖 SI 𝑤𝑖 UO

Qualitative
Cloud density CD 0.20 0.50
Monochr. surfaces MoS 0.30 0.15
Geometry Geo 0.30 0.15
Consistency on edges CoE 0.20 0.20

Quantitative
Nearest neighbor NNS 0.40 0.40
Mean dist. surfaces MDS 0.30 0.40
Surface orientation SOe 0.30 0.20

Table 5.5 Static, qualitative and quantitative evaluation criteria in SET with
empirically justified, corresponding weightings for indoor (SI) and outdoor
environments (UO) [325].

person indoor navigation, while the quantitative criteria provide objec-
tive evaluation results. As 3D LiDAR sensors generate highly accurate
3D information, 3D LiDAR data is utilized as ground truth reference
data for the 3D reconstruction from stereo image disparity estimation. To
this end, the LiDAR reference cloud (L) and the 3D stereo camera cloud
(S) are registered within a common frame, as described in Chapter 4.
The qualitative metrics are rated between 0 and 10. Here, a higher score
indicates a better, more accurate and more useful, 3D reconstruction.
A qualitative score close or equivalent to 10 indicates the best 3D re-
construction performance in comparison to the other evaluated stereo
camera systems. Processing effort and runtime were measured for each
camera–algorithm combination but not integrated as SET focuses on
3D reconstruction accuracy.

Cloud density (CD) plays an important role in the proper 3D recon-
struction of the environment, especially in unstructured environments.
Outdoors, CD notably influences the performance of stereo camera sys-
tems whereas the representation of monochromatic surfaces (MoS) and
geometrical correctness (Geo) is of greater importance indoors. An up-
or downsampling of the disparity map can lead to a higher or lower
cloud density with an identical quality of S . This entails a higher cloud
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density score but also a lower qualitative user rating for the geometrical
correctness. Hence, the overall qualitative score is not altered.

The consistency of disparity maps on the edges (CoE) is regarded as
equally relevant in- and outdoors as the susceptibility to errors is similar.
The weights 𝑤𝑖, according to Table 5.5, are multiplied by the obtained
scores 𝑖 to obtain the qualitative score

𝑆qual = ∑
𝑖

𝑖 ⋅ 𝑤𝑖, 𝑖 ∈ {CD,MoS,Geo,CoE}. (5.8)

All quantitative criteria are related to L. The outlier ratio NNS= 𝑁𝑟/𝑁𝑠
determines the ratio between the number 𝑁𝑟 of remaining points after
outlier filtering and the number 𝑁𝑠 of all points in S via a kNN search
for all points in S within L, as described in Section 4.2.1.

Figure 5.7 describes determining the mean distance of surfaces (MDS)
measure, according to [325]. The RANSAC algorithm proved useful in
estimating surfaces in L and S to determine the quantitative MDS and
SOe measures. Surface orientations are estimated, as discussed in Sec-
tion 3.6, with a radius of 0.40m. MDS evaluates the 𝐿1 distances 𝑑𝑖,𝑗
between corresponding estimated surfaces 𝑘𝑗 in L and the aligned refer-
ence points in S (𝐐𝑖) with

𝑑𝑖,𝑗 =
∑𝑚

𝑖=0 |𝑛0
𝑖 |

𝑚
, (5.9)

as illustrated in Figure 5.7. Here, 𝑚 denotes the number of nearest neigh-
bor (NN) points for a point 𝐏𝑖 inside the corresponding surface 𝑘 deter-
mined by the RANSAC algorithm. The experimentally justified percep-
tion range of stereo camera systems with sufficiently high accuracy for
critical application scenarios is 10m for current camera systems. Hence,
the tolerableMDS error is set to 0.8m in accordance with the error defini-
tion of [82], and the MDS measure is normalized with MDS = 𝑑𝑖,𝑗/0.8 m.

The corresponding normal 𝐧𝑖,S is compared to the surface normal 𝐧𝑘𝑗
for each point in S inside the RANSAC plane model for a surface 𝑘𝑗 in
L. The surface orientation measure (SOe) is normalized with 180° and
summed up over all three axes with

SOe = ∑
𝐐𝑖,𝑗∈𝑘𝑗

3

∑
𝑜=1

‖𝐧𝑘𝑗
[𝑜] − 𝐧𝑖,S[𝑜]‖

180° (5.10)
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Figure 5.7 Mean distance of surfaces (MDS), according to [325]: 𝐏𝑖 are LiDAR
points, 𝐐𝑖,𝑗 are NN stereo points of 𝐏𝑖, 𝐧0

𝑖 normal vectors, 𝑑𝑖,𝑗 distance in direction
of normals by projection on the normal vector 𝐧0

𝑖 .

to deduce an absolute measure for the orientation error of the stereo
points 𝐐𝑖,𝑗. An equivalent importance for the proximity of stereo points
to the ground truth (NNS) for indoor and outdoor environments proved
useful, as it directly describes the 3D reconstruction error of S . Typically,
a lower number of smooth surfaces are encountered outdoors than in-
doors making the comparison of their estimated orientation (SOe) less
meaningful outdoors than the average distance between the approxi-
mated surface elements (MDS). In contrast, smooth surfaces such as
walls are often present indoors, which justifies the same importance of
the MDS and SOe criteria here.

Table 5.5 summarizes the experimentally justified weightings for each
criterion. A low quantitative score highlights an accurate 3D reconstruc-
tion performance of a stereo camera system, and the quantitative score
𝑆quan is calculated equivalent to 𝑆qual with the weights 𝑤𝑖 according to Ta-
ble 5.5:

𝑆quan = ∑
𝑖

𝑖 ⋅ 𝑤𝑖, 𝑖 ∈ {NNS,MDS,SOe}. (5.11)
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Criterion 𝑖 SI: ZED SI: rc_v. SI: MQORB SI: MQSGBM UO: MQ022

CD (0–10) 10 8 6 9 9
MoS (0–10) 10 8 5 9 8
Geo (0–10) 2 9 10 9 10
CoE (0–10) 1 10 6 8 9
𝑆qual 5.8 8.7 6.9 8.8 9.0

NNS (0–1) 0.422 0.668 0.532 0.473 0.750
MDS (0–1) 0.128 0.105 0.101 0.094 0.204
SOe (0–1) 0.167 0.017 0.028 0.011 0.028
𝑆quan 0.257 0.304 0.246 0.229 0.560

Table 5.6 Static SET evaluation of the ZED, rc_visard (rc_v. ), MQ013ORB (MQORB),
and MQ013SGBM (MQSGBM) stereo camera systems in structured indoor environ-
ments (SI) and the MQ022 stereo camera system in unstructured outdoor envi-
ronments (UO) with a kNN filtering radius (NNS) of √0.05 m. Figure 5.8 depicts
the indoor scenes with S and L.

Finally, the further processing of the stereo camera 3D reconstruc-
tion results determines the relative importance of the qualitative and
quantitative scores. Subsequent utilization of the 3D reconstruction for a
situation assessment for first responders might favor higher qualitative
scores, while further processing of the 3D reconstruction for SLAM led
to a higher importance of the quantitative scores.

5.2.2.2 Proof of Concept: SET

The SET approach was experimentally validated on multiple camera sys-
tems in structured indoor environments and unstructured outdoor envi-
ronments: Stereolabs ZED, Roboception rc_visard 160, Ximea MQ013RG-
E2, and Ximea MQ022HG-IM-SM4X4-VIS. ZED and rc_visard are off-
the-shelf stereo camera systems, while the MQ013 and MQ022 are self-
developed stereo camera systems with feature-based and correlation-
based disparity estimation (see Table B.2 for technical details). ZED,
rc_visard, and the MQ013 stereo camera system were evaluated on struc-
tured indoor environments, while the hyperspectral MQ022 stereo cam-
era system was tested in unstructured outdoor environments, as de-
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(a) ZED stereo. (b) MQ013 stereo with ORB-SLAM2.

Figure 5.8 Exemplary SET evaluation on structured indoor scene with Velodyne
VLP-16 reference data [325]. SET scores can be found in Table 5.6.

scribed in Section 5.1.1. SGBM and feature-based stereo image disparity
estimation with ORB features were evaluated for the MQ013 stereo cam-
era system, whereas the MQ022 stereo camera systems rely on local,
correlation-based CCRADAR (Section 5.1.1). Table 5.6 and Figure 5.8
show selected static evaluation results, while a more detailed experimen-
tal evaluation and implementation details for SGBM, ORB-SLAM2, and
CCRADAR are provided in [318, 324, 325]. The MQ013 stereo system
with SGBM disparity estimation yielded the most accurate and useful
performance among the four stereo camera systems being compared in
structured indoor environments. The static SET evaluation of the MQ022
stereo system in unstructured outdoor environments highlights the dif-
ferent character of both environments: only a low number of smooth
surfaces exists in unstructured environments making surface estimations
notably more difficult. The higher surface variations in unstructured
environments were well-captured by single 3D LiDAR measurements
but not by pixel-wise disparity estimates in larger distances from the
origin of the stereo camera system.

5.3 Sensor Data Fusion
The perception of unstructured environments, especially for heavy con-
struction machinery with manipulation capabilities, requires a 3D en-
vironmental perception. This facilitates accurate navigability analysis,
object detection, and obstacle avoidance, as well as suitable workspace
monitoring during manipulation tasks. Here, the fusion of sensor data
from multiple sensors with complementary characteristics increases the
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knowledge on the perceived environment and can also reduce sensor data
uncertainty. While the fusion of similar-source LiDAR data is straightfor-
ward and integrated in the respective registration approach, as explained
in Section 4.2, an appropriate and efficient fusion of cross-sensor sensor
data is notably more complex, especially in unstructured environments.

Hence, this thesis proposes 3D–3D fusionmethods for cross-source sen-
sor data operating on the level of individual measurements in 3D space.
These 3D measurements directly originate from active 3D sensors, from
low-level perception results, or from mid-level perception results that
alsomap color from2D images into 3D space. Different fusion approaches
finally providing one 3D point cloud from multiple sensor inputs are
proposed with different levels of complexity, data validation, and compu-
tational effort for various sensor setups and off-road vehicles in unstruc-
tured environments. The proposed methods are demonstrated on the
common perception sensor setup for off-road vehicles: RGB images from
camera systems, dense 3D point clouds with limited geometric accu-
racy from stereo image disparity estimation, and sparse, highly accurate
3D LiDAR point clouds. Hence, the 3D–3D fusion methods proposed
require the availability of a multi-sensor system with at least one cali-
brated stereo camera system or RGB-D camera and one 3D LiDAR sensor.
The stereo camera or RGB-D camera point cloud (S) contains geometric
and color information, and S is fused with one or more 3D LiDAR point
clouds (L). Hence, S can complement L with dense depth estimates, and
S and L are merged as 3D point clouds to alleviate information loss and
reprojection errors. Here, the successful and accurate sensor calibration
forms the basis for an accurate and fruitful fusion of sensor data (see Sec-
tion 4.2 and 4.3). The subsequently analyzed fusion approaches rely on
accurate sensor calibration with singularity-free transformations.

Object-oriented or iterative fusion approaches, as discussed in Sec-
tion 2.4.3, are not suitable for unstructured environments mainly con-
taining unknown topological structures and difficult-to-separate objects.
The fusion of raw, unaltered 2D and 3D sensor data proposed in this
thesis prevents information loss that can occur in object-oriented fusion
approaches during the filtering or transformation for object extraction.

Wolf and Berns [296] assign a higher priority to LiDAR measurements
within their voxel model of the environment so that 3D points from stereo
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camera disparity estimation are eliminated if LiDAR measurements are
available. The fusion methods A to C in this thesis pursue a similar strat-
egy and include all LiDAR measurements in the fused cloud. However,
LiDAR sensors can also provide erroneous measurements and are hence
analyzed in the proposed fusion method D. Naturally, confidence analy-
sis, as discussed in Section 4.1, can contribute to a selection of valid and
reliable measurements during the fusion process. In order to consider
sensor confidence, this thesis also proposes a novel, confidence-based
3D–3D fusion approach considering the confidence of 2D images and
3D point clouds in a tightly coupled manner.

5.3.1 3D–3D Fusion of Cross-Source Sensor Data
This thesis proposes different 3D–3D fusion methods for 3D point clouds:

A: direct fusion of L and S colorless, with color from S for L, or
with color from the RGB image for L,
B: kNN outlier filtering of inaccurate stereo or RGB-D depth esti-
mates similar to Section 4.2,
C: threshold filtering of inaccurate stereo or RGB-D depth estimates
with a minimum depth estimation accuracy,
D: confidence assessment for each 3D point in L and S (see Sec-
tion 4.1).

A provides a basic and fast 3D–3D fusion similar to the merging process
of similar-source LiDAR clouds in Section 4.2. Hence, A delivers large,
dense 3D clouds without filtering possibly inaccurate and redundant
3D measurement points. Two options are possible for color assignment:
the assignment of intensity/color information from the RGB image to L
exploits the 2D–3D fusion detailed in Section 3.7, while intensity/color
information from S assigns the color of the nearest neighbor of 𝐩𝑠,L ∈
L within the aligned S to 𝐩𝑠,L if ||𝐩𝑠,S − 𝐩𝑠,L||1 ≤ 𝑑NN is met. Here,
color assignment from the RGB image showed more accurate results to
color L as stereo camera 3D reconstruction accuracy decreases for larger
distances.

The exclusion of too inaccurate depth estimates from S in the fusion
methods B and C can increase the overall accuracy and also the reliability
of the environment perception in 3D due to the accuracy limitations in S
(see Section 3.8).
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B requires a minimum number of nearest neighbors within a prede-
fined maximum distance 𝑑NN to verify the stereo depth estimates prior to
their integration into the fused 3D cloud. Thus, method B only includes
points 𝐩𝑠,S fulfilling ||𝐩𝑠,S − 𝐩𝑠,L||1 ≤ 𝑑NN for 𝑁L ≥ 𝑁min LiDAR points
𝐩𝑠,L in the 3D–3D fusion cloud.

Workspace monitoring for autonomous vehicles with manipulation
capabilities requires a dense 3D reconstruction in close range around the
platform. Thus, C proposes the integration of close range measurements
from S in L. Depending on the selected stereo image disparity estima-
tion method, the stereo camera setup, and the application environment,
different values for the disparity estimation error 𝜀𝑑, baseline 𝐵, and focal
length 𝑓 determine the depth estimation accuracy 𝜀𝑧. Method C keeps
all 3D points of L and integrates 3D stereo measurements, if their 𝜀𝑧 is
smaller than a predefined maximum depth estimation accuracy max(𝜀𝑧).
Here, 𝐵 and 𝑓 are fixed for each stereo camera setup, and 𝜀𝑑 depending
on the stereo algorithm is selected by the user in accordance with the
required depth estimation accuracy. Naturally, the proposed methods
B and C can also be combined to only include validated, close range
measurement points from S in L.

Finally, fusion method D integrates the concept of confidence mea-
sures for raw sensor data discussed in Section 4.1. Contrasting A to C,
the LiDAR cloud L is not assumed to be error-free, and D considers
the confidence of both L and S. A confidence threshold specifies the
minimum confidence for each individual 3D measurement 𝑗 of L (𝑐3D

L,𝑗)
and S (𝑐3D

S,𝑗) to be met for its inclusion in the 3D–3D fusion cloud. Here,
𝑐3D
L,𝑗 ∈ [0, 1] and 𝑐3D

S,𝑗 ∈ [0, 1] are determined according to Section 4.1. The
weak, medium, and strong filtering thresholds defined in Section 3.12
are applied: a weak threshold requires 𝑐3D ≥ 0.6827, a medium threshold
𝑐3D ≥ 0.8664, and a strong threshold eliminates all 3D measurements
with 𝑐3D ≥ 0.9545.

5.3.2 Proof of Concept: 3D–3D Fusion
Figure 5.9 shows exemplary 2D–3D fusion results exploited to assign
color information from the RGB image to L. The proposed 3D–3D fusion
methods are demonstrated on two selected, exemplary scenes of the
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(a) (b)

Figure 5.9 Fusion results: (a) Projection of the geometric 3D information from
L onto exemplary IOSB-Reg image; (b) 2D–3D fusion result for (a) with image
color (Velodyne HDL-64E cloud, JAI AD-130GE camera) with L a condensed
point cloud from eleven Velodyne HDL-64E scans containing 3D LiDAR points
inside the camera FoV only. Image (a) © Fraunhofer IOSB.

IOSB-Reg dataset: a primarily structured scene I (Figure 5.10(a)) and an
unstructured scene II (Figure 5.10(d)). Figure 5.10 depicts the results of
the basic fusion method A and demonstrates the 3D–3D fusion methods
B − D for II. Table 5.7 compares the quantitative results for the proposed
fusion methods and indicates that a notably smaller number of points
remain for the unstructured scenario (II) compared to a primarily struc-
tured scenario (I). The left camera on the IOSB.amp Q1 sensor setup was
used as a reference camera with the camera matrix 𝐊 and the registra-
tion result 𝐓𝒸

𝑠,L. Selected examples for the proposed fusion methods are
illustrated subsequently, and further examples are given in Section B.3.
A with color from the RGB image facilitated an accurate assignment

of color information in larger distances, as highlighted in Figure 5.9. The
fusion ofL and S without prior confidence assessment led to a high num-
ber of points in the point cloud. Here, most points were contributed from
S and are thus subject to a limited depth resolution. Only 6.92% of the
3D points within the partially structured scene I were LiDAR measure-
ments. This highlights the need for a confidence-based fusion method
to filter the integrated 3D points from S to keep the number of points
sufficiently small for potential real-time processing in the subsequent
mapping, planning, and control steps.

Method C only integrates points of the close range with a maximum
depth inaccuracy 𝜀𝑧, and max(𝜀𝑧) ∈ [0.04 m, 0.10 m, 0.25 m, 0.50 m] were
evaluated to demonstrate the 3D–3D fusion with C. Here, max(𝜀𝑧) =
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(a) Scene II. (b) A on I with S from SGBM with image color for L.

(c) B(3) for II. (d) B(1) and C(2) for II.

(e) D with max(𝜀𝑧) = 0.25 m, scene II.

Figure 5.10 3D–3D fusion of S (SGBM) and L with A − D for scene I (b) and II
(a). Image (b) shows quantization and depth estimation inaccuracies for SGBM.
3D points without RGB color information are black. Images (c) and (d) demon-
strate B where a higher 𝑁min for B generally leaded to an exclusion of points from
the far range of S and preserved more floor points than C and D. kNN search
for each point of S in L efficiently eliminated close-range disparity estimation
errors for method B.

0.04 m is similar to the measurement accuracy of the Velodyne HDL-64E
with ±2 cm. However, for max(𝜀𝑧) = 0.04 m (𝑧 ≤ 2.38 m) the minimum
distance for an overlap for disparity estimation from stereo images hardly
exceeded 𝑧 = 2.38 m. Realistic values for the close range in C result from
max(𝜀𝑧) = 0.10 m with 𝑧 ≤ 3.76 m, max(𝜀𝑧) = 0.25 m with 𝑧 ≤ 5.96 m, and
max(𝜀𝑧) = 0.50 m with 𝑧 ≤ 8.42 m.

The results for B in Table 5.7 show that kNN outlier filtering kept a
higher ratio of points in the primarily structured scene I being more
favorable for accurate stereo disparity estimation. For II, B mainly keeps
ground floor points from S, as depicted in Figure 5.10(b). Contrasting
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Method Parameterization # in fusion cloud I # in fusion cloud II

B(1) 𝑑NN = 0.10 m, 𝑁min = 10 32.5% 22.2%
B(2) 𝑑NN = 0.50 m, 𝑁min = 5 53.3% 41.6%
B(3) 𝑑NN = 0.50 m, 𝑁min = 10 50.5% 39.5%
C(2) max(𝜀𝑧) = 0.10 m 24.5% 43.5%
C(3) max(𝜀𝑧) = 0.25 m 52.4% 69.2%
C(4) max(𝜀𝑧) = 0.50 m 72.5% 77.7%
B, C B(1), C(2) 11.8% 12.2%
B, C B(1), C(3) 25.0% 22.0%
B, C B(1), C(4) 28.4% 24.2%
D max(𝜀𝑧) = 0.10 m 10.0% 31.7%
D max(𝜀𝑧) = 0.25 m 34.5% 54.4%
D max(𝜀𝑧) = 0.50 m 65.3% 71.9%
Primarily struct. scene I (𝑠𝐼 = 0.029): 676,168 points in L and S with 6.9% L.
Unstruct. scene II (𝑠𝐼𝐼 = 0.046): 900,902 points in L and S with 5.6% L.

Table 5.7 Comparison of the proposed 3D–3D fusion methods B, C, and D. # in-
dicates the ratio of S andL points that fulfill the accuracy requirements and were
kept for the fusion cloud. Superscript indices denote particular parameterizations
for B, C, and D. C(1) indicates max(𝜀𝑧) = 0.05 m and is neither recommended nor
listed as a notable amount of 3D points still useful for dense workspace monitor-
ing in combination with LiDAR measurements is eliminated.

B, the results for D indicate that D naturally kept the close-range points
from S and, hence, II contains a higher ratio of close-range points than I
after filtering. The lowest ratio of S andL points for both scenes remained
for B(1) and C(2).

MethodD analyzes the confidence of each 3Dpoint fromL andS . Here,
the 2D confidence for scene I was determined to 𝑐2D(𝜒 = 3.0) = 0.813
and a disparity estimation from stereo images would only be conducted
for a weak threshold. The 3D confidence of the stereo cloud consists of
PPC and PSC elements, as explained in Section 4.1.4. The PSC elements
𝑐3D

εx
and 𝑐3D

εy
were determined as equal to 1.0 resulting in

𝑐3D
S,𝐼 = 1.0 − 0.029 = 0.971, (5.12)

𝑐3D
S,𝐼𝐼 = 1.0 − 0.046 = 0.954. (5.13)
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Furthermore, 𝑐3D
𝜀𝑧

withmax(𝜀𝑧) = 0.04 m according to Equation 4.6 yielded

𝑐3D
𝜀𝑧

= 0.0, for 𝑧 > 2.38 m, (5.14)

𝑐3D
𝜀𝑧

= 1.0 −
𝜀𝑧

0.04 m
, for 𝑧 ≤ 2.38 m. (5.15)

Hence, all 3D stereo points in I with z > 2.38m had a PPC confidence of
𝑐3D = 𝑐2D ⋅ 0.743 = 0.604 for max(𝜀𝑧) = 0.04 m and are always excluded
from the fused cloud as long as the LiDAR cloud is available. For a weak
threshold, 3D stereo points require 𝑐3D

𝜀𝑧
≥ 0.388 to be included in the

fusion cloud. This is equivalent to 𝜀 ≤ 0.612 ⋅ max(𝜀𝑧) implying

𝑧 ≤ 1.86 m, for max(𝜀𝑧) = 0.04 m, (5.16)
𝑧 ≤ 2.95 m, for max(𝜀𝑧) = 0.10 m, (5.17)
𝑧 ≤ 4.66 m, for max(𝜀𝑧) = 0.25 m, (5.18)
𝑧 ≤ 6.59 m, for max(𝜀𝑧) = 0.50 m. (5.19)

To conclude, 2D–3D fusion detailed in Section 3.7 generates 3D point
cloudswith camera-captured color information. Its advantage is that only
one camera is required, and accurate 3Dmeasurements of a LiDAR sensor
can be combined with the color intensity values of a camera. Especially
in real-time applications such as autonomous vehicles, requirements in
terms ofmemory and processing time have to bemet. Here, 2D–3D fusion
provides a sparse, but colored 3D reconstruction of the environment with
an approximately equivalent depth estimation accuracy for all 3D points.

3D–3D fusion requires a stereo or an RGB-D camera system within the
multi-sensor system and can complement sparse 3D LiDAR measure-
ments with dense but less accurate depth estimates. The colored 3D point
cloud from 3D–3D fusion is notably larger and different measurement
accuracies from stereo or RGB-D camera 3D reconstruction and LiDAR
have to be considered additionally. The fusion methods B to D provide
filtering options with different complexity levels if 3D measurements
from LiDAR sensors and stereo or RGB-D camera 3D reconstruction
are available. The suitability of a fusion method depends on its desired
application with the trade-off between a higher density of the 3D recon-
struction and the processing effort due to a higher number of points with
different measurement accuracies requiring analysis in relation to the in-
dividual requirements and performance parameters of target application
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and vehicle. For instance, 2D–3D fusion proved useful to integrated RGB
color information in the 3D LiDAR cloud of the IOSB.amp Q1 platform
that does not manipulate the environment and also has a smaller compu-
tational capacity as the IOSB.Alice platform. However, the environmental
perception of IOSB.Alice can benefit from a confidence-based 3D–3D
fusion of the sensor data from four LiDAR sensors and one stereo camera
system mounted on the excavator’s front: it can exploit notably greater
computational power than most other off-road vehicles currently can,
and the large amount of captured sensor data favors a filtering of both L
and S 3D measurements, as proposed in method D.
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High-level perception interprets ordered and unordered 3D point clouds
as “single-shot” 3D clouds and links perception and decision in the
sensing–perception–decision pipeline for autonomous vehicles. Percep-
tion for autonomous off-road vehicles benefits from an accurate, semantic
understanding of the scenery to enable autonomous systems to explore
and especially to undertake manipulation tasks. Hence, determining one
label for entire images and point clouds as well as object detection were
not examined in this thesis.

This thesis focuses on the interpretation of geometric 3D point clouds
without additional color information to provide generic high-level per-
ception solutions. Here, semantic 3D segmentation requires a huge vol-
ume of training data with point-wise labeling information that comes
with an immense effort if training data is not available and has to be gen-
erated first. The proposed semantic 3D segmentation interprets 3D point
cloud data for an optimized navigability analysis, object detection, and
obstacle avoidance in unstructured environments. Training and testing
data from unstructured environments was not yet available in sufficient
quantity at the time of writing this thesis and the semantic 3D segmenta-
tion methods were trained on data frommainly structured environments.
In order to provide accurate and reliable semantic 3D segmentation for
unstructured environments, Section 6.1 proposes a customized training
approach for the semantic 3D segmentation with current state-of-the-
art CNN architectures [326] as well as a domain transfer analysis that
demonstrates how to optimize domain transfer with a special focus on
unstructured environments.

The IC-ACC approach in Section 6.2.1 [326] constitutes a first step
towards pre-modeling XAI with dataset assessment for 2D image and
3D point cloud data. It examines the data’s information content (IC) and
accuracy (ACC) as the input data exhibits the primary influence on the
data-driven modeling of ANNs methods.

179



6 High-Level Perception

The X3Seg approach in Section 6.2.2 examines semantic 3D segmenta-
tion results and facilitates a post-modeling explanation for semantically
segmented 3D point clouds [330].

The presented semantic 3D segmentation methods and X3Seg focus
on 3D point clouds from rotating 3D LiDAR sensors. Nevertheless, the
presented methods were designed for all types of 3D point clouds, e.g.,
from solid-state LiDAR sensors, 3D radar sensors, stereo camera systems,
or ToF cameras, that provide a sufficient, measurement accuracy for
segmentation.

6.1 Semantic Segmentation of 3D Point Clouds
Semantic 3D segmentation relies on CNNs as these mostly outperform
classic methods (see Section 2.5.1). 3D point clouds are interpreted as
“single-shot” scenes within this thesis, as moving objects are rarely en-
countered when decontaminating hazardous environments, while off-
road transport for the material supply in defense applications does not
require the capability of tracking dynamic objects for MULE1 and Con-
voying2.

Datasets available, such as SemanticKITTI [11], SemanticUSL [138],
and Waymo [263], were captured using one sensor type. However, the
domain transfer of CNNs trained on one source domain to other target
domains, such as a sensor setup with multiple LiDAR sensors, is not triv-
ial. Hence, this thesis investigates two strategies to cope with the limited
data availability in unstructured environments: Section 6.1.2 proposes a
customized training approach that can reduce the required amount of
training data for a proper semantic segmentation performance, while
Section 6.1.4 analyzes the domain transfer performance of semantic seg-
mentation CNNs, whereby a promising domain transfer performance
facilitates training in one domain, such as structured environments, and

1 ELROB 2018: Transport–MULE: https://www.elrob.org/files/elrob2018/Transport_M
ule_V3.pdf, access on 15.01.2022.

2 ELROB 2018: Transport–Convoying: https://www.elrob.org/files/elrob2018/Transpor
t_Convoy_V3.pdf, access on 15.01.2022.
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the successful transfer to another domain, such as unstructured environ-
ments.

6.1.1 Semantic Segmentation Architectures
Generating training data in an unstructured target environments may
not always be possible. For instance, training data for natural disasters,
hazardous decontamination scenarios, or off-road transport in defense is
scarcely available.

As a result, this thesis analyzes and optimizes state-of-the-art segmen-
tation methods developed and trained for the semantic segmentation of
3D point clouds from structured environments for data from unstruc-
tured environments. It did not aim at the development of a new seg-
mentation method from scratch, but at the deliberate evaluation of the
segmentation performance for unstructured environments without any
additional fine-tuning for the unstructured target domain to ensure the
applicability of the analyzed methods in unknown scenarios to a certain
extent.

A spherical projection of the sensor’s 360° FoV onto a 2D range image
achieved the fastest and most promising results in the study of [196].
In general, feature extraction on 2D range images facilitates the usage
of fast 2D convolutions, while CNNs that perform the segmentation in
3D space still require a notably higher processing effort. Furthermore,
Behley et al. [11] state that spherical projections, according to Equation 6.1,
are beneficial for the segmentation of 3D LiDAR point clouds as the
projection partially solves the sparsity problem of single scans. Thus, six
CNN architectures performing the semantic segmentation on spherical
2D projections are analyzed hereinafter:

SqueezeSeg (Squ) [298], SqueezeSeg-1024 (Squ-1024) [298],
SqueezeSegV2 (SquV2) [299],
DarkNet21Seg (DN21),
DarkNet53Seg-512 (DN53-512), and DarkNet53Seg-2048 (DN53).

DN21, DN53-512, and DN53 are RangeNet++ variants [65, 196, 225].
DN53 is the most complex architecture with 53 layers, while Squ is the
smallest and simplest architecture with 14 layers excluding CRF post-
processing. Table 6.1 provides an overview of all analyzed segmentation
architectures.
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6 High-Level Perception

The analyzed architectures combine spherical projection anddiscretiza-
tion into one step whereby the de-skewed 3D points clouds are directly
converted into a range representation. Hereby, the range image repre-
sentation implies discretization as the 3D data is mapped onto a grid
structure similar to the pixel representation of 2D images.

LiDAR sensors transmit in the NIR spectral range and remission en-
codes the reflection characteristics of the objects or surfaces that trigger
themeasurement point 𝐩𝑖. Hence, the 2D range image encodes 5D tensors
with a receptive field size of 𝑈 × 𝑉 and 𝐶 = 5 channels constituting the in-
put into the segmentation architecture. Label predictions are conducted
on the basis of a 5D tensor that encodes the geometric 3D information
for each point in 𝐩𝑖 = [𝑥𝑖; 𝑦𝑖; 𝑧𝑖]∗, the range 𝑟𝑖 = ‖𝐩𝑖‖2, and the intensity 𝐼
of the reflected laser beams in 2D range images. The spherical projection
is calculated according to [196] and represented as a pixel grid with (𝑢, 𝑣)
tuples:

(
𝑢
𝑣) =

⎛
⎜
⎜
⎝

1
2 (1 − arctan(𝑦,𝑥)

𝜋 )𝑈

(1 −
arcsin( 𝑧

𝑟 )+𝜏up
𝜏 )𝑉

⎞
⎟
⎟
⎠

. (6.1)

Here, 𝑈 is the width and 𝑉 the height of the desired range image in pixels,
while 𝑢 and 𝑣 represent the image coordinates of the range image. The
range image projection considers the LiDAR sensor’s vertical FoV with
𝜏 = |𝜏up| + |𝜏down|, e.g., with 𝜏up = 3° and 𝜏down = −25° for the Velodyne
HDL-64E LiDAR sensor.

Contrasting [298] and [299], all CNN architectures interpret full 360°
LiDAR point clouds from SemanticKITTI [196] captured with a Velodyne
HDL-64E (𝑉 = 64). Different widths 𝑈 were evaluated for the discretized
grid representation, as summarized in Table 6.1.

The segmentation results are reprojected into 3D space after 2D seg-
mentation on the range image. Here, the predicted label map output
can be subject to the loss of low-level details due to the downsampling
process in the first layers of the CNN. To cope with this, Wu et al. [298]
apply a CRF on the label map output of the CNN, as proposed in [37],
which is implemented as a recurrent neural network layer according
to [313]. In contrast, Milioto et al. [196] propose kNN post-processing
to overcome the problem of information loss as well as the reprojection
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Architecture # Param. in Mio. 𝑉 𝑈

SqueezeSeg-1024 (Squ-1024) 1 64 1024
SqueezeSeg (Squ) 1 64 2048
SqueezeSegV2 (SquV2) 1 64 2048
DarkNet21Seg (DN21) 25 64 2048
DarkNet53Seg-512 (DN53-512) 50 64 512
DarkNet53Seg (DN53) 50 64 2048

Table 6.1 Analyzed 3D segmentation methods [44, 196, 277, 298, 299].

uncertainty that occurs if two points lie on the same pixel grid point for
spherical projection, but with different associated depths.

Semantic segmentation is the equivalent of multi-class classification
and the cross-entropy loss is calculated from

𝐿CE = −
𝑁

∑
𝑖=1

𝑦𝑂,𝑖 log 𝑃 (𝑂, 𝑖), (6.2)

with 𝑁 the total number of classes, 𝑦𝑂,𝑖 the binary indicator for the cor-
rectness of a class label 𝑖 for the respective observation 𝑂. 𝑃 (𝑂, 𝑖) is the
predicted probability that 𝑂 is in class 𝑖. In order to evaluate the seg-
mentation performance, intersection over union (IoU), also denoted as
Jaccard Index, constitutes the state-of-the-art measure: IoU measures
the IoU for all considered classes, while IoU𝑖 is the per-class IoU𝑖 for
class 𝑖 [196, 256]:

IoU =
1
𝑁

𝑁

∑
𝑖=1

TP𝑖
TP𝑖 + FP𝑖 + FN𝑖

. (6.3)

TP𝑖 counts the number of true positives, FP𝑖 the number of false positives,
while FN𝑖 denotes the number of false negatives for a class 𝑖 and 𝑁
is the total number of considered classes. As a second measure, the
segmentation performance can be measured using the accuracy

accuracy𝑖 =
TP𝑖 + TN𝑖

TP𝑖 + TN𝑖 + FP𝑖 + FN𝑖
. (6.4)
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The LiDAR-Bonnetal toolkit3 was used for the training and testing
of the semantic segmentation architectures within this thesis and all
analyzed architectures were trained on data from the SemanticKITTI
dataset [11]: 3D point clouds with point-wise labeling from one Velodyne
HDL-64E LiDAR sensor.

6.1.2 Customized Training for 3D Segmentation CNNs
The presented customized training approach targets the increase in train-
ing performance to reduce the required volume of training data from
unstructured environments. For this purpose, the IC-ACC method for
pre-modeling explainability with dataset assessment discussed in Sec-
tion 6.2.1 is applied to analyze the training data volume required from
SemanticKITTI. A reduced dataset with seq. 02 to seq. 04 was utilized to
evaluate the segmentation performance with a limited volume of train-
ing data and to yield a reference for the generation of future datasets
for semantic 3D segmentation. As a next step, the proposed customized
training approach can be utilized as a reference for a dedicated genera-
tion of training data from unstructured environments with reasonable
effort, e.g., within the GOOSE dataset described in Section 7.5.

Here, the lower number of parameters in Squ compared to DN53 facili-
tates a notably faster training. Thus, Squwith 𝑈 = 1024 and 𝑉 = 64 and a
spherical projection for a horizontal FoV of 360° was selected to demon-
strate the customized training methodology for a higher segmentation
efficiency. Post-processing is not used to assess the segmentation perfor-
mance independently and to inhibit a potential concealing of over-fitting.
The SemanticKITTI point clouds are subdivided into structured (front,
back) and unstructured (left, right) sectors to analyze the segmentation
performance, as illustrated in Figure 6.2. The separation into four sectors
yields 𝑈 = 256 for each sector, and each sector contains a total number
of 𝐷𝑇 = 𝑉 ⋅ 𝑈 ⋅ 𝐶 = 256 ⋅ 64 ⋅ 5 = 81, 920 data points for 𝐶 = 5 tensor
elements.

Representative classes from the SemanticKITTI class structure were
chosen and grouped into structured and unstructured classes: car, road,

3 LiDAR-Bonnetal: https://github.com/PRBonn/lidar-bonnetal, access on 06.01.2022.
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parking, pavement, building, fence, pole, and traffic sign belong to the
group of structured classes, while the unstructured classes vegetation,
terrain, and trunk belong to the nature category in SemanticKITTI. The
training was split into different phases, and each phase was analyzed
separately to consider its specific type and amount of input data. The
first phase of the customized, iterative training process started with the
data from one sector and trained for a predefined number of epochs.
Subsequently, the segmentation architecture with pre-training on the
first sector was trained with the data from the second 90° sector within
a second training phase and so forth. Validation was conducted on a
randomly reduced number of scenes from seq. 08 preserving the training
to validation ration of 4:1. IC-ACC was applied to assess the information
content (IC) and accuracy (ACC) of the point clouds, as described in
Section 6.2.1.

A first study started with varying volumes of training data from the
front (structured) and right (unstructured) sectors to analyze the devel-
opment of training and validation performance for this domain change
(see Table 6.2). An in-depth evaluation of over-fitting was conducted by
gradually increasing the number of scenes (360° 3D point clouds) from
𝑁𝑆 = 350 to 𝑁𝑆 = 2800. This yielded the training and validation perfor-
mances for 𝑁𝑆 ∈ {350, 700, 1050, 1750, 2800} presented in Table 6.2.

Generally, a high IoU in training and a low validation performance
in terms of IoU indicate over-fitting. In consequence, a customized Δ𝑇 𝑉
measure compares the training and validation performance in relation
to the training data volume:

Δ𝑇 𝑉(IoU) =
IoU𝑉

IoU𝑇
. (6.5)

Δ𝑇 𝑉 for loss and accuracy is calculated accordingly. In order to evaluate
the benefit of the proposed customized training approach, a customized
metric 𝜂IoU is proposed to measure training efficiency. It measures the
Δ(IoU𝑉) in relation to the amount of training data:

𝜂IoU =
Δ(IoU𝑉)
𝐷𝑆 ⋅ 𝑁𝑆

. (6.6)

The growth of the average validation IoU (IoU𝑉) prior to and after the cur-
rent iterative training step is hereby compared in Δ𝑇 𝑉(IoU). 𝐷𝑆 calculates
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the volume of data inside each scene using 𝐷𝑆 = 𝑈 ⋅ 𝑉 ⋅ 𝐶 with 𝐶 = 5
describing the number of features with 𝑁 = {𝑋, 𝑌 , 𝑍, 𝑟, 𝐼}. The test of
different values for 𝑁𝑆 determined the minimum data volume required
to prevent over-fitting. For this purpose, 𝑁𝑆 ∈ {350, 700, 1050, 1750, 2800}
was evaluated and combined the front and right sectors into one com-
mon training dataset. The results shown in Table 6.2 indicate that the
segmentation was not subject to over-fitting for training with 𝑁𝑆 = 2800
scenes.

6.1.3 Proof of Concept: Customized Training for
3D Segmentation CNNs

The customized IC-ACC training approach is demonstrated on applica-
tion examples for the perception of off-road vehicles from seq. 00 to seq. 10
of SemanticKITTI. Training with the full version of the SemanticKITTI
dataset considers seq. 00 to 07, 09, and 10 and trains for 100 epochs,
while the reduced version was trained on seq. 02 to 04 for 150 epochs
and applied to evaluate the training efficiency using IC-ACC. The vali-
dation seq. 08 was excluded from training and utilized to measure the
segmentation performance of Squwith the proposed customized training
approach. The validation set for the reduced dataset was a randomly
reduced number of scenes from seq. 08 preserving the training to valida-
tion ratio of 4:1. The mean surface variation 𝑠 indicates the structured
or unstructured character of the sectors and the IC of training data for
unstructured environments. Combining all four sectors into one training
dataset is identical to the training of Squ on the full dataset.

The following, experimentally justified training parameters were used
to train Squ on SemanticKITTI: the learning rate was set to 0.001 with a
decay of 0.995, the momentum of the stochastic gradient descent was set
to 0.9, the weight decay to 0.0001, the batch size to 2, the class weighting
was set to 0.001, and 12 kernel threads were utilized. Loss and validation
were logged for each epoch to analyze the training process.

The nature classes vegetation, trunk, and terrain achieved IoU = 0.335
on the reduced dataset, while the structured classes reached IoU = 0.266
on the reduced dataset. This is remarkable as the nature classes are
attributed to less than 30% of the points present in the training data. It

186



6.1 Semantic Segmentation of 3D Point Clouds

Figure 6.1 Semantic segmentation of Velodyne HDL-64E cloud from
IOSB.amp Q1 with Squ; yellow: building, green: vegetation, brown: trunk,
purple: road. Images © Fraunhofer IOSB.

all r r, f r, l r, l, f r, l, f, b

IoU 0.284 0.135 0.230 0.180 0.250 0.281
s𝑇 0.042 0.065 0.043 0.055 0.044 0.042

𝜂IoU 3.1 ⋅ 10−8 6.0 ⋅ 10−8 5.0 ⋅ 10−8 3.0 ⋅ 10−8 3.7 ⋅ 10−8 3.0 ⋅ 10−8

Table 6.2 Semantic segmentation performance of Squ on seq. 08 without post-
processing, with 𝑁𝑆 = 2800, and training for 150 epochs. The training efficiency
𝜂IoU was measured for the training process proposed in sectors front (f), right (r),
back (b), and left (l), and IC in terms of s𝑇 was measured on the training data. The
iterative training results on all four sectors highlight the impact of the separation
into sectors.

can also indicate a higher IC making nature classes favorable in training
and inference due to an increased unambiguousness. Figure 6.1 illustrates
the segmentation results of Squ with the proposed customized training
on SemanticKITTI for a 3D point cloud captured with the IOSB.amp
Q1 platform.

Figure 6.2(a) shows that the over-fitting tendency decreased with a
higher number of training samples as expected: Δ𝑇 𝑉 increased for higher
values of 𝑁𝑆 which highlights the decreasing tendency for over-fitting.
With 𝑁𝑆 ≥ 1050, the validation loss only doubled in comparison to
the loss during training. For 𝑁𝑆 = 2800, Δ𝑇 𝑉 converged to one for IoU
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Data Step IoU Loss Accuracy

𝑁𝑆 = 350 T 0.140 1.20 0.54
V 0.119 2.79 0.45
Δ𝑇 𝑉 0.85 0.43 0.83

𝑁𝑆 = 700 Δ𝑇 𝑉 0.880 0.40 0.91

𝑁𝑆 = 1050 Δ𝑇 𝑉 0.880 0.50 0.98

𝑁𝑆 = 1750 Δ𝑇 𝑉 0.880 0.51 0.82

𝑁𝑆 = 2800 T 0.172 1.22 0.62
V 0.186 2.14 0.62
Δ𝑇 𝑉 0.920 0.57 1.0

(a)

(b)

Figure 6.2 (a) Semantic segmentation performance (T: Training, V: validation)
for a combined training on the front and right sectors of the reduced dataset
(seq. 02–04) over 150 epochs; (b) Subdivision of 3D point clouds in SemanticKITTI:
front and back are primarily structured, left and right are primarily unstructured
with natural and grown structures.

and accuracy. This highlights that IoU and accuracy were approximately
equal in training and validation. Hence, it can be assumed that the seg-
mentation was not subject to over-fitting for training with 𝑁𝑆 = 2800
scenes.

Table 6.2 illustrates the training efficiency 𝜂IoU in the semantic segmen-
tation for 𝑁𝑆 = 2800. Combining all four – two primarily structured (f, b)
and two primarily unstructured (l, r) – sectors provides a reference for the
training efficiency with 𝑁𝑆 = 2800. The 𝜂IoU values in Table 6.2 were mea-
sured within the indicated sectors. The right sector achieved the highest
training efficiency 𝜂IoU and the IC-ACC analysis in Table 6.2 shows that the
right sectors have the most unstructured character and hence the highest
IC. This shows that a notably higher 𝜂IoU can be achieved with a similar
volume of training data if the training data has a different structure. For
seq. 02–04 of SemanticKITTI, the IoU can be raised by more than 30%
by combining data with different surface variations compared to using
the same volume of training data with a similar structure. Consequently,
the composition of IC-efficient datasets can improve the performance of
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ANN methods and reduce the volume of labeled training data required
to achieve comparable results.

6.1.4 Domain Transfer
Research on CNNs for 3D semantic segmentation mostly focuses on
structured environments due to the high research interest in autonomous
driving on public roads. For instance, the analyzed CNNs were trained
on 3D point clouds from the SemanticKITTI dataset [196] that includes
data from unstructured environments as previously detailed but pri-
marily contains data from structured environments. Thus, perception
for unstructured environments can highly benefit from the transfer of
CNNs that were trained on one specific source domain to other target
domains. Typical domain changes in perception are the change of the
application environment, the change of sensor mounting points or ori-
entations in a current sensor setup, the mounting of additional LiDAR
sensors, and the inclusion of new types of LiDAR sensors, as summarized
in Table 6.3. Other domain changes include the transfer from simulation
to the real-world or the transfer of perception solutions from a prototype
or technology demonstrator into serial production [164, 294, 297].

Langer et al. [160] state that CNN models adapt to specific sensor
parameters and characteristics of the environment, and that the transfer
of trained models to another domain leads to a notable performance loss
in semantic segmentation.

In order to cope with domain transfer loss, this thesis analyzes the
measures for favorable domain transfers. Three options exist to achieve a
satisfactory semantic segmentation performance in a new domain:

Fine-tuning: record and label new training data, retraining,
Domain adaption: synthetic adaption of the available training data
to the new domain, retraining,
Domain transfer: optimization of and preprocessing for pre-trained
CNN architectures for a suitable generalization performance.

Domain changesmay also occur unexpectedly for the critical applications
discussed in this thesis. Consequently, this thesis focuses on domain
transfer to avoid the generation of new training data and a synthetic
adaption of existing training data both implying retraining the 3D seg-
mentation CNNs in the case of domain changes. Here, the segmentation
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performance of CNNs for different domain transfers is evaluatedwithout
any additional retraining in the new domain facilitating a well-founded
analysis of their adaption to new, possibly unknown target domains.

A favorable domain transfer performance without retraining can be
achieved by combining a CNN architecture with a proper generalization
and a preferably high invariance between the input data of the source
and target domain. This thesis proposes a novel combination of pre-
processing techniques for 3D point clouds increasing both the domain
invariance of the 3D point clouds themselves and the domain invariance
of the spherical 2D projections subject to segmentation. To this end, the
presented preprocessing methods aim at highly invariant spherical pro-
jections by synthetically approximating the source and target domain
with preferably equivalent viewpoints, FoVs, sensor orientations, and
sensor mounting positions.

The domain transfer performance of fiveCNNarchitectures is analyzed
hereinafter: Squ [298], SquV2 [299], DN21, DN53-512, and DN53 [65, 196,
225] (see Table 6.1). The analyzed segmentation architectureswere trained
on sensor data from one specific source domain: one type of LiDAR
(Velodyne HDL-64E) and one type of environment (SemanticKITTI) [11,
196]. The domain transfer performance was investigated for data from
SemanticKITTI and SemanticUSL as well as for 3D point clouds from
the IOSB.amp Q1 and IOSB.Alice platforms captured in mainly unstruc-
tured, off-road environments at the Fraunhofer IOSB in Karlsruhe. The
domain transfer performance of the analyzed architectureswas evaluated
with the IoU and IoU𝑖 and with and without post-processing, according
to Equation 6.3.

Table 6.3 and Table 6.4 provide an overview of the domain transfers
under analysis and discussion. The focus was placed on real-world data,
and multiple domain specific variances were identified:

Application environment: structured or unstructured character,
FoV: individual sensors vs. sensor setup with multiple sensors,
Viewpoint: different sensor poses or mounting points,
Sensor orientation: different orientations in source and target do-
main,
Sensor resolution, point density: different numbers of diodes,
Noise characteristics: different sensor types.
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Different experiments were conducted to analyze domain specific vari-
ances and their correlation to domain transfer performance. In order to
achieve a preferably high domain invariance, different preprocessing
steps are proposed in this thesis:

Spherical projection (SP)
Source alignment (SA),
Shift to source (StS),
and FoV adaption (FoV).

Preprocessingwith SP is always conducted as it is inherent to all analyzed
CNN architectures. SP reduces the domain gap for different types of
individual sensors and sensor setups and is especially important if the
target sensors are rotated relative to the source sensors as 3D ray paths are
less dominant in the 2D grid representation of the spherical projection.
SA denotes the rotational alignment of the sensor origins for source

and target domain. It virtually approximates their sensor orientation for
both individual clouds and fused 3D point clouds from multiple LiDAR
sensors. SA is mostly possible for autonomous off-road vehicles as they
are equipped with highly accurate localization solutions, and two axes of
the body frame are typically parallel to the ground plane. For instance, the
body frame of the IOSB.Alice platform lies within the ground plane and
in between the two chains. In the proof-of-concept discussed hereinafter,
SA rotationally aligns the target clouds with the sensor orientation in the
source domain, the ground plane in SemanticKITTI. Using the extrinsic
calibration of the LiDAR sensors and their known orientation to the
vehicle frame, SA can be conducted with minimal effort. Alternatively,
the RANSAC algorithm can be applied to detect the ground plane, as
explained in Section 4.2.3.

StS creates the translational alignment of the sensor origins for source
and target domain. Similar to SA, it transforms the target sensor orienta-
tion to a virtual origin approximately equal to the source origin in terms
of perspective and viewpoint for the subsequent spherical projection.

The grid size for the spherical projection is specified by the pre-trained
network architecture and the projection of different sensor FoVs onto a
grid of equivalent size leads to perspective distortions. To this end, the
proposed FoV aims at the highest perspective similarity of the spherical
projection despite different FoVs and requires an adaption of the vertical
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ID Domain transfer Variance Preproc.

I Appl. environment: 𝑠, objects (types, SP,
struct. to unstructured separation), etc. class sel.

II Sensor pose: different Viewpoint, SP, SA,
orientation, same LiDAR type ray paths in 3D StS

III Sensor type: FoV, noise, point density, SP, SA,
type A to type B remission StS, FoV

IV Sensor setup: single FoV, noise, point density, SP, SA,
to multiple sensors ray paths in 3D, viewpoint, StS, FoV

refl. intensity

Table 6.3 Overview of domain specific variances between source and target
domain for the conducted domain transfer analysis in semantic 3D segmentation.

FoVwith 𝜏up and 𝜏down according to Equation 6.1. Naturally, FoV is always
required for domain transfers to other sensor types (III) and for sensor
setups with multiple LiDAR sensors (IV).

Table 6.3 relates the proposed preprocessing methods to domain spe-
cific variances. Here, class selection describes the definition of a favor-
able class structure for unstructured environments. For instance, a class
structure that only separates into drivable and non-drivable terrain can
achieve a superior domain transfer performance for a navigability analy-
sis as demonstrated below. However, exploration and manipulation of
the environment require amore detailed class structure for a proper inter-
pretation in high-level perception. The subsequent analysis demonstrates
that the SemanticKITTI class structure or fine-grained class structures
for unstructured environments, as proposed by Metzger et al. [193] and
applied in Forkel et al. [71], provide notably more information with the
downside of a less favorable domain transfer performance.

Unfortunately, suitable test data for a completely separate analysis
of the domain transfers I–IV was not available. Hence, SemanticUSL,
IOSB.amp Q1, the individual LiDAR sensors from IOSB.Alice, and the
merged clouds from IOSB.Alice were selected, and different domain
transfer scenarios were combined, as summarized in Table 6.4.

The transfer from SemanticKITTI to IOSB.Alice analyzes the domain
transfer from a single LiDAR to a sensor setup with multiple LiDAR
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ID Data for Target Domain

I SemanticUSL (Ouster OS1-64), IOSB.amp Q1 (Velodyne HDL-64E),
individual IOSB.Alice clouds (OS0-64, OS0-128)

II IOSB.amp Q1
III SemanticUSL, individual IOSB.Alice clouds, incl. I and II
IV Fused IOSB.Alice cloud (3× OS0-64, 1× OS0-128), incl. I–III

Table 6.4 Domain transfer analysis with source domain SemanticKITTI.

sensors of a different type. The sensor setup with multiple LiDARs on
the IOSB.Alice platform provides one fused 3D point cloud from all four
Ouster OS0 LiDAR sensors in the platform coordinate system. Thereby,
the extrinsic sensor calibration as well as the calibration to the platform
coordinate system allowed an accurate registration of the 3D point clouds
from three OS0-64 and one OS0-128 LiDAR sensors with an FoV from
−45° to 45°. SemanticUSL was captured with an Ouster OS1-64 LiDAR
with an FoV of −22.5° to 22.5°. An outlier filtering for 3D points with
potentially erroneous information was conducted for SemanticUSL, par-
ticularly in the origin of the coordinate system. The data for IOSB.amp
Q1 and IOSB.Alice was labeled manually to evaluate the segmentation
performance in the new target domains. The domain transfer was evalu-
ated with special focus on the classes of the nature group mainly present
in unstructured environments: vegetation, terrain, and trunk.

Remission information also contributes to the class label predictions,
as detailed in Section 6.1.1. Consequently, the intensity values of the
target domains have to match the range of the intensities in the source
domain. SemanticKITTI contains normalized intensity values for all
points but intensity normalization was not described in [11, 196]. Hence,
two obvious methods for intensity normalization were also subject to
evaluation on SemanticUSL: normalization can be conductedwith a fixed
maximum intensity value (28 ∶ 𝐼 ∈ [0, … , 255], 29 ∶ 𝐼 ∈ [0, … , 511])
for all clouds or with the maximum intensity of each individual cloud.
Another alternative would be normalization with respect to the standard
deviation but normalization for an arithmetic mean of zero is not feasible
as 𝐼 always needs to be positive.

193



6 High-Level Perception

Post-processing with CRF and kNN can increase the segmentation
performance in some cases. CRF post-processing was only evaluated on
Squ and SquV2, as proposed by Wu et al. [298, 299]. Milioto et al. [196]
recommend kNN post-processing for DN21 and DN53 resulting in kNN
post-processing being evaluated for DN21-512 to DN53.

Typically, the road is located in themiddle of the spherical projection in
the structured environments captured in SemanticKITTI, which suggests
an additional over-fitting analysis for the examined, pre-trained network
architectures: over-fitting on SemanticKITTI was assessed via a rotation
of the clouds around the vertical axis of the coordinate system, which
is equivalent to a shift in the direction of the width 𝑈 of the spherical
projection. Rotations of 90°and 180° were evaluated exemplarily to assess
if the network architectures were influenced by the “typical” positions
of the road and vegetation.

An alternative, contrasting approach to the domain transfer optimiza-
tions proposed is the identification of domain specific objects. However,
this requires an in-depth analysis of each target domain and an a priori
object detection. This may not always be feasible in unstructured appli-
cation environments such as in the decontamination of landfill sites, and
potentially encountered objects may not be clearly identifiable or separa-
ble. Furthermore, workspace monitoring in unstructured environments
requires the point-wise understanding of the perceived 3D point clouds
including the ground plane, which is why a high-level detection of in-
dividual objects is not sufficient. Instead of customized preprocessing
for CNNs to generate preferably domain-invariant 2D range images for
segmentation, Burkhardt et al. [28] and Schulz-Mirbach [248, 249] discuss
2D features invariant for certain transformations. However, the feature
extractions in CNN-based semantic segmentation are modeled during
the training step, and the requirements for invariant features according
to [249] cannot be ensured. Another alternative to the proposed prepro-
cessing would be the utilization of coordinate independent 3D CNNs
for the semantic segmentation of 3D point clouds [42, 290]. However,
similar to the point-wise segmentation in 3D space, the processing ef-
fort for coordinate independent CNNs is currently too high to achieve
real-time capability in the environmental perception for off-road vehicles.
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Nevertheless, it constitutes an interesting idea in combination with the
increase in computation power within the next few years.

6.1.5 Proof of Concept: Domain Transfer
The experimental evaluation discussed hereinafterwasmainly conducted
within the master’s thesis of Schmidl [339]. It has been published and
presented4 within the 1st Workshop on Scene Understanding in Unstruc-
tured Environments5. Table 6.3 and Table 6.4 summarize the analyzed
domain transfer scenarios.

Intensity Normalization. The normalization with a fixed number
of 29 = 512 intensity values (𝐼 ∈ [0, … , 511]) for all clouds yielded
IoU = 11.2% for all classes with DN53 on SemanticUSL (see Table 6.6).
The normalization with the maximum intensity max(𝐼) of each indi-
vidual cloud performed better and yielded IoU = 12.0%. However, this
requires the determination of max(𝐼) for each cloud prior to segmen-
tation, and intensity normalization for SemanticUSL was conducted
with max(𝐼) = 511 for the presented domain transfer analysis to limit the
required processing steps. Intensity normalization for the Ouster OS0
sensors on IOSB.Alice was conducted with max(𝐼) = 255 directly during
data capture.

Complexity of CNN Architectures. Table 6.6 and Table 6.7 compare
the domain transfer performance of the five discussed architectures from
SemanticKITTI to SemanticUSL (I and III) and to IOSB.Alice (IV) on
selected results that highlight the findings discussed hereinafter. The
performance of DN21, DN53-512, and DN53 decreased less than the per-
formance of Squ and SquV2. As a result, the CNN architectures with the
highest number of layers and parameters (DN53-512, DN53) showed the
best domain transfer performance in I–IV. This leads to the assumption
that CNN architectures with a higher number of parameters, such as
DN53, yield better results in the analyzed domain transfers. This could
be due to the fact that the higher number of parameters captures more
correlations between points reducing the sensitivity to changes in the FoV
and the perceived environment. In contrast to this, smaller, rather simple

4 https://www.youtube.com/watch?v=7aypd1QIqgw, access on 23.01.2022.
5 https://unstructured-scene-understanding.com/program.html, access on 23.01.2022
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6 High-Level Perception

(a) SemanticUSL: ground truth (above), predictions (below), FoV∈[−22.5°,22.5°].

(b) IOSB.amp Q1: proj. measurements (above), predictions (below), FoV∈[−25°,3°].

(c) IOSB.Alice: point-wise class predictions left LiDAR, FoV∈[−60°,25°].

(d) IOSB.Alice: class predictions rear LiDAR, FoV∈[−60°,25°].

(e) IOSB.Alice: class predictions boom LiDAR, FoV∈[−60°,25°].

(f) IOSB.Alice: left and right LiDAR sensors, FoV∈[−60°,25°].

(g) IOSB.Alice: left, right, and boom LiDAR sensors, FoV∈[−60°,25°].

Figure 6.3 Domain transfer results with DN53 on 2D range images: StS was ap-
plied for IOSB.Alice ((c)–(g)) with -3.0m. Class affiliation is indicated by coloring:
pink: road, light green: terrain, dark green: vegetation, purple: pavement, brown:
trunk, blue: car, orange: fence, yellow: building. Selected 3D point clouds are
depicted in Figure C.1 for clarity. Images © Fraunhofer IOSB.
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network architectures such as MC-CNN provide a favorable domain
transfer performance from structured to unstructured environments, as
discussed in Section 5.1.2. However, semantic 3D segmentation has a
notably higher complexity compared to local disparity estimation from
stereo camera images on small image patches. An evident assumption
is that the apparently high number of layers and parameters in DN53 is
still low enough to impede the exact mapping of the characteristics of
each domain. This can explain the favorable generalization and hence
domain transfer performance of DN53. The future development of even
deeper CNN architectures with notably more parameters will show if
this assumption holds true.

FoV, StS. FoV and StS show a notable influence on the segmentation
performance on SemanticUSL and the fused IOSB.Alice cloud from all
sensors, as illustrated in Figure 6.4. FoV can achieve similar viewpoints
for SemanticUSL, as depicted in Figure 6.4(b). Figure 6.3(a) depicts the
segmentation results for Semantic USL (I, III) without StS and with an
IoU of 11.2%. The Clearpath Warthog robot used to record SemanticUSL
is smaller than the VW Passat for SemanticKITTI. For SemanticUSL
clouds, a proper segmentation could not be achieved without FoV, and
an StS towards the source sensor origin (1.0m higher above ground)
notably increased the IoU of DN53 to 14.6%. Furthermore, the robot
operatorwalked behind the ClearpathWarthog during thewhole capture
of SemanticUSL andwas not eliminated from the data. Here, StS does not
only generate a more similar viewpoint of the source and target domain,
it also eliminated the operator not properly labeled within the ground
truth. Hence, both changes caused the measured IoU increase.

The fused cloud from the four LiDAR sensors on IOSB.Alice (IV)
presents the greatest FoV difference in the evaluated domain transfers.
Consequently, the invariance increase that can be achieved with FoV pre-
processing was evaluated on IV with two promising and experimentally
justified FoV variants and with an identical StS of -3.0m, as indicated
in Table 6.5. The vertical FoV of the source domain (Velodyne HDL-64E)
is −25° to 3° but experimental evaluation showed that a larger vertical FoV
for IV achieved qualitatively and quantitatively more accurate segmenta-
tion results. Hence, an FoV from −50° to −5° was selected in accordance
with the FoV of the Ouster OS1-64 in SemanticUSL and a second, notably
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𝐹 𝑂𝑉− 𝐹 𝑂𝑉+ StS IoU all IoU veget. IoU trunk IoU terrain

−60° 25° -3.0m 3.5 43.6 0.1 22.0
−50° −5° -3.0m 2.1 8.0 0.0 31.3

Table 6.5 Segmentation performance for domain transfer of DN53 on fused
3D point clouds from IOSB.Alice (IV) with SA and StS (-3.0m) preprocessing
and without post-processing. The IoU measure for all classes (all) and selected
classes is given in %.

larger FoV from−60° to 25°was evaluated in comparison. Here, the larger
vertical FoV∈[−60°,25°] (Figure 6.4(d)) increased the IoU by more than
70% in contrast to an FoV∈[−50°,−5°] (Figure 6.4(c)). Furthermore, an
FoV∈[−60°,25°] and StS with -3.0m yielded better results for vegetation,
as shown in Table 6.5.

Range Image Resolution. DN53-512 with a smaller range image reso-
lution performed slightly better than DN53 on SemanticUSL but DN53
outperformed DN53-512 on IOSB.Alice data. To conclude, the domain
transfer results in Table 6.6 and Table 6.7 indicate that a higher resolution
of the spherical projection is beneficial for fused clouds from multiple
LiDAR sensors.

IOSB.Alice (IV). Table 6.7 shows selected IoU results for the conducted
domain transfer experiments on the IOSB.Alice platform. It compares the
individual segmentation of each LiDAR sensor in the sensor setup with
the segmentation of multiple LiDAR clouds within one fused 3D cloud.
Especially the segmentation performance of the boom LiDAR is notable
as the difference between the IoU of DN53 and DN53-512 becomes most
evident. The rays of the boom LiDAR mounted below the excavator’s
boom have completely different paths in comparison to the source do-
main (see Figure 6.3(e)), and areas with high and with low point density
especially exist in the 3D cloud of the boom LiDAR. As a result, it is
assumed that the highly dense geometric information of the OS0-128
boom LiDAR is well-represented with a range image of 𝑈 = 2048 and
badly represented with 𝑈 = 512, which leads to the assumption that a
high range image resolution is especially beneficial if areas with differ-
ent point density exist inside one cloud. SP was identified as the most
beneficial preprocessing here as it eliminates the point accumulations
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Architecture IoU car road build. veget. trunk terrain pole

Segmentation performance in source domain K.

Squ-kNN 31.9 76.1 85.9 68.8 71.6 26.8 66.0 28.2
SquV2-kNN 41.8 86.7 90.1 79.6 79.2 36.5 71.1 28.3
DN21 47.2 84.2 93.4 79.0 81.7 48.8 71.6 39.3
DN53-512-kNN 39.9 85.3 91.0 75.1 77.8 41.1 69.6 38.7
DN53-kNN 52.8 91.0 93.8 85.8 84.2 52.9 72.7 53.2

Relative performance loss in transfer from K to U (I–III).

Squ 86.9 87.6 91.7 96.5 96.9 69.2 96.8 70.0
SquV2 85.4 73.7 87.3 94.6 95.1 75.4 90.5 80.2
DN21 81.4 61.8 79.1 97.6 59.4 68.9 89.8 76.6
DN53-512 68.0 45.8 67.4 91.6 42.1 41.9 77.8 63.9
DN53 77.7 46.6 83.8 94.7 46.3 65.3 75.9 73.2

Segmentation performance in target domain IOSB.amp Q1 (I, II).

Squ-kNN 2.2 – 5.0 5.1 6.0 6.0 0.5 –
SquV2-kNN 6.3 – 5.2 58.8 41.6 12.7 1.3 –
DN21-kNN 8.5 – 5.2 74.9 76.1 2.0 2.8 –
DN53-512-kNN 6.9 – 5.4 52.3 72.2 0.0 0.6 –
DN53-kNN 8.2 – 5.0 68.3 78.4 0.6 3.6 –

Table 6.6 Domain transfer evaluation for 3D segmentation CNNs with aver-
age and per class IoU in %: transfer from SemanticKITTI (K, seq. 8, source) to
SemanticUSL (U, I–III), and IOSB.amp Q1 (I,II). SP and intensity normalization
with max(𝐼) = 511 were applied, StS was not conducted.
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(a) IOSB.Alice: Range image (above), ground truth (below).

(b) Similar viewpoint with FoV: source K (above), target U (below).

(c) IOSB.Alice: FoV ∈ [−50°,−5°], IoU = 2.1%.

(d) IOSB.Alice: FoV ∈ [−60°, 25°], IoU = 3.5%.

Figure 6.4 2D range images for fused 3D cloud from IOSB.Alice with -3.0m StS:
image (a) shows the 2D range image and ground truth labeling with ∈ [−60°, 25°],
while (b) shows exemplary range images of SemanticKITTI (K) and SemanticUSL
(U) after FoV to [−22.5°, 22.5°]. The images (c) and (d) compare FoV and highlight
typical misclassifications for navigable ground. Images © Fraunhofer IOSB.

on the ray paths, and particularly increased the domain invariance for
rotated LiDAR sensors such as the examined boom sensor. Figure 6.4(a)
shows range image and ground truth labeling of the IOSB.Alice cloud.

Naturally, the segmentation of the fused 3D cloud is faster than the
segmentation of each individual LiDAR cloud. Most class predictions
on the fused 3D cloud from the left and right LiDAR sensor on IOSB.Al-
ice achieved a higher IoU for DN53 than an individual segmentation of
each cloud. However, the individual segmentation with DN53-512-kNN
yielded higher IoU results than segmentation of the fused 3D clouds
with kNN. It is hence assumed that the individual segmentation of the
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LiDAR clouds yields more accurate segmentation results in the case of
lower range image resolutions. Concluding, the segmentation of fused
3D clouds instead of the individual segmentation of each clouds is bene-
ficial if the range image resolution is sufficiently high.

Class Occurrence, Misclassification, and Class Selection. The do-
main transfer loss was smaller for classes that were frequently present
in the training data (see Table C.1 for ground truth label distributions
in SemanticUSL). The domain transfer performance of DN53-kNN with
IoU = 11.2 % on SemanticUSL and IoU = 3.6 % on the examined IOSB.Al-
ice cloud is not yet sufficient for an accurate and reliable interpretation
of the 3D measurement points. Table 6.6 further shows that for I and
II low IoU values for terrain and road were achieved compared to high
IoU achievements of building and vegetation. An in-depth analysis of
the per class IoU showed that the analyzed architectures tend to cause
misclassifications of navigable terrain (road, pavement, other-ground,
terrain) in domain transfer, even if sensor type and sensor orientation
in source and target domain are equivalent. The segmentation perfor-
mance also decreased for other classes such as vegetation but notably
less: IoU = 47.0 % were achieved for vegetation class predictions in do-
main transfer case IV on IOSB.Alice in comparison to IoU = 84.2 % on
SemanticKITTI. However, this shows that a domain transfer without re-
training is feasible with suitable preprocessing and low IoU for navigable
ground: for instance, the low IoU for terrain in IV was mostly caused by
misclassification as another class that also constitutes navigable ground
for autonomous off-road vehicles, such as road and pavement.

Figure 6.3 highlights these class interchanges on data from IOSB.Alice,
IOSB.amp Q1, and SemanticUSL: terrain and road were confused in all
segmentation results depicted in Figure 6.3, while pavement and road
were erroneously classified as terrain in Figure 6.3(a) and Figure 6.3(b),
and fence and vegetationwere confused in Figure 6.3(c)–(g). Furthermore,
in the case of the unstructured off-road environment around the Fraun-
hofer IOSB shown in Figure 6.3(b), the entire ground consisting of terrain
and road was predicted as road, while class estimates for vegetation on
the left side and for building were correct. It becomes clear that a suit-
able class selection and the suitable combination of all navigable ground
classes into one class can notably optimize the quantitative semantic
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segmentation performance in unstructured environments, particularly
for domain transfers from structured environments.

To conclude, classes whose geometry is clearly distinguishable, such
as building or vegetation, show a target domain IoU close to their source
domain IoU. However, geometrically similar classes, such as terrain,
road, pavement, and other-ground, were often interchanged but they
all present navigable ground structures for off-road vehicles. Here, the
X3Seg approach presented in Section 6.2.2 detects notable similarities be-
tween fence and vegetation in SemanticKITTI and also finds that the fence
class often contains vegetation elements in the SemanticKITTI source do-
main, which naturally favors the probability of their interchangeability in
semantic segmentation. This shows that the integration of post-modeling
XAI methods in the domain transfer can further help to understand the
segmentation results on a target domain in the future.

Post-Processing. Table 6.6 compares CRF and kNN post-processing.
Both CRF and kNN post-processing increased the IoU on the source do-
main SemanticKITTI for all analyzed architectures. However, CRF post-
processing for Squ and SquV2 impaired the segmentation of SemanticUSL
data and benefited the segmentation of IOSB.Alice data. Post-processing
with kNN slightly increased the IoU of SquV2, DN21, and DN53 in most
classes of SemanticUSL (I,III), in the IOSB.Alice clouds from individual
OS0 LiDAR sensors, and also in the fused 3D cloud from IOSB.Alice.
Summarizing, kNN post-processing slightly increased the IoU in the
target domain for the analyzed architectures and is consequently recom-
mended for the analyzed domain transfers.

Over-Fitting. The IoU of DN53-kNN decreased from 11.2% to 10.9%
on SemanticUSL for a rotation of 90°and 180°, which can indicate a slight
over-fitting on SemanticKITTI. Squ and SquV2 also showed this tendency
for over-fitting but DN21 was only slightly influenced by the rotation of
the point clouds. DN53-512 did not show any impaired performance for
a rotation of the point clouds. In addition, the fence class is rather present
on the side of the range images in SemanticKITTI, as discussed above,
and it is assumed that this contributed to the confusion between fence
and pavement in SemanticUSL, as shown on the left side of Figure 6.3(a).

Favorable Domain Transfer with Preprocessing. To conclude, favor-
able domain transfers to different sensor types, to sensor setups with
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Architecture LiDAR sensors IoU vegetation terrain

SquV2-kNN1 all 1.1 7.4 7.1
DN21 all 0.5 2.5 7.4
DN53-512-kNN all 1.9 27.2 7.8
DN53 all 3.5 43.6 22.0
DN53-kNN all 3.6 47.0 22.0

DN21 boom 0.6 5.3 5.4
DN21 rear 1.9 11.3 24.4
DN53-512-kNN left 1.9 28.9 6.6
DN53-512-kNN boom 0.1 2.2 0.1
DN53-512-kNN rear 4.1 51.4 23.8
DN53-kNN left 2.8 27.2 25.1
DN53-kNN right 3.0 39.8 17.1
DN53-kNN boom 4.7 30.3 59.8
DN53-kNN rear 4.7 56.5 32.3

DN53-512-kNN left, right 1.4 22.6 4.9
DN53-kNN left, right 3.3 38.7 23.5
DN53-512-kNN left, right, boom 1.1 17.7 2.7
DN53-kNN left, right, boom 3.3 39.1 22.8

1 Squ and Squ-kNN achieved IoUall = 0.0, Squ-CRF achieved IoUall = 0.2

Table 6.7 Selected segmentation performance results in terms of IoU in % on
IOSB.Alice LiDAR clouds (IV) with SA and StS (-3.0m) preprocessing and
max(𝐼) = 28 = 255, FoV ∈[−60°,25°].

multiple sensors, and to other application environments can be achieved
by a high domain invariance. At first, this requires a similar viewpoint
(FoV) and perspective (SP) for the spherical projections subject to seg-
mentation in state-of-the-art semantic segmentation CNNs for 3D point
clouds. It was demonstrated that domain transfer from an individual
LiDAR sensor to fused 3D clouds from multiple LiDAR sensors can ben-
efit from a high resolution of the range image, such as in DN53. The
experimental evaluation conducted also showed that a favorable domain
transfer is more probable for classes frequently present in the training
dataset if they have sufficiently different geometric characteristics. To the
best of the author’s knowledge, SA, StS, FoV, and SP constitute a novel
combination of preprocessing methods optimizing the domain transfer
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for semantic 3D segmentation CNNs. Their proposed combination in-
creased the domain invariance, and also showed that the utilization of
CNN architectures with a higher number of parameters, such as DN53,
contributes to a better segmentation performance in the target domain.

6.2 Explainable Artificial Intelligence
The explainability of the behavior and decisions of ML systems in XAI
targets their transparency by examining the what and why of the effec-
tiveness and success of ML systems for a given task [161]. Analogies to
psychology are obvious due to the similarity of ANNs to natural neu-
ral networks, discussed in Section 2.1, and two main tendencies can be
identified: the desired tendency is that the examined ML system has
learned a valid strategy that generalizes well; the second tendency is
that the ML system bases its decisions “on a spurious correlation in the
training data” [161, p.2] which is designated as a Clever Hans behavior
in psychology [217]. Concluding, the XAI approaches proposed here-
inafter verify that ML methods have learned a valid strategy and help to
understand and explain the performance of ML methods, which ensures
their capability to deliver accurate and stable predictions.

In 2019, the AI HLEG determined ethics guidelines for trustworthy AI
systems including three fundamental characteristics: AI systems have to
be lawful, technically and socially robust, and comply with ethical prin-
ciples and values6. These characteristics lead to the European Commis-
sion’s key requirements for the development of trustworthy AI systems:
“Human agency and oversight, technical robustness and safety, privacy
and data governance, transparency, diversity, non-discrimination and
fairness, environmental and societal well-being, and accountability”7.
Here, transparency also includes the capability to explain and retrace
the decisions made by an ML system. Due to the black box nature of ML
methods, a deterministic behavior inherent to classic, non-ML methods
cannot be guaranteed intrinsically. A definite solution for the problem of

6 Ethics Guidelines for Trustworthy AI: https://digital-strategy.ec.europa.eu/en/library
/ethics-guidelines-trustworthy-ai, pp. 4, access on 24.04.2022.

7 Ethics Guidelines for Trustworthy AI, pp.4.
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transparency in autonomous systems, and in particular in autonomous
ML systems, is neither functional, nor properly established, incidents
such as the accident with the Tesla autopilot prove this8. As a result, the
proposed XAI approaches in this thesis also facilitate a first step towards
transparent ML methods in the perception for autonomous off-road
vehicles.

Perception for autonomous off-road vehicles, deals with a large volume
of information inside each data sample. Both 2D images and 3D point
clouds require large receptive fields for neural network processing, and
the number of single data elements can easily exceed 2,000,000 for 2D im-
ages (1080 × 1920 px) and 50,000 for 3D point clouds (3D points in Velo-
dyne HDL-64E cloud). ANNs interpreting the perceived data such as in
semantic segmentation also require an encoder-decoder structure to con-
sider local and global characteristics. Hence, a development of inherently
explainable models is rather impossible here due to the large number
of network layers and parameters. Consequently, this thesis focuses on
pre-modeling and post-modeling XAI approaches.

6.2.1 IC-ACC: Pre-Modeling XAI with Dataset Assessment
The input data exhibits the primary influence on the data-driven model-
ing of ANN methods. Hence, proper ANN training requires a sufficient
volume and diversity of the information inside the data as well as high
accuracy of the reference data for the supervised training of MLmethods.

The research on data analysis for ANN methods is greatly under-
represented in relation to the extensive research on ANN methods them-
selves, and the in-depth examination of training, validation, and test
data conducted hereinafter showed that state-of-the-art datasets do not
always provide an error-free ground truth.

In order to contribute to the closure of this gap in perception, IC-ACC
proposes a generalized, step-by-step exploratory data analysis facilitating
a better insight into the dataset in the pre-modeling stage. This benefits
the development of powerful and trustworthy ML and hence AI systems
as detrimental data can be eliminated before the ANN performance

8 Tesla Germany GmbH: An Update on Last Week’s Accident, https://www.tesla.com/
de_DE/blog/update-last-week%E2%80%99s-accident, access on 06.11.2021.
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2D: image

3D: point cloud

Raw: at least one intensity per pixel

Processed: depth, semantic label, ...

Processed: color, label, normal, ...

Raw: 3D with x, y, z for each point

(Passive) Cameras: 

RGB, multispectral, ...

(Active) 3D Sensors: 

LiDAR, Radar, 

ToF cameras, ...

IC-ACC: proc. 2D data

IC-ACC: proc. 3D data

  Proc. data is not always error-free!

IC-ACC: raw 3D data

IC-ACC: raw 2D data

Figure 6.5 Data classification in image processing: raw data is assumed error-free
and only IC is measured, for processed data IC and ACC are assessed.

is negatively influenced. Furthermore, Section 6.1.2 demonstrates that
IC-ACC-customized data to train, validate, and test ML methods can
contribute to a more efficient training of ANNs.
IC-ACC aims at answering a frequently posed question in ANN re-

search on the definition of good data and validates training, validation,
and test data in a loosely coupled manner as detrimental data can be
eliminated before a negative influence on the performance of classic or
ML methods occurs. IC-ACC further allows the deduction of hypotheses
on the cause and reason of the observed IC and ACC characteristics and
proposes a guideline to generate efficient and accurate data for specific,
data-driven ANN methods as the availability of training, validation, and
test data is often limited in unstructured environments.

Contrasting most works on exploratory data analysis detailed in Sec-
tion 2.5.3, IC-ACC focuses on a generalized assessment of training data for
image processing ANN methods that permits an in-depth assessment of
data characteristics highly relevant for a strong and reliable performance
of the developed ANN. Only classic methods are utilized to assess the
data quality in IC-ACC as an analysis withMLmethods would require an
additional assessment due to their inherent black box nature. Naturally,
IC-ACC is also applicable for the training and evaluation data of classic
methods.

The assessed data in IC-ACC is classified depending on the target
application of the ANN. The 2D imaging domain can be subdivided
into segmentation, depth estimation, object detection and tracking, and
classification, while 3D imaging can be separated into segmentation,
object detection and tracking, shape classification, and registration ap-
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no
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patch similarity, ...
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Calculate 
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Figure 6.6 IC-ACC: separated assessment of raw and processed data, the IC-ACC
score decides whether to include the sample in the final dataset.

proaches [11, 99]. The workflow of the proposed IC-ACC method is il-
lustrated in Figure 6.6, and Table 6.8 summarizes the proposed IC and
ACC measures. 2D and 3D data divides into raw and processed data, as
illustrated in Figure 6.5: raw data is the output of a sensor system after
the application of the intrinsic calibration corrections and is assumed to
be error-free in IC-ACC, while processed data designates the reference
data that is obtained in processing the raw data. Raw 2D data consists
of single images or image patches, while 3D point clouds constitute raw
3D data. Supervised training requires processed data as a reference to
define, calculate, and optimize the loss during training, while unsuper-
vised training only needs raw data. Thus, IC-ACC analyzes the processed
data ACC as data processing can be subject to errors.

6.2.1.1 Information Content (IC) of Raw and Processed Data

Quality Measures for Raw 2D Data. Some images or image patches
are detrimental in the training process of ANNs instead of helpful, as
described in Section 5.1.2 and [327]. Disparity estimation from stereo
images with CNNs for instance benefits from training image patches
with high, non-repetitive texture information. Here, IC quality measures
can assess the potential of a single image patch and help to improve
the matching performance as detrimental patches can be identified and
excluded prior to training. The IC of raw 2D image data can be measured
with different quality measures (see also Section 3.5): Shannon entropy,
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DoG, HOG, as well as SIFT, SURF, and FAST descriptors. However, a
high IC is not necessarily related to a high amount of detectable edges
which is why DOG and HoG are less suitable to assess the quality of
images. Furthermore, features and descriptors do not provide a global
description of the image or image patch as they only describe the rather
local image area included in the respective descriptor.

Shannon entropy as the most basic measure provides a pure indication
of the texture of an image patch and proved to be a very strong measure
for the IC of 2D images [326]. Consequently, IC-ACC measures the IC of
raw 2D image data with the Shannon entropy 𝐻 according to the Equa-
tion 3.10. Here, a high 𝐻 indicates a high number of different intensity
values and thus a high IC, while a low 𝐻 indicates a high similarity of
the pixel intensities. Naturally, a high similarity of the pixel intensities
indicates a low probability that the inclusion of this patch improves the
performance of the stereo disparity estimation network. Subsequently,
the quality measures for single image patches can also be utilized to
additionally compare the similarity of two image patches similar to the
X3Seg approach discussed in Section 6.2.2.

Quality Measures for Raw 3D Data. The point density and geometric
structure measures were identified as the most conclusive criteria for
the IC of raw 3D data (ICr3D) in [327]. The point density in homogenized
coordinates (𝜉) presents the most promising measure for the density of
active 3D measurements. A uniform point distribution 𝜉 in cylindrical
coordinates according to Equation 3.15 illustrates a proper representation
of all cloud sectors inside a point cloud [329]. As a result, 𝜉, 𝜉, and 𝜎2(𝜉)
can be applied to compare different samples, as described in Section 3.6
and according to Equation 3.12. The geometric structure of a point cloud
can be described with its surface variation 𝑠, as detailed in Section 3.6,
and the future application environment defines if a high or a low IC
measure in terms of surface variation was achieved. A high 𝑠 in more
complex, unstructured environments indicates a high IC, while a high
IC in structured environments is synonymous to a clear structure and
thus a low 𝑠 (see Section 6.2.1.5).

Information Content (IC) of Processed Data. The IC of processed
data depends on the prediction density and diversity of the information
supplemented to the raw data during the processing step. Prediction
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density for 2D data (ICp2D) is related to the number of pixels, and an
example for 2D prediction density is provided in stereo image disparity
estimation: a high prediction density indicates a high percentage of valid
depth estimates and thus a decent quality of the reference data [327]. For
3D data, the number of points inside a point cloud (ICp3D) is used accord-
ingly. The diversity of the information is measured with the Shannon
entropy according to Equation 3.10.

6.2.1.2 Accuracy (ACC) of Processed Data

ACC estimates the confidence and error characteristics for available, pro-
cessed reference data with indirect measures. As a consequence, the
ACC estimate in IC-ACC can determine the suitability of the reference
data as ground truth for the supervised training and validation of ANN
methods. This can overcome the common lack of a verified, error-free
ground truth to compare against. The confidence assessment detailed
in Section 4.1 analyzes the accuracy of raw sensor data. Consequently,
an ACC analysis of raw sensor data is not included in IC-ACC.

Contrasting the presented ICmeasures, the evaluation ofACC has to be
adapted to the type of the processed information to some extent, and two
groups can be distinguished: data used to train an ANN for similarity
matching (ACC2Ds,ACC3Ds) and data for interpretation (ACC2Di,ACC3Di).
Here, similarity matching includes stereo image disparity estimation
that registers 2D image patches to derive disparity values in 2D (ACC2Ds)
as well as the registration of 3D point clouds (ACC3Ds). Segmentation,
object detection and tracking, and classification aim at the interpretation
of imaging data and thus belong to ACC2Di and ACC3Di.
ACC2Ds and ACC3Ds examine the similarity of source and target to be

matched. For instance, the similarity of 2D samples for stereo camera
image disparity estimation is measured with SSIM and the NRMSE, as
proposed in [326]. In 3D–3D registration, the correct transformations
that perfectly align each source–target pair constitute the reference data
subject to ACC analysis: the target, for instance the 3D point cloud of one
LiDAR sensor, remains in its original representation and thus also in its
sensor coordinate system, while the source, a 3D point cloud of a second
LiDAR sensor, is transformed by applying the reference data. A high
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IC-ACC element Measure
ICr2D: raw 2D Shannon entropy 𝐻
ICr3D: raw 3D Surface variation 𝑠, relative density 𝜇
ICp2D: processed 2D Prediction density (pixels), diversity via 𝐻
ICp3D: processed 3D Prediction density (points), diversity via 𝐻
ACC2Ds: similarity NRMSE, SSIM
ACC2Di: interpretation Qualitative visual assessment, label smoothness
ACC3Ds: similarity 𝐿2 norm
ACC3Di: interpretation Qualitative visual assessment, label smoothness

Table 6.8 Exploratory data analysis in IC-ACC with proposed measures.

similarity of both aligned clouds indicates a high ACC and difference
measures such as 𝐿1 norm, 𝐿2 norm, or NRMSE are applicable.

Similarity Assessment for Stereo Image Disparity Estimation. The
training of an ANN for stereo image disparity estimation in supervised
manner requires preferably equivalent image patches from correspond-
ing left–right image pairs as raw data as well as processed reference data
in the form of accurate reference disparities. The disparity information is
encoded in the grayscale intensity values and defines the horizontal shift
inside the same pixel row of the respective, rectified images. Erroneous
information can be contained inside the reference data even if the dis-
parity value was extracted from very accurate LiDAR measurements, as
demonstrated hereinafter for KITTI 2012 [83]. Different similarity mea-
sures are proposed in this thesis to detect the erroneous assignment of
image patches prior to their utilization in CNN training for stereo image
disparity estimation:

Manhattan metric (𝐿1 norm) according to Equation 6.7,
𝐿2 norm according to Equation 6.7,
NRMSE,
SSIM,
Cross-correlation.

The proposed measures identify non-similar image patches by applying
the respective similarity measures at each valid disparity location. The
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𝐿𝑝 norm can be applied to measure the distance of two intensity vectors
𝐢𝑛 and 𝐢𝑚 of two 𝑁 × 𝑁 patches 𝑚 and 𝑛:

𝐿𝑝(𝑚, 𝑛) = ‖(𝐢𝑚[𝑗, 𝑘] − 𝐢𝑛[𝑗, 𝑘])‖𝑝 = 𝑝

√

𝑁

∑
𝑗=1

𝑁

∑
𝑘=1

|𝐢𝑚[𝑗, 𝑘] − 𝐢𝑛[𝑗, 𝑘]|𝑝, (6.7)

with 𝑝 ∈ [1, 2] for 𝐿1 and 𝐿2 norm. 𝐿1 evaluates the differences in the
pixel intensity values linearly, while the 𝐿2 norm evaluates the pixel-
wise difference of the intensity values inside the patches quadratically.
NRMSE measures intensity differences with

NRMSE(𝑚, 𝑛) =
𝐿2(𝑚, 𝑛)

√∑𝑁
𝑗=1 ∑𝑁

𝑘=1 𝐢𝑚[𝑗, 𝑘]
. (6.8)

The normalization of the RMSE in NRMSE yields an exposure-invariant
assessment, and NRMSE proved useful if the focus is laid on relative
instead of absolute differences.

The calculation of the cross-correlation metric requires the represen-
tation of the intensities in 𝑚 and 𝑛 as 𝑁 × 𝑁 matrices. Shifting is not
required, and the cross-correlation 𝑅𝑚,𝑛(0) is calculated for the overlay
in contrast to 2D image registration techniques:

𝑅𝑚,𝑛(0) =
𝑁

∑
𝑗=1

𝑁

∑
𝑘=1

(𝐢𝑚[𝑗, 𝑘] ⋅ 𝐢𝑛[𝑗, 𝑘]). (6.9)

The mean SSIM can be utilized to compare the similarity of the patches 𝑚
and 𝑛, as described in [288]. SSIM assesses the structural details inside the
image patches, and an implementation is provided in the Scikit-Image
library9.

Experimental evaluation showed that the cross-correlation metric is
sensitive to noise and different exposures which is often detrimental
to assess the similarity of two image patches. As the resilience to noise
and different exposure characteristics is crucial in stereo matching, cross-
correlation is not applicable here. An alternative to the cross-correlation

9 SciKit-Image library: https://scikit-image.org/docs/dev/api/skimage.measure.html,
access on 04.11.2021.
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metric would be the usage of the cross-correlation coefficient which is in-
variant to noise and exposure. However, its evaluationwas not conducted
within this thesis as NRMSE yielded satisfactory results for similarity
measurement, as discussed subsequently.

NRMSE contains information similar to the 𝐿1 and 𝐿2 norms but in a
normalized and thus exposure-invariant manner. It also considers the
translational errors induced by erroneous reference rotations in relation
to the scale, and small translational errors close to the origin of the point
clouds are considered with the same magnitude as a large translational
error in large distance. Therefore, NRMSE is selected as the first similarity
measure. Structural details form the image texture, which is the most
important matching criterion for image patches in disparity estimation,
and SSIM is selected as a second similarity measure.

In order tomeasure theACC for processed, reference data, the disparity
values are applied onto the patch pairs. To conclude, the similarity of the
patch is compared using a combination of SSIM and NRMSE of the pixel
intensity values.

In addition, it is possible to assess the IC for the difference measure
between the 2D or 3D input data samples after applying the processed
reference data. For instance, if the intensity values of two identical image
patches are pixel-wise subtracted, this yields a white or black patch with
𝐻 = 0.0.

Similar to the IC measure of raw 2D data, strong, medium, and weak
thresholds, as described in Table 6.9, can also be established in the simi-
larity assessment for disparity estimation. Theweak, medium, and strong
filtering criteria are chosen to approximately preserve 95%, 90%, or 75%
of the grayscale image patches from the KITTI 2012 training set.

2D Reference Data Assessment: Interpretation. The processed data
for ANNmethods interpreting 2D or 3D data (ACCp2Di,ACCp3Di) consists
of labeling information. Labels can be present in different levels: image-
or cloud-wise labels in classification, labels for groups of pixels or points
in 2D or 3D bounding boxes for object detection and tracking, and pixel-
or point-wise labels in semantic segmentation. One obvious strategy of
determining ACC2Di and ACC3Di is to check a small number of random
samples manually and deduce a qualitative statement. This is a time-
consuming, but often a straightforward strategy for experts, and provides
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Metric Strong Filter Medium Filter Weak Filter

NRMSE < 0.75 ⟹ 90.3 % < 0.9 ⟹ 94.5 % < 1.1 ⟹ 97.7 %
SSIM > 0.3 ⟹ 89.2 % > 0.2 ⟹ 96.0 % > 0.1 ⟹ 98.6 %
Entropy 𝐻 > 3.8 ⟹ 90.2 % > 3.0 ⟹ 96.7 % > 2.5 ⟹ 98.5 %

Combined 75.4% 89.5% 95.5%

Table 6.9 Application of strong, medium, and weak dataset filtering thresholds
on grayscale image patches from the KITTI 2012 training set. Resulting percent-
ages of valid patch pairs after the application of the respective weak, medium,
and strong filters demonstrate their filtering performance.

a suitable and appropriate option to derive ACC measures, especially for
classification with one label per 2D image or 3D cloud. Typically, human
annotators assign labels with the assistance of labeling tools, and errors
tend to occur particularly in border regions or transitions between objects.
Furthermore, objects are rarely represented by a small number of points
or pixels, and a high number of different labels in a small area or space
can indicate noisy and inaccurate labeling data. As a first step towards
a verifiable and quantitative ACC measure, pixel- and point-wise labels
can be examined for smoothness, and thus for the existence of outliers
with a kNN search, as explained in Section 5.1.1. A qualitative visual
assessment of the label smoothness is also possible with a scoring from
0 to 10 where 10 indicates the highest ACC.

6.2.1.3 Deriving the IC-ACC Score

The IC-ACC score facilitates the choice whether to include or not to
include a data sample into the dataset for training, validation, and testing.
Naturally, an IC-ACC analysis of unsupervised learning approaches only
performs an IC analysis on the raw data. Table 6.8 provides an overview
of all IC-ACC elements. Each IC and ACC measure is normalized to [0, 1]
individually with the maximum value of the respective measure, as
demonstrated in Section 6.2.1.5, and the IC-ACC score is calculated with

IC-ACC = 1/3 ⋅ (ICrtD + ICptD + ACCtD), 𝑡 ∈ {2, 3}. (6.10)

213



6 High-Level Perception

If more than onemeasure is included in an IC-ACC element, the empirical
mean of both measures is considered.

This thesis proposes the utilization of weak, medium, and strong
threshold levels according to Section 3.12: if a data sample achieves more
than 68.27% of the possible maximum IC-ACC score of 1.0, it is included
in the dataset for training, validation, and testing if a weak threshold
is applied. The medium threshold is set to 0.8664 (𝜇 ± 1.5𝜎), while the
strong threshold is equivalent to 0.9545 (𝜇 ± 2𝜎). These threshold levels
categorize the analyzed samples on the basis of their IC-ACC scores and
facilitate the adjustment of the required IC and ACC characteristics of
data samples included in the dataset. Detrimental samples within one
dataset can be detected and eliminated via the IC-ACC score for each
data sample, while a comparison of different datasets is possible via the
calculation of the IC-ACC score for all elements of each respective dataset.
Another possibility is to calculate the IC-ACC score for all elements of
all available datasets and to determine the normalization parameters
with regard to elements of each respective dataset. Subsequently, the
same threshold level (weak, medium, or strong) is applied to each dataset
subject to comparison. Finally, the remaining good data samples of all
datasets can be compared with each other.

6.2.1.4 Proof of Concept: IC-ACC for 2D Data in Disparity Estimation

A high Shannon entropy for 2D images indicates a high IC for 2D raw
data samples, while a low NRMSE and a high SSIM demonstrate a high
similarity of two image patches and thus a high ACC for processed
2D data. IC-ACC is demonstrated on training data for the UEM-CNN
architecture discussed in Section 5.1.2. The data samples for disparity
estimation consist of patch pairs formed by an evaluated patch and its
associated patch captured by the other camera. The Shannon entropy 𝐻 is
calculated for each image patch individually, and the NRMSE and SSIM
measures are calculated for pairs of image patches with the respective
reference disparity values. NRMSE values close to zero indicate a good
match, a high SSIM (SSIM ∈ [−1, 1]) indicates a high structural similarity
and, consequently, well-matching patches. The patch pairs for training,
validation, and testing were filtered with a combination of the selected
NRMSE, SSIM, and Shannon entropy, as specified in Table 6.9, and each
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Figure 6.7 ICr2D and ACC2Ds for 19 × 19 pixel patches to train a CNN for disparity
estimation from stereo images: 1 has a low IC with 𝐻1 = 2.5, whereas 𝐻2 = 6.24
and 𝐻3 = 5.75 indicate a high IC; for pair 3-4 SSIM = -0.04 is sufficient, but the
NRMSE = 1.15 is too high and does not meet the similarity requirements where-
fore the reference disparity is rated as inaccurate. Images © Fraunhofer IOSB.

image patch had to exceed all three required thresholds to be included
in the dataset for UEM-CNN.

Table 6.9 demonstrates the filtering results for detrimental patches
with strong, medium, and weak thresholds on the KITTI 2012 grayscale
training images. The proposed threshold levels facilitate the specification
of a certain quality and accuracy requirements for the analyzed dataset
with 𝐼𝐶r2D and 𝐴𝐶𝐶2Ds. Detrimental patches and poorly matching patch
pairs can be eliminated, as illustrated in Figure 6.7 for the KITTI 2012
training dataset: one patch with a low IC due to a low Shannon entropy
and two patches with a high IC.

The prediction density measure for processed 2D data (ICp2D) can be
illustrated on the comparison of disparitymaps from SGBM, as described
in Section 3.3, and UEM-CNN. SGBM achieved a prediction density of
around 97% but with a high percentage of erroneously predicted values.
In contrast to this, UEM-CNN achieved a notably higher accuracy in dis-
parity estimation with a lower prediction density of 63%. To conclude,
the proposed IC-ACC analysis proved useful for filtering detrimental im-
age patches and improved the training, validation, and testing accuracy
of UEM-CNN with the KITTI 2012 training dataset.

6.2.1.5 Proof of Concept: IC-ACC for 3D Point Cloud Data

The IC analysis for raw 3D data is demonstrated on seq. 00–10 of the
SemanticKITTI dataset [11]. A high IC for 3D data is indicated by a high
density in combination with a high surface variation 𝑠 for unstructured
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Figure 6.8 ICr3D: histogram of surface variation 𝑠 in the front (above) and right
sector (below) of scene 245, seq. 04 [326]. A radius of 0.40m proved useful for
normal estimation [323]. The frequency of bin 0 was clipped for a clearer visu-
alization (13,515 (front), 3783 (right)). The distribution of 𝑠 was approximated
with a single Gaussian density function as the focus is on a holistic distribution
of 𝑠. The low 𝑠 = 0.018 of the front sector highlights its structured character,
while the high 𝑠 = 0.128 of the right sector shows its unstructured character. The
accumulation of low 𝑠 measures, especially in structured environments, clearly
diminishes 𝑠.

environments, while a high density in combination with low 𝑠 indicates
a high IC for structured environments.

A subdivision into sectors benefits the IC analysis if clearly separable
sectors can be identified inside the point clouds. As SemanticKITTI was
captured with a vehicle platform, four sectors of 90° can be identified
according to the sensor position on the vehicles, as depicted in Figure 6.2.
The sectors are axisymmetric to the axes of the LiDAR coordinate system:
front (f), right (r), back (b), and left (l). The surface variation 𝑠 of the left
and right sectors is notably higher than 𝑠 of front and back for seq. 02–04:
𝑠l,02−04 = 0.046, 𝑠r,02−04 = 0.065, 𝑠f ,02−04 = 0.021, and 𝑠b,02−04 = 0.023,
while 𝑠all,02−04 = 0.040 was measured for reference.

This justifies the separation into structured and unstructured sectors
on the example of SemanticKITTI clouds. The 𝑠 measures of seq. 03
exemplary highlight the predominating structured and unstructured
characters of the subdivided sectors: 𝑠all,03 = 0.041, 𝑠f ,03 = 0.031, 𝑠b,03 =
0.023, 𝑠l,03 = 0.051, and 𝑠r,03 = 0.051. Only 9.77% of the labels in seq. 06
represent classes from unstructured environments compared to 23.91%
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𝑠 Vegetation (V) Trunk (T) Unstruct. (V,T) Terrain

𝑠01 = 0.051 23.87 0.04 23.91 13.83
𝑠06 = 0.027 9.31 0.46 9.77 26.10
𝑠09 = 0.051 29.29 0.67 29.96 8.88

Table 6.10 Relative pointwise class distributions for the lowest (seq. 06) and
highest (seq. 01, 09) 𝑠 values measured in seq. 0-10 of SemanticKITTI (in %). Only
two of the 28 classes in SemanticKITTI predominantly represent unstructured
elements: vegetation and trunk. Terrain in urban and suburban areas mostly
includes cultivated and rather structured terrain.

and 29.96% in seq. 01 and 09. The higher 𝑠 measurements for seq. 01 and
09 given in Table 6.10 additionally justify the selection of 𝑠 to indicate
the structured or unstructured character of a point cloud. In addition,
a higher 𝑠 proved to be a suitable measure for a higher IC of training
and testing data for ML methods in unstructured environments. The left
and right sectors of SemanticKITTI show a higher IC for unstructured
environments, as depicted in Figure 6.8, which shows the estimates of 𝑠
for all individual 3D points in scene 245 from seq. 04. Table 6.10 shows
the lowest and highest measured 𝑠 with the respective class distributions
for the nature group in SemanticKITTI.

An exemplary IC-ACC assessment is demonstrated for the comparison
of two 3D clouds and summarized in Table 6.11: scene 245 of seq. 04
(245,04) with a medium 𝑠 and scene 778 of seq. 09 (779,09) with a high 𝑠.
The point density for ICr3D was calculated with 𝑁 = 12 bins which maps
30° in one bin and yielded 𝜇245,04 = 0.083 and 𝜇778,09 = 0.083. ACC3Di is
demonstrated in qualitative manner as the renowned SemanticKITTI
dataset comes with a high labeling accuracy and label smoothness that
could both be verified manually. 𝑁𝐼 = 28 was set for 𝐻 with 28 classes
in SemanticKITTI to measure 𝐼𝐶p3D. A label is provided for each point
which yielded a prediction density of 100%.

Classes that are not present have a likelihood of occurrence of 𝑝(𝑖) = 0
for ICp3D and the ICp3D for all scenes in seq. 04 with 34,059,667 points
was determined as 𝐻04 = −( ∑28 𝑝(𝑖) ⋅ log2(𝑝(𝑖))) = 2.406. The ICp3D for
245, 04 was approximately equal to 𝐻04 as it contains fewer classes but
the labels are more uniformly distributed. Seq. 01 was recorded on a
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Raw measures Normalization

Measure 245, 04 778, 09 245, 04 778, 09

ICr3D: 𝑠 0.027 0.047 0.027
0.047 = 0.574 0.047

0.047 = 1.0
ICr3D: 𝜇 0.083 0.083 0.083

0.083 = 1.0 0.083
0.083 = 1.0

ICp3D: 𝐻 2.405*1 2.903*2 2.405
2.903 = 0.828 2.903

2.903 = 1.0
ICp3D: pred. density 100% 100% 100 %

100 % = 1.0 100 %
100 % = 1.0

ACC3Di: qual. 10, 10 10, 10 10
10 = 1.0 10

10 = 1.0

IC-ACC score – – 0.90 1.0
*1 Seq. 04: 19 classes; most frequent: road (33.79%), veget. (32.78%).
*1 Sc. 245, seq. 04: 14 classes; most frequent: road (35.46%), veget. (20.36%).
*2 Seq. 09: most see Table 6.10. Sc. 778, seq. 09: most freq.: veget. (26.89%),
*2 building (17.87%), road (17.61%).

Table 6.11 IC-ACC assessment of scene 245, seq. 04 and scene 778, seq. 09.

motorway where motorway borders as well as the central strip mainly
consist of vegetation. Here, 𝐻01 = 2.267 was measured for seq. 01 with
the most frequent classes road (40.51%), vegetation (23.87%), and terrain
(13.83%). The 𝐻 of seq. 01 is smaller but the high 𝑠 of this collection of
point clouds proved useful if a CNN shall be trained for the semantic
segmentation in unstructured environments.

Deriving the IC-ACC score. All 3D measures given in Table 6.8 were
summarized to generate the 3D IC-ACC score according to Equation 6.10.
The normalization references were derived from the maximum of the
compared sequences, such as for the surface variation 𝑠 with max(𝑠) =
𝑠778,09 = 0.047. Prediction density and ACCp3D are identical for both
scenes as both belong to the same dataset. This yielded 0.0266/0.0465 =
0.572 for 𝑠245,04 and 0.083/0.083 = 1 for the density in 𝐼𝐶r3D and a diver-
sity measure of 2.4048/2.9031 = 0.828 was derived for ICp3D. Identical
comparisons were performed for scene 778 of seq. 09 as demonstrated
in Table 6.11. Finally, the IC-ACC score for (245,04) is determined to

IC-ACC245,04 = 1/3 ⋅ ((0.572 + 1.0)/2 + (0.828 + 1)/2 + 1.0) = 0.90, (6.11)
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while IC-ACC score for (779,09) equals to IC-ACC778,09 = 1.0. Both sam-
ples exceed the requirement with 86.64% < 90.0% if a weak or medium
threshold is applied. However, only (778,09) would be included in the
final dataset for a strong threshold.

6.2.1.6 Guidelines for Data Generation

Naturally, guidelines for future data generation can be derived from
the proposed IC-ACC method. It is recommended to ensure that the
captured data achieves a high IC and a high ACC as this fulfills the
central requirement to generate good training, validation, and testing
data: it does contain neither too similar, nor too little, nor erroneous
information. Here, the targeted application environment of the ANN
method defines the desired surface variation for 3D data as previously
stated. If 3D data for applications in unstructured environments, such
as from off-road vehicles, shall be captured, a high 𝑠 is recommended,
while indoor scenes can benefit from a low 𝑠 measure. Furthermore, ACC
measures on test samples can verify a high ACC for the full dataset.

6.2.2 X3Seg: Post-Modeling, Model-Agnostic XAI for
3D Semantic Segmentation

The explanation of class predictions for 2D pixels and 3D points is subject
to research in post-modeling XAI methods with heat- or class-activation
maps [236, 252, 282]. X3Seg contributes to a straightforward and model-
agnostic explanation (X) of point-wise class predictions in 3D (3) semantic
segmentation (Seg) [330]. It complements model-specific methods with
model-agnostic explanations to understand class predictions and con-
tributes to more trustworthy AI systems.

X3Seg comprises three different methods: encompassing X3Seg, selec-
tive X3Seg, and predictive X3Seg. Each of these methods focuses on a
holistic explanation of class predictions and also regards topology and
spatial arrangement of coherent 3D point sets: spatial relations with
neighboring points are identified and related to the ground truth data
from the training dataset (encompassing X3Seg, selective X3Seg) and
to other predictions (predictive X3Seg). Inspection of the most similar
(prototypes) and least similar (criticism) coherent point sets leads to an
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understanding of the segmentation results as it highlights the most rele-
vant features of 3D point sets. Thereby, coherent point sets are spatially
connected sets of the same class that form a coherent 3D structure and are
thus very likely to belong to the same object or area. The interpretation of
3D point clouds is examined without color information in a first step to
facilitate the interpretation of raw sensor data and with this the parallel
processing of low-, mid-, and high-level perception methods without
mutual dependencies. Each of the three methods in X3Seg consists of
two major steps:

Generate database for prototypes and criticism (sample database),
Similarity measurement of the explanation target to the respective
sample database elements.

Furthermore, the in-depth assessment of this generated sample database
examines the class distributions in the training and testing data, the
suitability of the class definitions, and also the quality of the labeling
process itself. In addition, the identification of prototypes and criticism
from the database elements of the predicted class also validates class
predictions: the probability for a correct class estimation is high if well-
matching prototypes are present in the sample database, it is low if only
ill-fitting prototypes are determined or if prototypes and criticism are
too similar for a reliable distinction.

In summary, X3Seg identifies prototypes and criticism for the 3D point
set whose segmentation result is selected for explanation by a human
operator (explanation target) and provides an understanding of the an-
alyzed class predictions via their similarity to the explanation target.
Consequently, the affiliation of (sample) database elements to prototypes
or criticisms depends on their similarity to the 3D structure subject to
explanation. The central question of similarity is addressed in-depth
hereinafter with different similarity measures for selective X3Seg in 2D
and encompassing and predictive X3Seg in 3D.

The X3Seg approach is demonstrated on class predictions for the
SemanticKITTI dataset [83] with a state-of-the-art semantic 3D segmen-
tation method. However, X3Seg is nevertheless applicable for arbitrary
data-driven [94, 221, 267] and traditional approaches [3]. X3Seg particu-
larly focuses on off-road scenarios such as decontamination in hazardous
environments to address the challenge of a reliable environment percep-
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tion for autonomous heavy construction machinery [216]. As a result,
the SemanticKITTI sequences with the highest amount of unstructured
elements according to Section 6.2.1 are selected to demonstrate X3Seg on
class predictions ofDarkNet53Seg-2048-kNN (DN53-kNN, see Table 6.13).
Structured object classes, such as car and road, achieve a higher IoU than
unstructured classes, such as trunk or vegetation, and smaller objects,
such as pole or trunk. In order to determine the reasons for these differing
performances, the focus of X3Seg was primarily placed on these naturally
grown objects that dominate unstructured environments.

What is a good explanation? A good, model-agnostic explanation
highlights descriptive correlations between in- and output data to ex-
plain AI predictions. Consequently, a good explanation allows a human
to comprehend predictions of an AI system on a high level. Qualitative
user studies for predefined evaluation scenarios and with determined
boundary conditions present a suitable assessment of explanation quality
as the expressiveness of explanations is hard to describe using individual
measures and key figures. The subsequent demonstration of X3Seg shows
that the explanation of clearly separable, coherent 3D point sets with a
distinct geometry is more intuitive for a human operator than the expla-
nation of grown, merged structures, such as vegetation. Furthermore,
the distinctive symmetry of 3D objects represented in coherent 3D point
sets benefits an intuitive explanation for humans.

6.2.2.1 Encompassing, Selective, and Predictive X3Seg

Encompassing X3Seg selects example-based explanations from the entire
training dataset of the examined segmentation method. This process
identifies prototypes and criticism by evaluating the similarity of the ex-
planation target to each coherent 3D point set extracted from the training
dataset. Naturally, this requires processing a high volume of data but en-
sures a high explanatory power and also allows an in-depth assessment
of similarity metrics to identify suitable example-based explanations.

Selective X3Seg provides a basic and fast explanation of class predic-
tions with a small number of representative prototypes and criticism
samples. The ProtoDash method [100] is applied to identify representa-
tive samples and thus limits the search space for prototypes and criticism
to a small, previously selected number of representative 3D point sets
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from the encompassing dataset. The representative, coherent 3D point
sets are transformed into a suitable 1D representation, which implies a
generalization of the 3D prototypes to some extent. This is desired in se-
lective X3Seg to compare the potential of a limited amount of prototypes
to the holistic assessment in encompassing X3Seg.

Contrasting encompassing and selective X3Seg, predictive X3Seg does
not work with ground truth data: it identifies prototypes and criticism
among coherent point sets with point-wise class predictions – the in-
ference results of the examined segmentation method. Thus, 3D point
sets with potentially wrong class predictions are also examined which is
especially beneficial when analyzing prediction failures.

6.2.2.2 Generating the Sample Database

X3Seg requires the input of point clouds with 3D points 𝐩 = [𝑥; 𝑦; 𝑧]∗

and a label for each 𝐩. The sample databases are composed as follows:
encompassing X3Seg includes all coherent 3D point sets extracted from
the training dataset, selective X3Seg reduces the encompassing sample
database to a small number of representative 3D structures with Proto-
Dash, and predictive X3Seg extracts coherent 3D point sets from the class
predictions of the analyzed segmentation method.

Extraction of Coherent 3D Point Sets. Figure 6.9 illustrates the ex-
traction of the coherent 3D point sets that form the respective sample
databases. The data is subdivided according to class labels and expla-
nation targets, and elements of the sample databases are extracted with
an identical workflow and identical parameters for consistency. Outlier
filtering using a kNN search [323] or voxelization of the subdivided
data [329] is optional and achieved a higher similarity of cross-source
point clouds as well as a higher insensitivity to noise with the downside
of information loss.

Different clustering methods with different parameterizations were
evaluated in X3Seg: Euclidean clustering and clustering with VCCS su-
pervoxels [209] were evaluated to extract coherent 3D point sets using
the PCL implementations10. The assignment of a unique file ID with

10 Euclidean Cluster Extraction: https://pointclouds.org/documentation/tutorials/clus
ter_extraction.html, access on 29.12.2021.
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Figure 6.9 Encompassing, selective, and predictive X3Seg at a glance [330].

clustering method as well as date and time of extraction allowed the allo-
cation of each point set to its scene of origin as well as the traceability of
the evaluated parameter settings during evaluation and tuning of X3Seg.

Experimental evaluation justified that the estimated 3D shape of point
sets plays a central role in cluster formation with clustering methods of
higher complexity, such as [209] and [283]. However, the supvervoxel
clustering of point sets from unstructured environment classes by exploit-
ing the estimated shape did not prove useful, while Euclidean clustering
with experimentally justified parameters yielded satisfying results and
was chosen to determine coherent 3D point sets. Here, the cluster toler-
ance parameter as well as the minimum number of points required to
form a cluster showed great impact on the Euclidean clustering result,
while a high maximum number of points per cluster was of negligible
importance. Generally, the minimum cluster size had to be adapted to
the approximate size of the point set to be extracted, and it was thus
determined in adaptive manner depending on the respective class and
the cluster size in a maximum distance that still allows an expressive ex-
planation. For point sets of limited extent such as traffic signs, trunks, or
cars, the minimum size has to be smaller compared to wide spread areas,
such as roads, buildings, or vegetation, and subcategories for clustering
were formed: one for small, bounded 3D point sets, and one for rather
extensive 3D point sets.

223



6 High-Level Perception

ProtoDash for Selective X3Seg. The fast ProtoDash algorithm [100,
101] proved useful for selective X3Seg in determining a small set of sam-
ples – the sample database of selective X3Seg(X∈) – that optimally repre-
sent another, notably larger, dataset, which is the sample database of en-
compassing X3Seg(X∞). Contrasting the MMD-critic approach of [149],
ProtoDash is faster, and non-negative weights are calculated for each
sample in X∞. Furthermore, criticism samples can be determined for
the selected subset in X∈.

The selected ProtoDash implementation requires the input data to be
represented as 1D arrays. Hence, all 3D point sets from the encompassing
database were transformed into a 1D representation and saved separately
according to their classes with their corresponding unique file ID. PCA
proved useful to center the analyzed 3D point set on its two primary
components and was hence selected instead of other possible projections
for the projection of explanation targets and sample database elements in
2D space. Here, other projectionmethods did not provide a well-centered
projection, such as a spherical projection according to Equation 6.1, as it
is related to the sensor origin and would require an additional prepro-
cessing step. Thus, PCA is applied on each coherent point set from the
encompassing database and identifies the two axes to project the respec-
tive 3D point set in 2D, as described in Section 3.6. A discrete, quadratic
grid of a previously defined resolution is created in 2D by binning the
points in two dimensions. Here, minimum and maximum along each
axis yield the ranges for binning and the resolution defines the number
of bins for each axis. Each cell counts its occupancy by the number of
inlying points, and the cell values are inserted into a 1D array line-by-line
to map the 2D grid into 1D [336]. This takes spatial correlations into
account as demonstrated on the MNIST dataset in [100]. Different grid
sizes from 25 × 25 to 200 × 200 were evaluated on 3D point sets belong-
ing to the trunk class. Here, the grid size presents a trade-off between
accuracy and over-determinacy as well as in terms of calculation time.
A grid was chosen instead of an octree structure and other options to
preserve geometrical correlation between individual points from the user
perspective. A discretization in 3D using a voxelization is also possible
in an identical manner with binning in three axes. However, this was not
utilized as it results in a high number of empty voxels with zeros in the
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final 1D array and showed a detrimental influence on the determination
of relevant 3D samples for prototypes and criticism with ProtoDash.
X∞ is equal to the set of all 3D clusters belonging to one class in

the database of encompassing X3Seg. Consequently, ProtoDash was ex-
ecuted for each of the 19 well-defined classes to generate the selective
X3Seg database from SemanticKITTI. The target dataset X∈ is a subset
of the source dataset X∞. Hence, X∈ ∈ X∞ is the subset containing
the most representative 3D samples determined out of X∞ by Proto-
Dash. As discussed in Section 2.5.3, the MMD metric measures the dif-
ference between two data distributions X∞ and X∈ [97, 98]. A subset
X∈ ∈ X∞ optimally represents the dataset X∞ if its MMD converges
towards zero. Here, X is the function space that contains X∞ and X∈,
while 𝓀 ∶ X × X → ℝ is the kernel function and K the reproducing
kernel Hilbert space belonging to 𝓀, as further detailed in [97, 98].

Finally, the discretized 1D arrays represent the two compared data
distributions in selective X3Seg and the MMD metric is given by

MMD(K, 𝑃 , 𝑄) = sup
ℎ∈K

(𝐸𝐱∼𝑝[ℎ(𝐱)] − 𝐸𝐲∼𝑞[ℎ(𝐲)]) = sup
ℎ∈K

⟨ℎ, 𝜇𝑝 −𝜇𝑞⟩ (6.12)

with 𝜇𝑝 = 𝐸𝐱∼𝑝[𝜙𝐱], and 𝑝 and 𝑞 Borel probability measures defined on
X , as further detailed in Gretton et al. [97]. Further adaption and approx-
imation of the MMD metric discussed in [101] converts the minimization
problem of [97, 98] into the maximization of a goal function converging
towards its maximum for an optimal sample selection in X∈ from X∞.
ProtoDash determines 𝑛 representative samples from X∞ to form X∈

in 𝑛 iterations with each iteration starting with the calculation of the
goal function that uses the prototypes from X∞ currently included in
X∈. The sample with the highest gradient in relation to the current goal
function is the next potentially relevant point cloud sample from X∞,
and each iteration is concluded with the calculation of the prototype
weights. As the 3D cloud samples are mapped onto a 2D grid by PCA
and subsequently arranged into a 1D line vector, the kernel width 𝜎𝐺
determines the 1D Gaussian kernel

𝐺(𝐱, 𝜎𝐺) =
1

√2𝜋𝜎𝐺

exp −
𝐱2

2𝜎𝐺
2 . (6.13)
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Here, the desired number of prototypes for X∈ and the width 𝜎𝐺 of the
Gaussian kernel mainly influenced the prototype selection for X∈.

6.2.2.3 Similarity Measures for Coherent 3D Point Sets

Transformative similarity measures assess each 3D point set separately
and compare these measurements for two point sets. They comprise
𝑠𝑋, 𝑐𝑋, 𝑣𝑋 in encompassing and predictive X3Seg and all metrics in se-
lective X3Seg. Direct similarity measures perform a registration of two
point sets and interpret the registration result for similarity, such as 𝑒𝑋 in
encompassing and predictive X3Seg. The number of points in coherent
point sets as well as their absolute spatial extent was not considered
for similarity as it showed a high dependence on the distance to objects
and the resolution of the 3D sensor which limited the generalization of
X3Seg for multiple sensors and diverse environments. Scale proved to be
a relevant, geometric feature of 3D point sets as it also correlates to the
resolution, especially in sparse point clouds. As a result, an invariance
to scale is not desirable for the proposed similarity measures as both
close-range and far-off prototypes have to be present in the database to
facilitate a proper explanation.

Encompassing and Predictive X3Seg. Surface variation 𝑠𝑋, covariance
𝑐𝑋, and singular values 𝑣𝑋 of the explanation target are compared to each
3D point set in the sample database. A high surface variation indicates
a high curvature and sharp feature regions [135] and it can also deter-
mine the structured or unstructured character of a 3D point set and its
information content [326]. The covariance measure 𝑐𝑋 compares the nor-
malized 3 × 3 covariance matrices, while 𝑣𝑋 compares the singular values
extracted from its singular value decomposition. The weighting of each
measure 𝑖 ∈ {𝑠𝑋, 𝑣𝑋, 𝑐𝑋, 𝑒𝑋} with the empirical mean 𝜇(𝑖) of all evaluated,
static prototype classes (∑ st) facilitated a straightforward analysis of
quantitative results (𝑖/𝜇(𝑖)∑ st, see Table 6.12). The 𝑠𝑋 measure evaluates
the 𝐿1 distance between the surface variation of the explanation target
𝑠𝑒

𝑋 and each database element 𝑠𝑑
𝑋 calculated according to Equation 3.11:

𝑠𝑋 = 𝐿1(𝑠𝑒
𝑋 − 𝑠𝑑

𝑋), and 𝑆𝑠 =
𝑠

𝜇(𝑠)∑ st
. (6.14)
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Here, 𝜇(𝑠)∑ st is the average of the 𝑠𝑋 measures for all evaluated database
elements from all present classes.

Fehr et al. [66] build a covariance descriptor for feature extraction
and subsequent object detection and recognition in point clouds, and 𝑐𝑋
evaluates the normalized covariance matrices globally, similar to [66],
with one covariance similarity measure 𝑐𝑋 per analyzed 3D point set:

𝑐𝑋 = 𝐿1(𝑐𝑒(𝑗,𝑙)
𝑋 − 𝑐𝑑(𝑗,𝑙)

𝑋 ), and 𝑆𝑐 =
𝑐𝑋

𝜇(𝑐𝑋)∑ st
, 𝑗, 𝑙 ∈ {1, 2, 3}. (6.15)

Here, 𝑗, 𝑙 ∈ {1, 2, 3} indicate the respective matrix elements of the co-
variance matrix. The object orientation provides important geometric
information for the subsequent interpretation of the 3D data in robotic
perception and the utilization of rotation-sensitive similarity metrics,
such as covariance matrices [104], is beneficial. For instance, objects of
the trunk class typically have their most prominent extension in height
contrasting drivable areas, such as road or terrain, and invariance to
rotations is not desired for all similarity metrics in X3Seg. Fehr et al. [66]
state that covariance matrices do not comply with Euclidean geometry
due to their positive definite character, and that this can be met with
the usage of special distance metrics, such as geodesic distance [72] or
log Riemannian metric [4]. However, X3Seg focuses on the intuitive and
holistic analysis of 3D point sets, and covariance proved useful as one
out of four similarity metrics in encompassing and predictive X3Seg.

The singular values measure 𝑣𝑋 and the score 𝑆𝑣 are calculated with

𝑣𝑋 = 𝐿1(𝑣𝑒𝑗
𝑋 − 𝑣𝑑

𝑗 ), and 𝑆𝑣 =
𝑣𝑋

𝜇(𝑣𝑋)∑ st
, 𝑗 ∈ {1, 2, 3}. (6.16)

To summarize, a low 𝐿1 distance with a low 𝑆𝑠, 𝑆𝑐, and 𝑆𝑣 indicates
a high similarity. The fourth, direct measure is the Euclidean fitness
score 𝑒𝑋 after GICP registration [250], and 𝑆𝑒 is calculated equivalently
to 𝑆𝑠, 𝑆𝑐, and 𝑆𝑣. The regular ICP algorithm was not used as the ring
structure from rotating 3D LiDAR sensors impeded proper point-wise
registration [323]. The transformative similarity metrics 𝑠𝑋, 𝑐𝑋, and 𝑣𝑋
evaluate the relative spatial point distribution and are scale-invariant,
while 𝑒𝑋 is sensitive to scale. Furthermore, 𝑠𝑋 is rotation-invariant, while
𝑐𝑋 and 𝑣𝑋 are sensitive to different orientations.
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An overall similarity score 𝑆ID combines all measures to determine the
similarity of each database element to the explanation target (ID) with
normalized weights:

𝑆ID = ∑ 𝑤𝑖 ⋅ 𝑆𝑖, 𝑖 ∈ {𝑠𝑋, 𝑣𝑋, 𝑐𝑋, 𝑒𝑋}, with 1/ ∑
𝑖

𝑤𝑖 = 1.0. (6.17)

Here, the 𝑋 subscript emphasizes that 𝑠𝑋, 𝑣𝑋, 𝑐𝑋, 𝑒𝑋 are similarity mea-
sures in X3Seg, e.g., in distinction from the surface variation 𝑠. Good
matches have a low 𝑆ID, while criticism exhibits a high 𝑆ID. A high 𝑤𝑖
shall indicate a high relevance of the respective metric 𝑖 with scoring 𝑆𝑖 to
distinguish the regarded prototypes, and two possibilities were analyzed
to derive the weighting 𝑤𝑖: 𝑤𝑖 can be derived from a combination of the
𝜇(𝑆𝑖), 𝑖 ∈ {𝑠𝑋, 𝑐𝑋, 𝑣𝑋, 𝑒𝑋} results and from the occurrences of same-class
prototypes in the 100 most similar prototypes of all classes for each 𝑖,
or the statistical relevance of each measure can be determined by the
empirical mean 𝜇 and variance 𝜎2 of all prototype measures inside the
database with Equation 4.20 as a second option. The determination of 𝑤𝑖
for the similarity measures with 𝜇(𝑆𝑖) and the occurrences of same-class
prototypes in the 100 most similar prototypes yielded more compre-
hensible explanation results for encompassing and selective X3Seg. In
addition, the determination of 𝑤𝑖 for the similarity measures according
to a combination of the 𝜇(𝑆𝑖) results and with an in-depth analysis of the
100 most similar prototypes partially considered the statistical relevance
within 𝜇(𝑆𝑖).

Selective X3Seg. The similarity is measured for each point set inde-
pendently in the 2D domain and four transformative similarity measures
are applied in selective X3Seg. Contrasting encompassing and predictive
X3Seg, PCA prior to similarity evaluation ensures the rotation-invariance
of the presented similarity measures to a great extent. This was ben-
eficial in selective X3Seg, as it works with a notably lower number of
prototypes compared to encompassing and predictive X3Seg. Selective
X3Seg applies four similarity measures: the normalized 2 × 2 covariance
matrices (𝑐𝑋,2), the first and second principal components (𝑝𝑋,1, 𝑝𝑋,2),
and the ratio between the first and second principal component (𝑟𝑋)
indicating the relative spatial extent. In order to assess the similarity
of explanation target and each database element, the 𝐿2 norms of each
similarity measure are evaluated. Here, 𝑐𝑋,2 is defined as the Frobenius
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𝑆𝑖 = 𝑖/𝜇(𝑖)∑ st in % for selected classes
best 40 50 51 70 71 72 80 𝜇(𝑖)∑ st

EX trunk (0, sc. 87, seq. 08)*1*2, database seq. 09, 𝑟𝑛 = 0.10m.
𝑆𝑠 0.01 169.7 81.5 83.6 98.1 44.9 127.8 88.7 0.037
𝑆𝑐 3.76 89.5 129.0 71.8 125.4 54.1 79.2 46.7 78.3
𝑆𝑣 0.15 76.4 140.3 80.4 131.8 53.8 79.0 73.8 93.2
𝑆𝑒 0.01 57.9 135.4 94.1 129.5 73.2 67.5 54.9 485.5

EX trunk (0, sc. 87, seq. 08)*1, database seq. 04, 𝑟𝑛 = 0.40m
𝑆𝑠 0.07 170.5 77.5 97.4 77.1 43.5 121.8 54.1 0.037
𝑆𝑐 7.70 109.2 199.8 105.3 128.7 39.1 59.8 39.9 102.1
𝑆𝑣 0.02 105.0 214.6 134.5 179.6 31.5 47.9 51.9 132.7
𝑆𝑒 0.01 99.87 163.9 137.1 117.6 105.6 58.1 64.0 557.3

EX car*3 (0, sc. 26, seq. 08), database seq. 09, 𝑟𝑛 = 0.10m
𝑆𝑠 10−3 118.5 37.5 44.5 168.1 96.5 84.8 60.2 0.032
𝑆𝑐 2.07 86.3 136.0 90.7 127.7 50.2 76.8 44.0 72.32
𝑆𝑣 0.23 68.8 154.7 81.9 138.9 36.8 69.3 46.8 93.39
𝑆𝑒 10−3 69.6 143.0 95.7 121.9 64.7 74.6 43.3 444.4

PX trunk (0, sc. 965, seq. 08)*4, database 08P, 𝑟𝑛 = 0.40m
𝑆𝑠 0.03 180.9 98.8 103.2 74.5 39.2 146.7 103.9 0.042
𝑆𝑐 1.59 43.8 161.4 76.7 143.6 48.3 58.0 13.2 73.13
𝑆𝑣 0.04 29.4 165.4 67.2 152.7 49.4 49.6 6.6 118.7
𝑆𝑒 10−4 27.8 134.8 68.5 157.0 67.5 48.1 14.2 368.4

*1 Figure 6.11(a).
*2𝑟𝑛 = 0.40m: identical results except 𝑆𝑠 = 96.4 for 70.
*3 Car (10): 𝑆𝑠 = 0.51, 𝑆𝑐 = 19.8, 𝑆𝑣 = 1.39, 𝑆𝑒 = 1.73. *4Figure 6.11(e).

Table 6.12 Quantitative explanations with encompassing (EX) and predictive
X3Seg (PX): similarity measures for best-matching prototype (same class) and
prototypes of other classes in % of ∑ st indicating the 𝜇 of all 19 static classes. The
lowest overall similarity score for each explanation target indicates the highest
similarity and is given in the column labeled with best. The columns titled with
class numbers, as detailed in Table 6.13, show the average similarity scores for
each class.
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(a) (b) (c) (d)

Figure 6.10 Selective X3Seg (SX) explanations for the trunk class: the best pro-
totypes have the lowest 𝑆ID: (a) upper trunk explanation target, (b) best upper
trunk prototype for (a), (c) lower trunk explanation target, (d) best lower trunk
prototype for (c). Upper trunk prototype with ramifications: sc. 116, seq. 08; lower
trunk prototype: sc. 142, seq. 08. Images ©Fraunhofer IOSB.

norm 𝐹 of the normalized 2 × 2 covariance matrices, as described in Sec-
tion 3.11 and Equation 3.29. The first principal component 𝑝𝑋,1 describes
the variance along the primary axis of each 3D point set, and the second
principal component 𝑝𝑋,2 represents thewidth of the 3D point set. For the
trunk class, 𝑝𝑋,2 indicates the diameter of the trunk as well as potential
ramification, while experimental evaluation showed that ramifications
have no influence on 𝑝𝑋,1. The third principal component typically points
in the direction of the sensor origin for rotating 3D LiDAR sensors and
correlates with the smallest eigenvalue and the estimated normal in sur-
face estimation as discussed in Section 3.6. Finally, each similarity metric
is calculated independently for each combination of potential prototype
and explanation target, and the potential prototypes are sorted accord-
ing to their similarity results for each of the four similarity measures
𝑖 ∈ {𝑐𝑋,2, 𝑝𝑋,1, 𝑝𝑋,2, 𝑟𝑋}. Equivalent to encompassing and selective X3Seg,
𝑤𝑖 facilitates different weighting of the proposed similarity measures,
and 𝑆ID yields the overall similarity with

𝑆ID = ∑ 𝑤𝑖 ⋅ 𝑆𝑖, 𝑖 ∈ {𝑐𝑋,2, 𝑝𝑋,1, 𝑝𝑋,2, 𝑟𝑋}, (6.18)

whereby the determination of𝑤𝑖 according to the ranking position among
all sample database elements in terms of 𝑖 proved useful.
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6.2.2.4 Proof of Concept: X3Seg

X3Seg is demonstrated on the semantic segmentation of 3D point clouds
from SemanticKITTI [11, 82], and class predictions were generated with
DN53-kNN, as detailed in Section 6.1.1. The training dataset consists

(a) Trunk EX (b) 1st trunk 09 (c) 1st trunk 04 (d) 2nd trunk 04

(e) Trunk PX (f) 1st trunk (g) 1st other: pole (h) Worst: building

(i) Trunk SX (j) 1st trunk (k) PCA 1st (l) Worst trunk

Figure 6.11 Model-agnostic explanations with encompassing (a–d, EX), predic-
tive (e–h, PX), and selective X3Seg (i–l, SX) [330]: (a), (e), (i) explanation targets;
(b)–(d), (f), (j) best same-class prototypes (𝑆b = 0.113, 𝑆c = 0.178, 𝑆d = 0.192, 𝑆f =
0.016); (g) best different-class prototypes (𝑆g = 0.014); (h), (l) criticism (𝑆h = 4.154).

of seq. 00 to 07, 09, and 10, and led to the inference results with DN53-
kNN on seq. 08 being subject to explanation with X3Seg. Table 6.12
presents quantitative, Figure 6.11 qualitative results for the trunk and
road classes, and Figure 6.12 depicts a qualitative explanation result for
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Figure 6.12 EX for car class predictions: explanation target (red, sc. 40, seq. 08)
and best car prototype (blue, sc. 0, seq. 04) among the top 2 for 𝑒𝑋, 𝑣𝑋, 𝑐𝑋.

an exemplary explanation target of the car class11 with the best-matching
same-class prototype12. The best-matching prototype for all explanation
targets given in Table 6.12 belongs to the class of the explanation target
validating the corresponding class predictions. Furthermore, the given
similarity scores show that the similarity of cloud samples from the trunk
and road classes is very low (high similarity score 𝑆𝑖), while the similarity
of trunk and vegetation is notably higher (low 𝑆𝑖). These similarities and
dissimilarities allow a probability estimation for erroneous class predic-
tions due to too high geometric similarities between different classes. To
conclude, a high 𝑆𝑖 indicates a high probability for class confusions.

Sample Database and Similarity Measures. The complete training
set consists of 22,184 scenes [11]. The encompassing database contains
prototypes for the 19 static classes from seq. 01, 04, and 09 of the training
dataset for a clear and thorough evaluation, as illustrated in Table 6.13.
Seq. 01 and 09 were chosen due to their unstructured character [326],
while seq. 04 was captured in a mixed street scene. Predictive X3Seg ana-
lyzes DN53-kNN predictions on seq. 08.

Preprocessing. SemanticKITTI consists of 3D point clouds from KITTI
2012 [82] with 2D label maps to train segmentation architectures. Con-
sequently, class predictions in the inference step yielded 2D label maps
for each scene, and a label was assigned to each 3D point 𝐩. For the eval-
uation of X3Seg, all input points were converted to a customized point
type13 to allow a unique identification of the origin with XYZ encoding
the geometric information of each 𝐩 and L defining the label.

Extraction of Coherent 3D Point Sets. Different values for the clus-
ter tolerance and the minimum number of points were evaluated. The

11 sc. 40, seq. 08, unique ID: 080040100000202012121801
12 sc. 0, seq. 04, unique ID: 040000100000202012111139
13 iosb::PointXYZLSeqScene
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Seq.*1*2 10 40 50 51 70 71 72 80 ∑ st*3

# 01 0 3151 154 3716 5230 23 2216 159 13,554
# 04 135 216 204 348 1540 118 550 149 4098
# 08P 3389 1468 3876 661 10,859 1972 3357 464 28,796
# 09 4021 1124 5954 3528 12,908 1865 4477 533 39,644

𝜇(IoU)08,P 0.91 0.94 0.86 0.54 0.84 0.53 0.73 0.53 0.53
*1Car (10), road (40), building (50), fence (51), veget. (70), trunk (71),
terrain (72), pole (80). *2Scenes in seq.: 01: 1100; 04: 271; 08: 0–1000; 09: 1591.
*3 ∑ st: bi-/motorcycle, bus, person, truck, bicyclist, parking, pavement,
lane-marking, traffic-sign.

Table 6.13 Composition of the sample databases for encompassing and predictive
X3Seg from 19 static classes: car, road, building, fence, vegetation, trunk, terrain,
and pole (see also *1). Here, # designates the number of database elements. The
predictions 𝜇(IoU)08,P, indicated by subscript 𝑃 were obtained on seq. 08 with
DN53-kNN [196].

cluster minimum is a trade-off between expressiveness and explanatory
power. A high number of points extracted highly detailed 3D point sets
as prototypes but limited the spectrum of possible explanations and
generalization. A too low minimum reduced the expressiveness of expla-
nations due to inconclusive representations of 3D point sets, which led
to a limited recognition capability for commonly learned features. Proto-
type extraction for trunk on seq. 04 yielded 141 prototypes for at least
150 points and 118 prototypes with 180 points. However, identical car
prototypeswere extracted for 150 and 180 points in seq. 04. The extraction
of explanation targets with class predictions fromDN53-kNN from scene
0 to 124 in seq. 08 yielded 514 trunk clusters if a minimum of 150 points
was required and 426 clusters for a minimum of 180 points. Euclidean
clustering extracted 13,184 trunk clusters from the full training dataset
(seq. 00 to 07, 09, and 10)14. Furthermore, different cluster tolerances
were evaluated from 0.5m to 5.0m, and a cluster tolerance of 1.0m with
two subgroups for an adaptive selection of the cluster minimum yielded

14 PCL, Euclidean Clustering: https://github.com/PointCloudLibrary/pcl/blob/master
/apps/cloud_composer/tools/euclidean_clustering.cpp, access on 07.11.2021.
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consistent and satisfactory results on SemanticKITTI. A minimum of 180
points for small point sets, such as trunk or car, proved useful, while
prototypes and criticism for large sets, such as buildings, needed a mini-
mum of 300 points per cluster to provide satisfactory explanation targets
and sample database elements.

Validation of Similarity Measures. Coherent 3D point sets within the
SemanticKITTI dataset appear in multiple, consecutive scenes due to the
10Hz capture frequency of the Velodyne LiDAR [82]. Here, extracting a
3D point set from one scene and searching in consecutive scenes deter-
mined different representations of the same objects thus validating the
proposed similarity measures in X3Seg.

Similarity in Encompassing and Predictive X3Seg. The similarity of
the explanation target was compared to each database element using the
determined results for 𝑠𝑋, 𝑣𝑋, 𝑐𝑋, and 𝑒𝑋. The normal estimation for 𝑠𝑋
on the basis of all points inside a radius of 𝑟𝑛 = 0.40 m proved useful [326],
and Table 6.12 shows the comparison to 𝑟𝑛 = 0.10 m. The exclusive consid-
eration of 𝑠𝑋, 𝑣𝑋, 𝑐𝑋, and 𝑒𝑋 identified different prototypes and criticism,
while the weighted combination in 𝑆ID allowed a stable and holistic sim-
ilarity assessment that was also independent of the sample resolution in
the 3D cloud. The empirical mean results 𝜇(𝑖), 𝑖 ∈ {𝑠𝑋, 𝑐𝑋, 𝑣𝑋, 𝑒𝑋}, were
analyzed to determine 𝑤𝑖 in encompassing and predictive X3Seg. For
the same class, 𝜇(𝑖), 𝑖 ∈ {𝑠𝑋, 𝑐𝑋, 𝑣𝑋} yielded an average of approximately
50% of 𝑆𝑖 = 𝑖/𝜇(𝑖)∑ st (Table 6.12). As a result, they provided a satisfactory
description of the characteristics of coherent 3D point sets to measure
similarity, and 𝑠𝑋 proved to be the strongest similarity metric. The oc-
currences of prototypes of the same class in the top 100 most similar
prototypes of all classes in terms of 𝑠𝑋, 𝑣𝑋, 𝑐𝑋, and 𝑒𝑋 yielded the 𝑆ID
weights 𝑤𝑖: 𝑤𝑠𝑋

= 0.45, 𝑤𝑐𝑋
= 0.20, 𝑤𝑣𝑋

= 0.30, 𝑤𝑒𝑋
= 0.05. Extensive

evaluation of GICP for 𝑒𝑋 in X3Seg showed that it is unlikely to get stuck
in local minima even in the case of objects of different orientations. It is
assumed that this was caused by the registration of two bounded and
coherent 3D point sets being favorable for GICP [250].

Selective X3Seg Parameterization. Selective X3Seg proved to be par-
ticularly applicable in explaining predictions with high (IoU). An imple-
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mentation of ProtoDash was provided within the IBM AIX360 toolkit15
and required the input of the two databases X∞ and X∈ as 1D arrays.
Multiple parameterizations for the selection of representative database
elements with ProtoDash were evaluated:

Grid resolution for 2D discretization: 25 × 25 to 200 × 200,
Width of 1D Gaussian kernel 𝜎𝐺 in ProtoDash: 𝜎𝐺 = 1 to 𝜎𝐺 = 50,
Representative 3D samples in X∈ (ProtoDash): #P ∈ {25, … , 500}.

Experimental evaluation justified that the required number of prototypes
for a beneficial explanation in selective X3Seg depends on the complexity
of the class of the explanation target. Selecting 100 prototypes for the
trunk class described the differences in trunk clusters properly, and
more than 100 prototypes did not further aid the expressiveness in the
explanation of trunk class predictions. An expressive explanation of
more simple geometric structure classes, such as building or road, was
achieved with 25 prototypes in X∈. Figure 6.10 depicts two exemplary
concise trunk predictions that were used to evaluate different ProtoDash
parameterizations for selective X3Seg. A grid resolution of 100 × 100
determined satisfactory, highly diverse prototypes for small objects, such
as trunk. A performance degradation of ProtoDash due to an excessive
number of empty grid cells resulting in many zeros and little variation
of the 1D arrays was not observed. Larger objects and area structures,
such as buildings or roads, may require a higher resolution of the grid
for a sufficiently accurate discrete representation. Figure 6.13 shows the
2D representation and compares the grid resolutions 25 × 25 to 100 × 100
for the two trunk explanation targets depicted in Figure 6.10. It becomes
clear that a higher complexity of the explanation target as shown by the
trunk structure with ramifications in Figure 6.13 requires a sufficiently
high resolution of the grid to identify well-matching prototypes from
X∈. For structures that are less complex than the lower trunk structure
analyzed in Figure 6.10, the smaller grid size did not impair the proper
selection of the most similar prototype.

Different values for 𝜎𝐺 were evaluated on explanation targets of dif-
ferent complexity, and the best-matching prototypes were analyzed for

15 IBM Research Trusted AI: AI Explainability 360, http://aix360.mybluemix.net/, access
on 06.12.2021.
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(a) 25 × 25. (b) 100 × 100. (c) 𝜎𝐺 = 2. (d) 𝜎𝐺 = 10.

Figure 6.13 Selective X3Seg prototypes: the images (a) and (b) contrast a low
(25 × 25) and a high (100 × 100) resolution grid for the lower trunk explanation
target (see Figure 6.10(a)). Different resolutions have a notable influence on the
best-matching prototypes determined by X∈ with #=100 representative samples
identified by ProtoDash. Image (c) and (d) compare the best-matching prototypes
for 𝜎𝐺 ∈ {2, 10}. Images ©Fraunhofer IOSB.

different trunk explanation targets, among them the two exemplary
trunks depicted in Figure 6.10. The influence of the kernel size 𝜎𝐺 on the
prototypes determined by ProtoDash increased with a higher complexity
of the explanation target, such as ramifications for the trunks in Fig-
ure 6.10. A high 𝜎𝐺 introduced an averaging character into the prototype
selection process, especially for explanation targets of higher complexity.
Similar to the grid size, a higher complexity of the explanation target
required less generalization for a high explanation quality. For the more
complex, upper trunk structure in Figure 6.10, 𝜎𝐺 = 10 identified a best
prototype qualitatively worse than 𝜎𝐺 = 2 due to the higher generaliza-
tion character. Hence, a kernel size of 𝜎𝐺 = 2 was selected in ProtoDash
to determine the sample database X∈ in selective X3Seg. This allowed
the identification of well-matching prototypes for explanation targets of
higher complexity. A low 𝑐𝑋,2 highlights a high similarity between the
explanation target and the best prototype from X∈, and the similarity
of the best prototypes in terms of 𝑐𝑋,2 decreased with increasing 𝜎𝐺, as
illustrated in the selection of the best-matching prototypes in Figure 6.13.
Furthermore, Figure 6.13 describes the influence of 𝜎𝐺 and different grid
resolutions on the identified best-matching prototypes.

Intuitively, a higher number of prototypes #P led to a better understand-
ing of the class predictions in X3Seg due to a higher variety of prototypes,
which enabled the identification of a very similar prototype in the train-
ing data. Experimental evaluation justified this intuitive assumption: all
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similarity measures indicated an identical or higher similarity of the ex-
planation target and the best-matching prototype identified. Figure 6.10
depicts the best-matching prototypes for the selected lower and upper
trunk structures. However, the number of prototypes in X∈ essentially
influenced the calculation effort to identify prototypes and criticism for
the current explanation target. Furthermore, the most diverse and thus
also most relevant prototypes to represent the huge amount of available
prototypes in the database of encompassing X3Seg with the small subset
in X∈ were always identified among the first 100 prototypes. Hence, a
higher number of prototypes only led to the selection of more prototypes
in addition to the extremes initially chosen from the dataset X∞.

To conclude, a guideline for the number of prototypes from X∈ to
represent X∞ properly can be derived as follows: a high number of pro-
totypes inX∈ is required to properly representX∞ for a high complexity,
diversity, and size of X∞. A selection of #P = 100 trunk prototypes for
X∈ yielded holistic, well-funded, and satisfactory explanation results for
understanding trunk class predictions with selective X3Seg.

Similarity in Selective X3Seg. The similarity metrics 𝑐𝑋,2, 𝑝𝑋,1, 𝑝𝑋,2,
and 𝑟𝑋 were evaluated with a 100 × 100 2D grid, PCA without stan-
dardization, 𝜎𝐺 = 2, and #P = 100. All similarity metrics indicate a high
similarity with low values, while criticism has high values for 𝑐𝑋,2, 𝑝𝑋,1,
𝑝𝑋,2, and 𝑟𝑋. Each proposed similarity metric evaluates a different ge-
ometrical aspect of the 3D point sets: the best-matching prototype for
the upper trunk explanation target in terms of 𝑝𝑋,1 may not have had
ramifications but did have a similar orientation of the main component
of the trunk structure, while the best-matching prototype in terms of 𝑝𝑋,2
had ramifications similar to the explanation target (see also Figure C.7).
To conclude, all four similarity measures proved useful in identifying
3D point sets as prototypes and criticism. Furthermore, the combination
of their complementary analysis of the geometrical characteristics of
each prototype provided a valuable similarity measure for the analyzed
3D explanation targets. A selection of three trunk prototypes, includ-
ing the two explanation targets depicted in Figure 6.10, was analyzed
in-depth to validate the selected metrics. Similar to encompassing and
predictive X3Seg, the weights 𝑤𝑖, 𝑖 ∈ {𝑐𝑋,2, 𝑝𝑋,1, 𝑝𝑋,2, 𝑟𝑋} were derived
from the occurrences in the best-matching prototypes in terms of 𝑐𝑋,2,
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𝑝𝑋,1, 𝑝𝑋,2, and 𝑟𝑋. In contrast to encompassing and predictive X3Seg, only
the ten most similar (top 10) prototypes for each individual similarity
metric were analyzed as the top 100 prototypes would include all pro-
totypes in X∈. Here, 𝑝𝑋,2 achieved the highest top 10 accordance with
44.5%, 𝑐𝑋,2 achieved 33.3%, 𝑝𝑋,1 30.0%, and 𝑟𝑋 36.7%. Both 𝑝𝑋,1 and
𝑝𝑋,2 evaluate the primary components and constitute a connected, corre-
lating similarity metric. To conclude, each similarity metric in selective
X3Seg presented an approximately similar importance and suitability.
Consequentially, the weights 𝑤𝑖 for 𝑆ID were determined as follows in
selective X3Seg: 𝑤𝑐𝑋,2

= 1/3, 𝑤𝑝𝑋,1
= 1/6, 𝑤𝑝𝑋,2

= 1/6, 𝑤𝑟𝑋
= 1/3. 𝑆ID pro-

vided stable explanation results, also for different scale, rotation, and
noise characteristics of the prototypes in selective X3Seg. Contrasting this,
encompassing and predictive X3Seg allowedmore differentiated explana-
tions due to more extensive databases, especially for the understanding
of inaccurate predictions and the identification of similarities.

6.2.2.5 Understanding Inaccurate Class Predictions

Trunk class predictions exhibit a low IoU in SemanticKITTI (Table 6.13).
Here, correlations to the best prototypes of other classes as well as the
similarity to other classes, as described in Table 6.12, provide helpful
insights, especially in how to analyze a low IoU for single classes. In
order to examine erroneous trunk predictions with encompassing X3Seg,
the sample database was composed of all prototypes from seq. 01, ex-
cluding the 23 trunks. X3Seg highlighted notable correlations of trunk to
fence (51), vegetation (70), and pole (80), and the nine best prototypes in
terms of 𝑠𝑋, two of the ten best for 𝑐𝑋, and the best-matching prototype
with 𝑣𝑋 were from the fence class. Furthermore, all ten best-matching
prototypes in terms of 𝑒𝑋 came from the vegetation class. This can be
explained by the fact that seq. 01 was captured on a motorway that had
crash barriers on either sides labeled as fence and containing vegetation
elements. Furthermore, accurate class predictions for point sets repre-
senting natural, grown elements, such as trunk, are challenging due to
an often mixed occurrence with other classes and a low dissimilarity to
other natural elements. Here, class definitions that notably distinguish
or unite coherent point sets often occurring together can provide more
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accurate predictions, especially for segmentation methods without color
information, such as DN53.

The similarity between classes described by 𝜇(𝑖) in Table 6.12 also pro-
vides a likelihood estimate for classification errors. For instance, classify-
ing a coherent 3D point set of a trunk as road or building proves to be very
unlikely, whereas the classification as pole is shown to be notably more
probable. Figure 6.11(g), the best-matching prototype from other classes,
was of the pole class and IoU for pole is low. Furthermore, the qualitative
similarity between Figure 6.11(e), (f), and (g) highlights the difficulty for
accurate class predictions. In critical applications, X3Seg facilitates a first
risk assessment: the determination of classes with the highest similarity
can provide an indication on the danger and impairment of false predic-
tions. This also allows a likelihood estimate for misclassifications that
are highly relevant when distinguishing navigable ground and obstacles
for the navigation of autonomous off-road vehicles.
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The decontamination of hazardous environments and off-road trans-
port in defense constitute the two main application scenarios for au-
tonomous off-road vehicles in unstructured environments in this thesis.
The thoughts, methods, and approaches within this chapter focus on
the practical application of the previously explained scientific contribu-
tions to low-level, mid-level, and high-level perception, and naturally
influenced their development and testing.

Section 7.1 reviews the integration of the proposed methods in the
processing chain for autonomous off-road vehicles in decontamination
and defense. Section 7.2 details the perception–validation coupling pro-
posed and describes the technology demonstrators utilized for the proof-
of-concept demonstrations within this thesis with exemplary, modular
perception pipelines. Furthermore, Section 7.3 indicates generalization
possibilities for the proposed methods.

The highly limited availability of data for test and verification purposes
has severely impacted the research on unstructured environment per-
ception. The IOSB-Reg dataset proposed in Section 7.4 and the German
Outdoor Off-road dataset (GOOSE) discussed in Section 7.5 aim to close
this gap.

Trustworthy and reliable decisions in the sensing–perception–decision
system architecture require accurate and suitable environmental per-
ception. Hereby, planning for autonomous off-road vehicles mostly re-
lies on “single-shot” 3D perception, as it is provided by the perception
and validation methods. Hence, the planning constraint [328] discussed
in Section 7.6 contributes to the decision step and constitutes an impor-
tant connecting point to the perception methods proposed within the
sensing–perception–decision chain.
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7.1 Decontamination and Defense
The combination of a very challenging environment with a very limited
availability of data for training, testing, and verification makes the intro-
duction ofML into decontamination and defense very difficult.Walther et
al. [331] andWoock et al. [332] discuss the decontamination of hazardous
environments with autonomous off-road vehicles. Woock et al. [332]
provide an overview of robotic technologies for the landfill industry
with a special focus on the processing chain of autonomous heavy con-
struction machines. The authors [332] state that the first step towards an
autonomy of autonomous off-road vehicles is the sensor equipment for
environment perception. Sensor data must be referenced extrinsically
and to the coordinate system of the construction machine to fuse the
sensor measurements for joint and complementary environment percep-
tion. Furthermore, the autonomous system requires knowledge about
itself such as the tool position that can be reconstructed from the joint
angles and the kinematic model of chassis, cabin, boom, and dipper stick.
As a result, the successful perception of the environment facilitates the
planning of meaningful and targeted movements for the tool and the
complete machine itself, while a motion control system jointly monitors
the position of all machine components and the status of the environment
during task execution. An intervention can be carried out where neces-
sary to react to a situation that has changed in the meantime. Last but
not least, a sequence control system ensures that individual subtasks are
processed sensibly one after another and that the construction machine
does not endanger itself or proceed inefficiently [332].

In defense logistics, MULE and Convoying require fewer humans in
danger zones and can also overcome the lack of manpower in off-road
transport. Recent advances in ML technology extended the capabilities
of autonomous systems in off-road scenarios, especially by an optimized
perception performance. Two key challenges can be identified for AI
and ML especially in defense1. The first challenge is the development of
trusted AI systems. Trusted AI systems have to fulfill the three funda-

1 “AI for Defense” workshop (24.09.2020), https://eda.europa.eu/news-and-events/
news/2020/09/28/eda-workshop-with-industry-on-artificial-intelligence, access on
23.01.2022.
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mental requirements identified by the AI HLEG2: lawfulness, compliance
with ethics, and social and technical robustness. The second challenge
lies in the limited availability of data, particularly in defense. Here, the
development of common standards to generate, process, and save data,
as discussed in Section 7.5, facilitates the collaboration in developing and
benchmarking software and algorithms. Benchmarks for classic and ML
methods promote advances in image processing, such as the well-known
KITTI Vision Benchmark [82] or the ImageNet competition [233].

7.2 Perception–Validation Coupling, Technology
Demonstrators, and Perception Pipeline

This thesis recommends a tight coupling of perception and validation
for confidence and data assessment as well as for registration. This al-
lows immediate actions in case of inaccurate or erroneous, detrimental
data, as discussed in Section 4.1, 4.3, 5.3, and 6.2.1. The validation of
the proposed perception methods is loosely coupled with the analyzed
perception method. A tight coupling of perception and validation for all
proposed perceptionmethods would impair the flexibility of the pipeline
design and notably increase the processing effort for the environment
perception.

Loosely coupled validation is conducted in a post-modeling manner
– during its evaluation and fine-tuning process or after the completed
development of the method. This facilitates a consistent, and mainly
model-agnostic assessment of the proposed perception methods. Fur-
thermore, a tight perception–validation coupling for autonomous off-
road vehicles requiring real-time capability is only possible with GPGPU
parallelization currently, as exemplarily demonstrated in Section 5.1.1.2.

Potential consequences for the subsequent planning and control steps
in case of unsatisfactory results from the tightly coupled validation
methods are the slower execution of autonomous navigation and ma-
nipulation tasks or the requiring for teleoperation by a human operator.

2 Ethics Guidelines for Trustworthy AI: https://digital-strategy.ec.europa.eu/en/library
/ethics-guidelines-trustworthy-ai, access on 24.10.2021.
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Here, the integration of loosely and tightly coupled validation facilitates
confidence-aware, adaptive perception for an enhanced planning and
control behavior of autonomous off-road vehicles.

A modular system architecture for autonomous off-road vehicles en-
sures a fast and generic deployment of the developed modules for many
autonomous platforms ranging from small indoor platforms to heavy
construction machinery. Furthermore, the algorithm toolbox (ATB) of
the Fraunhofer IOSB [60] provides a modular concept to equip mobile
robots with autonomy capabilities based on ROS. ROS provides a broad
and modular basis of software libraries and tools to build robot applica-
tions with a common standard and framework for software exchange in
research and industry all over the world. The ATB combines all modules
required for the autonomy of mobile robots such as excavators, off-road
trucks, and small electrically powered platforms. Sensor drivers, as well
as algorithms for localization, mapping, planning, and performing ma-
nipulation tasks can be combined in a flexible way, depending on the
requirements of the platform and the desired functionalities and simi-
lar to the flexible and modular structure of the perception–validation
pipeline proposed in this thesis.

The ATB and customized hardware and software equipment enable
the autonomous operation of IOSB.BoB, IOSB.amp Q1, IOSB.amp Q2,
IOSB.Alice, and TULF depicted in Figure 1.3 for decontamination [216]
and defense applications. A 1.8 t Wacker Neuson crawler excavator is
used for the IOSB.BoB platform, while a 24 t Liebherr R924 crawler ex-
cavator is utilized for IOSB.Alice. Both excavators are equipped for the
autonomous remediation of landfill sites and capable of autonomous nav-
igation and manipulation. The optical multi-sensor system of IOSB.BoB
consists of three Velodyne VLP-16 3D LiDAR sensors, while IOSB.Alice is
equipped with four LiDAR sensors: three Ouster OS0-64 and one Ouster
OS0-128, as well as with two multispectral JAI FS3200-10GE cameras in
stereo-setup. The IOSB.amp Q1 platform, also referred to as Mustang,
was used to capture the IOSB-Reg dataset discussed hereinafter. It is
equipped with a Velodyne HDL-64E 3D LiDAR and two JAI AD-130GE
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cameras3. The AD-130GE stereo camera setup captures 1296 × 966 px
RGB and NIR images simultaneously with identical exposure times. The
perception setup for the Bundeswehr’s TULF consists of a hyperspectral
stereo-setup with Ximea MQ022HG-IM-SM4X4-VIS4 cameras and two
Velodyne HDL-32E LiDAR sensors for perception purposes. In addition
to the optical multi-sensor system, all platforms are at least equipped
with an inertial measurement unit and a satellite positioning system for
localization. An accurate localization for all platforms was provided by
the ATB localization and mapping module [60].

Two exemplary perception–validation pipelines are described to il-
lustrate the combination of individual methods for the perception of
unstructured environments: the basic perception setup for IOSB.BoB and
the more complex perception setups for IOSB.Alice and IOSB.amp Q1.
Loosely and tightly coupled validation methods are optional and can be
integrated according to demand. Tightly coupled confidence assessment
is recommended if a stereo camera setup is integrated in addition to the
LiDAR sensor for 3D–3D fusion, as proposed in Section 5.3.

The IOSB.BoB platform demonstrates a basic perception solution with
workspace monitoring by multiple rotating 3D LiDAR sensors. A stereo
camera setup is not recommended as a substitute for the 3D LiDAR sen-
sors due to the limited FoV and the lower depth estimation accuracy not
being able to guarantee highly accurate workspace monitoring at the
moment. Registration exploiting the extrinsic calibration of the LiDAR
sensors and their registration to the robotic platform were performed
with the similar-source registration method detailed in Section 4.2. The
interpretation of the perceived data with high-level perception and vali-
dation methods is not necessarily required as navigability analysis and
obstacle avoidance are also possible without a high-level interpretation
of the 3D data.

The autonomous IOSB.Alice and IOSB.amp Q1 off-road vehicles ex-
hibit more complex, holistic perception pipelines with perception and
validation methods from each level. The registration of the multi-sensor

3 JAI: Datasheet AD-130-GE, https://www.jai.com/downloads/datasheet-ad-130ge,
access on 07.11.2021.

4 Hyperspectral Snapshot USB3 camera 16 bands, https://www.ximea.com/files/broc
hures/xiSpec-Hyperspectral-cameras-2015-brochure.pdf, access on 25.11.2021.
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systems relies on theUCSR approach discussed Section 4.3 with a tightly
coupled validation of the registration results. Grayscale, RGB, or hyper-
spectral stereo camera systems with disparity estimation from stereo im-
ages and loosely coupled validation can be integrated optionally. Seman-
tic 3D segmentation provides a point-by-point interpretation of 3D point
clouds, as detailed in Section 6.1. Dataset assessment with IC-ACC pro-
vides a tightly coupled, pre-modeling validation for the ML methods in
low-level registration, mid-level stereo processing, and high-level seg-
mentation. The post-modeling analysis of the segmentation results with
X3Seg allows an in-depth understanding and a loosely coupled validation
of the segmentation results, as described in Section 6.2.2.

7.3 Generalization of the Proposed Methods
Perception and validation methods for 2D images from different camera
systems were already explained in this thesis. The proposed perception
and validation methods for 3D data can also be used for other sensors
providing depth or 3D measurements, such as ToF cameras, light field
cameras, RGB-D cameras, and high resolution 3D radar sensors [227].
The registration methods listed for similar-source and cross-source data
in Section 4.2 and 4.3 are also applicable for similar-source or cross-
source 3D data from active cameras, light field cameras, and radar with
minor adjustments. Validation methods, such as the disparity error met-
rics (see Sec. 5.2.1) or SET (see Sec. 5.2.2), also apply to disparity maps
from light field cameras and for 3D clouds from ToF and light field
cameras. Furthermore, the application of selected perception and val-
idation methods on data from structured environments demonstrates
the generalization of the proposed methods for other domains. Potential
subsequent processing steps, such as mapping and planning, are also
discussed to address the application of the proposed methods in other
use cases exceeding the proof-of-concept demonstrations in this thesis.

7.4 IOSB-Reg Dataset
The IOSB-Reg dataset provides data from primarily unstructured en-
vironments to train, validate, and test the classic and ML registration
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methods discussed in Section 4.3. It was captured with the IOSB.amp
Q1 platform on the test site for autonomous platforms at the IOSB head-
quarters in Karlsruhe between August 2019 andMarch 2020 and includes
different seasons. 176 3D LiDAR point clouds and 2D image pairs from a
stereo camera setup with corresponding point clouds and intrinsic and
extrinsic calibration information were captured in ROS bagfiles. Four ex-
emplary RGB images are depicted in Figure D.3. Selected images include
structured test elements to investigate the correlation of registration and
the structured or unstructured character of a scene.

Image–LiDAR synchronization for the KITTI dataset [80] relies on
a reed contact to provide hardware-triggering for the cameras. This
is only possible for a limited number of LiDAR sensors with rotating
parts such as Velodyne HDL-32E and HDL-64E. Contrasting this, the
IOSB.amp Q1 platform for the capture of IOSB-Reg extracted the current
rotation angles of Velodyne and Ouster LiDAR sensors from their data
packages, and a micro controller generated an analog hardware-trigger
signal. The 2D RGB images were thus captured while the Velodyne
recorded the camera FoVs. A fixed exposure can lead to overexposure or
underexposure in highly variable light conditions, and auto-exposure
commonly yielded better results in outdoor environments.

The JAI AD-131GE cameras comply with the EMVA GenICam stan-
dard5. As a result, Aravis, a generic driver for GenICam compliant cam-
eras, and camera_aravis6 were used for image capture in ROS. The camera
images were rectified using OpenCV stereoRectify7, and the image size
was preserved in rectification. Images and point clouds of static scenes
were captured in the coordinate system of the sensor itself, and the
ATB [60] provided localization information with 100Hz.

Augmentation techniques can multiply the size of the dataset, and
rotation, flipping, and shifting proved useful to augment registration data
from unstructured environments. Other techniques such as horizontal

5 European Machine Vision Association, Generic Interface for Cameras - GenICam, https:
//www.emva.org/standards-technology/genicam/, access on 30.10.2021.

6 Camera_aravis: An Ethernet camera driver for ROS, http://wiki.ros.org/camera_aravis,
access on 30.10.2021.

7 Camera Calibration and 3D Reconstruction: https://docs.opencv.org/2.4/modules/ca
lib3d/doc/camera_calibration_and_3d_reconstruction.html, access on 17.01.2022.
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translation, scaling, and cropping were not applied as they alter the input
format of the data or require pixel interpolation. Dataset augmentation
was introduced at runtime during training as the augmentations are
computationally lightweight in contrast to their memory size, e.g., with
the Keras Image Data Generator8 for image augmentation.

7.5 GOOSE : German Outdoor Off-Road Dataset
Since 2021, TAS, the Fraunhofer IOSB Karlsruhe, and the WTD41 have
been working together on GOOSE, a dataset for unmanned ground sys-
tems with financial support of the BAAINBw U6.29. Limits, difficulties,
and optimization potential of state-of-the-art datasets and of the IOSB-
Reg dataset were analyzed in the conceptual development phase in 2021.
Here, the KITTI dataset [83] was selected as a first reference point for
data capture and processing.

GOOSE addresses the limited data availability from unstructured en-
vironments and consequently supports the development of robust and
reliable AI systems from the outset. It provides data for the development
of classic and ML methods for autonomous systems in the ROS standard
with a special focus on high quality as well as validation of the data
during dataset generation. GOOSE is one of the first datasets with data
from different institutions, sensor setups, and platforms. This sets the
course for trustworthy and reliable AI systems right from the start in
terms of pre-modeling XAI. Contrasting other datasets, GOOSE includes
data from different off-road vehicles: MuCAR-3 of TAS10, IOSB.Alice, and
Mustang. Uniform standards for recording, storing, and processing sen-
sor data have been introduced. Further validation and quality-checking
methods for the recorded data are also being developed for GOOSE
and extend the dataset assessment detailed in Section 6.2.1. GOOSE is

8 Keras API reference: Image data preprocessing, https://keras.io/api/preprocessing/i
mage/, access on 07.11.2021.

9 “VIII. SGW-Forum Unbemannte Systeme”, 26.10.2021: “Das GOOSE-Dataset: Ein
gemeinsamer Datensatz für KI-Anwendungen”, https://veranstaltungen.dwt-sg
w.de/anlage?i=2132&c=zTeBRWkSXkRXkSY&t=954853&n=000021_agenda.pdf, access
on 17.01.2021.

10 MuCAR-3, https://www.unibw.de/tas/ausstattung/mucar-3, access on 07.11.2021.
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designed to contain labeled images and point clouds from unstructured
environments as well as all relevant information for the development of
AI procedures for autonomous systems, such as localization and synchro-
nized time stamps. In addition, a customized GOOSE labeling policy was
specified by TAS and IOSB for all data that shall be included in GOOSE.
For this, the minimum sensor requirements to capture GOOSE data are
one 2D camera, one 3D LiDAR sensor, and one localization providing a
NavSatFix message.

GOOSE is designed as training, validation, and test dataset for ML ap-
proaches and also as a reference dataset for existing, non-ML approaches.
The highly detailed specification for the captured data and meta data
facilitate an equivalent data capture, storing, and processing for different
contributors with different off-road vehicles and sensor setups. GOOSE
is structured in three levels for a clear hierarchy that provides a fast
and easy overview for users in the robotic community. “Setup” consti-
tutes the highest level and summarizes data for identical hardware and
sensor setups of a platform. The compatibility for training, validation,
and testing is ensured for data within the same setup and without the
need for code adaptions. “Scenario” defines the intermediate level of the
GOOSE hierarchy and all data samples from the same scenario with a
predefined task and identical environmental conditions but potentially
different weather conditions. “Sequence” constitutes the lowest hierar-
chy level, and one sequence is represented by a single ROS bagfile. For
instance, an autonomous earth excavation process lasting for several
days comprises multiple sequences that belong to the same scenario.
Meta data is automatically generated for each sequence and contains
all relevant information for using the dataset, such as sensor types and
manufacturers, intrinsic and extrinsic sensor calibrations, descriptions of
the sensor coordinate systems, and the estimated accuracy of the sensor
data timestamps inside a yaml file. An automatic offline validation of
the generated yaml file against the specification ensures the compati-
bility of the captured data with the GOOSE specifications. Predefined
tags for weather, environment, and platform and sensor setup enable
fast identification of useful scenarios and sequences for users.

However, it becomes difficult with a large number of topics to check
whether every necessary topic is present and to control the individual
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data parameters. A customized validation tool was developed to ana-
lyze the sensor data for completeness and fulfillment of the predefined
minimum requirements during the capturing process (online) and after-
wards (offline) for this purpose, as illustrated in Figure D.4. Color codes
and supporting text facilitate the detection of problematic topics that
could negatively impact the recorded data. Minimum requirements like
publishing frequency or criteria for data quality can be defined for each
desired topic within a customized configuration file.

Many publicly available tools for the pixel-wise annotation of 2D im-
ages and the point-wise annotation of 3D point clouds are available.
An experimental evaluation of selected tools was conducted to analyze
available labeling tools for GOOSE, as detailed in Section D.1. As a re-
sult, a labeling tool for GOOSE was not developed as the state-of-the-art
labeling tools available already provided satisfactory results.

7.6 Cost Valley for Constrained Planning
Planning extends the proposed perception pipeline towards themapping
and planning for autonomous off-road platforms. Here, the work of
Forkel et al. [71] on probabilistic terrain estimation highlights the close
connection of perception and planning for the identification of drivable
areas. To the best of the author’s knowledge, the proposed cost valley
approach [328] constitutes a novel planning constraint optimizing the
autonomous driving behavior of off-road vehicles in transport scenarios
encountered in military logistics.

The track in off-road scenarios is not defined by street borders and
considerate behavior of other vehicles cannot be assumed in contrast
to autonomous driving in structured, urban environments. The main
challenges for an optimal driving behavior in unstructured environments
are the navigability of the path and obstacle avoidance. The cost valley al-
lows the avoidance of static and dynamic obstacles while simultaneously
keeping a predetermined track in an accurate manner. It additionally
facilitates two evolved transport behaviors for autonomous vehicles of
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different kinematics, weight, and size in military logistics: MULE11 and
Convoying12. The experimental evaluation of the presented constrained
planning approach [328] was carried out on IOSB.amp Q1 and TULF, as
depicted in Figure 1.3. In addition to MULE and Convoying, Following
scenarios present the third, highly relevant transport behavior for au-
tonomous vehicles in off-road environments. To address this challenge,
Albrecht et al. [321] present an enhanced convoying functionality with
two operations modes: one for exact, and one for flexible Following,
and the interested reader is referred to [321] for further details about
Following scenarios.

7.6.1 Line Simplification, Grid Structure, and Cost Valley
A grid map [64] with obstacle and navigability information is required
as input for the cost valley. The grid map enables discretized mapping to
prepare the input data for search-based planning approaches (see Sec-
tion 2.6). The cost valley can flexibly be integrated in existing processing
pipelines for autonomous driving, as presented in [40, 60]. The valley
is integrated as an additional layer of the grid map and the final grid
structure contains all information needed for planning. The generation of
the cost valley is divided up into three steps, as illustrated in Figure 7.1:
track specification, waypoint optimization, and navigation.

Track specification denotes the recording of globally referenced way-
points. A global reference is required to reuse all processing results. The
recorded track for MULE can be generated with a teach-in procedure for
the teleoperation of the vehicle. Waypoints for Convoying are directly
transmitted from the leading vehicle during operation. Like this, only
the distance between leader and follower is optimized, and the waypoint
list is much shorter. Finally, a highly dense track is generated without
the need for manual specification of the waypoints for both MULE and
Convoying.

11 ELROB 2018: Transport–MULE: https://www.elrob.org/files/elrob2018/Transport_M
ule_V3.pdf, access on 17.01.2022.

12 ELROB 2018: Transport–Convoying: https://www.elrob.org/files/elrob2018/Transpor
t_Convoy_V3.pdf, access on 17.01.2022.
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Figure 7.1 Cost valley processing pipeline for MULE and Convoying [328]. DP
designates the Ramer-Douglas-Peucker approach.

Waypoint optimization processes the densely recorded track to facili-
tate a smooth navigation. The removal of too much waypoints from the
recorded track can result in a decelerated path calculation, especially
in difficult passages, and the driving behavior of the vehicle can be im-
paired. Waypoint lists that are too dense can lead to planning on shorter
distances and thus to unsteady driving. Line simplification in MULE is
directly performed on the densely recorded track. Convoying requires
a live-processing of the waypoints. Thus, line simplification is only per-
formed if a previously specified distance is exceeded to limit calculation
operations. Two line simplification algorithmswere evaluated for the cost
valley approach: the well-known, global Ramer-Douglas-Peucker (RDP)
approach [51, 222] operating on point-to-edge distance tolerances and
a customized, local approach described in Section D.2. Other types of
line simplification methods such as Nth Point, Opheim or perpendicular
distance provide a more independent simplification approach. However,
Shi and Cheung [255] state that the limitation of search areas results in
worse mean and maximum distances. RDP line simplification clearly out-
performed the customized, local approach in the conducted evaluation
and was chosen for the proposed cost valley approach. RDP iteratively
generates polygons to simplify the given curve. The polygon consists of
a small number of vertices lying on the analyzed curve. The path hull is
the maximum distance of the curve from the approximated polygon. It
is specified as a fitting criterion and threshold in the approximation of
the two-dimensional curve. The curve is represented by an ordered set
𝐶RDP of 𝑁 + 1 consecutive points. In the case of an open polygon 𝑃RDP,
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the first and the last point are not equal. This is mostly true for waypoint
optimization. 𝑃RDP has 𝑁 edges, and the corresponding points are inter-
preted as vertices 𝐩𝑖. The aim is to find a simplified representation 𝑃 ′

RDP
equal to a set of vertices 𝐶′

RDP with 𝑁′ < 𝑁 edges and vertices 𝐩′
𝑖 inside

ordered subsets 𝐶𝑘,RDP of 𝐶RDP:

𝐶𝑘,RDP = {𝐩𝑖, 𝐩𝑖+1, ..., 𝐩𝑗}; 𝐩𝑖 = 𝐩′
𝑘−1, 𝐩𝑗 = 𝐩′

𝑘. (7.1)

The points 𝐩𝑖 and 𝐩𝑖+1 represent consecutive vertices in 𝑃RDP with 𝑖 ∈
[0, 𝑁], and 𝐩′

𝑘−1 and 𝐩′
𝑘 consecutive vertices in 𝑃 ′

RDP with 𝑘 ∈ [1, 𝑁′].
𝐶′

RDP divides the curve to be approximated into consecutive segments
with the subsets 𝐶𝑘,RDP containing the vertices of 𝑘-th curve element [222].
This yields ∪

𝑘∈[1,𝑁′]
𝐶𝑘,RDP = 𝐶RDP and

( ∪
𝑘∈[1,𝑁′−1]

(𝐶𝑘,RDP ∩ 𝐶𝑘+1,RDP)) ∪ {𝐩0} ∪ {𝐩𝑁} = 𝐶′
RDP (7.2)

for open polygons. If 𝑃RDP with vertices 𝐩𝑖, 𝑖 ∈ [0, 𝑁], is given in a set
𝐶RDP, the simplified 𝑃 ′

RDP satisfies the criterion function

𝑓(𝐶𝑘,RDP) = max(𝐿1(𝐩𝑖⟨𝐩′
𝑘−1𝐩′

𝑘⟩)) ≤ 𝜀. (7.3)

The constant threshold parameter for the size of the path hull is defined
by 𝐩𝑖 ∈ 𝐶𝑘,RDP, and 𝐩′

𝑘−1𝐩′
𝑘 denotes the line segment from 𝐩′

𝑘−1 to 𝐩𝑘.
Navigation uses the optimized waypoint list to generate the cost val-

ley – the core of the method presented. The accuracy required while
keeping the predefined track can be specified with two parameters: the
free width 𝑤𝑓 and the maximum width 𝑤𝑚. Here, 𝑤𝑓 defines the valley
width around the optimized track navigable without additional costs,
determines the valley bottom and ensures track-keeping as tightly as
required. The maximum width 𝑤𝑚 sets the permitted area for evasive
maneuvers and thus the total width of the valley. Finally, the cost valley
is calculated as a grid map layer of the input map with obstacle and
navigability information, as defined by 𝑤𝑓 and 𝑤𝑚. The cost valley is
completely cost-based and an absolute potential is not calculated in con-
trast to potential field approaches, as described in [306]. The direct path
between the waypoints constitutes the valley center and consequently
lowest costs. Problems with local minima that may occur in potential
field approaches were not encountered.
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(a) Cost valley on TULF. (b) EDT for cost valley.

Figure 7.2 Cost valley evaluation on TULF: Figure (a) depicts the real-time exper-
imental validation on the TULF platform: the track is optimized at starting time,
𝑤𝑓 = 3 m (edge of red area), 𝑤𝑚 = 30 m (edge of dark blue area). The planned tra-
jectory is emphasized in dark gray; (b) shows the EDT with optimized waypoints
(blue) and the direct path between waypoints (pink) [328].

Joy [142] states that the Breshenham’s Algorithm provides a fast and
accurate determination of the cells a path passes inside a grid map. Eu-
clidean Distance Transform (EDT) is a fast, popular, and well-suited
method for distance calculation to the nearest obstacle in a grid structure
commonly used for obstacle avoidance in planning, as described in [185,
215]. EDT is used within the cost valley approach to explore the distances
to the closest grid cells containing a higher value than the defined mini-
mum [185]. The first step in the calculation of the cost valley is to ensure
that all waypoints lie inside the input grid. If this is not the case, the
input grid is enlarged to contain all required waypoints. Next, the cells
passed by the optimized track are identified using Breshenham’s algo-
rithm in a fast implementation, as proposed in [142]. All cells that contain
track elements are defined as obstacles from the view of the EDT [185,
215]. Here, EDT yields the distances of the track elements from other
cells and the EDT layer shown in Figure 7.2 is temporarily integrated
inside the grid structure. The utilization of the fast and well-proven EDT
implementation of [185] ensured real-time capability. The EDT result
is normalized to [0, 1] to correspond to obstacle costs of the input grid
structure. Finally, the cost valley is created by applying 𝑤𝑓 and 𝑤𝑚, as
illustrated in Figure 7.2 and Figure 7.3.

The proposed valley approach also facilitates autonomous turning
when the last waypoint is reached. This is made possible by a higher 𝑤𝑓
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around the last waypoint defined according to the vehicle geometry. Fur-
thermore, the valley approach also allows an autonomous return to the
valley after an intervention by the human safety driver (see Figure D.6).

The cost valley planning constraint is evaluated according to the plan-
ning benchmarking of Cohen et al. [41]: computation times, path length,
smoothness of plans, clearance, and success rate. The computation time
requirements are met if real-time capability is achieved. Contrasting
planning in structured environments, the path length is less important
than the navigability of the unstructured, rough terrain. Sufficient clear-
ance is achieved if all obstacles can be avoided. The success rate and
smoothness are measured qualitatively by a successful completion of
the test scenarios. Special focus in off-road driving is placed on critical
passages and curves that could not be passed successfully with classic
waypoint navigation.

7.6.2 Proof of Concept: Cost Valley
The cost valley approach was experimentally validated on IOSB.amp Q1
and TULF – two off-road vehicles with different kinematics, weight, and
size for defense applications. For the evaluation on the TULF platform,
the speed was limited to 25 km

h to allow potential safety interventions.
The experiments were carried out in mainly unstructured environment
containing trees, bushes, metal structures, and dirt roads. A small part
of the test track crossed between buildings on a paved road to examine
the performance in semi-urban environment. The experimental results
provided in this thesis focus on the MULE behavior due to its higher
complexity with longer predetermined tracks in waypoint optimization
and navigation.

Track specification was executed at 10Hz in the Universal Transverse
Mercator coordinate system for global referencing. The MULE teach-in
acquired more than 10,000 waypoints over 1 km.

Waypoint optimization with RDP achieved a better performance than
the analyzed local approach due to its global character. Radius selection
for the path hull on the basis of the vehicle geometry and terrain to be
navigated proved useful: the radius has to be set large enough for smooth
planning and small enough to reconstruct narrow passages and curves
sufficiently accurate. The test scenarios covered up to 2.5 km in MULE
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Figure 7.3 TULF (𝑤𝑓 = 3 m, 𝑤𝑚 = 30 m): Obstacle avoidance. The vehicle exits
𝑤𝑓 = 3 m for an avoidance maneuver around a barrel blocking the way (black
circle) and returns to the cost valley center [328].

and 1 km in Convoying. Empirical studies showed that a radius of 0.8m
for the TULF platform and 0.5m for IOSB.amp Q1 achieved the most
accurate and successful driving performance results.

Experimental evaluation further demonstrated that the MULE and
Convoying behaviors achieved a superior performance with the integra-
tion of the cost valley constraint. Figure 7.2 shows all waypoints of a
chosen experimental MULE driving scenario on a track approximately
1 km in length. The valley was calculated over the next waypoints and not
over all waypoints to maintain real-time capability. Figure 7.3 illustrates
the obstacle avoidance around a barrel and the track was followed as
accurately as possible in MULE. Some narrow passages in the testing
environment were not passed with the TULF platform in autonomous
operationwith classic waypoint navigation. These narrow passages could
be passed in autonomous operation with an integration of the proposed
cost valley. The predefined track was followed accurately, and obstacles
were avoided. The valley limited the space of possible paths, and less
calculation time was needed in the planning step. With a parallel process-
ing on multiple CPU cores, the additional generation of the cost valley
increased the total runtime only slightly. This maintained the real-time
capability of the testing platforms that rely on the ATB [60] for their
autonomous operation.
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8.1 Summary
Autonomous vehicles need to perceive and “understand” their environ-
ment to interact with it in a controlled and safe way. In contrast to struc-
tured environments such as production buildings or urban surroundings,
perception of unstructured environments constituting the typical opera-
tion environment for autonomous off-road vehicles is greatly underrep-
resented in research. Unstructured environments are challenging due
to difficult-to-separate objects and an often inhomogeneous structure
of their natural and grown geometries. To this end, this doctoral thesis
presents novel and customized classic and machine learning perception
methods for unstructured environments and combines them within a
holistic, three-level pipeline for autonomous off-road vehicles: low-level,
mid-level, and high-level perception. The classic and ML perception
methods proposed in this work complement each other. The accompany-
ing validation methods proposed for each level facilitate environment
perception for off-road vehicles with a better understanding of their
unstructured operation environments – especially for heavy construc-
tion machinery in the remediation of landfill sites and unmanned land
systems for off-road transport in defense.

All proposed perception and validation methods were designed as
individual modules within the proposed three-level pipeline. Hence,
their flexible combination allows different pipeline designs for a variety
of off-road vehicles and use cases depending on respective requirements
and constraints, such as a sufficient volume of training data. Here, the
combination of classic and ML methods with accompanying, classic
validation methods paves the way for a comprehensible and trustworthy
perception of unstructured environments in these critical application
scenarios.
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The proposed low-level perception methods comprise a novel con-
fidence analysis process for raw sensor data and registration methods
for visual multi-sensor systems. The proposed confidence estimation
for 2D images and 3D point clouds permits loosely coupled validation
or provides input to a tightly coupled validation within a confidence-
based data fusion in mid-level perception. The registration approaches
presented do not rely on calibration targets but only on the structure
of the surroundings. A semi-automatic registration approach facilitates
the registration of multiple, similar-source LiDAR sensors, while the
UCSR registration framework for cross-source sensor data combines the
customized cc23, cnn23, and graph33 registration methods for sensor
data from unstructured environments and provides confidence-based
registration results for sensors with differing measurement principles.

For mid-level perception, this thesis presents two novel stereo image
disparity estimation methods specially customized for unstructured en-
vironments: the classic CCRADAR method extended for hyperspectral
images that only requires a minimal volume of testing data and the
UEM-CNN method that relies on convolutional neural networks (CNNs)
for disparity estimation. Novel disparity estimation error measures for
unstructured environments and the SET evaluation toolbox for 3D recon-
struction results from stereo image disparity estimation provide a loosely
coupled validation for the disparity estimation methods presented as
well as for other stereo image disparity estimation methods.

Depending on the capabilities and the deployment scenario of au-
tonomous off-road vehicles, a highly detailed navigability analysis, object
detection, and obstacle avoidance are required, which implies a seman-
tic 3D segmentation within the high-level perception of unstructured
environments. Here, the limited data availability becomes especially evi-
dent as evaluation and test data cannot always be provided for critical
applications, such as the remediation of landfill sites. Hence, this thesis
has analyzed the domain transfer of state-of-the-art semantic 3D seg-
mentation methods and presents recommendations for an enhanced
domain transfer performance as well as the customized IC-ACC training
approach to reduce the required amount of training data. In addition,
high-level perception proposed in this thesis discusses the explanation
of predictions from ML methods so that human operators are able to
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understand and judge their performance. This is especially important for
data-driven ML methods as they can learn erroneous behavior from er-
roneous training data. The understanding and comprehensibility of their
predictions constitutes a crucial step towards trustworthy and reliable AI
methods. The pre-modeling IC-ACC method presented provides a gener-
alized, exploratory data analysis for ANN methods in image processing.
Here, information content (IC) and accuracy (ACC) are examined to filter
detrimental data and to compose efficient datasets that contribute to the
reduction of the data amount required to train neural networks. The
X3Seg approach facilitates a post-modeling, model-agnostic explanation
of semantic 3D segmentation results in unstructured environments. It
contributes to the understanding of class predictions in the semantic
3D segmentation by highlighting descriptive, model-agnostic correla-
tions between in- and output data.

The presented proofs-of-concept with data from unstructured envi-
ronments demonstrate the applicability of all proposed perception and
validation methods and show the suitability of the scientific contribu-
tions explained previously in the two main application scenarios in this
thesis – decontamination of hazardous environments and off-road trans-
port in defense. To summarize, the perception–validation pipeline pro-
posed within this thesis facilitates a flexible combination of perception
solutions for autonomous off-road vehicles and has been successfully
implemented on technology demonstrators such as the two IOSB.Alice
and IOSB.BoB excavators and the TULF off-road truck. The combination
of the complementary classic and ML perception methods with the pre-
sented validation methods ensures an accurate and reliable perception
of unstructured environments for autonomous off-road vehicles.

8.2 Outlook
This doctoral thesis presents perception solutions for unstructured envi-
ronments. Nevertheless, this thesis cannot address all facets of perception
required in any single case.

The accompanying classic perception and validation methods already
validate the proposed ML perception methods. However, future work
for all ML methods should tackle the issue of testing against adversarial
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attacks, as discussed for optical flow estimation by Ranjan et al. [224].
In addition, synthetic training could facilitate the evaluation of safety-
critical corner cases where real-world data is hardly available, such as
from natural disasters.

An extension of the proposed low-level confidence analysis towards
merging multiple 3D measurements points into a single 3D point with
a high confidence or also to increase the confidence of each respective
3D measurement would contribute an even tighter coupling of cross-
source sensor measurements. This could be achieved by examining if
2D image pixels and 3D points within the common FoV of two or more
sensors are observed by all or only by some of the applicable sensors.
NIR cameras and LiDAR sensors often operate within the same spectral
range and the fusion of their perception results provides another option
for 2D–3D registration, in addition to cc23 and cnn23. Hence, extending
theUCSR registration frameworkwith anNIR-based registrationmethod
would benefit overall registration accuracy.

For high-level perception, the extension of the proposed semantic seg-
mentation from “single-shot” 3D point clouds to instance segmentation,
the filtering of temporally inconsistent semantic class predictions, and
the tracking of identified, countable objects for knowledge on dynamic
objects with motion profiles would increase the robustness of the inter-
pretation results. Especially in defense, this would extend the application
scenarios of off-road vehicles for tasks exceeding off-road transport.

Future work in domain transfer should include further analysis of the
model performance in data collected with more sensor configurations
and LiDAR sensorswith a higher or lower number of diodes aswell as the
integration of post-modeling XAI methods such as X3Seg. The additional
development of a coarse class structure for navigability analysis and
a fine-grained class structure for exploration and manipulation could
further benefit the domain transfer performance in CNN-based semantic
3D segmentation.
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A Low-Level Perception

A.1 Sensor Data Confidence
The confidence assessment detailed in Section 4.1 analyzes the accu-
racy (ACC) of raw sensor data and complements the IC-ACC approach
presented in Section 6.2.1, as illustrated in Figure A.1. In the context of
confidence assessment and reliability analysis, Hughes [128] discusses
four key questions that are addressed by the proposed confidence esti-
mation approach as follows:

1. “Where in the system is the sensor performance considered?”[128,
p. 2]: the sensor performance is directly estimated on raw sensor
data and consequently considered in a tightly-coupled manner to
exclude detrimental sensor data prior to its input to perception
methods.

2. “Upon what is the uncertainty/reliability judged?”[128, p. 2]: dif-
ferent confidence/accuracy measures are proposed to estimate the
reliability of the captured raw sensor data, and high confidence
indicates high reliability and low uncertainty.

3. “How is the uncertainty/reliability measured?”[128, p. 2]: the
confidence/reliability is measured on the basis of local and global,
per pixel/point (PPC) and per sensor/scene (PSC) criteria.

4. “Andwhat is the effect of its judgment?”[128, p. 2]: sensor datawith
a low confidence is expected to be detrimental and is consequently
not considered in the subsequent processing steps.
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© Fraunhofer 2

IC: Information Content; 

ACC: Accuracy

Raw Data: directly from sensor
(after calibration); 

Processed Data: add. 
Information such as labels.

Data for ML and classic, model-
based methods Data

Raw Data

IC
Confidence 

≡
ACC

Processed
Data

IC ACC

Figure A.1 Confidence (blue), accuracy, and information content assessment
proposed within this thesis. The IC of raw data and the IC and ACC of processed
sensor data is colored green and analyzed with the IC-ACC approach in Sec-
tion 6.2.1.

A.2 3D–3D Similar-Source Registration
The discussed analysis of one-to-many correspondences in the similar-
source 3D–3D registration with GICP shows that the elimination of
the target points with more than 50 one-to-many reduces the 𝑒fs from
2.167m2 to 0.060m2, while the allowance of up to 100 one-to-many per
target point did not further decrease the 𝑒fs. Here, TableA.1 quantitatively
illustrates the influence of the analysis of one-to-many correspondences
in the similar-source 3D–3D registration with GICP.
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Number of one-to-many correspondences Ratio

0 – 20 0.72
21 – 100 0.12
101 – 200 0.09
201 – 300 0.00
301 – 400 0.03
401 – 600 0.04

Table A.1 Distribution of the number of one-to-many correspondences in similar-
source registration of the left (source)L to the right (target)L fromVelodyne VLP-
16 sensorsmounted to IOSB.BoB in partially unstructured outdoor environments.

A.3 UCSR: Confidence-Based Registration
Framework for Cross-Source Sensor Data

A.3.1 cc23: Classic 2D–3D Cross-Source Registration
This appendix contains additional material to Section 4.3.2 and demon-
strates the classic 2.5D–3D cross-source registration with cc23 exploiting
2.5D disparity maps instead of 2D RGB images. Disparity images were
generated using SGBM, as described in Section B.1.1. The expected advan-
tage of using disparity maps in intensity feature extraction is their invari-
ance to image contrast, while their disadvantage are the rather smoother
transitions between the intensity values representing estimated dispar-
ities in comparison to RGB images. Experimental evaluation showed
that the extraction of intensity features is less fruitful, and this approach
did not yield sufficiently accurate and unsatisfactory registration re-
sults in unstructured environments, where smooth depth transitions
and difficult-to-separate objects dominate. Two exemplary input dis-
parity maps, one for structured and one for unstructured environment,
illustrate the problem of insufficient offset in depth transitions in unstruc-
tured environments. Furthermore, errors in disparity estimation add
up to potential inaccuracies in registration, which can further decrease
the achievable registration accuracy. The differences between data from
structured and unstructured environments as well as errors occurring
in disparity estimation are emphasized in Figure A.2, which compares
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(a) Original 2D RGB image (structured). (b) Original 2D RGB image.

(c) SGBM disparity image of (c). (d) 2D int. features of disparity image (d).

Figure A.2 Left reference images of the IOSB-Reg dataset ((a), (b)) with exemplary
stereo image disparity estimation result with SGBM (𝐷1,max = 255, image (c)).
Clear depth offsets are visible for structured elements, whereas unstructured im-
age areas generally present rather smooth disparity and hence depth transitions.
Images ©Fraunhofer IOSB.
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(a) Visual overlay validates ground truth. (b) Decalibrated input.

Figure A.3 Visual overlay for ground truth validation of IOSB-Reg and decali-
brated input to cnn23. Images ©Fraunhofer IOSB.

the disparity estimation in structured and unstructured environments
used as an input to the cc23 variant extracting 2D intensity features
from disparity maps. For this purpose, Figure A.2 shows an exemplary
SGBM disparity image generated from the IOSB-Reg dataset with struc-
tured as well as unstructured image areas. Figure A.2(d) exemplarily
illustrates partially erroneous stereo image disparity estimation results
of SGBM introducing additional difficulties in 3D–3D registration and
also in 2.5D cross-source registration with the proposed cc23 variant in
unstructured environments like Figure A.2(b).

A.3.2 cnn23: 2D–3D Cross-Source Registration with
Neural Networks

This appendix contains additional material to Section 4.3.3. Figure A.3(a)
validates the ground truth for IOSB-Reg capture by visual overlay of the
2D range image projection of a 3D LiDAR point cloud onto a 2D RGB
image in unstructured environment prior to data augmentation for cnn23,
and Figure A.3(b) shows an exemplary, small decalibration of the RGB im-
age and the 2D projected range image. Figure A.4 and Figure 4.11 com-
pare the cnn23 registration results with data augmentation according to
Schneider et al. [246] to an RGB image to range image registration with
cnn23 trained with the enhanced augmentation (cnn23-U) proposed in
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(a) Ground truth.

(b) Decalibration.

(c) Erroneous registration due to over-fitting.

Figure A.4 Over-fitting on KITTI data for 2D–3D registration with cnn23 trained
as proposed in [246]. Without an enhanced augmentation (cnn23-U), cnn23-N
tended to adjust the LiDAR depth image to the RGB image by a horizontal orienta-
tion of the LiDAR depth image with the highest depth values in the approximate
image center as shown in image (c). Hence, neither rotation nor translation was
determined correctly without the proposed uniform data augmentation. Im-
ages © Fraunhofer IOSB.
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(a) 2D RGB input to cnn23.

(b) 1st layer of cnn23 after ReLU activation and prior to max. pooling.

(c) ReLU activations on layer 10 prior to ReLU activation and max. pooling.

Figure A.5 Image (b) and (c) show selected filter activations for cnn23 feature
extraction on RGB image (a) to register image and point cloud for an exemplary
IOSB-Reg scene. Preference for structured elements is indicated by higher weight-
ings for the pixels/activations representing trunk or ground floor.
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(a) Original LiDAR cloud. (b) Dense LiDAR cloud.

Figure A.6 Static condensation of a 3D LiDAR cloud from a Velodyne HDL-
64E sensor: the original LiDAR cloud (a) from one sensor rotation with 10Hz
is condensated by overlaying and aggregating the five previous and the five
subsequently captured LiDAR clouds (b) within a time interval of 1.1 s.

this thesis. Figure A.5(b) shows filter activation weights prior to ReLU
activation and maximum pooling, while Figure A.5(c) depicts the filter
activations after ReLU activation but prior to maximum pooling for the
RGB feature extraction on Figure A.5(a). Both filter activations highlight
the preference for structured elements in the cnn23 registration method
that only relies on the structure of the surroundings. Figure A.5 illustrates
filter activations prior to and after ReLU activation and maximum pool-
ing from different feature extraction layers inside the cnn23 architecture.
Natural and grown structures, such as grass or mounds in unstructured
environments, can contribute to the feature extraction process from the
2D image but most cnn23 filter activations for feature extraction show a
preference for structured elements compared to unstructured elements
with inhomogeneous structure and primarily dominated by similar tex-
tures and difficult-to-separate objects.

A.3.3 graph33: Classic 3D–3D Cross-Source Registration
This appendix contains additional material to Section 4.3.4. Figure A.6
visualizes the densification of LiDAR clouds in a static scene increasing
the number of 3D points for correspondence matching with the stereo
camera point cloud in graph33 registration. Figure A.7 shows the affinity
matrices of two additional descriptors added to graph33: distance to origin
(𝐀𝑅) and normal orientations to the voxel centroid (𝐀𝑁).
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(b) Angle to 𝑧 (𝐀𝑍). (b) Normal of centroid (𝐀𝑁).

Figure A.7 Affinity matrices of additional 𝐀𝑍 and 𝐀𝑁 descriptors in graph33
(supplementary to the descriptors depicted in Figure 4.17). The vertical axis
represents the source nodes, the horizontal axis the target nodes. The color
scaling highlights the affinity values between source and target nodes where
zero indicates no affinity between source and target nodes and a value of one –
colored in red – describes complete affinity between two nodes.

A.3.4 dsm33: 3D–3D Cross-Source Registration with
Neural Networks

The dsm33 method facilitates the 3D–3D registration of cross-source data
with CNNs, as described in Section 4.3.5. The proof of concept described
hereinafter was primarily conducted by Leitritz [335] under supervision
of this thesis’ author.

A.3.4.1 Proof of Concept: dsm33

Different hyper-parameter settings for network training were evaluated
for dsm33 in [335] as the perception data from unstructured environ-
ments notably differs from the medical data targeted in [109]: input size
of the 3D images, number of filters per layer, dropout, and maximum
decalibration, and only one hyper-parameter setting was changed in each
training process. The learned similarity metric’s performance and the
efficacy of the differential optimization method for dsm33 were evalu-
ated. Furthermore, the capture range of the registration method – the
maximally tolerated decalibration to achieve a valid registration result
– was analyzed, and all evaluation steps were conducted with a special
focus on data from unstructured environments. 146 3D point clouds of
the IOSB-Reg dataset were used to train dsm33, and 15 randomly selected
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(a) 2D RGB reference image. (b) dsm33-U registration result.
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(c) dsm33-U registration accuracy. (d) Translational decalibration in 𝑦 axis.

Figure A.8 Registration results with dsm33-U and differential evolution for a level
M decalibrationwith a 𝐭 offset of [-0.49m; 0.18m; 0.089m] and an 𝐫 offset of [7.76°;
5.54°; −3.46°]. (d) compares dsm33-U, dsm33-N, and mutual information (MI) as
similarity metrics to estimate the translational decalibration in direction of the
𝑦 axis on IOSB-Reg with the associated normalized mean Euclidean error (|e|
showing the ground decalibration (MED) that shall be estimated by dsm33. Here,
only dsm33-U provided a correct estimation of the translational decalibration
which highlights the importance to augment the training data with uniformly
distributed decalibrations using the presented enhanced augmentation (dsm33-
U). Images (a) and (b) ©Fraunhofer IOSB.
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3D cloud pairs were reserved for validation and 15 for testing. As the
model size of dsm33 is smaller than the model of [109], the IOSB-Reg
dataset with 146 data points provided a sufficient amount of training
data compared to 539 data points that achieved representative results
in [109].

The dense stereo camera clouds S were generated with the classic
SGBM approach [118] according to B.1.1 and selected as the source, while
Lwas chosen as the registration target. SGBM was applied instead of the
UEM-CNN architectures as SGBM provided a higher prediction density.
The lower disparity estimation accuracy and higher prediction density of
SGBM were favorable to evaluate dsm33 as it aims at a stable registration
even with higher depth estimation errors. ML methods trained for less
accurate input data are naturally capable of working with more accurate
data, but the reverse is seldom possible. In contrast to [109], dsm33works
with equal dimensions of the input data in 3D space. This facilitated an
increased augmentation dimension of dsm33, and it was sufficient to use
augmented data from unstructured environments solely.

Haskins et al. [109] parameterized DINO with a population size of
5 and terminated it after 13 generations, and the differential evolution
results were subject to subsequent BFGS optimization. The dsm33method
utilizes a truncated differential evolution with a population size of 15
agents and termination after 100 generations with a coarse initial guess in
the range of the decalibration levels S to L. All other parameter selections
followed the suitable and well-tested recommendations in SciPy1 and
Open3D [315] for ICP, voxelization of the point clouds, and truncated
differential evolution.

The training data for the final configuration of dsm33 was augmented
for a uniform distribution of level M decalibrations (see Section 3.11).
The memory requirements of the model were adjusted for training on
smaller computer architectures by smaller voxelized 3D images with
𝑑𝑣𝑥 × 𝑑𝑣𝑦 × 𝑑𝑣𝑧 = 256 × 256 × 32 to achieve reasonable training times
on the available hardware. The number of 3D convolutional layers and
the number of neurons in the fully connected layer were reduced by

1 SciPy: Open source scientific tools for Python, http://www.scipy.org/, access on
03.11.2021.
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50% compared to the 512 × 512 × 32 voxelization proposed in [109]. The
batch size was set to 1 to prevent batch normalization, which reduced the
number of network parameters by 92% from 285,193,745 to 22,564,873,
and dsm33 trained for 438,000 iterations (79 hours on RTX 2080S).

Figure A.8 compares the registration accuracy of dsm33 with differ-
ential evolution optimization to the use of MI with DINO and classic
ICP. The resulting 𝐿dsm33 measures the achieved registration accuracy of
source and target cloud similar to the GICP 𝑒fs score and amounted to
𝐿dsm33 = 0.356 m on the validation set of dsm33. The training error was
approximately ten times lower with 𝐿dsm33 = 0.039 m which can indicate
over-fitting due to a limited amount of training data, and the extension
of the training dataset with additionally captured S and L data can help
to further analyze and also prevent over-fitting.

The maximum number of differential evolution iterations was set to
100, and convergence was mostly reached at around 60 iterations. The
inference in dsm33 was conducted about 10,000 times for each complete
dsm33 registration. Initially, the 𝐿2 values in differential evolution have
a high variation as random parameter populations are generated. Each
subsequent generation utilizes the best solution of the previous genera-
tion as a starting point which yielded a lower variation of the Euclidean
distance during the optimization process. In contrast to other CNN-based
registration methods, an accurate registration result in dsm33 is not neces-
sarily indicated by a low validation error as long as a high decalibration
results in a high decalibration estimate and vice versa. The 𝐿2 norm and
the 𝐹 norm are applied to measure the registration performance of dsm33,
and Figure A.8 shows the registration accuracies in terms of 𝐿2 for the
3D–3D registration of the selected 3D validation dataset for dsm33-U,
dsm33-N, andMI with differential evolution optimization. Here, dsm33-U
performed best with the lowest 𝐿2 norm and the lowest 𝜎(√𝐿2). Fig-
ure A.8 shows an exemplary registration result on the IOSB-Reg dataset
with dsm33-U and the subsequent differential evolution.
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A.3.5 Comparison of Individual Cross-Source Registration
Methods

Table A.2 illustrates the registration performance of dsm33 variant that
achieved the most accurate registration results (dsm33-U) for a level L
decalibration in comparison with cnn23 and the classic ICP method.

Measure cnn23 dsm33-U ICP Decal.
Registration accuracy in terms of 𝐿2.

𝜇(𝐿2) 1.895 0.916 2.281 3.267
𝜎(𝐿2) 1.115 0.376 0.990 0.876
min(𝐿2) 0.291 0.313 0.748 1.345
max(𝐿2) 4.227 1.693 4.345 4.983

Registration accuracy in terms of 𝐹.
𝜇(𝐹 ) 0.496 0.664 1.478 0.284
𝜎(𝐹 ) 0.262 0.287 0.820 0.070
min(𝐹 ) 0.119 0.261 0.531 0.155
max(𝐹 ) 0.991 1.453 3.233 0.402

Registration accuracy for selected DoFs.
Δ𝐭 along 𝑧 axis 0.146 0.097 0.807 0.427
Δ𝐫 around 𝑥 axis 3.107 0.905 3.770 10.379
Δ𝐫 around 𝑧 axis 6.647 2.558 6.712 8.765
Δ𝐭 0.201 0.310 0.739 0.437
Δ𝐫 5.166 1.338 4.167 10.067
𝐿2 is given in m. Rotations are given in degrees.

Table A.2 Registration results of cnn23, dsm33-U, and ICP for level L decalibrations on
the IOSB-Reg dataset.

A.4 2D Image Fusion and Visual SLAM with
RGB–NIR and HDR Images

This appendix contains additional material to Section 4.4 and demon-
strates the application of the achieved 2D image fusion results in visual
SLAM.

Visual SLAM is discussed here, as mapping and localization build on
the environment perception results, generate a map, and determine a
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position inside a predefined coordinate system. If this coordinate system
is related to a previously captured map, localization can be interpreted
a registration problem in a wider sense. SLAM approaches align the
acquired sensor data to the map and hereby determine the position in
relation to the present map such as in SLAM-driven point cloud regis-
tration [150]. For autonomous vehicles, SLAM and the applied registra-
tion methods need to work in real-time. Consequently, visual SLAM ap-
proaches such as scan matching in 3D on the basis of 3D LiDAR data [59]
rely on direct similar-source registration methods. Thereby, “single-shot”
LiDAR clouds [59] are registered to the present map that is typically
saved as a 3D point cloud to prevent information loss. In 3D scan match-
ing, the relative motion between two consecutive scans is estimated and
contributes to amulti-sensor SLAM solution similar to themeasurements
of odometry sensors. Emter and Petereit [59] utilize the GICP method to
register consecutive LiDAR scans and to determine the LiDAR odometry
measurement as visual 3D SLAM result. As an extension to visual SLAM,
feature-based stereo image disparity estimation can be combined with
LiDAR measurements as proposed by Gräter et al. [96]. The authors
target one of the main drawbacks of stereo image disparity estimation,
its dependency on accurate extrinsic camera calibration, by extracting
the depth information from LiDAR as well as motion estimation from
keyframe-based bundle adjustment. Landmarks are weighted according
to their semantic classification and lowweightings for unstructured vege-
tation landmarks in contrast to high weightings for structured landmarks
highlight the difficulties encountered in the perception of unstructured
environments.

In general, visual odometry estimates the relative motion between the
capture of two consecutive images or point clouds on the basis of the
feature extraction and matching. On the basis of these visual odometry
results, visual SLAM tracks the feature points through consecutive key
frames to generate amap and the determined, relative odometrymeasure-
ments provide the localization for the integration of the captured images
in the generated map. Contrasting 3D SLAM, visual 2D SLAM mainly
relies on 2D camera images and visual 2D SLAM methods such as ORB-
SLAM [200] and ORB-SLAM2 [201] constitute registration scenarios with
visual input information. In general, feature-based visual SLAM relies
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on the extraction of 2D features, such as SIFT, SURF, or ORB described in
Section 2.3.2, and conducts a 2D registration process via a sparse feature
representation of the original 2D images. While ORB-SLAM provides a
visual SLAM solution for monocular cameras and derives the relative
motion from two consecutive monocular images, ORB-SLAM2 works
with monocular, stereo, and RGB-D data. In the Visual Odometry/SLAM
Evaluation 20122, ORB-SLAM2 ranged 62 of 141 with less than 0.1 s of
computation [82]. ORB-SLAM3 by Campos et al. [31] furthermore pro-
vides visual, visual-inertial, and multi-map SLAM for monocular, stereo
and RGB-D cameras with pinhole or fish-eye lens models. Campos et
al. [31] state that in contrast to previous feature-based approaches, the
Maximum-a-Posterior estimation in ORB-SLAM3 yields robust operation
in indoor and outdoor environments with a notably higher accuracy as
the ability to process multiple maps facilitates the generation of a new
map when the current localization is lost. As an alternative approach,
Albrecht and Heide [318, 320] present the integration of inertial mea-
surements and the direct usage of HDR images generated by MEF with
an evaluations in person indoor navigation that increases robustness of
ORB-SLAM2 as ORB-SLAM3 [31] was not yet published at this point in
time.

To conclude, the utilization of multi-spectral and HDR cameras can
help to improve the reliability, accuracy, and success rate for visual
2D SLAM, especially in the transition between indoor and outdoor en-
vironments and naturally also in unstructured outdoor environments.
HDR cameras can also circumvent the challenge of illumination changes
in the transition from indoor to potentially brighter outdoor environ-
ments or when facing windows with a higher brightness by capturing
two images per activation and per camera: one image with a low, and one
image with a high exposure time. Prism-mounted HDR cameras yield
those two images from the same viewpoint and with identical camera
intrinsics.

Multi-spectral prism cameras provide simultaneously captured RGB
and NIR images with exactly the same FoV, which allows the direct com-

2 Visual Odometry / SLAM Evaluation 2012: http://www.cvlibs.net/datasets/kitti/eval
_odometry.php, access on 06.12.2021.
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parison of visual SLAM results on RGB,NIR, and fused RGB–NIR images.
Especially in difficult lighting conditions, multi-layered image represen-
tation in visual SLAM can improve the performance of ORB-SLAM2 as
demonstrated by Wang et al. [287] and also as discussed in Section 2.3.2.
The 2D image approach proposed in this thesis pursues a similar strategy
and combines image information from different spectral channels into
one image with MEF. MEF as described in Section 4.4 was utilized to
fuse RGB and NIR images and the RGB, NIR, and fused RGB–NIR im-
ages constituted the input for the visual SLAM with the ORB-SLAM2
algorithm [201] to examine a potential increase in reliability, accuracy,
and success rate. ORB-SLAM2 was selected to demonstrate the bene-
fit of the proposed 2D image fusion approach in this thesis as it was
open-source available and experimentally well-validated. The target en-
vironment to examine and compare the performance of visual 2D SLAM
with RGB, NIR, and fused RGB–NIR images was chosen as a combination
of structured and semi-structured environments. This analysis of visual
SLAM methods in indoor and rather structured outdoor environments
highlights the generalization possibilities of the proposed perception
methods for other types of environments and the visual SLAM results on
the basis of ORB-SLAM2 constitute a proof of concept for visual SLAM
with fused RGB–NIR images in primarily structured environments.

The RGB and NIR images for the image fusion in Section 4.4.2 and for
the subsequent input into the visual SLAM approach were also captured
with the sensor setup of the IOSB-Reg dataset (see Section 7.4) and three
SLAM scenarios are evaluated: the first indoor scenario covered a short,
straight path in direction of the window shown in Figure 4.21, a second
loop-closure scenario analyzed transitions from outdoor to indoor and
back again, while the third scenario was the longest with turns around
several corners and included the same transition from outdoor to indoor
as the loop-closure scenario.

The conducted visual SLAM analysis showed that NIR images alone
did not provide sufficient information for feature-based visual SLAM,
neither in indoor nor in outdoor environments.

The 2D path for the second scenario with RGB and RGB–NIR stereo
images includes loop-closure. However, loop-closurewas not detected for
both RGB and RGB–NIR, but the starting point was reached without loss
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of localization in contrast to the utilization of HDR images [320]. Thus,
the transition from outdoor to indoor as well as from indoor to outdoor
was achieved without losing the visual SLAM localization presented.
Concluding, fused RGB–NIR images proved useful for visual SLAM in
unstructured outdoor environments due to the imaging characteristics of
the NIR spectrum and the achieved results. The successful application of
fused RGB–NIR images in feature-based, visual SLAM also validated the
utilization of the MEF method to generate RGB–NIR images proposed
in Section 4.4.

Hence, the fusion of the two synchronized image streams constitute
a suitable input for feature-based visual 2D SLAM ORB-SLAM2 [201,
320]. The utilization of several HDR fusion methods for grayscale HDR
cameras as an input to visual 2D SLAM is examined by Albrecht and
Heide [320]. Evaluationwas conducted in person indoor navigation using
a person carried HDR stereo camera system in realistic indoor applica-
tion scenarios. The authors [320] show that the approach is capable to
handle changing illumination conditions and can increase the reliability
of localization and mapping in visual 2D SLAM.
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B.1 Stereo Image Disparity Estimation

B.1.1 Disparity Estimation from Stereo Images
Ray-tracing or the perspective transformation matrix 𝐐𝑝 can be applied
to identify the corresponding 𝑥([𝑖, 𝑗]) and 𝑦([𝑖, 𝑗]) coordinates for the
calculated disparity 𝑑([𝑖, 𝑗]) of pixel [𝑖, 𝑗] in the reference camera frame. A
rectified 2D image of a horizontal stereo camera setupwith the disparities
𝑑([𝑖, 𝑗]) is projected into 3D space with
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The optical centers 𝑜𝑥1
, 𝑜𝑥2

, 𝑜𝑦 are given in the projection matrices 𝐏1 and
𝐏2 of the rectified camera coordinate systems, and the calibration of a the
stereo camera system for zero disparity yields an equivalent 𝑜𝑥 for both
optical centers inside the projection matrices.

For stereo image disparity estimation, the following parameterization
of SGBM achieved a convenient performance on unstructured images
of the JAI AD-130GE cameras: a minimum disparity of 0, a maximum
disparity of 160, a block size of 3, a disparity smoothness 𝑃 1 = 216 and
𝑃 2 = 864, and a uniqueness ratio of 5%. Pre-filtering was used with a
preFilterCap of 63 and LRC was conducted with a one pixel threshold. A
weighted least squares filter with a 𝜆LS = 8000 and 𝜎LS = 1.5 was applied
for additional refinement. Figure B.1 shows an exemplary left and right
image of the IOSB.amp Q1 stereo-setup as well as an exemplary SGBM
disparity estimation result and the corresponding stereo camera point
cloud.
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(a) Left (reference) RGB image. (b) Right RGB image.

(c) SGBM disparity image. (d) SGBM stereo camera point cloud.

Figure B.1 Left (a) and right (b) stereo image with disparity map (c) and cor-
responding 3D point cloud (d) from SGBM stereo image disparity estimation.
Disparity estimates that were identified as inaccurate during post-processing
with LRC are colored in red. Images ©Fraunhofer IOSB.

B.1.2 Disparity Estimation on Hyperspectral Images
Figure B.2(a)-(c) depict the evaluation images for the hyperspectral stereo
image disparity estimation with CCRADAR, as detailed in Section 5.1.1.
Table B.2(d) shows the group dimensions used on the M6000. The evalu-
ation of the CUDA implementation was carried out with the NVIDIA
Visual profiler allowing the analysis of registry allocation and memory
requirements. As native CUDA context on the M6000 contains 32 ele-
ments, the integral multiples of 32 and of the image resolution with
mosaic pixels (512 × 272) were evaluated. For hyperspectral images with
16 channels, one mosaic pixel needs 16 bytes as a basis for memory allo-
cation and the similarity measures for stereo image disparity estimation
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(a) Vegetation with test objects (𝑗 = 1). (b) Mixed urban zone (𝑗 = 2).

(c) Pure urban zone (𝑗 = 3).
Processing step Group dimension

Census Transform 16 × 8
SAD 128 × 1
SGDx 16 × 16
SGDy 16 × 16
Cost Comb. 8 × 64 - 512 × 1
Disp. Selection 16 × 16
Guided Filter 256 × 1

(d) Group dimensions for M6000.

Figure B.2 Images (a)-(c) depict the evaluation images for hyperspectral stereo
image disparity estimation [324]: image (a) and (b) represent mainly unstructured
environments, while image (c) represents structured outdoor environments.
Table (d) describes the chosen dimensions of the SIMT group for hyperspectral
CCRADAR on the NVIDIA M6000 GPGPU.
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are conducted on 16 channels. Thereby, a partitioning with eight contexts
allowed efficient latency hiding, as detailed in [285].

B.1.3 UEM-CNN : Stereo Disparity Estimation with CNNs
Figure B.3 shows an exemplary range-limit error weighting W scaled for
the reference disparity values 𝐃2[𝑗, 𝑘] ∈ [0, 255]. Table B.1 extends the
accuracy analysis results for stereo image disparity estimation withUEM-
CNN described in Table 5.4. Figure B.4 depicts the non-occluded 5PE
error on image 88 of the KITTI 2012 training dataset depicted in Figure 5.6.

Method 3PE R3PE PD

SGBM, LRC, weighted LS 25.50 17.14 95

UEM-CNNbase raw 39.49 32.33 96
UEM-CNNbase LRC 17.43 10.82 50
UEM-CNNbase median 34.57 27.56 96
UEM-CNNbase median, LRC 15.97 9.59 49
UEM-CNNbase LRC, median 16.66 9.20 55
UEM-CNNbase LRC, median, LRC 15.88 9.04 55

UEM-CNN9 raw 31.37 24.7 96
UEM-CNN9 LRC 16.63 10.32 63
UEM-CNN9 median 28.00 21.50 96
UEM-CNN9 median, LRC 14.74 8.71 63
UEM-CNN9 LRC, median 16.03 9.34 61
UEM-CNN9 LRC, median, LRC 14.64 8.36 63

UEM-CNN19 raw 25.10 17.70 98
UEM-CNN19 LRC 14.90 7.65 69
UEM-CNN19 median 23.92 16.69 98
UEM-CNN19 median, LRC 14.26 7.19 70
UEM-CNN19 LRC, median 14.81 7.48 70
UEM-CNN19 LRC, median, LRC 14.35 7.16 70

Table B.1 3PE, reference weighted 3PE (R3PE), and PD for classic SGBM and
UEM-CNN on KITTI 2012. Raw indicates no post-processing, LRC and median
filtering were conducted with 3 px.
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Figure B.3 Exemplary range-limit error weighting function 𝑊: 𝐷2 ∈ [0, 255], 𝑏 =
63.75, which is 25% of 255, 𝐿 = 50, and 𝑈 = 200. This parameterization achieved
a convenient error assessment for stereo image disparity estimation on greyscale
images from unstructured environments.

Figure B.4 Non-occluded 5PE error in addition to the disparity error metrics
demonstrated on image 88 of the KITTI 2012 training dataset in Figure 5.6. Green
coloring shows estimated disparities with less than 5PE and errors exceeding 5PE
are colored red with higher intensity indicating higher error values. Especially
low exposed and low textured areas introduced high disparity estimation errors
in the analyzed unstructured environments.

B.2 SET : Stereo Evaluation Toolbox
Table B.2 gives the technical details of all camera systems that were
evaluated with SET. Further details to SET can be found in [325].

B.2.1 Dynamic Evaluation: Visual SLAM Assessment
SET can also be applied to compare the results of off-the-shelf stereo
camera systems with integrated SLAM solutions to customized SLAM
solutions with feature- or correlation-based algorithms on different cam-
era systems. ORB-SLAM2 was chosen to demonstrate the comparison of
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Type (# Channels) Image Res. Depth Res. 𝐵 Stereo Alg. SLAM Alg.

ZED, filling (3) 3840 × 1080 1280 × 720 0.120m custom custom
rc_visard 160 (1) 1280 × 960 640 × 480 0.160m custom custom

MQ013RG (1) 1280 × 1024 1280 × 1024 0.385m ORB, SGM ORB-SLAM2
MQ022HG (16) 2048 × 1088 512 × 272 0.740m CCRADAR –

Table B.2 Camera systems included in experimental evaluation with SET.

(a) (b)

Figure B.5 Image a) depicts an exemplary structured indoor scene for static
SET evaluation, and image (b) shows stereo disparity estimation results of the
rc_visard camera system after registration to the Velodyne VLP-16 reference data.
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off-the-shelf visual SLAM solutions to customized SLAM solutions with
different camera systems as elaborated in [325].

The dynamic evaluation was demonstrated for indoor environments
as a typical application environment for visual SLAM in person indoor
navigation [318, 320]. However, the proposed approach is also applicable
for visual SLAM in outdoor environments. The proposed evaluation

Criterion Identifier Calculation Weight

Absolute path length PL max(|PLSLAM/PLGT − 1|, 1) 0.40
Max. distance from path 𝐷max max𝑁

𝑗=1(𝑑𝑗)/0.5 m 0.15
Min. distance from path 𝐷min min𝑁

𝑗=1(𝑑𝑗)/0.5 m 0.15
Average distance from path 𝐷 ∑𝑁

𝑗=1 𝑑𝑗/(𝑁 ⋅ 0.5 m) 0.30

Table B.3 Criteria and corresponding weightings for the dynamic evaluation of
visual SLAM solutions in indoor environments.

criteria are purely quantitative and Table B.3 provides an overview with
identifiers, calculation methods, and weights. The ground truth PLGT
can be obtained from building plans, if available, or from manual mea-
surements. Path length compares the total path length in visual SLAM
to the ground truth path length. Here, the SLAM path length (PL) is the
sum of the path elements 𝑑𝑗 between the estimated camera positions 𝐐𝑗:

PLSLAM =
𝑁−1

∑
𝑗=1

|𝐐𝑗+1 − 𝐐𝑗|, (B.2)

as illustrated in Figure B.6. 𝐷max, 𝐷min, and 𝐷 were normalized with
0.5m, which proved useful as a tolerable maximum in experimental vali-
dation [318, 325]. PL measures scaling accuracy and noise of the overall
SLAM solution, while 𝐷max, 𝐷min, and 𝐷 assess the number of outliers as
well as the accuracy of the individual estimated camera positions in com-
parison to the ground truth path. The combination of the four proposed
criteria allowed a separate assessment of inaccuracies due to outliers and
noise and the overall performance rating of the SLAM solution. Finally,
the dynamic SET score is calculated with

𝑆dyn = ∑
𝑖

𝑖 ⋅ 𝑤𝑖, 𝑖 ∈ {PL, 𝐷max, 𝐷min, 𝐷}. (B.3)
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B.2.2 Proof of Concept: Visual SLAM Assessment with
SET

The dynamic SET evaluation was demonstrated on three typical indoor
scenarios as described in [325]. The results for visual SLAM performance
given in Table B.4 originate from the second scenario that passed a
straight corridor with monochromatic walls and also included a turn
around one corner. Figure B.5 shows exemplary results of the dynamic
evaluation. In the dynamic SET evaluation, the rc_visard camera yielded
the most accurate visual SLAM performance among the three evaluated
systems for visual SLAM in indoor environments.

Criterion ZED rc_visard MQ013ORB

PL (0–1) 0.095 0.602 0.059
𝐷max (0–1) 0.312 0.497 0.529
𝐷min (0–1) 0.003 0.012 0.0
�̄� (0–1) 0.155 0.149 0.265
Score 0.132 0.362 0.182

Table B.4 Application of SET in performance assessment of the stereo systems
described in Table B.2 in visual SLAM according to [325].

Figure B.6 Evaluation of visual SLAM: 𝑄𝑗 camera position from visual SLAM,
𝑃𝑖 GT path, 𝑑𝑗 denotes the perpendicular distance to the ground truth according
to [325].
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B.3 Sensor Data Fusion

B.3 Sensor Data Fusion
Table B.5 contrasts the complementary characteristics of the analyzed
2D and 3D cross-source sensor data. The given, complementary char-
acteristics can be combined depending on the available sensors within
the visual multi-sensor system with 2D–3D or 3D–3D fusion detailed
in Section 5.3.

Characteristic RGB 3D Stereo 3D LiDAR 2D–3D Fusion 3D–3D Fusion

Intensity RGB RGB Refl. RGB, refl. RGB, refl.
Color Dense Dense – Dense Dense
Geometry – Dense Sparse Sparse Dense
Depth acc. – ∼ 1/𝑧2 High High Mixed

Table B.5 Complementary characteristics in 2D and 3D cross-source data: in-
tensity, passive measurements of color intensity from passive cameras (color),
geometric measurements for 3D reconstruction (geometry), and depth estimation
accuracy (depth acc.); LiDAR sensors measure the intensity of the reflections in
the NIR spectral range (refl.).

Figure B.7 shows selected 2D–3D fusion results on exemplary cross-
source sensor data of the IOSB-Reg dataset generated on the basis of
the given intrinsic and extrinsic calibration. Figure B.8 depicts 3D–3D
fusion results for method C and a combination of method B and C. The
combination of B and C filters a notably higher amount of points from
the stereo point cloud than the utilization of method C.

Furthermore, the integration of the implicit 2.5 D surface fusion ap-
proach of Dutschk et al. [55] in the confidence-based 3D–3D fusion can
help to increase the surface reconstruction accuracy of the fused 3D cloud
in future works. The implicit surface approximation estimates and fuses
surfaces depending on the uncertainty 𝜎2 of the model:

𝜎2 =
1
𝑁

𝑁

∑
𝑗=1

(𝑓𝑘(𝐱) − 𝐧𝑇
𝑗 (𝐱 − 𝐱𝑗))2 (B.4)
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with 𝑁 implicit surfaces and 𝐧𝑇
𝑗 the transposed normal vector at the

test point 𝐱𝑗. Finally, the fusion of the surfaces is performed using the
weighting factor 𝑤𝑖 = 1

𝜎2 as

𝑓𝑘(𝐱) =
∑𝑖 𝑤𝑖𝑓𝑖,𝑘(𝐱)

∑𝑖 𝑤𝑖
. (B.5)
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B.3 Sensor Data Fusion

(a) Original 2D RGB image.
(b) 2D–3D fusion.

(c) 2D–3D fusion: front view of condensed, FoV-filtered cloud.

(d) 2D–3D fusion: bird’s eye view of (b).

Figure B.7 Projection of the geometric 3D information from the LiDAR point
cloud onto the 2D image for an exemplary image from the IOSB-Reg dataset:
original RGB image from JAI AD-130GE camera (a) and corresponding 2D–3D
fusion result with a single Velodyne HDL-64E point cloud (b). (c) shows the
2D–3D fusion result of a condensed Velodyne HDL-64E point cloud from eleven
single scans in static configuration after filtering the FoV with available color
information, while (d) depicts a bird’s eye view on 2D–3D fusion result with
condensed and FoV-filtered cloud. 3D points without color information from the
image are colored in black.
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(a) 3D–3D fusion C for unstructured scenery (II).

(b) 3D–3D fusion with the combination of B and C for scene I.

(c) 3D–3D fusion with method B and C for scene II.

Figure B.8 3D–3D fusion results of stereo camera point clouds and Velodyne
LiDAR point clouds for scenes I and II: (a) uses the range-based method C with
𝑟 ≤ 10 m for scene II (694,452 points), (b) and (c) combine method B (𝑑NN = 0.1 m,
𝑁min = 10) and C with 𝑟 ≤ 10 m for the partially structured scene I (b) and for the
unstructured scene II (c).
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C High-Level Perception

C.1 Semantic Segmentation of 3D Point Clouds
The proposed high-level perception methods interpret ordered and un-
ordered 3D point clouds as “single-shot” 3D clouds without additional
color information.

C.1.1 Classic Segmentation of 3D Data
Classic 2D and 3D segmentation techniques include spatial clustering
and region growing schemes [6, 108]. Classic segmentation methods are
well-established tools and seldomly subject to research nowadays [318,
323]. Classic segmentation techniques aremainly utilized as pre- andpost-
processing tools within other methods. Consequently, classic segmenta-
tion techniques are only discussed in the context of low-level perception
in this thesis. For instance, the Random Sample Consensus (RANSAC)
algorithm [39] can be applied to estimate point sets with simple geo-
metric characteristics such as in plane segmentation. RANSAC can also
be applied to detect the approximately flat ground plane in outdoor
environments, as discussed in Section 4.2.3. Albrecht and Heide [318]
apply RANSAC to identify and remove floor and ceiling in structured
indoor environments.

C.1.2 Computational Effort for Semantic 3D Segmentation
One Velodyne HDL-64E frame typically includes around 100,000 points
and frames are captured with 10Hz on the technology demonstrators in
this thesis. The subsequent analysis compares the computational effort
of an exemplary classification method, which can be extended towards
semantic segmentation andworks in 3D space (PointNet), to the computa-
tion effort of a semantic segmentation methods that works on the basis of
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2D range images (SqueezeSeg). PointNet requires 440 ⋅ 106 floating point
operations for the classification of one sample in average [221] and em-
pirical tests of Qi et al. [221] show the potential to process 106 points per
second with an NVIDIA 1080Ti GPU. For reference, an NVIDIA GeForce
GTX TITAN X1 has a theoretical performance of 6691 ⋅ 1012 floating point
operations per second (FLOPS), while an NVIDIA GeForce GTX 1080 has
a maximum theoretical processing power of 8873 ⋅ 1012 single precision
FLOPS – even more than the reference GPU that was used to evaluate the
feature extraction in 2D space for SqueezeSeg [298]. Contrasting the com-
putational effort of PointNet for classification only, SqueezeSeg required
13.5ms in average on a TITAN X GPU in the experiments of [298] for
the semantic segmentation of 360° LiDAR point clouds from Velodyne
HDL-64E LiDAR sensors including post-processing. Concluding, Point-
Net required approximately one second to process one million points
for classification on a faster GPU and without any post-processing. This
clearly shows that the application of 2D convolutions that implies the
semantic segmentation on the basis of 2D range images is much more
favorable in robotic perception by now.

C.1.3 Domain Transfer
Figure C.1 depicts the ground truth labeling of the analyzed IOSB.Alice
cloud and illustrates selected 3D point clouds for the 2D range images
depicted in Figure 6.3.

Table C.1 compares the relative label distribution of SemanticKITTI, the
full SemanticUSL dataset, as well as of selected scenes of SemanticUSL.
Figure C.1 furthermore depicts selected 3D point clouds that corre-
spond to the semantic segmentation results given in Figure 6.3 that were
achieved by DN53 after domain transfer to IOSB.Alice.

1 https://www.techpowerup.com/gpu-specs/geforce-gtx-titan-x.c2632, access on
06.12.2021.
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C.1 Semantic Segmentation of 3D Point Clouds

Left: Raw 3D point cloud IOSB.Alice, right: ground truth labeling [339]

To Figure 6.3(b): IOSB.amp Q1. To Figure 6.3(c): IOSB.Alice left.

To Figure 6.3(d): IOSB.Alice rear.

Figure C.1 Selected, respective 3D point clouds for IOSB.Alice domain transfer
analysis: raw, fused 3D point cloud and ground truth labeling, and domain
transfer results on spherical projections (range images) with DN53 in Figure 6.3.
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K 6.2 0.1 0.4 0.1 17.6 1.2 12.1 0.1 11.4 2.5 29.2 1.1 12.8 0.3 0.1
U 3,12,21,32 1.3 <0.1 0.0 0.3 17.3 2.1 13.5 <0.1 18.4 6.7 21.0 0.8 9.7 0.4 0.1
U 3 0.3 0.0 0.0 0.4 23.7 1.7 8.6 <0.1 15.5 17.3 18.4 0.7 5.3 0.5 0.1
U 12 0.0 0.0 0.0 <0.1 0.0 0.0 17.0 0.0 25.3 5.9 21.6 1.3 20.7 0.1 0.0
U 21 3.6 0.1 0.0 0.5 25.4 7.5 10.8 0.0 20.4 0.2 20.0 0.3 1.7 0.5 0.4
U 32 2.1 0.0 0.0 0.2 23.1 0.0 17.7 0.0 11.4 1.4 24.3 0.9 9.4 0.4 0.1

Table C.1 Relative label distribution of SemanticKITTI (K) (seq. 8), the full
SemanticUSL (U) dataset, and of individual SemanticUSL scenes (3, 12, 21, 32).
The relative label distributions for the following classes are not displayed as
they are seldom encountered in the analyzed unstructured environments or
have a negligible share: bicycle, bicyclist, motorcycle, motorcyclist, other-vehicle,
unlabeled.

C.2 Explainable Artificial Intelligence

C.2.1 X3Seg: Post-Modeling, Model-Agnostic XAI for
3D Semantic Segmentation

Figure C.2 depicts the lower trunk explanation target and the identified
best-matching prototypes for two different grid sizes, and Figure C.3
shows the best-matching selective X3Seg prototypes for two different
values of 𝜎𝐺. Figure C.7 provides an overview of the best-matching pro-
totypes of the analyzed lower and upper trunk structures according to
each individual metric. As already discussed, experimental evaluation
justified the assumption that a higher number of prototypes #P lead to a
better understanding of the class predictions in X3Seg due to a higher
variety of prototypes which allowed the identification of a very similar
prototype from the training data. Figure C.5 and Figure C.4 show the
best-matching prototypes with #P ∈ {25, 100, 500}.
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(a) Explanation target. (b) 25 × 25 grid. (c) 100 × 100 grid.

Figure C.2 Comparison of a low and a high resolution grid for the lower
trunk explanation target. Different resolution did not show a notable influ-
ence on the best-matching prototypes determined out of 100 prototypes in X∈.
Images ©Fraunhofer IOSB.

(a) Explanation target. (b) 𝜎𝐺=2. (c) 𝜎𝐺=10.

Figure C.3 Comparison of an exemplary explanation target of a lower trunk
structure with the best matching prototypes from X∈ with (b) 𝜎𝐺=2 and (c)
𝜎𝐺=10. Images ©Fraunhofer IOSB.

(a) Explanation target (b) #P = 25 (c) #P = 100 (d) #P = 500

Figure C.4 Evaluation results for different number of prototypes #P in X∈: (a)
explanation target upper trunk, (b) best prototype for #P = 25, (c) best prototype
for #P = 100, (d) best prototype for #P = 500 [336]. Images ©Fraunhofer IOSB.
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(a) Explanation target (b) #P = 25 (c) #P = 100 (d) #P = 500

Figure C.5 Evaluation results for different number of prototypes #P in X∈: (a)
explanation target lower trunk, (b) best prototype for #P = 25, (c) best prototype
for #P = 100, (d) best prototype for #P = 500 [336]. Images ©Fraunhofer IOSB.

(a) (b) (c) (d)

Figure C.6 Best matching prototypes according to individual metrics for ex-
emplary lower trunk explanation target depicted in Figure 6.10 with selective
X3Seg: (a) best SX 𝑐𝑋,2, (b) best SX 𝑝𝑋,1, (c) best SX 𝑝𝑋,2, and (d) best SX 𝑟𝑋 [336].
Images ©Fraunhofer IOSB.
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(a) (b) (c) (d)

Figure C.7 Best matching prototypes according to individual metrics for ex-
emplary upper trunk explanation target depicted in Figure 6.10 with selective
X3Seg: (a) best SX 𝑐𝑋,2, (b) best SX 𝑝𝑋,1, (c) best SX 𝑝𝑋,2, and (d) best SX 𝑟𝑋 [336].
Images ©Fraunhofer IOSB.
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D Application Scenarios

Figure D.1 illustrates the three cornerstones of autonomous systems
according to [173] that were adapted for autonomous off-road vehicles in
this thesis. Figure D.2 depicts the 3D model of the IOSB.Alice platform

Operating System (Robotic Operating System on Linux Operating System)

Hardware Platform (Robotic Platform including Sensors and Computing Units)

Sensing:
Input und Processing of Sensor Data.
Fusion of Multimodal Sensor Data.

Perception:
Interpretation of the (Processed) 

Multimodal Sensor Data.

Decision:
Navigation and Manipulation of

Unstructured Environments.

Figure D.1 System architecture of autonomous vehicle systems derived
from [173].

in the ROS visualization tool Rviz with the calibrated and fused LiDAR
sensor data for accurate workspace monitoring.

Figure D.2 Commercially available excavator platform IOSB.Alice. The four
Ouster OS-0 LiDAR sensors with a FoV from −45° to 45° providing 3D per-
ception of the environment are highlighted. © Fraunhofer IOSB
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D.1 Data Generation for Unstructured
Environments

Figure D.3 shows some additional IOSB-Reg images in addition to the
images utilized for proof-of-concept demonstration within this thesis.

Image 04. Image 06.

Image 13. Image 16.

Figure D.3 Selected images of the IOSB-Reg dataset. © Fraunhofer IOSB

The 3D LiDAR measurements have to be referenced to the coordinate
system of the reference camera to generate disparity images from the
depth information of the sensor. Then, the 2D depth map and its associ-
ated disparity image can be used as an accurate ground truth for stereo
image disparity estimation. Horizontal and vertical FoV filtering for the
LiDAR clouds is required to provide depth images that contain exactly
the same area, and the horizontal FOV is already filtered during the
preprocessing. The overlap of the vertical FoVs of camera and LiDAR can
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be determined using the camera intrinsics, as discussed in the 2D–3D
fusion of RGB images and LiDAR data in Section 3.7. The accumulation
step was performed as proposed in the KITTI dataset [80]: Geiger et
al. [83] merged five LiDAR point clouds before and after the respective
frame after an ICP registration and achieved an average density of ap-
proximately 50% for a ground truth that can be compared against stereo
depth estimation results. Hence, five clouds prior and five clouds after
the current capture were fused over a time interval of 1.1 s for dense
point clouds in IOSB-Reg. The positions of the vehicle and the sensors
itself in the local reference frame were exactly known due to an accurate
localization provided by the ATB [60]. Furthermore, vehicle movement
during accumulation did not pose a problem as inertially corrected point
clouds were used in contrast to the accumulation proposed in [80] relying
on ICP registration. Labelbox1, PixelAnnotation Tool2, LabelImg3, BMW-

Figure D.4 Customized data validation tool for GOOSE on the basis of the rqt
topic_monitor tool. Green coloring indicates that the topic in question is pub-
lished correctly and all the specified minimum requirements are met, while a
yellow coloring of the respective field highlights that the minimum publication
rate or another quality criterion is not met. If the field is highlighted in red, the
topic is not published correctly.
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Labeltool-Lite4, and CVAT Computer Vision Annotation Tool5 allow the
labeling of 2D images. Labelbox provides model-assisted labeling with
bounding boxes, polygons, polylines, and points, and also allows the
import of computer generated labels. The PixelAnnotation Tool has an
integrated automatic labeling procedure which can notably speed up the
labeling process. LabelImg and BMW-Labeltool-Lite exclusively generate
2D bounding boxes, the Cvat tool can add bounding boxes, polygons, and
polylines with corresponding labels. The CVAT tool allows and interac-
tive annotation of image and video data with bounding boxes, polygons,
and polylines. Labelstudio6 enables the labeling of audio, text, images,
videos, and time series. 2D images can be labeled using bounding boxes,
polygons, and polylines. Monica et al. [198] and Behley et al. [11] pro-
pose annotation tools for 3D point clouds. The RViz Cloud Annotation
Tool [198] was developed on the basis of the Rviz visualization tool of the
ROS environment. Labeling is conducted by manually selecting sparse
control points belonging to objects respectively previously defined labels
in unorganized point clouds. The sparse control points are extended to
a full semantic labeling by a classic segmentation using a shortest path
tree search on the neighborhood graph. The Rviz-based tool of [198]
developed for close-range, structured indoor environment allows the
specification of own class labels, and the labeled point clouds can be
saved as pcl::PointXYZRGBALabel clouds with a numerical representa-
tion for each label. Point_labeler [11] was provided together with the
SemanticKITTI dataset [11] as an open source tool for offline use. It facili-
tates the point-by-point labeling of a single 3D point cloud or a stream of

1 D. Rasmuson et al., Labelbox: Apache-2.0 License, www.labelbox.com, https://github
.com/Labelbox/labelbox, access on 14.04.2022.

2 A. Bréhéret: PixelAnnotationTool, https://github.com/abreheret/PixelAnnotationTool,
access on 14.04.2022.

3 D. Tzutalin: LabelImg, MIT license, https://github.com/tzutalin/labelImg, access on
14.04.2022.

4 R. Anwar and E. Saller, BMW-InnovationLab: BMW-Labeltool-Lite, Apache-2.0 License,
https://github.com/BMW-InnovationLab/BMW-Labeltool-Lite, access on 14.04.2022.

5 B. Sekachev; A. Zhavoronkov; M. Zhiltsov; and D. Kalinin: Computer Vision Annotation
Tool (CVAT), https://github.com/openvinotoolkit/cvat, access on 14.04.2022.

6 M. Tkachenko; M. Malyuk; N. Shevchenko; A. Holmanyuk; and N. Liubimov: Label
Studio, Apache-2.0 License, https://github.com/heartexlabs/label-studio, access on
14.04.2022.
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D.2 Cost Valley for Constrained Planning

point cloudswith customized labels and customized labels can be defined
within a json file. Experimental evaluation showed that point_labeler is
the most suitable tool for the labeling of cloud sequences. 3D-Bat [316]
facilitates the labeling of 2D images and 3D point clouds with bounding
boxes in semi-automatic manner. 3D-Bat is web-based and also allows
the addition of instance IDs for objects on roads as it targets autonomous
driving applications in structured environments. Additional, predefined
bird’s-eye, side, and front views help to visualize objects from different
perspectives. 2D images and 3D point clouds can also be labeled using
the semantic segmentation editor7. The integrated Cityscapes class def-
inition can be exchanged with arbitrary, customized class definitions
within the supplied yaml file. The editor is browser-based and can be
used online and offline. 2D images are labeled pixel-by-pixel in a bitmap
image editor with the assistance of polygons to label several points at
once. 3D point clouds are required in PCD format with pcd::PointXYZ
or pcd::PointXYZRGB point types, and the tool outputs PCD files with
point order and format equivalent to the input files and corresponding
labels and object IDs are added in integer format.

D.2 Cost Valley for Constrained Planning
This appendix contains additional material to Section 7.6. A customized,
local approach for waypoint optimization was evaluated together with
RDP comparing the first order derivative (𝑑′

𝑎) of the currently processed,
2D path element 𝑑𝑎 to the first order derivatives (𝑑′

𝑏) of consecutive path
elements 𝑑𝑏. Their difference was calculated with Δ(𝑑′) = |𝑑′

𝑎 − 𝑑′
𝑏| and

path elementswere kept ifΔ(𝑑′)was larger than the predefinedmax Δ(𝑑′),
as further elaborated in [328]. The local and the RDP line simplification
method were compared on several recorded tracks with different lengths
and RDP clearly outperformed the local approach.

Figure D.5 and Figure D.6 depict additional results of the real-world
navigation evaluation on the TULF platform: Figure D.5 depicts an in-

7 D.Mandrioli et al., Hitachi Automotive And Industry Lab: Semantic segmentation editor,
https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-e
ditor, access on 07.11.2021.
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termediate result of the real-world navigation evaluation on the TULF
platform, and Figure D.6 illustrates the return of the TULF platform to
the cost valley after an intervention of the human safety driver.

Figure D.5 TULF: First waypoints com-
pleted, planning along approx. 300m
to next waypoints, 𝜖 is 0.8m, 𝑤𝑓 is 3.0m,
𝑤𝑚 is 30m.

Figure D.6 TULF: Returning to the val-
ley after intervention of safety driver,
𝑤𝑓 is 3m, 𝑤𝑚 is 30m.
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