KIT | KIT-Bibliothek | Impressum | Datenschutz

Automated and dynamic extrusion pressure adjustment based on real-time flow rate measurements for precise ink dispensing in 3D bioprinting

Wenger, Lukas ORCID iD icon 1; Strauß, Svenja 1; Hubbuch, Jürgen ORCID iD icon 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

Extrusion-based printing relying on pneumatic dispensing systems is the most widely employed tool in bioprinting. However, standardized and reliable methods for process development, monitoring and control are still not established. Suitable printing parameters are often determined in a trial-and-error approach and neither process monitoring nor real-time adjustments of extrusion pressure to environmental and process-related changes are commonly employed. The present study evaluates an approach to introduce flow rate as a main process parameter to monitor and control extrusion-based bioprinting. An experimental setup was established by integrating a liquid flow meter between the cartridge and nozzle of a pneumatically driven bioprinter to measure the actual flow of dispensed ink in real-time. The measured flow rate was fed to a Python-based software tool implementing a proportional-integral-derivative (PID) feedback loop that automatically and dynamically adapted the extrusion pressure of the bioprinter to meet a specified target flow rate. The performance of the employed experimental setup was evaluated with three different model inks in three application examples. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000150117
Veröffentlicht am 26.08.2022
Originalveröffentlichung
DOI: 10.1016/j.bprint.2022.e00229
Scopus
Zitationen: 9
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2405-8866
KITopen-ID: 1000150117
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Bioprinting
Verlag Elsevier
Band 28
Seiten Art.Nr. e00229
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page