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Abstract Deep Learning has seen an enormous success in the last years. In
several application domains prediction models with remarkable accuracy could
be trained, sometimes by using large datasets. Often, these models are config-
ured with huge amounts of parameters and seen by domain experts as hard to
understand black boxes and hence of less value or not trustworthy. As a result,
we observe a claim for better interpretability in several application domains.
This claim can also be seen to arise from the fact that the formulation of the un-
derlying problems is not complete and certain important aspects are disregarded.
Interpretability is required particularly in domains where high demands with
respect to safety or fairness are posed or, for example, in natural sciences where
the application of these techniques aims at knowledge discovery. Alternatively,
the gap in problem formulation can be compensated by incorporating a priori
domain knowledge into the model. In this article, we highlight the importance
to further advance the techniques to support interpretability or the mechanisms
to incorporate domain knowledge in the machine learning approaches. When
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transferring these techniques to the application domains, close collaboration
with domain experts is indispensable.

1 Success of Machine Learning and Deep Learning

In the last decade, the field of data science has seen an enormous boost in
developing techniques to perform tasks in computer vision, text and audio
processing. These techniques have entered our everyday lives - ranging from
apps for language translation (Popel et al., 2020), recommender systems (Zhang
et al., 2019) for music and movies to tools for recognizing and annotating objects
in images which improve the search in large image databases (Mellina, 2017).

This development has stimulated many applications in the disciplines of
science and engineering. Undoubtedly, in many cases the use of these techniques
has proven to be most beneficial because they have made the work of researchers
and engineers easier and more efficient. In some application domains where
huge amounts of data (Big Data) are involved, techniques for automatic and
efficient filtering and extraction of information have become an indispensable
part and an enabler of the data exploitation process. This holds true, for example,
in natural sciences such as astrophysics (Baron, 2019), solar physics (Bobra
and Couvidat, 2015) or particle physics (Albertsson et al., 2018) where huge
amounts of data are collected and sophisticated techniques for efficient filtering
or for information extraction are needed. But it also applies in commercial
applications such as in finance or in medicine where huge amounts of data are
available that can be used for better prediction or diagnostics, respectively.

These techniques are based on machine learning approaches which are
designed to directly learn from data. In traditional machine learning, suitable
features are handcrafted typically by domain experts. These features are then
plugged into rather simple models which are trained to accomplish the desired
tasks. For not too complex models, the way the input features are combined to
produce an output is easy to explain and the way the model derives its decisions
can (more) easily be interpreted from a domain perspective. This holds true
particularly for rather small decision trees or for linear regression models with a
small number of factors.

The deep learning models (LeCun et al., 2015) that have proven to be
particularly successful in the computer vision, text or audio processing domains
which are characterized by complex, high-dimensional, unstructured data are
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on the opposite side of the spectrum: These models are extremely flexible,
composed of many nested components and come along with a huge number
of parameters. During training, they can flexibly be adjusted to capture a large
variety seen in the data. The features relevant for the task at hand are learned
directly from the data during training and no feature engineering is needed.
From the data science perspective, the role of the domain experts is reduced to
properly prepare the data, possibly to provide labels and to judge and interpret
the result.

In domains with complex, high-dimensional, unstructured data this works
because neural networks often seem to provide a structure nicely suited for the
problems at hand, also referred to as inductive bias (Mitchell, 1980). In typical
computer vision applications, this structure decomposes into a succession of
layers which leads to deeply nested function calls. The different levels of depth
are associated with different levels of abstractions: As can be demonstrated
in some computer vision applications, low level features are represented and
recognizable in earlier layers, higher level concepts in later layers. A nice
example can be found in (Olah et al., 2020) where the authors show the kind of
features represented in the first five layers of the Inceptionv1 model (Szegedy
et al., 2015). This gives a nice intuition about how and why deep learning
models work and why they sometimes almost miraculously generalize well to
new data not seen during training.

2 Need for Explainable Models

In the data science community, the development in the field has strived mostly
for high accuracy. This has led to huge models with a huge number of trainable
parameters. Recent models such as GPT-3 of OpenAI (Brown et al., 2020)
or Switch-C of Google (Fedus et al., 2022) have 100s of billions of trained
parameters. The capabilities of these models are impressive but come at the
price that they are considered as black-box systems, hard to understand and
interpret. Indeed, in some domains, there is a high demand for understanding
the way a specific model operates and the mechanisms underlying the decisions
made by the model.

This is of particular importance in critical applications or when using these
techniques e.g. in the natural sciences where a primary goal is to discover new
knowledge. In critical applications, users or adopters want to understand and have
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transparency about how a model infers its predictions. From a user perspective,
there are often other criteria than accuracy that also play an important role.
Examples are safety in collision warning systems or non-discrimination in
applications of the criminal justice system (for examples see Doshi-Velez and
Kim (2017)). Criteria such as safety or fairness are more difficult to assess,
though. For guaranteeing safety, a complete list of possible failover scenarios
must be checked. Similarly, for proving fairness all features in the underlying
data needs to be assessed so that fair and non-discriminative predictions are
inferred - eliminating the most obvious features (such as race or sex) is often
not sufficient.

The reason for this difficulty in assessing other criteria is, as argued in (Doshi-
Velez and Kim, 2017), related to the fact that the problem is not completely
formalized which results in an unquantified bias. One way to compensate for
that is to claim to have sound explanations for how the reasoning of the system
works under the hood and these explanations are believed to provide trust in
that the system works properly (or not).

In fields of application such as in various science disciplines, machine learning
is adopted for optimizing or even producing scientific outcomes, it often plays
an important role in the knowledge discovery process and can help to reveal
patterns hidden in huge data. The scientists strive for understanding the whole
knowledge discovery chain with all its processing, filtering and information
acquisition steps. Hence a sound understanding of how the possibly applied
machine learning tools work is an imminent part of a scientifically sound
approach. When observing new patterns in the data, they need to be associated
with and expressed by key quantities of the considered field of science, in the
following referred to as domain quantities.

Generally, the demand for explanations for how data-driven models work
aims at acquiring more trust into and acceptance of these tools in the user
communities. Users or adopters want to have answers to questions such as why
a model makes a certain decision, what drives the model predictions or how
model predictions can be trusted (Sarkar, 2018). Explanations will even be
required by law in some cases. Recent European Union regulations, released in
2018, require to provide explanations for algorithms that make decisions based
on user-level predictors which significantly affect users - they have a right to
explanation (see e.g. Goodman and Flaxman (2017) for a discussion on the
implications).
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The level of explanation and the depth of understanding is, however, rather
elusive. It depends on the task to be solved and on the application domain or
on how well the system has been tested in real-world scenarios. Furthermore,
the request for explanations or the acceptance without depends also on the
availability of competing alternatives. Deep learning applications that are proven
to be much more accurate than any other existing tool and that significantly
exceed human performance might be less exposed to claims for explainability
than systems that provide a performance comparable to humans.

3 Explainable AI (XAI)

In the last few years a lot of research has flown into turning deep learning models
into more transparent, better explainable, or interpretable approaches. These
activities are summarized under the notion of Explainable AI (XAI). Here, the
terms transparency, explainability and interpretability are important notions
but seem rather elusive. For instance, interpretability and explainability are used
inconsistently in the community. For example, (Miller, 2019) treats them as
identical whereas (Montavon et al., 2018) makes a distinction. We follow the
terminology defined in the latter.

(Montavon et al., 2018) defines, interpretability as the capability of providing
a mapping of an abstract concept (e.g., a predicted class) into a domain that the
human can make sense of. In contrast, an explanation is defined as the collection
of features of the interpretable domain, that have contributed for a given example
to produce a decision (e.g. classification or regression). Therefore, explainability
as used in the given context rather focuses on explaining by example. It is a
post-hoc consideration while interpretability works rather at the conceptual level.
Finally, by following (Roscher et al., 2020), an approach is transparent if the
process of extracting model parameters from training data and generating labels
from test data can be described and motivated by the designer of the approach.
Hence, while a transparent approach can explain the mechanics, interpretability
establishes the links and associations to the domain context.

Several techniques have been developed to elucidate how a network draws its
decisions and contributing to explainability. Several tools have been designed
particularly for neural networks. Many of them provide visually assisted expla-
nations. For example, saliency maps (or its improved alternatives) highlight the
pixels that are relevant for a certain image classification by a neural network
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(see e.g. Zeiler and Fergus (2014), Simonyan et al. (2014) or Samek et al. (2019)
for an overview). Such tools are very helpful to explore what types of patterns
in the input data the model responds to. This allows to develop an intuition that
may also be helpful in obtaining interpretability.

As pointed out in (Rudin, 2019), such post-hoc explanations are not capable
of providing perfect fidelity for the original model. They provide incomplete
and possibly inaccurate insights into or representations of the original model. If
we cannot know for certain whether our explanation is correct we cannot know
whether to trust either the explanation or the model. This leads (Rudin, 2019)
to the statement that black-box models that provide some explainability but
no interpretability should be avoided. This position is justified in critical
applications with strong safety or ethics requirements. In other domains such as
in the fundamental sciences where machine learning is an important tool for
knowledge discovery a more moderate claim may be justifiable by requesting
only partial interpretability. An example with partial interpretabilty would be
the situation where a latent representation is learned by some dimensionality
reduction technique and where only part of the variables have been interpreted.
By exploring and analysing the set of uninterpreted variables, domain experts
may learn more about hidden patterns in the data and gain new knowledge (see
also 4.1 below).

Explainability and partial interpretability can only be successfully reached
when accompanied by an intense and close discourse of the data scientists with
domain experts. The data scientists know the details of the models and their
underlying mechanics and know the tools to extract information or visualize
patterns - but only the domain experts can provide a sound judgement when it
comes to relate the findings of the model back to the raw data or the domain
context in general. Only the domain experts can establish a formulation of
the outcomes and their explanations by using the terminology of the domain.
Furthermore, the domain experts will be in the best position to judge whether a
given application scenario works given the premises under which the model has
been designed, trained, and tested.

4 Role of Domain Knowledge

Traditionally, domain knowledge has entered the work of the data scientists
in the form of labeling the data or when exploring the raw data and making
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it ready for machine learning. Labels are expensive to collect and, therefore,
labeling is not always feasible. For sure, domain knowledge will continue to
play an important role when exploring the raw data which provides important
insights into what factors of variation exist, may give hints on how these
could best be mapped into a model and what parts need to be corrected at
the preprocessing stage. Domain knowledge can also be incorporated when
designing and evaluating model architectures. It may provide guidance in the
form of established domain theories that need to be respected. Examples are
constraints to be fulfilled (such as preserved quantities), symmetries to be
respected or mapping equations governing the dynamics of a system with parts
consisting of components learnable from the data. See (von Rueden et al., 2021)
for an overview.

Learning models that are consistent with domain theories help improving
the acceptance in the application domain and help to fill the incompleteness in
the problem formulation and the associated unquantified bias as mentioned in
Section 2. Incorporating domain knowledge manifestly in the machine learning
models compensates some of the need for interpretability.

Generally, it is expected that the connection between domain knowledge
and machine learning models will further strengthen in the years to come.
This will happen at the level of designing suitable model architectures that
allow for incorporating constraints in the models and it will also consist in
learning schemes that will allow for correlating the features learned from the
data with domain knowledge. Overall, this will lead to better interpretability
and acceptance in the application domains. Note that, in addition to better
interpretability, the possibility to incorporate domain theories in models that
learn from data may give the scientists a tool to more easily test and compare
conflicting theories.

Various approaches developed in the last few years seem very promising
to accommodate domain knowledge - depending on the specific domains, the
typical datasets available there and the specific tasks to be solved. In the
following, we sketch a few of these approaches - well aware that the presented
selection is highly subjective and rather reflects some recent architectures the
author is working with.
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4.1 Learning Lower-Dimensional Latent Representations

When starting with high-dimensional unstructured data, an important step is to
reduce the dimensionality by extracting the informative features which can then
be used to solve downstream tasks such as a prediction or classification problem.
A common approach to achieve this is by using models of the autoencoder
family. In the last years, this family has evolved to a rich set of generative
models that learn the underlying data distribution and that allow to incorporate
different nice aspects in the lower dimensional features. Of particular interest
are models that learn disentangled representations, with maximal information
content while providing excellent reconstruction quality. Different architectures
and loss functions help shaping the features in latent space in one or another
direction - depending on the needs for the downstream tasks. The corpus of
literature here is very rich - an overview can be found in (Voloshynovskiy
et al., 2020) where many of these modeling approaches are put in a common,
comprehensive framework.

These representations are, though lower-dimensional, not interpretable per
se. Furthermore, the dimensionality is typically still rather high - rather in the
100s which is far beyond of what is manageable for the human. Note that Miller
(Miller (1956), or also Lage et al. (2018)) argued in 1956 that humans can
hold about seven items simultaneously in working memory and suggested that
human-interpretable explanations should obey some kind of capacity limit. Here,
visual tools such as those provided with the dimensionality reduction tool kit (e.g.
t-SNE (van der Maaten and Hinton, 2008) or U-Map (McInnes et al., 2018))
in combination with possibly only a few labeled samples may help to explore
whether the features are arranged in an interpretable structure. Although this
procedure may work in some cases, it does in general not guarantee that the
learned features can directly be associated with domain quantities. To achieve
interpretability, close communication with the domain experts is indispensable.

4.2 Suitable Architectures for Incorporating Domain Knowledge

The association of input or learned features (such as obtained in 4.1) with
domain quantities could be facilitated by using invertible flow networks (see e.g.
Kobyzev et al. (2020) for a review). Here, a non-linear mapping between the
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feature and target space is learned. Some of the dimensions in the target space
can be constrained to known domain quantities that characterize the original
samples (see e.g. Ardizzone et al., 2019)). This domain information may come
in form of meta data provided in addition to the training data set. Such an
approach has successfully been adopted in (Lanusse et al., 2021) to images of
galaxies.

However, not all the target dimensions can directly be associated with domain
quantities. As pointed out above, the number of latent dimensions obtained in the
previous stage is still too large for all features to be directly interpretable. Some
of the remaining dimensions will be associated with noise hence uninformative
and irrelevant. Other dimensions are related to features that are not of interest
for the domain expert but may be interpretable. For a task that is known to
be invariant with respect to a symmetry group, the information that allows to
identify the element of the symmetry group for a specific input sample (e.g.
a rotation angle) must not have predictive power for solving the problem at
hand. An example is the task of classifying the type of galaxy from images of
galaxies (see e.g. Lanusse et al., 2021). The type of galaxy is independent of
its orientation angle. Thus, the information in the latent space that encodes the
orientation angle is not relevant for the task at hand (it may, however, be of
interest in another context).

Hence, only part of the features not yet mapped to domain quantities may
contain promising candidates for knowledge discovery and interpretation. To
identify them, the different dimensions may be explored by projecting selected
values back to the input space which then can be carefully analyzed. In an
encoder-decoder architecture (such as Kingma and Welling, 2014), the mapping
from the latent space to the input space is obtained by the decoder. When
analyzing the footprint of the latent space dimensions in the input space, domain
knowledge is crucial for identifying and interpreting variables of interest or
filtering out variables that can be ignored such as uninformative noise or
quantities associated with symmetry transformations.

When learning tasks that are known to be invariant with respect to symmetry
transformations an alternative approach is to choose a model architecture
that is intrinsically invariant with respect to these symmetry transformations.
This is the goal of geometric deep learning (Bronstein et al., 2021), a very
promising research direction that has gained a lot of attention in the last few
years. When using a network architecture that is invariant with respect to
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symmetry transformations the lower dimensional representation of the input
obeys the same invariance properties. Hence, a reduced latent space is learned
that encodes the relevant information in a representation that is invariant to the
symmetry transformations. Here, the domain expert is needed to provide the
knowledge about symmetry groups to be respected.

In conclusion, here again, close interaction with domain experts will be key
to create sensible and interpretable output for the domain.

4.3 Graph Neural Networks for Mapping Domain Knowledge

Another promising research direction are graph neural networks (GNN). These
provide rich structures that allow to map relations between entities and rules for
composing them. This is also an aspect that can be found in symbolic AI and,
not surprisingly and as pointed out in (Battaglia et al., 2018), GNNs provide
a fusion between symbolic and connectionist AI. In the given context, GNNs
allow for incorporating constraints or a priori knowledge provided by domain
theories. An example are GNNs that allow to incorporate domain knowledge
graphs into an image classification pipeline (see von Rueden et al. (2021) and
Marino et al. (2017)). In the latter, it is also shown how the incorporation of the
knowledge graph into the GNN model allows to improve the performance of the
classification task.

GNNs also allow to map causal relations which represent structural knowledge
about the data generating process and which are intimately related to domain
knowledge. Once properly included, this leads to (more) transparency and
interpretability. Nevertheless, one central problem that needs to be solved on the
machine learning part also remains here: Efficient techniques need to be designed
and implemented that allow to discover high-level interpretable candidates for
causal variables from low-level observations (Schölkopf et al., 2021). The key
research areas and research questions are identified and the community is very
actively searching for solutions.

Definitely, the approaches described above could be extended. Typically, these
approaches need to be adjusted and refined when applied to domain problems.
Further work is needed on developing procedures and techniques that help to
better incorporate domain knowledge either in form of identifying interpretable
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features learned with suitable architectures from the data or including a priori
knowledge directly in the model architecture or in the learning process.

5 Conclusions

We have highlighted a high demand for improving the interpretability of deep
learning models in several application domains and we have argued that this
demand is related to an incomplete formulation of the underlying problem where
not all relevant aspects are considered. For closing this incompleteness gap, we
have suggested the application of suitable architectures that give better support
for learning and identifying interpretable features or that allow to include a
priori information in the model architecture or the learning process. We have
indicated a few research directions that seem promising for learning and defining
interpretable features that can then be used for better interpretable downstream
prediction tasks. As examples, we have mentioned models from the autoencoder
family for learning suitable lower dimensional representations of the original
data, invertible flow networks to learn a nonlinear mapping to domain quantities,
hence constraining to domain quantities or, graph neural networks that allow to
map causal relations or incorporate a priori information directly in form of a
knowledge graph.
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