KIT | KIT-Bibliothek | Impressum | Datenschutz

Data-Driven Virtual Flow Rate Sensor Development for Leakage Monitoring at the Cradle Bearing in an Axial Piston Pump

Liu, Minxing 1; Kim, Garyeong 2; Bauckhage, Kai; Geimer, Marcus ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The leakage of the tribological contact in axial piston pumps significantly impacts the pump efficiency. Leakage observations can be used to optimize the pump design and monitor the behavior of the tribological contact. However, due to assembly limitations, it is not always feasible to observe the leakage of each tribological contact individually with a flow rate sensor. This work developed a data-driven virtual flow rate sensor for monitoring the leakage of cradle bearings in axial piston pumps under different operating conditions and recess pressures. The performance of neural network, support vector regression, and Gaussian regression methods for developing the virtual flow rate sensor was systematically investigated. In addition, the effect of the number of datasets and label distribution on the performance of the virtual flow sensor were systematically studied. The findings are verified using a data-driven virtual flow rate sensor to observe the leakage. In addition, they show that the distribution of labels significantly impacts the model’s performance when using support vector regression and Gaussian regression. Neural network is relatively robust to the distribution of labeled data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000150154
Veröffentlicht am 25.08.2022
Originalveröffentlichung
DOI: 10.3390/en15176115
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Fakultät für Maschinenbau – Institut für Fahrzeugtechnik und Mobile Arbeitsmaschinen (IFFMA)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1996-1073
KITopen-ID: 1000150154
Erschienen in Energies
Verlag MDPI
Band 15
Heft 17
Seiten Ar.-Nr.: 6115
Vorab online veröffentlicht am 23.08.2022
Schlagwörter virtual sensor; leakage monitoring; data-driven method; machine learning; axial piston pump
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page