KIT | KIT-Bibliothek | Impressum | Datenschutz

Fairness of Medical Artificial Intelligence: A Literature Review : Emerging Trends in Internet Technologies, Summer Term 2021

Eipper, Jasmin; Schwärzel, Amelie; Thiel, Justus; Weber, Luisa

Abstract (englisch):

Background: With the increasing digitization and growing integration of Artificial Intelligence (AI) in healthcare (e.g. for diagnosis), the risk of incorporating unfair and biased behaviours in medical applications caused by biased AI is rising. Thus, the integration of AI in healthcare requires the need to develop trustworthy and unbiased applications that make fair decisions regardless of a patient's demographic profile.
Objective: To contribute to the development of fair and unbiased AI applications in healthcare, the aim of this paper is to provide an overview of the current state of research in the emerging research field on fairness of medical AI. In particular, it aims to elaborate issues and causes related to the occurrence of biased AI and provide possible solutions.
Methods: To provide the overview of the extant literature, a systematic literature review was conducted. By searching in eight scientific databases (ACM Digital Library, AIS Electronic Library, arXiv, IEEE Explore, Ebsco Buisness Source, medRxiv, Pubmed,
Scopus) and applying inclusion and exclusion criteria, 35 relevant articles have been identified and further analyzed.
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000150078
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Buchaufsatz
Publikationsmonat/-jahr 08.2022
Sprache Deutsch
Identifikator KITopen-ID: 1000150165
Erschienen in cii Student Papers - 2022. Ed.: A. Sunyaev
Verlag Karlsruher Institut für Technologie (KIT)
Seiten 34-61
Schlagwörter artificial intelligence, medicine, healthcare, fairness, bias, taxonomy
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page