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Introduction

While pencils with graphite core have existed since the 16th century [1], it was long believed that
this core actually consisted of lead, terming their German name "Bleistift". Only much later it was
realized that graphite, just like diamond, is a naturally occurring modification of polymorph carbon
atoms [2]. Unlike in diamond, carbon atoms in graphite are organized in two-dimensional layers,
which are stacked on top of each other in different variations [3]. In each of these layers, they are
arranged on a honeycomb lattice, forming a trigonal Bravais lattice with a two atomic basis. Based
on this special spatial arrangement and the fact that graphite is indeed porous enough to serve as a
writing instrument, people soon started to wonder whether it was possible to fabricate a single of these
graphite layers: graphene. The expected behavior of electrons in such a material had already been
proposed in 1947 in Ref. [2], but the existence of a true purely two-dimensional material seemed to
be at odds with the Mermin-Wagner theorem, stating that long range order in two dimensions should
be impossible due to the present thermal fluctuations. This did however not stop Andre Geim and
Konstantin Novoselov from pulling away few-layer, including monolayer graphene, from a high quality
graphite sample in 2004 by mechanical exfoliation, fittingly dubbed the scotch-tape technique [4].

As already proposed in the theoretical prediction Ref. [2], monolayer graphene possesses a linear,
Dirac like spectrum without a band gap. In reciprocal space, these linear-band touching points occur
exactly at the corners of the honeycomb Brillouin zone. Neighboring corners correspond to a different
sublattice, meaning that at low energies electrons close to one of these don’t talk to each other, thus
forming two non-equivalent valleys, which introduces an additional quantum degree of freedom, on top
of spin [5].

Graphene can be fabricated very cleanly and external gates can be used to tune the electronic
density. Due to its special spectrum, electron-electron interaction effects in graphene show a very
special behavior as well [6]. In a Galilean invariant system, where energy bands are parabolic in
momentum, the ratio between kinetic energy and Coulomb energy per electron scales with the density
and thus screening is very effective and Fermi-liquid behavior a fitting description above a certain
minimum density. The linear (Lorentz invariant) band spectrum in graphene however means that this
ratio, the unitless interaction constant α, is independent of the density. Moreover, since the density
of states vanishes at the Dirac point, screening of the long-range Coulomb interaction is much less
effective in charge neutral graphene, especially, since α can actually be of the order of unity [6]. The
one remaining problem of graphene is the impossibility of opening a band-gap, which means that
electrostatic gating cannot be used to form devices like quantum wires or quantum point contacts.

This changes fundamentally, if one places two graphene layers on top of each other, without intro-
ducing a twist. The resulting material, bilayer graphene (BLG), possesses a quadratic band spectrum
for low energies, while the presence of two inequivalent valleys is not changed [7], the finite distance
between the two layers allows one to induce a displacement field leading to a gate tunable band gap
[8]. By using two gates, a back and a top gate, one can thus tune both the band gap and the total
density, which enables the fabrication of a plethora of electronic devices.

The most easily realizable experimental setup, which still enables an observation of electronic behav-
ior and the role of different mechanisms, is a conductance measurements in a two-terminal setup. One
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attaches two leads at the area of interest, and measures the current I flowing through the sample at a
fixed voltage U or vice versa. The resulting conductance G = U/I, which in general depends on the
dimensions of the measured sample, is determined as G = σW/L in a sufficiently large two-dimensional
sample. Here σ is the conductivity, which is a material property and independent of the size of the
system and W and L are the width and length of a rectangular sample respectively. This behavior
is called ohmic and only occurs, if there are no internal length scales that are much larger than the
dimensions of the sample [9–11].

There are different scenarios, in which this is indeed not the case. If a sample is exceptionally
clean, the mean free path, which is the typical length an electron can move without scattering off of an
impurity, can be of the order or larger than 100 nm, which is a length scale that can be easily undershot
by modern hetero structures [12]. If one for example places two electronic fingergates with a distance
shorter than that on top of bilayer graphene and additionally uses an overall top and bottom gate,
one may tune the bands in such a way, to prohibit transport underneath the finger gates, leaving only
a small passageway. This setup is called a quantum point contact (QPC) [13]. As mentioned above,
this violates the requirements for ohmic transport, instead quantum effects become very apparent.
While electrons can still move freely along one direction, they are strongly confined along the other
and one has to take into account their wave nature, leading to a quantization of momentum and thus
energy in the transverse direction. This quantization directly translates into the quantization of the
measured conductance, which shows clear steps at integer values of e2

h [14]. The integers in front of
this universal conductance quantum are determined by the degeneracies that are present in the system.
For a material, where only spin is degenerate, one find steps of 2 × e2

h ; due to their additional valley
degeneracy graphene and bilayer graphene show steps at multiples of 4 × e2

h . The sharpness of these
conductance steps is determined by temperature, among other things.

While the role of disorder can be neglected in such a setup, interaction effects may still play a
role. A very prominent example for this is the appearance of an additional shoulder below the first
conductance plateau, which is seen over a wide range of samples and up to temperatures, where the
conductance steps themselves are no longer resolved. This feature is called the 0.7 anomaly, since, in
systems with spin-degeneracy, it appears close to the conductance value of 0.7 × 2 × e2

h [15]. Since this
feature continuously moves into the Zeeman split plateau under the application if an in-plane magnetic
field, it was soon connected with spin. However, there is still no microscopic explanation for all of its
features that is commonly accepted. The situation is even more advanced, if one considers a material
like BLG, where the additional valley degree of freedom could be involved in the interaction effects.

If one turns to systems, where the typical dimensions of the sample are of the order of several µm,
but temperatures are still low, i.e. of the order of a few Kelvin, transport in monolayer graphene
is dominated by disorder scattering. In low magnetic fields, these systems can be described by semi-
classical approaches, like the Boltzmann equation [16], which is a non-linear differential equation for the
distribution function. For finite disorder, quantum states require a finite lifetime τq, which is obtained
from the imaginary part of the self-energy in the Green’s function formalism. This time can also be
obtained from a golden-rule calculation, which can also be used to find the transport scattering rate
τtr that describes the relaxation of momentum. In the semi-classical regime, the Boltzmann equation
can be used to determine the conductivity and thus the conductance of the sample. For high magnetic
fields this semi-classical description fails, since quantum effects like Landau levels cannot be included.
In this situation, one may still calculate the conductivity by means of perturbation theory, which in
the case of low magnetic fields simplifies exactly to the Drude result obtained before. By performing
this calculation and including the disorder scattering in the self consistent Born approximation, one
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realizes that it is exactly τtr that should enter the Boltzmann equation, which is obtained after including
corrections from the velocity vertex.

For finite magnetic fields, conductivity obtains a matrix structure and its inverse, the resistivity,
is needed to obtain the magnetoresistance of the system. From the dependence of the resistance on
magnetic field and electronic density, on can infer information on the type of scattering processes
occurring inside the sample. In the typical, rectangular Hall bar setup, the magnetoresistance as
obtained from the Boltzmann equation actually vanishes. For this reason, one turns towards a different
geometry, the Corbino disk, which is essentially a flat donut, where current flows between the inner
and outer radius. Due to the polar symmetry, magnetoresistance is determined by the longitudinal
conductivity alone in this setup and thus quadratic in the simple Boltzmann equation calculation. This
simple functional form can be used to analyze the role of different scatterers in the system, since their
transport times have different density dependencies.

If one considers the same sample at elevated temperatures, electron-electron interaction becomes
more important and in very clean samples one reaches the regime, where ℓee, the length scale related
to electron-electron interaction, is shorter than the mean free path between disorder scattering events
as well as electron-phonon and quasiparticle recombination processes [17]. This regime is called hy-
drodynamic regime, since due to the relatively strong interaction effects, electrons form a strongly
correlated liquid and show collective behavior. In this regime, the Boltzmann equation is still appli-
cable, but by integrating with different weights and taking into account the conservation properties of
all different scattering events, one can obtain a set of continuity equations. Hydrodynamic behavior is
specified by assuming a local equilibrium, which is established by electron-electron collisions. In this
local equilibrium the electronic fluid is characterized by a collective hydrodynamic drift velocity, for
which one finds an equation of the form of a generalized Navier-Stokes equation from the continuity
equation for momentum [18].

Structure of this Thesis

This thesis consists of two main parts. The first part, comprising Chapters 1,2 and 3 summarizes the
already well known results, on which the Chapters 4, 5 and 6 extend.

In Chapter 1 I start with an introduction to the electronic properties of mono and bilayer graphene.
I especially present the eigensystems of monolayer graphene in vanishing and high magnetic fields.

In the following Chapter 2 I give a general introduction describing why two-terminal electric measure-
ments of the conductance or resistance of a system already reveal a lot about the internal processes
and discuss different methods of describing transport in mesoscopic systems. The first one is the
semi-classical Boltzmann equation discussed in Sec. 2.1 and shown in Eq. (2.1), the second one is
perturbation theory by means of a diagrammatic Green’s function approach, which is discussed in Sec.
2.2 and ultimately leads to the Kubo formula of conductivity shown in (2.97). The Chapter ends with
two methods, that can be deduced from these two formalisms in special limits. For temperature ranges,
where the average distance between electron-electron interaction events is larger than the system size
but the distance between impurity scatterers is smaller, one can use the scattering matrix theory and
the resulting Landauer-Büttiker formula (2.164) discussed in Sec. 2.3 to describe the conductance of
the system. If one turns to elevated temperatures and larger systems, one can reach the limit where
the elastic mean free path is the smallest length scale of the system, in which the hydrodynamic
approach discussed in Sec. 2.4 is applicable, especially the set of hydrodynamic equations (2.206),
(2.208), (2.209), (2.210).
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The first part finishes with Chapter 3, where I discuss effect that occur on special device geome-
tries. The first geometry is the quantum point contact (QPC) discussed in Sec. 3.1, where I apply
the Landauer-Büttiker formula (2.164), to show that conductance in such a system is quantized, as
visualized in Fig. 3.2. I also discuss the effect of an in-plane magnetic field on such a device in Sec.
3.1.1 and present an introduction to an interaction-based phenomenon- the 0.7 effect- in such systems
in Sec. 3.1.2. This chapter ends with an overview on the Corbino geometry in Sec. 3.2.
The second main part contains the results I obtained during my PhD.

Interaction effects in bilayer graphene quantum point contacts In Chapter 4 I present two in-
teraction induced features, that were observed in a bilayer graphene (BLG) QPC in parallel magnetic
field. After a summary of the experimental results 4.2 obtained in Ref. [19] I discuss how these results
can be explained, based on the effective two-band model of BLG in Sec. 4.3. An important building
block is the gate-tunability of the gap, that is discussed in Sec. 4.3.2 and leads to the conductance
quantization presented in Sec. 4.3.5. The main message of this chapter is that one can indeed observe
interaction effects in such a system. To motivate this conclusion, I discuss the screening effects in this
specific device in Sec. 4.3.3. The first interaction induced effect is the 0.7 anomaly discussed in Sec.
4.4. I propose to use a phenomenological model [20] and extend it to the additional valley degree of
freedom of BLG. This phenomenological model can be motivated by combining the free energy ob-
tained in Sec. 3.1.2.3 with the observations of the more involved model summarized in Sec. 3.1.2.2.
The second interaction induced effect is an enhancement of the Landé g-factor in parallel magnetic
field, which is also discussed in Sec. 4.3.3. This chapter ends with a discussion in Sec. 4.7, concluding
that the additional conductance shoulder in the experiment can be explained based on the proposed
phenomenological model by assuming a spin-splitting and degenerate valley degree of freedom.

Disorder dominated transport in a graphene Corbino disk In Chapter 5 I show that in the dis-
order dominated transport regime, the magnetoresistance measured in a monolayer graphene Corbino
disk at low temperatures can be used to characterize and distinguish the role of short range and charged
impurity scattering. The experiment, on which this analysis is performed is introduced in Sec. 5.2. In
the following Sec. 5.3 I present the theoretical background, including the Drude conductivity (2.1.1)
with the transport time determined in (2.8). In Sec. 5.3.1 I argue that also in this disorder dominated
regime, one can use the Boltzmann equation to derive an equation for the current density, that has
the form of a generalized Navier-Stokes equation and can be used to find the magnetoresistance in a
graphene Corbino disk at low magnetic fields (5.49). Subsequently I show in Sec. 5.3.2 that scattering
off of charged impurities can be treated in the same formalism but the resulting transport time has a
different density or energy dependence, which can be used to distinguish it from short range disorder,
if one measures the density of voltage dependence of magnetoresistance. Since the experimental data
includes measurement close to the Dirac point, I detail the expected saturation behavior in Sec. 5.3.3.
I discuss finite temperature effects in Sec. 5.3.4 and effects due to electron-electron interaction in Sec.
5.3.5. From these ingredients I develop a fitting procedure, which allows the extraction of parameters
characterizing the two types of disorder and the true bulk resistance. Since this is a very clean system,
the contact resistance is larger than the true bulk resistance, and thus a naive extraction of the mobility
is too low. This analysis is presented in Sec. 5.4 and supplemented by a discussion of the role of finite
temperature and electron-electron interaction for the specific parameters of the system in Sec. 5.4.1. I
conclude in Sec. 5.6 that one indeed has to perform the more involved fitting procedure proposed here
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to extract the true bulk mobility of clean devices but that by doing so one automatically gets access
to the details of disorder scattering in the sample.

Hydrodynamic transport in a graphene Corbino disk While interaction effects could be disre-
garded in Chapter 5 and only lead to additional features in Chapter 4, I concentrate on the strongly
interacting regime in Chapter 6. Here I show, how the hydrodynamic approach discussed in Sec. 2.4,
where the smallest legthscale of the problem ℓee is due to electron-electron interaction, can be used, to
describe the electric and heat transport in a graphene Corbino disk at charge neutrality. The charge
neutral setup is of special interest here, since recombination processes mean that the densities within
both conductance and valence band are not conserved individually. Moreover, the energy and charge
transport, which for finite densities are both carried by the hydrodynamic velocity u and simply pro-
portional, decouple at the Dirac point and the electrical current becomes fully dissipative. On the
other hand, Corbino disks are an ideal experimental setup to observe hydrodynamic effects, since they
naturally show non-uniform flow and one could potentially observe these effects in the exact same
device investigated in Chapter 5. This chapter starts with an introduction and motivation in Sec. 6.1.
The hydrodynamic equations, that are generally used to describe this system, are introduced in Sec.
6.2. I restrict ourselves to the charge neutral case in zero magnetic field and to linear order in the
external drive. The resulting equations are listed and solved in Sec. 6.3. In Sec. 6.4 I discuss, how
the dissipation obtained from the kinetic energy can be used to find the jump of the potential at the
interface. This chapter end with a discussion in Sec. 6.5 and a summary and conclusion in Sec. 6.6

This thesis ends with a conclusion and outlook in Chapter 7.

Main statements

1. Interaction effects visibly influence the conductance in a narrow bilayer graphene quantum point
contact. An effective spin splitting (rather than valley splitting) is consistent with the experi-
mental observations and would be expected in every material, where spin and valley degree of
freedom are degenerate without interaction effects.

2. The Corbino disk geometry is especially suited to characterize disorder in a sample by measuring
the low magnetic field magnetoresistance. This is true for graphene and also holds for other
two-dimensional electron gases.

3. Hydrodynamic effects influence the temperature and potential profile of charge neutral graphene
Corbino disks in a measurable way. These effects are dominated by energy relaxation over
viscosity.
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1 Chapter 1

Graphene

All devices investigated in this thesis consist of either mono- or bilayer graphene. In this chapter we
introduce the basic properties of these two materials. The main result is, that both systems can, for low
energies, effectively be described by a two band model. In the case of monolayer graphene, low energy
modes have a Dirac spectrum, for bilayer graphene it is quadratic.

The eigensystem of monolayer graphene will be used in Sec. 2.2.5 to derive the conductivity pertur-
batively and in Sec. 2.1 based on the Boltzmann equation. These results are used in Chapter 5 to find
the magnetoresistance in a monolayer graphene Corbino disk. The linear spectrum is also relevant for
the hydrodynamic approach introduced in Sec. 2.4 and applied in Chapter 6 to a graphene Corbino disk
at elevated temperatures. Corbino disks are introduced in Sec. 3.2.

Bilayer graphene is investigated in the shape of a quantum point contact in Chapter 4. There we
need its spectrum and the presence of its additional valley degeneracy. The gate tunability and some
effects of electron-electron interaction in bilayer graphene are also discussed there. An introduction
into quantum point contacts is given in Sec. 3.1.

Monolayer graphene is a one atom thick material consisting of carbon atoms arranged on a hon-
eycomb lattice. Its band structure was first theoretically predicted in 1947 in Ref. [2], but was only
experimentally found in 2004 [4]. Low energy states in graphene are massless, chiral Dirac fermions
and in charge neutral graphene the chemical potential sits exactly at the Dirac point, where the chiral
bands cross. Half filled bands are an important ingredient for strong correlation effects, since Coulomb
energies can be very large in such systems [23]. Due to this peculiar band structure, electrons in
graphene mimic the physics of quantum electrodynamics, except that the speed of light should be
replaced with the Fermi-velocity.

This leads to several interesting phenomena, like the anomalous integer quantum Hall effect in high,
perpendicular magnetic fields [24, 25], where graphene shows step heights of 4 e2

h without any Hall
plateau at N = 0. Another peculiarity is the Klein paradox discussed in Refs. [26, 27], which allows
electrons to get transmitted through classically forbidden regions with unit probability. While disorder
can never be avoided, graphene can be fabricated exceptionally clean, and under certain conditions
localization effects can be completely absent [28]. Due to its truly two dimensional nature, graphene
shows a special kind of disorder, called ripples [29–33], which have a similar effect as charged impurities
[34]. Also due to its two-dimensional nature, graphene hosts special out-of-plane vibrational modes
called flexural phonons [35]. Due to its honeycomb lattice structure, graphene has two distinct types
of clean edges, armchair and zigzag, which lead to different behavior [36], but are quite hard to control
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1 Graphene

on mesoscopic samples. Finally, graphene possesses two valleys, which can be used as an additional
quantum degree of freedom in a field called valleytronics [37]. For all of these reasons, graphene is a
very interesting candidate for mesoscopic transport setups [38, 39]. For an overview on all of these
topics see Ref. [5] and references therein.

However one problem of graphene is the impossibility to electrostatically open a band gap, which is a
requirement for electrostatic confinement in devices like quantum point contacts (QPCs) and quantum
dots. This is fundamentally different in bilayer graphene (BLG) [40–42]. While there are different
ways of stacking two graphene sheets on top of each other, including the introduction of a finite
twisting angle [43], we will only consider Bernal-stacked bilayer graphene. Low energy excitations of
bilayer graphene (BLG) are massive chiral quasiparticles with a parabolic spectrum [44]. The integer
quantum Hall effect in BLG is again anomalous [45], but while in graphene the whole staircase was
shifted symmetrically away from 0 with constant step heights of 4 e2

h , the zeroth Landau level in BLG
gives rise to a lowest step spanning from −4 e2

h to 4 e2

h , i.e. has a double the height of all others due
to the eightfold degeneracy of the zeroth Landau level. On top of the parabolic low energy spectrum,
one observes trigonal warping [46], due to the broken rotational invariance of the trigonal Bravais
lattice and for large band gaps Mexican hat features [47]. Since BLG does not have a linear dispersion
and in most cases a finite band gap, interaction effects are expected to be very similar to normal two
dimensional Fermi liquids at finite densities. Both carrier density and the energy band gap can be
controlled by electrostatic gates or doping [44, 48], where one should take into account the screening
of the two graphene planes as discussed in Ref. [8]. This allows for the construction of BLG quantum
point contacts, that were for example studied in [21, 49].

In this section we discuss monolayer graphene in Sec. 1.1, which also shows the behavior in a
perpendicular magnetic field, and the low energy theory of BLG in Sec. 1.2.

1.1 Monolayer graphene

Monolayer graphene consists of carbon atoms, that are arranged on a honeycomb lattice. This corre-
sponds to a triangular Bravais lattice with a bi-atomic basis, that is pictured in Fig. 1.1.

The triangular lattice is formed by sp2 hybridization between one s and two p orbitals, which form σ
bonds with a separation of 1.42Å leaving one p orbital unaffected. Thus each carbon atoms contributes
one electron to the overall π band formed by the covalently bound p orbitals, which is consequently
exactly half filled [5]. From the two basis atoms we also find two non-equivalent point in momentum
space, which are known as the K and K ′ Dirac point. Using a tight binding approximation, where one
includes next neighbors from the opposite sublattice and next nearest neighbors from the original one
and looking at momenta close to one of the Dirac points, as discussed in Refs. [5, 50], one can find a
many-body Hamiltonian of the form

H = −ivg

∫
dxdy

[
Ψ̂†

+(r)σ · ∇Ψ̂+(r) + Ψ̂†
−(r)σ∗ · ∇Ψ̂−(r)

]
, (1.1)

where ξ = +,− corresponds to the K,K ′ point respectively and vg ≈ 1 × 106 m/s is the Fermi velocity
of electrons in graphene. The field operators are vectors in the sublattice space. For small momenta,
the two Dirac points do not couple to each other, and we can restrict ourselves to momenta close to
one of them, i.e. restrict ourselves to one of the two valleys. The many-body Hamiltonian (1.1) is
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1.1 Monolayer graphene

Figure 1.1: Monolayer graphene lattice, showing the two sublattices A and B with the lattice
constant a. The hopping parameter γ between neighboring carbon atoms, that belong to opposite
sublattices, determines the Fermi velocity in graphene vg =

√
3aγ/(2ℏ).

non-interacting and contains the single-particle Hamiltonian

Ȟ0F = εF, (1.2)

Ȟ0 = vgξ

(
0 π̂†

π̂ 0

)
, (1.3)

which again acts on the sublattice space. Here the generalized momentum operator

π̂ = ξp̂x + ip̂y, π̂† = ξp̂x − ip̂y, (1.4)
p̂ = −iℏ∇ + eℏA/c (1.5)

has been introduced and A is the vector potential with a vectors structure in real space. For vanishing
magnetic field B = 0 the eigensystem can be easily found and is

Ȟ0Fs,k(r) = εs,kFs,k(r), (1.6)
εs,k = sℏvgk, (1.7)

Fs,k(r) = 1√
2
eikr

(
s
eiθ

)
, (1.8)

where k = k(cos θ, sin θ). The band index s = ± labels two linear bands, that touch exactly at the
corresponding Dirac point. The problem is not diagonal in the sublattice basis but in this s = ± basis.

3



1 Graphene

1.1.1 Finite perpendicular magnetic field

For the situation B = Bez we show in Appendix A.1, how one can obtain the eigensystem. One finds
the unified eigenenergies

εn = sign(n)ℏΩ
√

2|n|, (1.9)

sign(n) =


1 n > 0,
0 n = 0,
−1 n < 0,

Ω = vg

√
eB

ℏc
,

and the correctly normalized eigenstates

Fn,ky ,+(r) = Cne
−ikyy

(
sign(n)h|n|−1

h|n|

)
, (1.10)

Cn =

1 n = 0
1/

√
2 n ̸= 0

,

h|n| = i|n|√
2|n||n|!

√
πl
e

− 1
2

(
x−l2ky

l

)2

H|n|

(
x− l2ky

l

)
,

where l =
√
cℏ/eB is the magnetic length and H|n| are the physicist’s Hermite polynomials. Notably

n can be negative in this formulation.

1.2 Bilayer graphene

Bilayer graphene is obtained, by stacking two layer of monolayer graphene on top of each other while
placing an atom of sublattice A on top of one of sublattice B in the other layer, without introducing
a relative twist, as pictured in Fig. 1.2.

This system is reviewed in Ref.[7, 50]. Here we will reproduce the most important properties.
In the setups considered in this work energies are low compared to the lower band edges of the

systems. For this reason it is sufficient, to restrict ourselves to an effective low-energy descriptions for
bilayer graphene.

Starting again from a tight binding approach, one can obtain again a single particle Hamiltonian for
both the K and K ′ valley, which decouple for low energies. The presence of two sublattices led to a
2 × 2 single particle Hamiltonian in monolayer graphene (1.3). The additional layer degree of freedom
in bilayer graphene thus leads to a 4 × 4 matrix in sublattice and layer space. This full four-band
Hamiltonian is given by

Ȟ0 =


εA1 vπ̂† −v4π̂

† v3π̂,
vπ̂ εB1 γ1 −v4π̂

†,
−v4π̂ γ1 εA2 vπ̂†,
v3π̂

† −v4π̂ vπ̂ εB2

 , (1.11)
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1.2 Bilayer graphene

Figure 1.2: Bilayer graphene lattice, showing the two graphene layers with sublattices A1, B1
and A2, B2 respectively. In the considered Bernal stacking, B2 is directly on top of A1. The
hopping parameters γi determine different velocities vi =

√
3aγi/(2ℏ).

where

εA1 = 1
2(−U + δAB), (1.12)

εB1 = 1
2(−U + 2∆′ − δAB), (1.13)

εA2 = 1
2(−U + 2∆′ + δAB), (1.14)

εB2 = 1
2(U − δAB), (1.15)

as derived in Ref. [7] and the momentum operators π̂, π̂† are again given by Eq. (1.4). This operator
acts on the four-component wave-function according to

H


ψA1
ψB1
ψA2
ψB2

 = E


ψA1
ψB1
ψA2
ψB2

 . (1.16)

We can include the spin degree of freedom by writing

Ȟi = Ȟ0 ⊗ š0 (1.17)

in the spin-degenerate sector, and for Zeeman splitting we introduce

ȞZ = ∆EZ µ̌0 ⊗ σ̌0 ⊗ šz, (1.18)

where µ̌, σ̌ and š are the Pauli matrices in layer, sublattice, and spin space, respectively. Finally, we
can include spin-orbit coupling, where according to [51], two types of intrinsic spin-orbit interaction
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1 Graphene

are allowed by the symmetry of the problem

Ȟso
1 = ξλ1µ̌0 ⊗ σ̌z ⊗ šz, (1.19)

Ȟso
2 = ξλ2µ̌z ⊗ σ̌0 ⊗ šz, (1.20)

where ξ = ± corresponds to valley K (K ′). Following [52], we additionally introduce an extrinsic
spin-orbit interaction of the form

Ȟso
3 = ξ diag(λu,−λu, λd,−λd) ⊗ šz. (1.21)

Following the procedure presented in Appendix A.2 one obtains an effective, low energy two band
Hamiltonian. Here, we are not interested in a perpendicular magnetic field, but rather in an in-plane
one. Moreover we want to include the gate-tunable band gap U and thus consider the Hamiltonian

Ȟ0 =

− 1
2m

(
0 (π̂†)2

π̂2 0

)
− U

2

(
1 0
0 −1

)⊗ ŝ0 + ∆Ez

2

(
1 0
0 1

)
⊗ ŝz, (1.22)

that acts on the low-energy non-dimer states

(ψA1, ψB2)T (1.23)

where we neglect effects like the Mexican hat feature and trigonal warping, that are discussed in
Refs. [46]. The direct effect of an in-plane magnetic field on the band structure via minimal coupling
is negligible for magnetic fields below several hundred teslas [53]. Intrinsic spin-orbit coupling in
graphene is very weak. This Hamiltonian has the eigenvalues

εσ,s,k = σ∆Ez

2 + s

√
k4m2ℏ4 + 4m4U2

2m2 . (1.24)

1.3 Summary and conclusions

In summary we see, that in zero magnetic field monolayer graphene has a Dirac like dispersion with
spinor eigenstates in sublattice space (1.8) and a unusual Landau level spectrum in magnetic field
(1.10). In the non-interacting limit, both graphene and bilayer graphene have two valleys with a large
separation in momentum space, which can be described separately.

In Sec. 2.1 we will use the zero magnetic field dispersion relation to derive the conductivity in small
perpendicular magnetic fields within the Boltzmann equation approach. The relaxation time entering
the disorder relaxation of the distribution function is defined in Eq. (2.6) and evaluates to Eq. (2.8).
Due to its spinor wavefunction, which have a non trivial dependence on the angle of the momentum, the
transport scattering time τtr and the quantum scattering time τq differ by a factor of two in monolayer
graphene. In the case of large perpendicular magnetic fields, one has to perform a full perturbative
treatment, to obtain the conductivity, as done in Sec. 2.2. These results will then be applied in Chapter
5 to describe the magnetoresistance in a graphene Corbino disk at small perpendicular magnetic fields
and at low temperatures.

If one turns to higher temperatures, electron-electron interaction becomes more important and a
perturbative treatment like Sec. 2.2 is no longer valid. Instead, the hydrodynamic approach discussed
in Sec. 2.4 can be applied and electrons in graphene can be describes similarly to a classical fluid, since
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1.3 Summary and conclusions

strong correlations induce a collective behavior. This will be applied to the same graphene Corbino
disk, however at elevated temperatures, in Chapter 6, where we strongly rely on the linear dispersion
discussed here.

For low energies, BLG has a quadratic spectrum, with a band gap and spinor eigenstates in sublat-
tice/layer space (1.24). This band gap can be opened by a combination of gates and especially used, to
electrostatically confine the electron gas and construct a quantum point contact, which is investigated
in Chapter 4. In Sec. 2.3 we use Landauer theory to find the conductivity of such a system, where
a scattering matrix theory approach is valid. The general aspects of quantum point contacts, which
form the basis of Chapter 4 are discussed in Sec. 3.1.
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2 Chapter 2

Methods in quantum transport

In this chapter we discuss different formalisms to describe electronic transport at the meso-scale. We
start with the Boltzmann equation, deriving the magnetoresistance in monolayer graphene (2.29) and
(2.30). Then we show, how the linear response conductivity can be found in the Green’s function for-
malism by means of the Kubo formula (2.97) and how the non-interacting Green’s function look for
the case of disordered monolayer graphene (2.58). These results are relevant for Chapter 5, where
we apply them to a graphene Corbino disk in small perpendicular magnetic field at low temperature.
This device geometry is discussed in Sec. 3.2. We also discuss the Landauer-Büttiker formula (2.164),
which is a special limit of the Kubo formula and will be applied in Chapter 4. Finally we present, how
and when the Boltzmann equation (2.167) can be used, to derive a set of hydrodynamic equations in
graphene (2.206), (2.208),(2.209),(2.210), which is used in Chapter 6 to describe the same graphene
Corbino disk, but at elevated temperatures.

Transport in electronic systems strongly depends on the hierarchy of length scales involved in the
given setup. The systems we consider, can all be characterized by a generally finite conductance
G = I/U , which gives the ratio between the current I passing through the system over the applied
voltage U . If a conducting two dimensional system is large enough, then this conductance is given
by G = σW/L, where σ is the conductivity, which is a material property and independent of the
dimensions, and W and L are width and length of the system respectively. This behavior is called
ohmic and only occurs, if both of these length scales are much larger than inherent length scales, that
characterize the sample. Usually these length scales are the quantum mechanical coherence length
ℓϕ, over which the phase of the wavefunction stays well defined, the energy relaxing mean free path
ℓin, the momentum relaxing mean free path ℓp and the Fermi wavelength λF . All of these depend on
external properties like the temperature or applied magnetic fields, but also on internal properties of
the sample, like its band structure and disorder. A good review on the behavior in different length
hierarchies is given in [9–11].

In the following we will give an overview on two methods of describing electronic transport. The
first method is the Boltzmann equation, which is a semiclassical non-linear differential equation for
the distribution function 2.1. It is applicable, if excitations have long wavelengths and low frequencies.
Disorder and interaction effects are usually treated on the golden rule level, which is a result of
perturbation theory to first order. As long as disorder and interaction effects are weak, they can be
taken into account in a perturbative expansion, but this expansion becomes better, if we can include
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2 Methods in quantum transport

relevant higher order corrections as well. This is archieved in the Green’s function formalism introduced
in Section 2.2. Starting from free electrons, we include the most relevant interaction or disorder induced
corrections, and calculate the conductivity in linear response. The chapter ends with two special limits
of these two methods. The first is the Landauer-Büttiker formula of conductance discussed in Sec. 2.3,
which is essentially the much simplified first order result of the linear response conductivity obtained in
the Green’s function formalism. Finally we end with a special application of the Boltzmann equations,
which can be used to derive conservation laws in the form of hydrodynamic equations in graphene
discussed in Sec. 2.4.

2.1 Boltzmann equation

One way of describing the response of a system to external fields is the semiclassical Boltzmann
equation, which is discussed in Refs. [16, 54, 55] and was first derived by Ludwig Boltzmann in 1872.
For excitations with sufficiently long wavelengths (λ ≫ 2π/kF ) and low frequencies (ω ≪ 2EF /ℏ) the
distribution function f(r,k, t) of the electron gas obtains additional dependencies compared to the

bare Fermi-Dirac distribution function f0(ε) =
(

1 + exp
(
(ε− µ)/kBT

))−1
. These are described by

the Boltzmann equation

[
∂t + dp

dt · ∇p + dr
dt · ∇r

]
f(r,p, t) = S{f}(r,p, t), (2.1)

where dr
dt = v = ∇εp is the velocity and dp

dt = F(r,p, t) is the total force acting on the electrons. The
functional S{f} is known as collision integral and originates from potential variations on the scale k−1

F ,
which lead to momentum changes of the particles. Assuming, that the scattering rates Wk,q describe
the probability per unit time of scattering from a state with momentum k into one with momentum
q, this collision integral can be expressed as

S{f}(r,k, t) = −
∫ (ddq)

(2π)2

(
Wq,kfq −Wk,qfk

)
, (2.2)

i.e. it’s given by the difference of states scattering out of the state fk (which need to be filled, so are
weighted by fq) and those that are scattered out of the state with fk. Notably, the scattering rates
usually also depend on the distribution function, so this is a non-linear integro-differential equation.
In the limit of low energies, most scattering events occurs due to scattering off of impurities, which
conserves momentum and is thus elastic. Then the scattering rates can be found from the Fermi golden
rule in the Born approximation. A common way of simplifying this even further is to assume, that the
scattering potential is actually independent of the transfered momentum, in which case one may write

S{f}(r,k, t) = f − ⟨f⟩
τtr(ϵk) , (2.3)
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2.1 Boltzmann equation

where τtr(ϵk) is the momentum relaxation time and ⟨f⟩ is the angular average. The momentum
relaxation time is also called transport scattering time τtr and for graphene it can be found as

1
τtr(k) = 2π

ℏ
nimp

∫ 2π

0
dθ
∫ ∞

0

k′dk′

(2π)2S(k,k′)(1 − cos θ), (2.4)

S(k,k′) = |Uk′k|2 1
ℏvg

δ(k′ − k), (2.5)

Uk′k =
∫

drψ†
s,k′(r)Ǔ(r)ψs,k(r), (2.6)

where Ǔ(r) is the scattering potential of a single impurity at the origin, ψs,k(r) are the spinor wavefunc-
tions of graphene shown in Eq. 1.8 and nimp is the density of impurities. This approximation is known
as relaxation time approximation. This should be contrasted with inelastic scattering from electron-
electron or electron-phonon interactions, where energy is not conserved and distribution function of
different energies thus get mixed.

For the simplest example of a potential

V̌ (r) = δ(r − 0)u0

(
1 0
0 1

)
, (2.7)

we find with the zero magnetic field wavefunctions from Eq. (1.8)

τtr(ϵk) = 2γℏ
|ϵk|

, γ =
2ℏ2v2

g

nimpu2
0
. (2.8)

2.1.1 Static linear response in constant perpendicular magnetic field

Let us consider a setup, where we apply a perpendicular magnetic field B and a static electric field E
and want to find the response of the current density j to linear order in E, which gives access to the
conductivity σ through

j = σE. (2.9)

Restoring all units of ℏ and specifying the electromagnetic force we want to consider

∂f

∂t
+ ∂k
∂t

∇kf + ∂r
∂t

∇rf = S{f}(r,k, t), (2.10)

∂r
∂t

= vk = 1
ℏ

∇kϵk, (2.11)

∂k
∂t

= − e

ℏ
E − e

ℏc
vk × B. (2.12)

The current density is then found by

j(t, r) = −e
∑

k

f(t, r,k)vk. (2.13)

We will assume, that this situation only slightly deviates from the free problem, i.e. f(t, r,k) =
f0(k)+g(t, r,k), where f0 is the spatially homogeneous and time independent Fermi-Dirac distribution
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2 Methods in quantum transport

function and g is a small deviation. We will further assume spatial homogeneity and use a relaxation
time approximation S{f}(r,k, t) = − g

τtr(ϵk) . Furthermore we consider monolayer graphene with a
dispersion

ϵk = ℏvgk. (2.14)

Then we get

−iωg − e

ℏ
E
(

∇kg + ∂f0
∂ϵk

ℏvk

)
− e

ℏ

(
1
c

vk × B
)

∇kg = − g

τtr(ϵk) . (2.15)

To linear order in the external electric field this means

−e∂f0
∂ϵk

E · vk − e

ℏc
(vk × B) · ∇kg =

(
iω − 1

τtr(ϵk)

)
g, (2.16)

which can be solved using the ansatz

g = A(ϵk) · k ⇒ ∇kg = A(ϵk) +
(
∂A
∂ϵk

· k
)

∇kϵk = A(ϵk) +
(
∂A
∂ϵk

· k
)
ℏvk. (2.17)

Since vk × B is orthogonal to vk, the second gradient does not contribute and we get

−e∂f0
∂ϵk

E · vk − e

ℏc
(vk × B) · A(ϵk) =

(
iω − 1

τtr(ϵk)

)
A(ϵk) · k. (2.18)

Next we use, that vk = vgek = vg

k k compare the coefficients of vα
k to find

−e∂f0
∂ϵk

Eα =

δαγ
k

vg

(
iω − 1

τtr(ϵk)

)
+ ϵαβγ

e

ℏc
Bβ

Aγ(ϵk), (2.19)

Γαγ =

δαγ
k

vg

(
iω − 1

τtr(ϵk)

)
+ ϵαβγ

e

ℏc
Bβ

 (2.20)

⇔ −e∂f0
∂ϵk

E = ΓA(ϵk) (2.21)

⇒ g = −e∂f0
∂ϵk

(Γ−1E) · k. (2.22)

Let us choose B = Bez, then we have

Γαγ = k

vg
(iω − 1

τtr(ϵk))

δαγ + ϵαzγ
ωc(ϵk)

iω − 1
τtr(ϵk)

 , ωc(ϵ) =
eBv2

g

ϵc
. (2.23)

The current density is then

jα = e2∑
k

∂f0
∂ϵk

kγΓ−1
γβE

βvα
k , (2.24)

12



2.1 Boltzmann equation

and using the definition jα = σαβE
β we get the conductance

σαβ = e2∑
k

∂f0
∂ϵk

kγΓ−1
γβ v

α
k = e2∑

k

∂f0
∂ϵk

kγΓ−1
γβ

v

k
kα (2.25)

Since both the Fermi function at equilibrium and the matrix Γ only depend on the absolute value of k,
the the angular part of the integral is only concerned with the expression kαkγ , but in both two and
three dimensions, this angular integral vanishes for α ̸= γ, so we may write kαkγ = δαγ

k2

d , where d is
the dimension, which can be seen by considering the trace. Thus

σαβ = e2∑
k

∂f0
∂ϵk

Γ−1
αβ

v

k

k2

d

=
e2v2

g

d

∑
k

∂f0
∂ϵk

1
iω − 1

τtr(ϵk)

(1 0
0 1

)
+ ωc(ϵk)
iω − 1

τtr(ϵk)

(
0 −1
1 0

)−1

αβ

. (2.26)

From this we get for ω = 0

σxx = −
e2v2

g

d

∑
k

∂f0
∂ϵk

τtr(ϵk)

1 +
(
ωc(ϵk)τtr(ϵk)

)2 =
∫

dϵ
(

−∂f0
∂ϵ

)
e2v2

gτtr(ϵ)ν(ϵ)
d

1

1 +
(
ωc(ϵ)τtr(ϵ)

)2 , (2.27)

σxy = −
e2v2

g

d

∑
k

∂f0
∂ϵk

ωc(ϵk)τtr(ϵk)2

1 +
(
ωc(ϵk)τtr(ϵk)

)2 =
∫

dϵ
(

−∂f0
∂ϵ

)
e2v2

gτtr(ϵ)ν(ϵ)
d

ωc(ϵ)τtr(ϵ)

1 +
(
ωc(ϵ)τtr(ϵ)

)2 . (2.28)

At zero temperature this simplifies to

σxx = σ0
1

1 +
(
ωc(µ)τtr(µ)

)2 , (2.29)

σxy = σ0
ωc(µ)τtr(µ)

1 +
(
ωc(µ)τtr(µ)

)2 (2.30)

For the disorder potential introduced in Eq. (2.7) one finds

σ0 =
e2v2

g

d
τtr(ϵ)ν(ϵ) =

2e2v2
gℏ

nimpu2
0π
. (2.31)

2.1.2 Summary

The semi-classical Boltzmann equation was one of the earliest theories, that could connect microscopic
details, like the band structure of a system, with macroscopic, measurable quantities like the con-
ductivity. In this section we have introduced this semi-classical Boltzmann equation and shown its
application to graphene in a non-quantizing perpendicular magnetic field. One obtains the conduc-
tivity shown in Eqs. (2.29), (2.30). This result, combined with the perturbative calculation of the
same quantity performed in Sec. 2.2.5 will be used in Chapter 5 to describe the magnetoresistance
of a graphene Corbino disk at low temperatures. The special properties of the Corbino geometry are
discussed in Sec. 3.2. A special limit of the Boltzmann equation is the hydrodynamic description of
collective modes in graphene at elevated temperatures discussed in Sec. 2.4, which is applied to the
same graphene Corbino disk at elevated temperatures in Chapter 6.
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2 Methods in quantum transport

2.2 Perturbation theory

Transport measurements, that are performed in samples of mesoscopic size are not sensitive to the
individual motion of electrons and holes in the system, but only to collective properties. In the systems
considered in this section, the Coulomb interaction between electrons and the scattering from random
impurities, that are always present in any sample, is considered to be weak. In this limit, one can
essentially perform an expansion in small parameters related to the interaction and disorder scattering.
To this end, one introduces Green’s function, which are discussed in this section. We summarize the
general properties of Green’s functions and how to incorporate weak disorder scattering and weak
electron-electron interaction. We also reproduce, how the linear response conductance is found in
this formalism and what it looks like in monolayer graphene with a perpendicular magnetic field in
particular. Since we will focus on the Corbino geometry (Sec. 3.2) later on, we restrict ourselves to
the σxx component of the conductivity tensor.

2.2.1 Many-body Green’s functions

In order to describe mesoscopic properties of weakly interacting electrons in mono- or bilayer graphene
we use a diagrammatic Green’s functions approach. Following Ref. [10] we here reproduce the most
important results adapted to our needs.

The many body Green’s function Ǧ(r1, t1; r2, t2) is defined via

Gij(r1, t1; r2, t2) = −i
〈
ϕ0|T Ψ̂i(r1, t1)Ψ̂†

j(r2, t2)|ϕ0

〉
, (2.32)

with the time ordering operator T acting according to

T Ψ̂i(r1, t1)Ψ̂†
j(r2, t2) = Θ(t1 − t2)Ψ̂i(r1, t1)Ψ̂†

j(r2, t2) − Θ(t2 − t1)Ψ̂†
j(r2, t2)Ψ̂i(r1, t1). (2.33)

The indices i, j can in general label any matrix structure of the free Hamiltonian, in the case of
monolayer graphene they will specifically label the sublattice space. For bilayer graphene they could
either label the full sublattice and layer space and thus run over A1, A2, B1 and B2 if one uses the
full 4 × 4 Hamiltonian, or run over A1 and B2 only for the effective low energy Hamiltonian discussed
in Sec. 1.2.

Similarly one defines the retarded (R) and advanced (A) many-body Green’s functions

G
(R)
ij (r1, t1; r2, t2) = −iθ(t1 − t2)

〈
ϕ0|

[
Ψ̂i(r1, t1)Ψ̂†

j(r2, t2)
]

B/F
|ϕ0

〉
, (2.34)

G
(A)
ij (r1, t1; r2, t2) = iθ(t2 − t1)

〈
ϕ0|

[
Ψ̂i(r1, t1)Ψ̂†

j(r2, t2)
]

B/F
|ϕ0

〉
, (2.35)

[
Â, B̂

]
F/B

=


[
Â, B̂

]
= ÂB̂ − B̂Â, bosons(B){

Â, B̂
}

= ÂB̂ + B̂Â, fermions(F)
. (2.36)

The field operator Ψ̂ is defined as

Ψ̂(r, t) =
∑

α

Fα(r)âα(t), (2.37)
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2.2 Perturbation theory

where α labels single-particle states and Fα(r) are the eigenstates of the single-particle Hamiltonian,
which in our case will have a vector structure in sublattice space labeled by indices i, j, ..., thus Ǧ is
a matrix with entries labeled by i, j. For monolayer graphene without a magnetic field, one could use
Eq. (1.8), in which case the label α = (s,k) would label the eigenstates and both Ψ̂ and Fα(r) are
vectors in sublattice space.

In the interaction representation used in perturbation theory, operators evolve with the free dynamics
determined by the non-interacting part of the Hamiltonian. Thus the time dependence of the field
operators is fully determined by the eigenenergies of the single particle Hamiltonian and one finds the
expressions

Ψ̂(r, t) =
∑

α

Fα(r)âαe
−iεαt, Ψ̂†(r, t) =

∑
α

FH
α (r)â†

αe
+iεαt, (2.38)

where the superscript ()H notes the conjugate transpose. Restricting ourselves to a free problem, where
no interacting part of the Hamiltonian is present, the ground state |ϕ0⟩ moreover consists of all single
particle states below the Fermi level, thus we find generally

Ǧ(0)(R/A)(r1; r2;ω) =
∑

α

Fα(r1)FH
α (r2)

ω − εα ± i0 =
∑

α

Fα(r1)FH
α (r2)G(0)(R/A)

α (ω), (2.39)

where +i0 applies for the retarded case, and −i0 for the advanced.

2.2.2 Matsubara Green’s function

At finite temperature T the expectation value of an operator Â in the grand canonical ensemble is
given by

⟨Â⟩ =
∑

n

e−βE′
n

ZG
⟨n|Â|n⟩ =

∑
n

⟨n|eβ(Ω−Ĥ+µN̂)Â|n⟩ = Treβ(Ω−Ĥ+µN̂)Â, (2.40)

ZG = Tre−β(Ĥ−µN̂) = exp
(
−βΩ

)
, (2.41)

with β = 1/T , where n labels the eigenstates and eigenenergies En of the Hamiltonian Ĥ and E′
n =

En −µNn. The grand canonical potential is obtained as Ω = log
(
ZG

)
/β. Thus we define the imaginary

time t = −iτ with τ ∈ [0, β] and the temperature-dependent, imaginary time Matsubara Green’s
function

Gij(r1, τ1; r2, τ2) = −
〈
Tτ ΨMH,i(r1, τ1)Ψ̄MH,j(r2, τ2)

〉
, (2.42)

ΨMH(r, τ) = eĤτ Ψ̂(r)e−Ĥτ , (2.43)

where Tτ is the imaginary time ordering operator with

Tτ ΨMH(τ1)Ψ̄MH(τ2) =

ΨMH(τ1)Ψ̄MH(τ2) τ1 > τ2,

∓Ψ̄MH(τ2)ΨMH(τ1) τ1 < τ2
(2.44)

and the upper/lower sign holds for fermions/bosons respectively. The most important property of
the Matsubara Green’s function is that analytical continuations directly gives the retarded, real time
Green’s function

GR(ω) = G(iωn → ω + iϵ). (2.45)
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2 Methods in quantum transport

Using a new, imaginary time interaction representation, where operators follow the free Hamiltonian
we define

ΨM,0(r, τ) = exp
(
H0τ

)
Ψ(r) exp

(
−H0τ

)
, (2.46)

which leads to

ΨM,0(r, τ) =
∑

α

Fα(r)aα(τ) =
∑

α

Fα(r)aαe
−ξατ , (2.47)

Ψ̄M,0(r, τ) =
∑

α

FH
α (r)a†

αe
ξατ , (2.48)

ξα = εα − µ, (2.49)

and rewrite everything in terms of expectation values

⟨Â⟩0 = Tr
(
eβ(Ω0−H0)

)
. (2.50)

We will further use

⟨a†
αaβ⟩0 = δαβ

nF (ξα), fermionic
nB(ξα), bosonic

, (2.51)

and define a Fourier transform to imaginary frequencies iωn

G(iωn) =
∫ β

0
dτeiωnτ G(τ), (2.52)

G(τ) = 1
β

∑
n

e−iωnτ G(iωn), (2.53)

where the discrete frequencies are

ωn =

2nπ
β , bosons,

(2n+1)π
β , fermions.

(2.54)

Then we can express the Matsubara Green’s function of free particles with the Hamiltonian

Ȟ0 =
∑

α

ξαa
†
αaα (2.55)

as

G(0)
ij (r1, r2; iωn) =

∑
α

Fα,iF
∗
α,j

iωn − ξα
(2.56)

for both fermions and bosons.
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2.2 Perturbation theory

Monolayer graphene

We consider the non-interacting many-body Hamiltonian introduced in Eq. (1.1), which leads to the
single particle Hamiltonian (1.3). From this it is clear, that the Green’s function is actually a 2 × 2
matrix in sublattice space. In all situations we consider, we can restrict ourselves to one valley ξ = +.
As shown in Sec. 1.1 we then obtain the eigenenergies and states (1.8) for vanishing magnetic field
and thus the Matsubara Green’s function

G(0)(r1; r2; iω) =
∑
s,k

Fs,k(r1)FH
s,k(r2)

iω − εs,k
=
∑
s,k

Fs,k(r1)FH
s,k(r2)G(0)

s,k(iω). (2.57)

For finite magnetic field we use (1.10) and obtain

G(0)(r1; r2; iω) =
∑
n,ky

Fn,ky (r1)FH
n,ky

(r2)
iω − εn,ky

=
∑
n,ky

Fn,ky (r1)FH
n,ky

(r2)G(0)
n,ky

(iω) (2.58)

instead.

2.2.3 Interacting systems

The very fundament of the diagrammatic approach is the Gell-Mann and Low theorem, which relates
the ground state |ϕ0⟩ of the interacting theory to that of the non-interacting one |0⟩. It states that

iGi,j(r1, t1; r2, t2) =
〈
ϕ0|T Ψ̂i(r1, t1)Ψ̂†

j(r2, t2)|ϕ0

〉

= ⟨0|Ŝ|0⟩−1
〈

0

∣∣∣∣∣∣∣T
exp

(
−i
∫ ∞

−∞
dt′ÛI(t′)

)
Ψ̂i,I(r1, t1)Ψ̂†

j,I(r2, t2)


∣∣∣∣∣∣∣ 0
〉
. (2.59)

The field operators are given by

Ψ̂I(r, t) =
∑

α

Fα(r)âαe
−iεαt, Ψ̂†

I(r, t) =
∑

α

FH
α (r)â†

αe
+iεαt, (2.60)

i.e. they are the same as in the non-interacting theory. The interaction Hamiltonian we consider is
diagonal in sublattice space

ÛI(t) = 1
2

∫
dt′δ(t− t′)

∫
d2rd2r′Ψ̂†

I(r, t)Ψ̂†
I(r′, t′)V̌ (r − r′)Ψ̂I(r′, t′)Ψ̂I(r, t). (2.61)

When expanding the exponential in Eq. (2.59) for a small parameter, we see, that we get non-
interacting expectation values of combinations of several field operators, which can be rewritten by
means of the Wick theorem. It turns out, that the factor ⟨0|Ŝ|0⟩−1 exactly cancels all non connected
diagrams, so we only need to consider the connected ones. The corresponding expression for the
Matsubara Green’s function is

Gij(r1, τ1; r2, τ2) = − 1
⟨S⟩0

〈
Tτ SΨM,0,i(r1, τ1)Ψ̄M,0,j(r2, τ2)

〉
0
, (2.62)

Ŝ = Tτ exp
(

−
∫ β

0
dτÛ0(τ)

)
, (2.63)
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2 Methods in quantum transport

for an interaction Hamiltonian

Û0(τ) = 1
2

∫
dτ ′δ(τ − τ ′)

∫
d2rd2r′Ψ̄M,0(r, τ)Ψ̄M,0(r′, τ ′)V̌ (r − r′)ΨM,0(r′, τ ′)ΨM,0(r, τ), (2.64)

where the denominator again exactly cancels all non-connected diagrams.

2.2.4 Disordered systems

The existence of random impurities inside the mesoscopic samples plays an important role. Generally,
the presence of a potential can be included via

iGi,j(r1, t1; r2, t2) =
〈
ϕ0|T Ψ̂i(r1, t1)Ψ̂†

j(r2, t2)|ϕ0

〉

= ⟨0|Ŝ|0⟩−1
〈

0

∣∣∣∣∣∣∣T
exp

(
−i
∫ ∞

−∞
dt′ÛI(t′)

)
Ψ̂i,I(r1, t1)Ψ̂†

j,I(r2, t2)


∣∣∣∣∣∣∣ 0
〉
. (2.65)

ÛI(t) =
∫

d2rΨ̂†
I(r, t)V̌ (r)Ψ̂I(r, t)

=
∑
αβ

∫
d2rFH

α (r)V̌ (r)Fβ(r)︸ ︷︷ ︸
Vαβ

â†
α(t)âβ(t). (2.66)

Since these impurities are randomly distributed, only the disorder averaged value of quantities can be
observed. We note disorder averaging by

⟨f(ri)⟩ = 1
V

∫
d2rif(ri). (2.67)

We consider scattering off of a random short range potential without spin or valley mixing, i.e.

V̌ (r) = V (r)1̌ = u0
∑

i

δ(r − ri)
(

1 0
0 1

)
, (2.68)

⟨V (r)V (r′)⟩ = κδ(r − r′), (2.69)

where κ = u2
0cimp When expanding the exponential under the assumption, that u0 is small, we come

across disorder averages of the form〈∫
d2rΨ̂†

I(r, t)V̌ (r)Ψ̂I(r, t)
〉

=
∫

d2r
∑

j

Ψ̂†
j(r, t)Ψ̂j(r, t)u0

V

∑
i

∫
d2riδ(r − ri)

= cimpu0

∫
d2r

∑
j

Ψ̂†
j(r, t)Ψ̂j(r, t), (2.70)

which simply amount to a shift of the total energy which we thus set to zero. Importantly we note,
that translational invariance is restored after disorder averaging. We will restrict ourselves to the self
consistent Born approximation, which can be represented by the following Dyson series for the disorder
averaged Green’s function ⟨Gαβ(ε)⟩ represented by a thick propagator, the free Green’s function G

(0)
αβ

represented by a thin propagator and the self energy, represented as a blob

αβ = αβ + αγ δβ
, (2.71)
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2.2 Perturbation theory

where the self energy in self consistent Born approximation is given by

Σαβ = α β = γδ
α β (2.72)

and disorder averaging is represented by

α β

δ γ

= ⟨VαβVγδ⟩. (2.73)

Here external indices are to be understood as belonging to the end of the Green’s function, that would
attach there. This is equivalent to the following expressions

⟨Gαβ(ε)⟩ = δαβG
(0)
α (ε) +G(0)

α

∑
δ

Σαδ⟨Gδβ(ε)⟩, (2.74)

G
(0)
αβ(ε) = δαβG

(0)
α (ε), (2.75)

Σαβ =
∑
γ,δ

⟨VαγVδβ⟩⟨Gγδ(ε)⟩, (2.76)

where Greek indices label the eigenstates of the free Hamiltonian.

2.2.5 Kubo formula for conductivity

The conductivity σ of a system is defined as the linear response of the current to an external electric
field E

ja(r, ε) =
∫

d2r′σab(r, r′; ε)Eb(r′, ε), (2.77)

where a, b = x, y label the real space coordinate. This can be found by means of the Kubo formula of
linear response. We consider a perturbation of the form

Ĥ = Ĥ0 + ÂF (t), (2.78)

where F is a generalized force coupling to an operator Â. Then one finds, that the change to an
observable B̂ to linear order is given by

δB(t) =
∫

dt′DR
BA(t, t′)F (t′), (2.79)

DR
BA(t, t′) = −iΘ(t− t′)⟨ϕ0|

[
B̂(t), Â(t′)

]
|ϕ0⟩, (2.80)

where [A,B] is the commutator and the index R marks the retarded nature of this generalized Green’s
function.
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2 Methods in quantum transport

Let us start with the case of monolayer graphene. Then, the bare problem has the Hamiltonian

H0 =
∫

d2rΨ̂†(r)vg

ℏ
ξ

(
0 π̂†

π̂ 0

)
Ψ̂(r). (2.81)

An external field is again introduced by replacing p → p − eA/c = pkin, in which case we find the new
Hamiltonian

H =
∫

d2rΨ̂†(r)vg

ℏ
ξ

(
0 ξ(−iℏ∂x − e

cAx) − i(−iℏ∂y − e
cAy)

ξ(−iℏ∂x − e
cAx) + i(−iℏ∂y − e

cAy) 0

)
Ψ̂(r)

= H0 +
∫

d2r
vg

ℏ
−e
c

(
AxΨ̂†(r)σxΨ̂(r) −AyξΨ̂†(r)σyΨ̂(r)

)
= H0 − 1

c

∫
d2rj(r)A(r), (2.82)

jx/y(r) = eΨ†(r)vx/yΨ(r), vx/y = vg

ℏ
σx/y, (2.83)

where the vector σx/y is one of the first two Pauli matrices σx and σy. Then we find from the Kubo
formula

δja(r, t) = i

c

∫ t

−∞
dt′
∫

d2r′⟨ϕ0|[ja(r, t), jb(r′, t′)]|ϕ0⟩Ab(r′, t′). (2.84)

With the gauge E = −1/c∂tA we can perform a Fourier transform and find

σab(r, r′;ω) = −1
iω
DR

jj;ab(r, r′;ω) = 1
iω

{
i

∫ ∞

0
dteiωt⟨ϕ0|[ja(r, t), jb(r′, 0)]|ϕ0⟩

〉
(2.85)

with the retarded current-current correlator

DR
jj;ab(r, t; r′t′) = −iΘ(t− t′)⟨ϕ0|

[
ja(r, t), jb(r′, t′)

]
|ϕ0⟩. (2.86)

Making use of analytical continuation we instead practically calculate

Djj;ab(r, τ ; r′, τ ′) = −⟨Tτ ja(r, τ)jb(r′, τ ′)⟩. (2.87)

The diagrammatic series can most easily be developed by first taking a look at the non-interacting
result

D(0)
jj;ab(r, τ ; r′, τ ′) = −⟨Tτ ja(r, τ)jb(r′, τ ′)⟩0

= −e2va,ijvb,kl⟨Tτ Ψ̄i(r, τ)Ψj(r, τ)Ψ̄k(r′, τ ′)Ψl(r′, τ ′)⟩0

= +e2va,ijvb,klGjk(r, τ ; r′, τ ′)Gli(r′, τ ′; r, τ), (2.88)

D(0)
jj;ab(r, r

′;ωm) = e2 1
β

∑
εn

Tr
(
vaG(0)(r, r′; εn + ωm)vbG(0)(r′, r; εn)

)
, (2.89)

where the trace runs over sublattice indices. Interaction or disorder effects are included by substituting
G(0) by the full G and by replacing one velocity vertex vb by a vertex operator Γb, i.e.

Djj;ab(r, r′;ωm) = e2 1
β

∑
εn

Tr
(
vaG(r, r′; εn + ωm)Γb(εn + ωm, εn)G(r′, r; εn)

)
. (2.90)
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The Matsubara sum can be performed under the assumption, that Γb is analytical everywhere, except
for the two branch cuts of the product of Green’s functions. Then we can consider

S(iωm) = 1
β

∑
iεn

f(iεn + iωm, iεn) = −
∫

C

dz
2πinF (z)f(z + iωm, z)

=
∫ ∞

−∞

dϵ
−2πi

[
nF (ϵ)

(
f(ϵ+ iωm, ϵ+ i0) − f(ϵ+ iωm, ϵ− i0)

)
+ nF (ϵ− iωm)

(
f(ϵ+ i0, ϵ− iωm) − f(ϵ− i0, ϵ− iωm)

)]
. (2.91)

After analytical continuation we find

SR(ω) = S(iωm → ω + i0)

=
∫ ∞

−∞

dϵ
−2πinF (ϵ)

(
f(z + ω + i0, ϵ+ i0) − f(z + ω + i0, ϵ− i0)

+ f(ϵ+ i0, ϵ− ω − i0) − f(ϵ− i0, ϵ− ω − i0)
)
. (2.92)

Applying this to the conductivity we find

σab(r, r′;ω) = −1
iω

e2

−i

∫ ∞

−∞

dϵ
2πnF (ϵ)

{
Tr
(
vaG

R(r, r′; ϵ+ ω)Γb(ϵ+ ω, ϵ)
[
GR(r′, r; ϵ) −GA(r′, r; ϵ)

])

+ Tr
(
va

[
GR(r, r′; ϵ) −GA(r, r′; ϵ)

]
Γb(ϵ, ϵ− ω)GA(r′, r; ϵ− ω)

)}
. (2.93)

To find the static conductivity we only need the integral up to linear order in ω. For this we shift the
integration in the second part, expand to linear order in ω and then get

σab(r, r′;ω) ≈ −e2

ω

∫ ∞

−∞

dϵ
2π

{
nF (ϵ)Tr

(
vaG

R(r, r′; ϵ)Γb(ϵ, ϵ)
[
GR(r′, r; ϵ) −GA(r′, r; ϵ)

])

+
(
nF (ϵ) + ωn′

F (ϵ)
)

Tr
(
va

[
GR(r, r′; ϵ) −GA(r, r′; ϵ)

]
Γb(ϵ, ϵ)GA(r′, r; ϵ)

)}
. (2.94)

What is measured is usually the real part of the conductivity. Using ReGR = ReGA, ImGR = − ImGA

we then find

Reσab(r, r′;ω) ≈ −e2
∫ ∞

−∞

dϵ
2πn

′
F (ϵ)Tr

(
va

[
GR(r, r′; ϵ) −GA(r, r′; ϵ)

]
Γb(ϵ, ϵ)GA(r′, r; ϵ)

)
. (2.95)

For the sake of clarity, let us restrict ourselves to a = b = x. In this case vx is real and we assume,
that Γx stays real as well. The we finally find the expression

Reσxx(r, r′, 0) = e2

π

∫ ∞

−∞
dϵ
(

−dnF (ϵ)
dϵ

)
σxx(r, r′; ϵ), (2.96)

σxx(r, r′; ϵ) = Tr
(
vx ImGR(r, r′; ϵ)Γx(ϵ, ϵ) ImGR(r′, r; ϵ)

)
, (2.97)
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2 Methods in quantum transport

which can be re expressed in the eigenbasis as

σxx(r, r′; ϵ) =
∑
αβ

vx
βα(r) ImGR

α (ϵ)Γx
αβ(r′)(ϵ, ϵ) ImGR

β (ϵ), (2.98)

vx
βα(r) = FH

β (r)vxFα(r). (2.99)

After performing the disorder averaging, which is denoted by angled brackets, translational invariance
is restored, i.e. ⟨σab(r, r′)⟩ = ⟨σab(r − r′)⟩. We will assume, that σ means the disorder averaged
conductivity from here on. Usually we are interested in the response to a homogeneous electric field,
i.e.

σxx(q = 0; 0) =
∫

d2(r − r′)e
2

π

∫ ∞

−∞
dϵ
(

−dnF (ϵ)
dϵ

)
σxx(r − r′; ϵ). (2.100)

Since translational invariance is restored in the end, but the only terms that depend on the coordinate
are the vertices, we can Fourier transform once:

σxx(r, r′) = f(r)g(r′) =
∫ (d2q)(d2p)

(2π)4 eiqreipr′
f(q)g(p). (2.101)

Because the result may only depend on r − r′ this requires p = −q and thus we especially find

σxx(q = 0; ϵ) =
〈∑

αβ

vx
βα(q = 0) ImGR

α (ϵ)Γx
αβ(q = 0)(ϵ, ϵ) ImGR

β (ϵ)
〉
, (2.102)

vx
βα(q = 0) =

∫
d2rFH

β (r)vxF(
αr) = vx

βα. (2.103)

This can be visualized as follows. The bare conductivity would look like

σxx =
αβ

δγ

vx vx , (2.104)

where we use the bare velocity operator vx
δα and the Green’s functions obtained from the self consistent

Born approximation. However, the Ward identity requires, that in order not to violate the continuity
equation, we also have to include the corresponding graphs in the vertex, which we call Γx. This can
be represented in the following way

σxx =
αβ

δγ

vx Γx
, (2.105)

Γx

α

β

= vx

α

β
+

γδ

ζϵ

Γx

α

β

, (2.106)

i.e. vertex required due to the Ward identity is visually found, by inserting a bare velocity in the
middle of the Green’s function of the corresponding self energy.
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2.2 Perturbation theory

Short range disorder in monolayer Graphene without magnetic field

Let us start by calculating the disorder induced conductivity in monolayer graphene without interaction
effects and without a magnetic field. Since the chosen disorder is diagonal in the valley index, we can
restrict ourselves to one valley and multiply by a factor of two in the very end. This is discussed in Ref.
[56] under the label of "long-range scatterers". In this case eigenstates are labeled by α = (s,k) and
we set ξ = 1. The first step is to calculate the disorder averaged Green’s function in the self consistent
Born approximation.

⟨Gαβ(ε)⟩ = δαβG
(0)
α (ε) +G(0)

α

∑
δ

Σαδ⟨Gδβ(ε)⟩, (2.107)

G
(0)
αβ(ε) = δαβG

(0)
α (ε), (2.108)

Σαβ =
∑
γ,δ

⟨VαγVδβ⟩⟨Gγδ(ε)⟩, (2.109)

where Greek indices label the eigenstates of the free Hamiltonian. First we recognize, that the most
simple building block is the term

Σ(0)
αβ =

∑
γ,δ

⟨VαγVδβ⟩G(0)
γδ (ε) =

∑
γ

⟨VαγVγβ⟩G(0)
γ (ε) = γ

α β . (2.110)

The disorder averaged term is given by

⟨VαγVδβ⟩ = u2
0cimp

∫
d2r

(
FH

α (r)Fγ(r)
) (

FH
δ (r)Fβ(r)

)
= u2

0cimp
4π2

4
(
1 + sαsγe

i(θα−θγ)
) (

1 + sβsδe
i(θβ−θδ)

)
δ(kγ − kα + kβ − kδ). (2.111)

Thus for δ = γ we immediately find kα = kβ and thus θα = θβ. Moreover the sum over γ in
the self energy includes and integral over θγ and thus only terms with sα = sβ survive and we find
Σ(0)

αβ = δαβΣ(0) and inductively we also find

Σαβ(ε) = δαβΣ(ε) (2.112)

⟨Gαβ(ε)⟩ = δαβG
(0)
α (ε)

1 −G
(0)
α (ε)Σ(ε)

= δαβGα(ε), Gα(ε) = 1
ε− εα − Σ(ε) , (2.113)

Σ(ε) = u2
0cimp

1
4
∑

α

Gα(ε) = u2
0cimp
2π (ε− Σ(ε))

∫
kdk

(ε− Σ(ε))2 − ℏ2v2
gk

2 . (2.114)

In fact we only care for the imaginary part of the retarded self energy, since the real one will simply
shift the origin of the energy. We define the real and the imaginary part of the self energy by

Σ(ϵ± i0) = ∆ ∓ iΓ (2.115)

and then find here

Γ0 = u2
0cimp

4ℏ2v2
g

|ε|. (2.116)
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2 Methods in quantum transport

The bare velocity operator has the matrix elements

vx
αβ = vg(2π)2δ(kα − kβ)1

2
(
sαe

iθα + sβe
−iθα

)
. (2.117)

In order to find the conductivity we first realize, that

σxx(q = 0; ϵ) =
〈∑

αβ

vx
βα(q = 0) ImGR

α (ϵ)Γx
αβ(q = 0)(ϵ, ϵ) ImGR

β (ϵ)
〉

= 1
2 Re

[
I(ϵ+ i0, ϵ− i0) − I(ϵ+ i0, ϵ+ i0)

]
, (2.118)

I(ϵ, ω) = e2ℏ
π

∑
αβ

〈
vx

βαGα(ϵ)vx
αβGβ(ω)

〉
, (2.119)

since ReGR = ReGA and ImGR = − ImGA. Then the bare diagram for I(ϵ, ω) is represented by

I(0)(ϵ, ω) =
α ϵ

β ω

vx vx , (2.120)

and evaluates to

I(0)(ϵ, ω) = e2ℏ
π

× 2
∑
αβ

vx
βα⟨Gα(ϵ)⟩vx

αβ⟨Gβ(ω)⟩

= e2ℏ
π
v2

g

1
(2π)2

∑
s,t

∫
kdkdφ1

4
(
2 + 2st cos

(
2ϕ
)) 1
ϵ− sℏvgk − Σ(ϵ) × 1

ω − sℏvgk − Σ(ω)

= e2

π2ℏ
ϕ(ϵ, ω), (2.121)

ϕ(ϵ, ω) = 4πv2
gℏ2

∫ d2k

(2π)2
ϵ− Σ(ϵ)

[ϵ− Σ(ϵ)]2 − ℏ2v2
gk

2 × ω − Σ(ω)
[ω − Σ(ω)]2 − ℏ2v2

gk
2 , (2.122)

where the factor of two is due to valley degeneracy. When including disorder lines connecting the two
Green’s functions, we observe, that due to the momentum conservation of the velocity operator and
the disorder scattering lines, another power of ϕ(ϵ, ω) enters at every order and recursively we find the
full solution

I(ϵ, ω) = e2

π2ℏ
ϕ(ϵ, ω)

1 − u2
0cimp
4πv2

g
ϕ(ϵ, ω)

. (2.123)

Evaluating this expression at ϵ± i0 and using the definition (2.115), we find

σxx(ϵ) = e2

2π2ℏ
S(ϵ) + 1

(1 + u2
0cimp
4πv2

g
)(1 − u2

0cimp
4πv2

g
S(ϵ))

, (2.124)

S(ϵ) =
(
ϵ− ∆

Γ + Γ
ϵ− ∆

)
arctan

(
ϵ− ∆

Γ

)
. (2.125)
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2.2 Perturbation theory

In the Boltzmann limit ∆ = 0 and |ϵ| ≫ Γ0 one obtains

σ(ϵ) =
2ℏv2

ge
2

πu2
0nimp

, (2.126)

which is exactly the Drude result obtained in Eq. (2.31).
One should note, that this result is only valid far away from the Dirac point. At the Dirac point,

the density of states in disorder graphene saturates and one finds logarithmic corrections of the form

σ(ϵ) ≈
2ℏv2

ge
2

πnimpu2
0

1 − 2nimpu
2
0

2πℏ2v2
g

log
(
D

|ϵ|

) , (2.127)

where D is the high-energy cut-off [57].

Short range disorder in monolayer Graphene with magnetic field

The calculation for finite perpendicular field follows along the same lines, but shows a few peculiarities.
Starting again with the first order self energy

Σ(0)
αβ =

∑
γ,δ

⟨VαγVδβ⟩G(0)
γδ (ε) =

∑
γ

⟨VαγVγβ⟩G(0)
γ (ε) = γ

α β . (2.128)

we this time have

⟨VαβVγδ⟩ = u2
0cimp2πδ(kα

y − kβ
y + kγ

y − kδ
y)
∫

dx
(
f †
α(x)fβ(x)

) (
f †
γ(x)fδ(x)

)
, (2.129)

fky ,n(x) = Cn

(
sign(n)h|n|−1

h|n|

)
, (2.130)

and thus

Σ(0)
αβ =

∑
γ

G(0)
γ (ε)⟨VαγVγβ⟩G(0)

γ (ε) = u2
0cimp2π

∑
γ

δ(kα
y − kβ

y )
∫

dx
(
f †
α(x)fγ(x)

) (
f †
γ(x)fβ(x)

)
. (2.131)

Due to the fact, that the eigenenergies that enter Gγ do not depend on kγ
y , this integral only concerns

the fγ combinations. Once multiplied out, these lead either to terms h|nγ |h|nγ | or h|nγ |h|nγ |−1. Under
the kγ

y integral only the first ones survive and we find

Σ(0)
αβ = u2

0cimp2π
∑
nγ

δ(kα
y − kβ

y )Gγ(ϵ)

×
∫

dxCnαCnβ
C2

nγ

(
− 1
l2

)(
sign(nα)sign2(nγ)sign(nβ)h|nα|−1h|nβ |−1 + h|nα|h|nβ |

)
, (2.132)

then the x integral requires nα = ±nβ, i.e. the self energy is not diagonal in the Landau levels.
Recursively one sees, that this is true for the self energy at every order. Thus we may write

Σαβ(ε) = δαβΣd(ε) + δα,−βΣo(ε), (2.133)
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2 Methods in quantum transport

where ±α = (±n, ky). This means, that from the Dyson formula we also find

⟨Gαβ(ε)⟩ = δαβG
d
n(ε) + δα,−βG

o
n(ε), (2.134)

since all other elements lead to homogeneous linear equations, which have the trivial solution. The we
find from the definition of the self energy

Σαβ =
∑

γ

(
⟨VαγVγβ⟩Gd

nγ
+ ⟨VαγV−γβ⟩Go

nγ

)
= δαβΣd(ε) + δα,−βΣo(ε), (2.135)

Σd(ε) =
∑

γ

(
⟨VαγVγα⟩Gd

nγ
+ ⟨VαγV−γα⟩Go

nγ

)
, (2.136)

Σo(ε) =
∑

γ

(
⟨VαγVγ,−α⟩Gd

nγ
+ ⟨VαγV−γ,−α⟩Go

nγ

)
. (2.137)

Performing the integral over kγ
y we encounter terms of the form

∫ dk
2π ⟨Vnq,mkV±mk,±nq⟩ = u2

0cimp
1

2πC
2
nC

2
m

(
1
l2

){
sign(n)sign(±n)sign(m)sign(±m) + 1

}
(2.138)

=


u2

0cimp
4πl2 , ⟨Vnq,mkV+mk,+nq⟩ or ⟨Vnq,mkV−mk,−nq⟩ or m = 0,

0,
(
⟨Vnq,mkV+mk,−nq⟩ or ⟨Vnq,mkV−mk,+nq⟩

)
and m ̸= 0

.

The sum in the curly brackets vanishes exactly, if we chose one minus sign. Thus in the terms ⟨VαγVγ,−α⟩
and ⟨V−αγVγα⟩ only the nγ = 0 terms survive and we find

Σd(ε) = u2
0cimp
4πl2


∑

nγ

Gd
nγ

(ε)

+Go
0(ε)

 , (2.139)

Σo(ε) = u2
0cimp
4πl2


∑

nγ

Go
nγ

(ε)

+Gd
0(ε)

 . (2.140)

On the other hand we find from the Dyson equation, when carefully keeping track of the ±n in
α = (n, ky)

Gd
n = G(0)

α +G(0)
α

(
ΣdGd

n + ΣoGo
−n

)
, (2.141)

Go
n = G(0)

α

(
ΣdG0

n + ΣoGd
−n

)
. (2.142)

When combining these equations with the corresponding ones for −n we find with εn = −ε−n

G+
n = Gd

n +Go
n = ε+ εn − Σ−

(ε− Σ+)(ε− Σ−) − ε2
n

, (2.143)

G−
n = Gd

n −Go
n = ε+ εn − Σ+

(ε− Σ+)(ε− Σ−) − ε2
n

, (2.144)
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2.2 Perturbation theory

where we have also introduced

Σ+ = Σd + Σo, Σ− = Σd − Σo. (2.145)

Combining these result we then also find

Σ+ = u2
0cimp
2πl2

Nc∑
n=0

ε− Σ−

(ε− Σ+)(ε− Σ−) − ε2
n

, (2.146)

Σ− = u2
0cimp
2πl2

Nc∑
n=1

ε− Σ+

(ε− Σ+)(ε− Σ−) − ε2
n

. (2.147)

When calculating the conductivity we first find the velocity matrix element

vx
nk,mq = vg

ℏ
CnCmδk,q

(
sign(n)δ|n|−1,|m| + sign(m)δ|m|−1,|n|

)
, (2.148)

and then follow exactly along the same lines as in the case without magnetic field. In this case we find
the bare diagram for I(ϵ, ω) is represented by

I(0)(ϵ, ω) =
αβ ϵ

δγ ω

vx vx , (2.149)

and evaluates to

I(0)(ϵ, ω) = e2ℏ
π

× 2
∑

αβγδ

vx
δα⟨Gαβ(ϵ)⟩vx

βγ⟨Gγδ(ω)⟩

= e2

π2ℏ
ϕ(ϵ, ω), (2.150)

ϕ(ϵ, ω) = 1
2
(
ℏΩ
)2 ∞∑

n=0
g+

n (ϵ)g−
n+1(ω), (2.151)

g±
n (ϵ) = 1

2
(
G±

n (ϵ) +G±
−n(ϵ)

)
, (2.152)

where the factor of two is due to valley degeneracy. When including the full vertex corrections one
obtains the final result

σxx(ε) = e2

π2ℏ
1
2 Re

 ϕ(ε+ i0, ε− i0)
1 − cimpu2

0
4πℏ2v2

g
ϕ(ε+ i0, ε− i0)

− ϕ(ε+ i0, ε+ i0)
1 − cimpu2

0
4πℏ2v2

g
ϕ(ε+ i0, ε+ i0)

 . (2.153)

Following Ref. [58] one can rewrite this result. In the limit of large energies ε ≫ ℏvg/l the expressions
(2.147) are identical and we find a diagonal self energy

Σ ≈ u2
0cimp
2πl2

Nc∑
n=0

ε− Σ
(ε− Σ)2 − ε2

n

, (2.154)
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2 Methods in quantum transport

which fulfills Σ(ε) = ∆(ε) ± iΓ(ε). It turns out, that the properties of the system strongly depend on
the relation of the energy x = ε2

∗
ε2 , where ε∗ = ℏωc

√
γ and γ = 2ℏ2v2

g/(nimpu
2
0). We can find analytical

results for logNc ≪ γ in the two limits ε ≫ ε∗ ("classical") and ε ≪ ε∗ ("quantum"). To this end we
define the parameter

z(ε) = Γ(ε)
Γ0(ε) = ν(ε)

ν0(ε) , (2.155)

where Γ0(ε) = ℏ/2τq(ε) is given by the quantum scattering time τq(ε) in zero magnetic field written
down in Eq. (2.116) and obtain

∆ =


2Γ0e

−π/x sin
(

2πε2

ℏ2Ω2

)
, ε ≫ ε∗,∑

n ϑ
(

ε−εn
Γn

)
ε
2 , ε ≪ ε∗

(2.156)

z ≈


1 + 2ae−π/x, ε ≫ ε∗,√

2x
π

∑
n ϑ
(

ε−εn
Γn

)√
1 −

(
ε−εn

Γn

)2
, ε ≪ ε∗,

(2.157)

a = cos
(

2πε2

ℏ2Ω2

)
, ϑ(y) =

1, |y| < 1,
0, |y| > 1,

(2.158)

Γn = Γ(εn) = ℏ
√

2ℏΩ2

επτq(εn) . (2.159)

This shows, why the limit ϵ ≫ ε∗ is known as the classical limit: the density of states is only slightly
modified compared to it’s zero magnetic field value. Landau levels are sufficiently smeared by impurity
scattering to not lead to any quantization in the conductivity. In the opposite limit ϵ ≪ ε∗ the are
very clearly separated and the system behaves very differently. Using the parameter z, one can rewrite
the conductivity (2.153) in a form similar to the Drude formula result in Eq. (2.27)

σxx(ε) = σ0
z(ε)2

z(ε)2 +
(
ωc(ε)τtr(ε)

) . (2.160)

This again shows, that in the limit ε ≫ ε∗, where z ≈ 1 we are in the quasi-classical regime, where the
Drude result is applicable.

2.2.6 Summary

Perturbation theory is one of the most successful methods in quantum field theory and is for example
used to calculate the values of coupling constants in the standard model of particle physics to ex-
tremely high precision. It is also the best controlled analytical method in describing condensed matter
phenomena, that include a small parameter.

In this section, we have given an introduction into the perturbative treatment of interactions and
disorder in the Green’s function formalism. We have derived the Kubo formula for linear response
conductivity, which can be represented by the diagram shown in Eq. (2.2.5). If we apply this to
monolayer graphene without a magnetic field, we obtain the result (2.126) which is exactly the Drude
result obtained before in Eq. (2.31). For a finite perpendicular magnetic field one obtains (2.160) ,
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2.3 Landauer theory

which in general gives corrections to the Boltzmann equation result (2.29). The result for σxx will be
used in Chapter 5 to describe the magnetoresistance of a graphene Corbino disk. It turns out, that for
the relatively small magnetic fields considered there, the perturbative result (2.160) simplifies to the
solution obtained from the Boltzmann calculation (2.29).

2.3 Landauer theory

In this section we discuss the behavior of systems, that have system sizes between the elastic mean
free path ℓ0 (average distance between impurity scattering events) and ℓin (average distance between
electron-electron scattering events). This range can typically be reached in a temperature range be-
tween 50 mK and 4 K. In this range, electron-electron interaction can be largely disregarded. Moreover
electron will scatter off of impurities more often than from device interfaces, so exact geometric details
of the sample are also less relevant. In this regime, the sample can be seen as an effective barrier
between the leads, which are well described by scattering states expressed through plane waves. The
sample then determines the relationship between the different states (channels) in the two (or more)
leads, similarly to a barrier potential in the Schrödinger equation. To this end, one introduces the
scattering matrix (S-matrix), which connects the scattering states in the different leads. In this for-
malism the number of leads is actually not limited. Instead, one assumes, that in each lead α, the
scattering state can be written as

ψα(r) =
∑

n

a+
α,nϕ

+
α,n(r) + a−

α,nϕ
−
α,n(r), (2.161)

where superscript + and − mark incoming (into the scattering region) and outgoing states respectively
and n = 1, ..., N labels the number of channels in the lead. The amplitudes of incoming and outgoing
states can be grouped into vectors cin = {a+

α,n} and cout = {a−
α,n}. The S-matrix S is then defined by

cout = Scin. (2.162)

Due to current conservation, the S-matrix is unitary. For time-reversal symmetric problems it is more
over symmetric. When considering a subset of two leads α = i, j only, the S-matrix has a block
structure of the form

cout =


( a−

i,1...
a−

i,N

)
( a−

j,1...
a−

j,N

)
 =

(
r t′

t r′

)
( a+

i,1...
a+

i,N

)
( a+

j,1...
a+

j,N

)
 = Scin. (2.163)

The (two-terminal) Landauer-Büttiker conductance is given by

G = D
e2

h

∫
dE

(
−∂nF (E)

∂E

)
Tr(t†t), (2.164)

where D is a degeneracy factor (i.e. D = 2 for spin degenerate systems). It can be derived from the
Kubo formula of conductance, as shown in Appendix B.1.
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2 Methods in quantum transport

2.3.1 Summary

The Landauer-Büttiker formula has a very intuitive interpretation, which is that at low temperatures,
every open channel (i.e. every mode with a lower band-edge smaller than the chemical potential)
contributes exactly one conductance quantum e2/h times its transmission to the overall conductance
of the device. This result will be used in Sec. 3.1 to describe the conductance of a general quantum
point contact and in Chapter 4 to describe the non-interacting part of the conductance of a bilayer
graphene quantum point contact. In Chapter 4 it will furthermore be used, to phenomenologically
describe an additional, interaction induced, feature in the conductance, which is discussed in Sec.
3.1.2.
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2.4 Hydrodynamics in graphene

2.4 Hydrodynamics in graphene

Until now we have worked in a regime, where disorder and electron-electron interaction effects were
weak and could be treated perturbatively. However, for graphene this is not always the case. While
modern fabrication techniques allow for extremely clean systems, with very little disorder one should
take a closer look at the dimensionless parameter α = e2/(4πϵℏvF ) which describes the ratio between
typical potential and kinetic energy. For low temperatures kBT ≪ µ, electrons in graphene can be
described by long-lived quasi particles and form a conventional, two dimensional Fermi liquid. For the
opposite case kBT ≫ µ one needs a more sophisticated treatment. While a first order renormalization
group treatment as in [59–61] renders Coulomb interactions marginally irrelevant, since they vanish
logarithmically for low temperatures, the bare value at high energies, which is not renormalized, is
actually not a small number but can be of the order of α0 ≈ 1. For this reason, the effective coupling
constants at temperatures of around 100K are still not negligible and in this range electrons in graphene
form a relatively strongly interacting Dirac fluid [62]. The description of such strongly-correlated
systems is one of the major unsolved questions in condensed matter physics. The natural choice for
the description of interacting thermalizing systems is hydrodynamics [63], in which one describes the
behavior of conserved quantities on long length scales. However graphene has a peculiarity. The energy
current

jE =
∫ (d2k)

(2π)2 εkvkf(k, r) =
∫ (d2k)

(2π)2 vgkvg
k
k
f(k, r) (2.165)

is proportional to the momentum, so electron-electron interaction alone cannot relax the system into
the steady state, but finite disorder is required [64] to do so. There are in general different ways of
deriving sets of hydrodynamic equations, which are outlined in the review articles [62, 64].

2.4.1 Kinetic theory in graphene

Following Ref. [65] we reproduce here, how hydrodynamic equations can be directly obtained from
the Boltzmann equation. While this is clearly applicable in doped graphene, universality of the hydro-
dynamic approach makes it reasonable to also apply this formalism at the Dirac point. The starting
point is the already mentioned Boltzmann equation

Lf = Stee[f ] + StR[f ] − f − ⟨f⟩φ

τdis
, (2.166)

L = ∂t + v∇r −
(
eE + e

c
v × B

)
· ∇k, (2.167)

where the charge of an electron is denoted by e < 0 and fλk is the distribution function, which we
already discussed in Sec. 2.1. Especially close to the Dirac point it is important to include both
bands λ = ±1. Since processes like Auger scattering or recombination do not conserve the values of
electrons in the to bands separately. Compared to our earlier treatment, disorder scattering is still
treated within a relaxation time approximation with

⟨f⟩φ =
∫ π

−π

dφ
2π fλk. (2.168)

However, as already discussed, electron-electron interaction is important in this regime, so we also
include the corresponding collision integral Stee[f ] and moreover StR[f ] which exactly describes the
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2 Methods in quantum transport

aforementioned electron-hole recombination processes. Since graphene is a two band system, one has
to be a bit careful when defining macroscopic quantities, since a completely filled lower band formally
hosts and infinite number of particles. The dispersion is given by

ϵλ,k = λvgk, (2.169)

while the velocity and momentum can be expressed via

vλ,k = λvg
k
k
, k = λk

vg
vλ,k. (2.170)

Then the number of low energy excitations in the upper band is given by

n+ = N

∫ d2k

(2π)2 f+,k, (2.171)

while for the lower band we find

n− = N

∫ d2k

(2π)2

(
1 − f−,k

)
(2.172)

where the distribution function fλ,k includes the spectrum ϵ−,k and the chemical potential µλ and
N = 4 describes the spin and valley degeneracy. The total charge density is then

n = n+ − n−, (2.173)

while

nI = n+ + n− (2.174)

describes the imbalance or total quasiparticle density. Similarly we define the currents

j+ = N

∫ d2k

(2π)2 v+,kf+,k, j− = N

∫ d2k

(2π)2 v−,k
(
1 − f−,k

)
(2.175)

leading to the charged current j = j+ − j− and the imbalance current jI = j+ + j−.
Then we integrate both sides of the Boltzmann equation with different weights over all momenta

and sum over all bands. Without any additional weights, we obtain the standard continuity equation

∂tn+ ∇r · j = 0. (2.176)

Similarly one finds for the weight λ

∂tnI + ∇r · jI = −nI − n
(0)
I

τR
(2.177)

within a relaxation time approximation for relaxation processes. The equilibrium imbalance density
is described by n

(0)
I . This term exactly describes, that the densities for each band are not conserved

individually. When using the weight ϵλk we find the continuity equation for the energy current jE

∂tnE + ∇r · jE = eE · j, (2.178)

nE = N

∫ d2k

(2π)2

[
ϵ+,kf+,k + ϵ−,k(f−,k − 1)

]
, (2.179)

jE = N
∑

λ

∫ d2k

(2π)2 ϵλkvλkfλk (2.180)
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2.4 Hydrodynamics in graphene

and finally we find the continuity equation of momentum current for the weight k

∂jα
k + ∇β

kΠαβ
E − enEα − e

c

(
j × B

)α = − jα
k
τdis

, (2.181)

jk = N
∑

λ

∫ d2k

(2π)2 kλkfλk = jE

v2
g

, (2.182)

Παβ
E = N

∑
λ

∫ d2k

(2π)2k
αvβ

λkfλk, (2.183)

where Παβ
E is the stress-energy tensor. Thus we have found 4 continuity equations (2.176), (2.177),(2.178)

and (2.181).
As already mentioned, the combination of relatively strong disorder and the presence of disorder

scattering establishes a local equilibrium, which leads to the distribution function

f
(0)
λk (r) = 1

1 + e
ϵλk−µλ(r)−u(r)·k

T (r)

(2.184)

for ideal hydrodynamics. Using this specific distribution function in the definitions above, we find
several important relation. First of all, the charge and imbalance current are given by

j = nu, jI = nIu, (2.185)

where the densities are functions of the temperature T , the chemical potentials and the absolute value
of u. Similarly we find

jE = 3nE

2 + u2/v2
g

u, (2.186)

where nE is again a function of the temperature T , the chemical potentials and the absolute value of
u. When introducing the thermodynamical pressure

P = TN
d2k

(2π)2 log
[
1 + eµ+−ϵ+,k+u·k/T

]
+ TN

d2k

(2π)2 log
[
1 + eϵ−,k−µ−−u·k/T

]
(2.187)

and using the standard relation W = nE + P for the enthalpy W we can re-express

W = nE + P = 3nE

2 + u2/v2
g

, (2.188)

jE = Wu, Παβ
E = Pδαβ + W

v2
g

uαuβ. (2.189)

This means, that we can re express the continuity equations with this new quantities. Then we find a
generalization of the Euler equation

W (∂t + u · ∇)u + v2
g∇P + u∂tP + e(E · j)u = v2

genE + v2
g

e

c
j × B − Wu

τdis
. (2.190)

On top of this we can introduce the entropy density s of the system by

s = −N
∑

λ

∫ d2k

(2π)2

[
fλk log fλk + (1 − fλk) log

(
1 − fλk

)]
(2.191)
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2 Methods in quantum transport

and find the final equation

∂ts+ ∇r · (su) = u · jk
Tτdis

(2.192)

for the entropy current su describing thermal transport. The combined equations (2.176),(2.177),
(2.190) and (2.192) describe the system if the assumption of local equilibrium is exactly fulfilled.
However there are also dissipative processes, which lead to irreversible transfer of charge or momentum.

2.4.1.1 Dissipative corrections

These dissipative corrections are usually obtained within linear response, by linearizing the collision
integral in small deviations δf = f − f (0) from local equilibrium. To this end, one writes

δfλk = −T
∂f

(0)
λk

∂ϵλk
hλk = f

(0)
λk

(
1 − f

(0)
λk

)
hλk (2.193)

and the linearized collision integral can be written as

Stee[f ] ≈ N
∑

1,2,3,4
W12,34f

(0)
1 f

(0)
2

[
1 − f

(0)
3

] [
1 − f

(0)
4

] (
h3 + h4 − h1 − h2

)
,

∑
1

=
∑
λ1

∫ d2k1
(2π)2 , (2.194)

where the transition probability can be found from the Fermi Golden Rule

W12,34 = (2π)3|U |2δ(ϵ1 + ϵ2 − ϵ3 − ϵ4)δ(k1 + k2 − k3 − k4) (2.195)

and U is the dynamically screened Coulomb interaction. This already reveals the collinear scattering
singularity in graphene, since for electrons and holes, that move nearly along the same direction, energy
and momentum conservation are equivalent and the collision integral would vanish, leading to a very
fast decay of these modes. This is cured for three choices of h, namely

h ∝ k,v, λv, (2.196)

which are longer lived. Up to second rank tensors, we then find the following combinations, that can
be used to describe hλk

hλk = vλk
vg

3∑
1
ϕih(i) +

vα
λkv

β
λk

v2
g

3∑
1
ϕih

(i)
αβ, (2.197)

with the coefficients h(i) and h
(i)
αβ and the three modes are expressed by

ϕ1 = 0, ϕ2 = λ, ϕ3 = ϵλk/T. (2.198)

After applying constraints due to momentum conservation h(3) = 0 and conservation of number and
energy Trh(i)

αβ = 0 the corresponding macroscopic currents

δj = N
∑

λ

∫ d2k

(2π)2 vλkδfλk, δjI = N
∑

λ

λ

∫ d2k

(2π)2 vλkδfλk, δjE = 0, (2.199)
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2.4 Hydrodynamics in graphene

can be related to the coefficients h(i) as(
δj
δjI

)
= vgT

2 M̂h

h(1)

h(2)

 , M̂h =

 ∂n
∂µ

∂nI
∂µ

∂nI
∂µ

∂n
∂µ

 . (2.200)

In an analogous manner, the tensor coefficients can be connected to tensor quantities like the stress
tensor.

Now, one may essentially redo the original idea, of integrating over the Boltzmann equation with
different weights, but include the non-equilibrium corrections when evaluating the collision integral.
For the ideal quantities on the non collision integral side, the conservation equations derived in the
ideal limit are still valid and thus one may find after a lengthy calculation

M̂n

(
eE − T∇ µ

T + e
c u × B

T∇µI
T

)
= − 1

v2
g

[
∂n

∂µ
T̂mM̂

−1
h + 1

τdis
1̂
](

δj
δjI

)
− ωB

v2
g

∂n

∂µ
M̂KM̂

−1
h eB ×

(
δj
δjI

)
,

(2.201)

with the following matrices

M̂n =

 2n2

3nE
− 1

2
∂n
∂µ −2nnI

3nE
+ 1

2
∂nI
∂µ

2nnI
3nE

− 1
2

∂nI
∂µ − 2n2

I
3nE

+ 1
2

∂n
∂µ

, T̂m =
(
τ−1

11 τ−1
12

τ−1
12 τ−1

22

)
(2.202)

and for µ± = µ or µI = 0

M̂K =
(

tanh µ
2T 1

1 tanh µ
2T

)
. (2.203)

The scattering rates in matrix T̂m stem from the integrated collision integral and are given by

Iee
i

[
δf
]

= N2 ∑
1,1′,2,2′

v2ϕi,2W12,1′2′f
(0)
1 f

(0)
2

[
1−f (0)

1′

] [
1−f (0)

2′

] [
h1′ +h2′ −h1−h2

]
. (2.204)

which can be brought to the form
(

Iee
1

Iee
2

)
= −1

2vgT
∂n

∂µ

(
τ−1

11 τ−1
12

τ−1
12 τ−1

22

)h(1)

h(2)

 = −∂n

∂µ

(
τ−1

11 τ−1
12

τ−1
12 τ−1

22

)
M̂−1

h

(
δj
δjI

)
. (2.205)

The explicit definitions of τij are given in Ref. [65].
Since the energy current is proportional to the momentum, only finite disorder leads to a relaxation.

This is however already taken into account, by allowing for finite τdis at the level of the Navier-Stokes
equation obtained from momentum conservation. The tensor components of Eq. (2.197) lead to
dissipative corrections of the stress tensor, which lead to corrections of the Navier-Stokes equation,
which finally takes the form

W(∂t + u · ∇)u + v2
g∇P + u∂tP + e(E · j)u = v2

g

[
η∆u − ηH∆u × eB + enE + e

c
j × B

]
− jE

τdis
.

(2.206)
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2 Methods in quantum transport

Here η and ηH are the shear and Hall viscosity respectively, which are known from the dissipative
corrections and the current densities are

j = nu + δj, jI = nIu + δjI , jE = nEu. (2.207)

The enthalpy W always fulfills W = nE + P with the pressure P and the energy density nE . The
generalized Navier-Stokes equation (2.206), supplemented with the continuity equations for current
and imbalance current

∂tnI + ∇·jI = −nI −nI,0
τR

, (2.208)

∂tn+ ∇·j = 0, (2.209)

and the thermal transport equation

T

[
∂s

∂t
+ ∇r ·

(
su − δjµ

T
− δjI

µI

T

)]
= δj·

[
eE+ e

c
u×B−T∇µ

T

]
− TδjI ·∇µI

T

+ η

2
(
∇αuβ +∇βuα−δαβ∇·u

)2
− nE −nE,0

τRE
+ µI

nI −nI,0
τR

+ Wu2

v2
gτdis

, (2.210)

forms a set of four hydrodynamic equations. In most cases the hydrodynamic equations are solved
within linear response. In Chapter 6 we will show, how this hydrodynamic approach can be applied
to the problem of a graphene Corbino disc at elevated temperatures and charge neutrality, where the
charge current is carried by the dissipative mode alone.

2.4.2 Summary

At sufficiently high temperatures and in sufficiently clean samples, electron-electron interactions sets
the smallest length scale in monolayer graphene and electrons are strongly correlated. The resulting
collective behavior can no longer be described by perturbative methods discussed in Sec. 2.2, since the
coupling parameter is not small. In this Section, the concept of electron hydrodynamic was introduced,
which solves this dilemma by introducing a set of effective equations, that follow from the Boltzmann
equation introduced in Sec. 2.1 and model these collective modes as a classical fluid. We will apply
this description in Chapter 6 to a graphene Corbino disk at elevated temperatures.

2.5 Summary and conclusions

Transport in mesoscopic systems strongly depends on the hierarchy of length scales set by the system
size and internal processes, like electron-electron interaction or disorder. In this chapter, we have
discussed different methods of transport theory. In semi-classical systems, the Boltzmann equation
approach discussed in Sec. 2.1 leads to reliable results, like the Drude-like magneto conductivities
in graphene (2.29) and (2.30). A more careful approach of including disorder or interaction effects,
that also allows for the treatment of quantizing magnetic fields, which are clearly not classical, is the
Green’s function approach discussed in Sec. 2.2, which leads to the corrected result of the magneto
conductivity (2.160). The results obtained in this Sections will be applied in Chapter 5 to describe
the magnetoresistance of a graphene Corbino disk in small perpendicular magnetic field. This device
geometry is introduced in Sec. 3.2.
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2.5 Summary and conclusions

Perturbation theory for interacting systems as discussed in Sec. 2.2.3 will also be applied to describe
the free energy in bilayer graphene in Sec. 3.1.2.3. There we will make explicit use of the spin and
valley degree of freedom discussed in Sec. 1.2. The resulting free energy, which is effectively quadratic
in all subband densities, is the foundation for the phenomenological model of the point seven anomaly
introduced in Sec. 3.1.2 and applied in Chapter 4 to a bilayer graphene quantum point contact.

If there are no quantizing fields and interaction effects are small, one can derive the Landauer-
Büttiker formula (2.164) discussed in Sec. 2.3 from the Kubo-conductivity (2.97), which describes the
two terminal resistance in terms of the scattering matrix. This result will be used in Chapter 4 to
describe the conductance of a bilayer graphene quantum point contact, which is introduced in Sec. 3.1.

Finally we discussed in Sec. 2.4, that the Boltzmann equation can be used to derive a set of
hydrodynamic-like continuity equations for graphene, which describes the collective behavior of the
electron fluid if interactions are indeed not very weak. This concept is applied to the already mentioned
graphene Corbino disk at elevated temperatures in Chapter 6.
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3 Chapter 3

Special devices and geometries

In this chapter we introduce the special devices that are considered in the main part, Chapters 4, 5 and
6. We start by discussing quantum point contacts, and two important effects, that are often observed
in this device: Fabry-Pérot oscillations and the 0.7 anomaly in Section 3.1. We show, that simple
arguments based on the grand canonical potential of a four band system can build the foundation of a
phenomenological model in Sec. 3.1.2.3. Finally, we discuss the special effect of a Corbino geometry on
the magnetoresistance in graphene in Sec. 3.2. While the methods introduced in Chapter 2 can be used
independent of the exact device geometry, some specific ones are especially interesting. The first one
discussed in this chapter is the quantum point contact (QPC) 3.1, which shows, that electrons in a two-
dimensional material can be confined to a single dimension, leading to a quantization of conductance.
While this behavior is already seen without any interaction effects, an additional conductance feature,
called 0.7 anomaly observed in QPCs shows, that interaction effects do indeed play a role and are
strongest at low densities and dimensionality. This is investigated in Chapter 4. The second considered
device is the Corbino disk, discussed in Sec. 3.2, which, due to its polar symmetry, leads to special
behavior in magnetic field and is further investigated in Chapters 5 and 6.

3.1 Quantum point contacts

Dimensionality is often an interesting aspect of quantum systems that can have strong implications
for transport properties. As already discussed in Chapter 1, both monolayer and bilayer graphene are
materials, that host a two-dimensional electron gas. Historically, two dimensional electron gases were
usually realized by GaAs-AlGaAs heterostructures.

It is possible, to confine the electrons even further, by making them have to pass a very small
bottleneck in this two dimensional landscape. This is called a quantum point contact (QPC), and the
first experiments, where this confinement was of electrostatic nature were reported in Ref. [66, 67]. A
schematic setup of a QPC device realized in dual gated bilayer graphene (BLG) is shown in Fig. 3.1.
According to Bloch’s theorem, electrons inside the periodic potential of a lattice can be represented by
Bloch waves and form periodic energy bands of finite width. In most low energy situations, only one of
these bands (a partially filled conduction band) contributes to the transport properties. In situations,
where electron-electron interaction is weak, Coulomb interaction only leads to a small change in their
effective mass, but they still behave very similar to non-interacting electrons. Then we can apply the
result of the Landauer-Büttiker formula (B.42) derived in Sec. 2.3, where we just need to find the
transmission coefficients of the corresponding single electron problem.
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3 Special devices and geometries

Figure 3.1: (a) Schematic illustration of a setup with a electrostatically formed QPC in BLG.
(b) Cross-section of the setup along the dashed line in left panel. The QPC is tunable by the split
gates (SG) and back gate (BG) (c) Atomic force microscopy image of the device
Adapted figure with permission from R. Kraft, J. Mohrmann, R. Du, et al. , Nat Commun, 9,
1722 (2018). https://www.nature.com/articles/s41467-018-04153-4, licensed under CC BY
4.0

The presence of a confining potential along one of the directions clearly leads to the presence of
size-quantized energy bands. A scenario, where these can be obtained analytically while still staying
close to the experimental realization, where one applies perpendicular electric fields, that open a band
gap in certain regions and thus confine in a very smooth manner, is the saddle point potential discussed
in Ref. [68]. One assumes, that the local, confining potential can be modeled by

V (x, y) = V0 − 1
2mω

2
xx

2 + 1
2mω

2
yy

2, (3.1)

where we confine the electrons along the y direction. Due to electrostatic effects, this will also induce
a potential along the x direction, in which transport is still possible. The full Hamiltonian is then[

−ℏ2

2m
(
∂2

x + ∂2
y

)
+ V (x, y)

]
ψ(x, y) = Eψ(x, y), (3.2)

which is clearly separable into ψ(x, y) = ϕ(x)χ(y). Along the y direction we find a quantum harmonic
oscillator [

−ℏ2

2m ∂2
y + 1

2mω
2
yy

2
]
χ(y) = Ey,nχ(y) (3.3)

with the eigenenergies Ey,n = ℏωy(n+ 1/2), which leads to the new problem(
− ℏ2

2m∂2
x + V0 + Ey,n − 1

2mω
2
xx

2
)
ϕ(x) = Eϕ(x). (3.4)

Thus we have formed bands with lower band edges determined by V0 + Ey,n. Each of these bands
forms a lead mode and for each of them, electrons are still subject to a one dimensional harmonic
potential, through which they have to get transmitted. By solving this one dimensional problem, we
find the transmission eigenvalues, that go into the Landauer-Büttiker formula Eq. (2.164). For the
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3.1 Quantum point contacts

given harmonic potential, these transmission eigenvalues are

Tn = 1
1 + exp(−πεn) , (3.5)

εn =
2
[
E − ℏωy

(
n+ 1

2

)
− V0

]
ℏωx

, (3.6)

from which one obtains the total Landauer-Büttiker conductance

G = D
e2

h

∫
dE

(
−∂nF (E)

∂E

)∑
n

Tn, (3.7)

where in most situations D = 2 due to spin degeneracy. This means, that we find a conductance trace,
that has clear steps at multiples of D × e2

h . Every time the chemical potential reaches the lower band
edge of a new lead mode, we start a new step. The width and shape of the steps is determined both by
the details of the constriction, and also by the temperature. The lower the temperature, the sharper
the conductance steps appear.

3.1.1 Zeeman effect

If one applies a strictly in-plane magnetic field to a spin-degenerate two dimensional sample, the
different spin projections couple with opposite sign to the magnetic field due to the Zeeman effect.
This can be modeled with the Hamiltonian

Ȟ = ∆Ez

2 σ̌z, (3.8)

∆Ez = gµBB, (3.9)

where σ̌z is a Pauli matrix acting on spin space. As long as there is no spin-orbit coupling present,
this simply leads to a splitting of the spin degenerate energy levels E0 as

Eσ = E0 + σ

2 gµBB, (3.10)

where σ = ±1 labels the two spin species, µB is the Bohr magneton and g is called the Landé g-factor.
For electrons in a vacuum, one finds g = 2, but interaction effects can renormalize this value [69].

If one now applies such a in-plane magnetic field to a QPC, spin degeneracy is lifted, so we should
use D = 1. Moreover, the transmission values Tn are shifted by adding ±∆EZ/2, which can be seen as
effectively shifting the height of the barrier, the different spin projections see, and thus to some extend
as a spin filter. This means, that we reproduce Eq. (3.7) exactly for B = 0, but for high B we instead
find steps at 1 × e2

h compared to the spin-degenerate 2 × e2

h as seen in Fig. 3.2. These additional steps
appear for ∆EZ > kBT , i.e. as soon the splitting can be resolved at the chosen temperatures. Any
modification of the single particle energy bands can only lift degeneracies or influence the shape of the
steps, but it can not lead to any additional features at other values.

3.1.2 The 0.7 anomaly

This is very different, if one takes into account interaction effects. A rather special phenomenon, where
interaction effects are likely involved, is commonly known as the 0.7 conductance anomaly. It appears
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3 Special devices and geometries

Figure 3.2: Conductance obtained from the Landauer-Büttiker formula with a saddle point po-
tential from Eq. (3.7) for different in-plane magnetic field values.

as an additional shoulder in the quantized conductance of QPCs below the lowest plateau, usually
close to the value

G ≈ 0.7 × 2 e
2

h
.

in spin degenerate systems. In the already mentioned GaAs QPCs it was first observed in Ref. [15],
but it can be stated, that there is still no commonly accepted theory capable of explaining all features
of this phenomenon. However, there are several microscopic theories that can explain some features of
the phenomenon. These theories are based on several different physical mechanisms driven by electron-
electron correlations. Under discussion are variants of the Kondo effect [70–75], Wigner crystallization
[76–78], and other interaction-based mechanisms [79–85].

Specifically, several studies investigate the interplay between the QPC barrier and electron-electron
interaction effects perturbatively. Why this interplay might be important for this phenomenon can be
understood on a very simplistic level. If one considers local interaction, only the Hartree type processes
involving electrons with opposite spin contributes, since the other one would be canceled by the Fock
contribution. This repulsive interaction would effectively block the channel for one spin species for a
certain amount of time, leading to a lower transmission ad thus lower conductance. Since this would
not just lift any degeneracy of the system, it could lead to additional features in the conductance trace
at values apart of multiples of e2

h . The fact, that this additional feature is usually only observed below
the very first conductance plateau, and not at higher values can be understood by taking into account,
that interaction effects are enhanced at low densities, so would be strongest in the lowest size quantized
subband.

There are several features of this anomaly, that a full theory should capture. First of all, it appears
close to the value 0.7 × 2 e2

h in spin degenerate samples, but the exact value does depend on the details
of the device [15, 86, 87]. Very peculiarly, this shoulder shows a thermal activation behavior [87]. It is
still visible at temperatures, where the normal quantized conductance steps are already too smeared to
be experimentally resolved. This is shown in Fig. 3.3(d) taken from Ref. [73]. Interestingly, it strongly
depends on an applied in-plane magnetic field. Starting from the value around 0.7 × 2 e2

h it smoothly
and continuously lowers into the value of the lowest Zeeman split band at 0.5 × 2 e2

h [15, 86, 87]. This
is shown in Fig. 3.3(a) taken from Ref. [73], where one sees it appear in the lowest conductance step
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3.1 Quantum point contacts

Figure 3.3: (a)The differentiated differential conductance G as a function of the voltage Vg con-
trolling the gates that form the QPC in a GaAs/AlGaAs heterostructure measured at 200 mK
with in-plane magnetic fields between 0 and 9 T. The 0.7 shoulder is present only in the lowest
conductance step and visible at vanishing magnetic field. For finite magnetic field it continuously
transitions into the Zeeman split level. (d) Temperature dependence of the conductance feature
in the lowest conductance plateau at vanishing magnetic field for different temperatures between
200 mK and 4.2 K. The features becomes stronger for higher temperatures, while the shape of the
regular conductance step is continuously smoothened.
Reprinted figures with permission from E. J. Koop, A. I. Lerescu, J. Liu, B. J. van Wees, D. Reuter,
A. D. Wieck and C. H. van der Wal , Journal of Superconductivity and Novel Magnetism volume
20, 433-441 (2007). https://link.springer.com/article/10.1007/s10948-007-0289-5, li-
censed under CC BY-NC 2.0

and continuously transition into the lowest Zeeman split level. For even higher magnetic fields, one
can observe so called 0.7 analogues [88], which appear, when two subbands of opposite spin cross. This
is the reason, why theories involving all sorts of spin polarization were taken into account. Finally, if
one takes a look at the non-linear conductance at finite source-drain bias voltages, one observes a peak
around zero source-drain bias, which is known as the zero-bias peak [83, 87].

3.1.2.1 Microscopic theories

As already mentioned, the 0.7 anomaly in the QPC conductance curve is seen as an additional shoulder
below the lowest plateau sitting at around 0.7×2 e2/h [15] for systems without degeneracies other than
spin-degeneracy. It has been subject of intense experimental studies in GaAs/AlGaAs heterostructures
for both electrons [15, 71, 75, 83, 85–96], and holes [97–103]; signatures of the 0.7 anomaly have also
been observed in Si/SiGe heterostructures [104].

This phenomenon is beyond the single-particle picture [9, 105], and it is commonly linked to spin
[15, 86]. In addition, it appears to be thermally activated and therefore not a ground-state property
[87]. Moreover, experiments show that the details of the confinement potential seems to play a crucial
role in the strength and exact position of this conductance feature [95, 96]. Theoretically, various
explanations have been suggested to capture the physical origin of the 0.7 anomaly. These include
dynamical spin polarization or spin gap models due to electron-electron interaction [20, 87, 89, 103,

43

https://link.springer.com/article/10.1007/s10948-007-0289-5
https://creativecommons.org/licenses/by-nc/2.0/


3 Special devices and geometries

106, 107],the Kondo effect [70–72, 102, 108–111], Wigner crystallization [112–114], or charge density
waves [77]. To our knowledge, no comprehensive study of the interaction-induced 0.7 anomaly in
systems where both spin and valley degrees of freedom are degenerate has been reported so far.

We here summarize two possible explanations for its appearance.

3.1.2.2 Interplay of interaction effects and constriction

In Refs. [83, 84, 115] it is argued, that the only ingredients for a full microscopic model are an on-site
potential and a Hubbard-like onsite density-density interaction of opposite spins. Further they restrict
the situation to a one-dimensional model, describing only the lowest quasi-one-dimensional mode that
passes the constriction, as the anomaly is only seen below the first plateau using the discretised
Hamiltonian

H =
∑
i,σ

[
Eiσn̂iσ − ti

(
ĉ†

i+1,σ ĉiσ + h.c.
)]

+
∑

i

Uin̂i↑n̂i↓, (3.11)

where n̂iσ = ĉ†
i,σ ĉiσ is the number of electrons on site i with spin projection σ, Eiσ = Ei − σ∆Ez/2

is the potential energy in an in-plane magnetic field, Ui the local interaction and ti the next neighbor
hopping parameter. First of all it should be pointed out, that, as long as spin is the only quantum
degree of freedom, in a local interaction the Hartree and Fock term for parallel spins exactly cancel,
so it makes sense to consider an effective Hubbard interaction.

Reference [83] discusses the static situation assuming a parabolic barrier top and shows, that the
local density of states, which in semi-classical terms is related to the inverse velocity, has a strong
maximum a bit above the band minimum, before the channel is completely open. This reflects, that
electrons with this energy are the slowest. Since a large density-of-states also amplifies interaction
effects, these electrons also interact the strongest. These interaction effects change the effective barrier
height, in a naive calculation it would be changed by Hartree typer terms of the self-energy, which
increase the barrier height proportional to the density in exactly this band, which is thus pinned
to the chemical potential. Thus their transmission and conductance is reduced. Using a functional
renormalization group approach, they are able to find the mentioned zero bias peak in their model,
although the 0.7 anomaly itself is not reproduced very clearly. Notably, the do not find a static spin
polarization, that is often invoked in explanations and they also don’t see any signs of a quasi-localized
state at the top of the barrier, that is needed for Kondo-based explanation.

This point is further investigated in Ref. [84], where the model introduced in Ref. [83] is extended
to a general barrier shape including a quantum dot, where one would expect a Kondo effect. They
observe, that for low energies, the behavior derived from the Kondo effect and the general miscroscopic
model are indeed very similar, but for higher energies they are different. Considering different barrier-
top potentials, they also argue, that the exact value of the 0.7 anomaly should indeed depend on the
details of the constriction.

Finally, in Ref. [115] the dynamical behavior of such a model is investigated. They conclude,
that, while there is no static spin polarization in this model, there is indeed a slowly fluctuating spin
structure, which, as long as electrons traverse the constriction fast enough, will have similar effects as
a static spin polarization, thus giving those theories an effective validity.

This numerical analysis should be compared to Ref. [80], where a similar situation is investigated
using kinetic equations, but the considered interaction does not conserve momentum. There it is
argued, that elastic scattering inside the constriction only leads to a weak renormalization of the
effective potential, but it is the inelastic processes, that lead to the 0.7 anomaly.
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As to a purely perturbative treatment including the full Coulomb interaction, Ref. [81] could show,
that several effects like the general expected temperature dependence can be explained by combining
non-equilibrium perturbation theory with a WKB description of the states involved in the scattering off
the barrier, but the gate-voltage dependence at elevated temperatures, where the shoulder-like feature
could be seen, is in fact inaccessible in this approach.

3.1.2.3 Free energy with interaction effects

Alternatively one could take a look at the perturbative interaction effects on the free energy. A similar
treatment was performed in [116, 117] to find instabilities in transition metal dichalcogenides, which
like graphene or bilayer graphene posses two valleys, but additionally possesses strong intrinsic spin-
orbit coupling. The general idea is to find corrections to the free energy F , that lead to a non-trivial
groundstate, where bands can have individual chemical potentials that differ from the Fermi energy of
the non-interacting system and thus also different densities. The two valleys ξ = ± are positioned at
the ±q0 in k space, which is a large momentum. Then one can construct three matrix elements of the
Coulomb interaction

q
q0 + k1

+

q0 + k1 − q

+

q0 + k2

+

q0 + k2 + q

+

= v1(q), q
q0 + k1

+

q0 + k1 − q

+

q0 + k2

−

q0 + k2 + q

−

= v2(q), q + 2q0
q0 + k1

+

−q0 + k1 − q

−

−q0 + k2

−

q0 + k2 + q

+

= v3(q),

(3.12)

where the spin σ is conserved at each vertex. The first two matrix elements v1(q) and v2(q) denote
intra-valley scattering. The transferred momentum is very small and we can approximate it by it’s
value at q = 0, which is kept finite by screening. In case v3(q) the momentum transfer is on the order
of the valley separation and thus very large, thus we can fix it by it’s value at q = 2q0 and introduce

V = v1(q) = v2(q) ≈ VCoulomb(q = 0), (3.13)
U = v3(q) ≈ VCoulomb(q = 2q0). (3.14)

Corrections to the free grand canonical potential per unit area Ω0 are then given by

Ω − Ω0 = i

T
log⟨0|S|0⟩ =

∑
connected vacuum diagrams, (3.15)

where

S(t, t0) = T exp
{

−i
∫ t

t0
dt1ÛI(t1)

}
(3.16)

is the time evolution operator of the system with the interaction operator UI in interaction represen-
tation.

The free grand canonical potential can be found from the Green’s function. Assuming, that the
index a labels any kind of additional degree of freedom (spin, valley, etc), a general non-interacting
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Green’s function in Matsubara formalism will look like

Ga(iω,k) = 1
iω − εa(k) + µa

. (3.17)

One then looks at the expression

Ω0 = T
∑
ω

∑
a

∫ ddk

(2π)d
(3.18)

and performs the Matsubara summation

T
∑
ω

log
(
iω − ξ + µ

)
exp

(
iωτ

)
=
∫ ∞

−∞

dε
2πi

{
log
(
ε+ iδ − ξ + µ

)
− log

(
ε− iδ − ξ + µ

)}
nF (ε) exp(ετ)

= − 1
β

∫ ∞

−∞

dε
2πi

{
log
(
ε+ iδ − ξ + µ

)
− log

(
ε− iδ − ξ + µ

)}
exp(ετ)∂ε log

(
1 + exp

(
−βε

))
= 1

2πβ

∫ ∞

−∞
dε
{

1
ε+ iδ − ξ + µ

− 1
ε− iδ − ξ + µ

}
log

(
1 + exp

(
−βε

))
= −1

β

∫ ∞

−∞
dεδ(ε− ξ + µ) log

(
1 + exp

(
−βε

))
= − 1

β
log

(
1 + exp

(
−β(ξ − µ)

))
, (3.19)

where we used partial integration and 1
x±iδ = P

(
1
x

)
− iπδ(x). Thus we find

Ω0 = T
∑
ω

∑
a

∫ ddk

(2π)d
log

(
1

iω − εa(k) + µa

)
= −T

∫ ddk

(2π)d

∑
a

log

1 + exp
(
µa − εa(k)

kBT

) .
(3.20)

which is indeed the definition of the grand canonical potential per unit area. Since we are usually
interested in the low temperature regime, i.e. large β = 1/(T ), the exponential is very small and we
can rewrite the logarithm as a series around 1:

log(1 + x) = −
∞∑

n=1

(−x)n

n
(3.21)

Thus we get

Ω0 = T
∑

a

∞∑
n=1

(−1)n

n

∫ ddk

(2π)d
e−nβ(εa(k)−µa). (3.22)

From this we can especially extract the free density n(0)
α

n(0)
a = −∂Ω0

∂µa
=
∫ ddk

(2π)d

1
1 + exp

(
β(εa(k) − µa)

) (3.23)
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as expected.
Making the spin (σ) and valley (ξ) degree of freedom explicit, i.e. a = ωξ, the first order corrections
are given by the bubble diagrams involving one interaction line. They fall into three subsets. Fock-like
corrections exist for both U and V , but do not mix different spins and are shown in Eq. 3.25

Ω(1,F )
V =

k, ω

+, σ

q, ϵ

+, σ

q − k, ω − ϵ

+

k, ω

−, σ

q, ϵ

−, σ

q − k, ω − ϵ

, (3.24)

Ω(1,F )
U =

k, ω

+, σ

q, ϵ

−, σ

q − k, ω − ϵ

+

k, ω

−, σ

q, ϵ

+, σ

q − k, ω − ϵ

. (3.25)

Hartree like terms only exist for zero momentum transfer i.e. V , but can mix different spins.

Ω(1,H)
V = k, ω

+, σ

k, ω

+, σ

q, ϵ

+, σ′

q, ϵ

+, σ′

0, 0

+ k, ω

−, σ

k, ω

−, σ

q, ϵ

−, σ′

q, ϵ

−, σ′

0, 0

+ k, ω

+, σ

k, ω

+, σ

q, ϵ

−, σ′

q, ϵ

−, σ′

0, 0

+ k, ω

−, σ

k, ω

−, σ

q, ϵ

+, σ′

q, ϵ

+, σ′

0, 0

. (3.26)
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The first line of Eq. 3.25 is for example given by

Ω(1,F )
V =

∑
σ

T 2∑
ω,ϵ

∫ ddkddq

(2π)2d
V
[
G+,σ(iω,k)G+,σ(iϵ,q) +G−,σ(iω,k)G−,σ(iϵ,q)

]

= V
∑

σ

∑
ξ


T∑

ω

∫ ddk

(2π)d
Gξ,σ(iω,k)

2
 , (3.27)

The second line is

Ω(1,F )
U =

∑
σ

T 2∑
ω,ϵ

∫ ddkddq

(2π)2d
U
[
G+,σ(iω,k)G−,σ(iϵ,q) +G−,σ(iω,k)G+,σ(iϵ,q)

]

= U
∑

σ

∑
ξ


T∑

ω

∫ ddk

(2π)d
Gξ,σ(iω,k)

T∑
ω

∫ ddk

(2π)d
G−ξ,σ(iω,k)


 , (3.28)

while the Hartree terms are

Ω(1,H)
V = −V

∑
σ,σ′

∑
ξ,ξ′

T∑
ω

∫ ddk

(2π)d
Gξ,σ(iω,k)

T∑
ω

∫ ddk

(2π)d
Gξ′,σ′(iω,k)

 (3.29)

The full correction is thus given by

Ω(1) = Ω(1,F )
V + Ω(1,F )

U + Ω(1,H)
V

= U
∑

σ

∑
ξ


T∑

ω

∫ ddk

(2π)d
Gξ,σ(iω,k)

T∑
ω

∫ ddk

(2π)d
G−ξ,σ(iω,k)




− V

∑
σ,σ′

∑
ξ,ξ′

−
∑

σ=σ′

∑
ξ=ξ′


T∑

ω

∫ ddk

(2π)d
Gξ,σ(iω,k)

T∑
ω

∫ ddk

(2π)d
Gξ′,σ′(iω,k)

 . (3.30)

In any case we just need to calculate

T
∑
ω

∫ ddk

(2π)d
Gξ,σ(iω,k) =

∫ ddk

(2π)d
nF

(
εξσ(k) − µξσ

)
= n

(0)
ξσ , (3.31)

which will depend on the band structure. The grandcanoncical potential can to first order be written
as

Ω = Ω0 + U
∑

σ

∑
ξ

([
n

(0)
ξ,σ

] [
n

(0)
−ξ,σ

])
− V

∑
σ,σ′

∑
ξ,ξ′

−
∑

σ=σ′

∑
ξ=ξ′

[n(0)
ξ,σ

] [
n

(0)
ξ′,σ′

]
, (3.32)

n
(0)
ξσ = − ∂Ω0

∂µξσ
. (3.33)

In the end, we are looking for the free energy, which is given by

F = Ω +
∑

a

µana = Ω −
∑

a

µa
∂Ω
∂µa

(3.34)
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and look for solutions, which fulfill the condition, that n =
∑

a na = const. by introducing a Laplace
multiplier and thus minimizing

F̄ = F − µn, (3.35)

where at higher orders, we find corrections to n. In general we can perform an expansion up to second
order, which would look like

F̄ =
∑
σ,ξ

c(1)
a na +

∑
σ,ξ

c(2)
a n2

a +
∑
a̸=b

γabnanb − µn, (3.36)

which is exactly the generalized phenomenological free energy, that is minimized in Ref. [20] to find
the pinning of the overall chemical potential µ to minority subbands that leads to the 0.7 anomaly.
The coefficients can be related to microscopic parameters of the band structure by calculating F to at
least first order and then performing the expansion in powers of na. This relationship is beyond the
scope of this work. Since the tuning of the band structure by external gates in bilayer graphene is quite
intricate, one should not expect to be able to find the correct coefficients from a simple microscopic
consideration, but for the very simple case considered in Refs. [116, 117] a similar instability is indeed
found analytically.

3.1.3 Fabry-Pérot oscillations

While the quantized conductance in QPCs is due to the one-dimensional nature of the modes traversing
the constriction, the device as a whole is still two-dimensional. This part of its nature shows up
in a feature called Fabry-Pérot oscillations. This feature is the electron-wave equivalent to Fabry-
Pérot oscillations in classical wave-optics, where light of a well defined frequency bounces inside an
optical resonator, defined by two partially reflective surfaces. A wave of a fixed wavelength hits
the surface with a certain angle, getting partially reflected and transmitted with a certain different
angle. The transmitted wave hits the second interface, where it again gets partially reflected and
transmitted. In summary, waves that leave the interferometer have thus traveled over different lengths
until reaching that point. If the difference in times of flight is a multiple of the wavelength, we have
positive interference and the amplitude will be noticeable increased. The same happens to electronic
wavefunctions in the two dimensional regions of a QPC. For a given density, determined by the gates
used to tune the sample, we find even waves with a fixed Fermi-wavevector kF originating from one of
the leads. In the QPC region, away from a very small point in space, the split-gates effectively form a
barrier to a thin region of different density, from which electrons either get reflected or transmitted. The
angle of transmission ensures conservation of energy, while the momentum-component perpendicular
to the barrier is kept constant. The same happens at the other interface between the QPC barrier
and the two dimensional region and also to some extend at the interface between BLG and the leads.
Simplistically, the transmission coefficient accounting for the Fabry-Pérot resonance can be described
by

T = 1
1 + F sin2

[
Lk cos

(
θ
)] , (3.37)

where F is the finesse and θ is the angle of incidence of the electron wave and L the distance between
the plates. At very low temperatures, the contribution of the resonance to the conductance is given by

G = e2

h

1
1 + F sin2 (LkF

) . (3.38)
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Figure 3.4: A Corbino disk consists of a circular slap of graphene with radius r2, which has a hole
of radius r1 in the middle. We will assume, that a constant current I is transmitted from a source
in the origin, an voltage is measured between electrodes placed at the inner and outer radius. The
honeycomb lattice is not shown true to size. Effects related to the exact edge termination are not
relevant at the considered scales.

In a realistic situation, the gate configuration changes both the Fermi momenta in the two dimensional
region and underneath the splitgates and the effective length L due to electrostatic effects. For this
reason it is quite difficult, to exactly predict the gate dependence of Fabry-Pérot oscillations. A quite
thorough study of Fabry-Pérot interferences in BLG can be found in Ref. [118].

3.1.4 Summary

Quantum point contacts are a very important building block of nano-technology and explicitly show the
quantum nature of electrons. In Sec. 3.1 we discussed, how one can explain the observed quantization
of conductance by means of the Landauer theory introduced in Sec. 2.3. The difference between most
two dimensional electron gases, which only possess a spin degree of freedom to bilayer graphene, as
discussed in Sec. 1.2, is the additional valley degree of freedom, which leads to an additional factor of
two and thus conductance steps of 4 e2

h . Such a bilayer graphene quantum point contact is investigated
in Chapter 4, where these steps are exactly found experimentally. Moreover, there we also find a
version of the 0.7 anomaly discussed in Sec. 3.1.2 and explain it with a phenomenological model,
that combines the ideas of Sec. 3.1.2.2, i.e. a slowly oscillating spin-polarization, with the free energy
calculation presented in Sec. 3.1.2.3. We will also observe Fabry-Pérot oscillations as discussed in Sec.
3.1.3.

3.2 Corbino geometry

A geometric setup, that is of particular interest for transport measurements is the Corbino geometry,
which is shown in Fig. 3.4. In all situations we will restrict ourselves to perpendicular magnetic
fields. In this case, the setup is rotationally invariant and all quantities can only depend on the radial
coordinate r, choosing polar coordinates r = (r, ϑ). In a situation, where current I is fixed and charge
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conserved, we find for every radius r

I =
∫

dA · j =
∫

(rdφ)er · j

= 2πrjr. (3.39)

Due to charge conservation this holds for any radius r and thus

jr(r) = I

2πr . (3.40)

In polar coordinates we further have E = Erer and thus

jr = σrrEr, jϑ = σϑrEr. (3.41)

Using the symmetry properties of the conductivity we found in the last chapter and a constant con-
ductivity we thus find

σrr = σxx, (3.42)

Er = I

2πσxxr
, R = U

I
= 1

2πσxx
log

(
r2
r1

)
, (3.43)

i.e. the magnetoresistance R(B) is determined solely by σxx and thus we find a quadratic magnetore-
sistance already in this simple model.

R(B) = 1
2π log

(
r2
r1

)
d

e2v2
g

1 + (ωc(µ)2τ2
µ)

τµν(µ) . (3.44)

This is in contrast to the Hall Bar setup, where magnetoresistance is determined by

ρxx = −σxx

σ2
xx + σ2

xy

= −1
σxx(1 + (ωc(µ)2τ2

µ)) = d

e2v2
g

1
τµν(µ) (3.45)

and is actually independent of the magnetic field in this approximations.

3.2.1 Summary

The Corbino geometry is special, since even with a perpendicular magnetic field, it preserves radial
symmetry and quantities can only depend on the radial coordinate r. As such, a Corbino disk somewhat
resembles an infinitely wide strip geometry. The magnetoresistance in a Corbino disk is especially
simple, since it only depends on the longitudinal conductivity σxx. We will consider a monolayer
graphene Corbino disks in Chapter 5 in a perpendicular magnetic field and at low temperatures.
Depending on the strength of the perpendicular magnetic field, one can then either use the semi-
classical result (2.29) in low magnetic fields or the perturbative result (2.160) for quantizing magnetic
fields. The large field limit has to be used, if Landau levels are clearly separated. If they are sufficiently
smeared by disorder, the semi-classical limit is sufficient. Since the dependence on the magnetic field
is rather simple (quadratic), one may use the density dependence, which is different for scattering off
short range scatterers or charged particles, to characterize these types of disorder and extract the true
bulk mobility, which is usually disguised by the large contact resistance in these clean samples.

In Chapter 6 a similar system is considered at elevated temperatures without a magnetic field.
In this case, one makes use of the hydrodynamic equations discussed in Sec. 2.4 and the practical
description of the problem in polar coordinates. In principle, one can also include small perpendicular
magnetic fields in this setup and again observe the magnetoresistance, but it turns out, that we observe
non-trivial behavior already without such a field.
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3.3 Summary and conclusions

In this chapter we have discussed the two device geometries, that are studied in the main part of this
thesis. The first one is a quantum point contact in bilayer graphene (Sec. 1.2) in an in-plane magnetic
field, discussed in Sec. 3.1. By quantizing the momentum and thus the energy of the bands along one
more direction, one obtains a quantized energy spectrum, where the chemical potential determines,
how many of these bands are filled. Each of these filled bands contribute a conductance quantum
2 × e2

h to the overall device conductance for a system with spin degeneracy. In an in-plane magnetic
field, spin degeneracy is lifted and each spin projections sees a different effective barrier, leading to
quantized steps of 1 × e2

h in the conductance.
If one takes a look at the experimentally obtained curves at slightly elevated temperature (a few

mK), an additional shoulder below the first plateau appears in zero magnetic field, close to the value
of 0.7 × 2 × e2

h in spin degenerate systems. This feature smoothly transitions into the 1 e2

h plateau for
larger in-plane magnetic fields and shows a curious temperature activation behavior. Several theories
were proposed and discussed in Sec. 3.1.2.1 to explain this feature, but a final answer has not yet been
found.

Additionally, the fact that electrons don’t get transmitted with unit probability through the con-
striction leads to effects similar to those in a Fabry-Pérot interferometer in optics, leading to small
oscillations on top of the conductance curves discussed in Sec. 3.1.3. All of this will be applied to
experimental data obtained in a bilayer graphene quantum point contact in Chapter 4

Then, we introduced the second considered device, a Corbino disk in monolayer graphene in Sec.
3.2, which is of special interest, since it has a particularly easy magnetoresistance determined solely by
the longitudinal conductivity due to its rotational symmetry. This system is considered in the disorder
dominated regime in Chapter 5, where depending on the strength of the magnetic field compared to
disorder, one can describe the longitudinal conductivity either by the semi-classical result (2.29) or the
perturbative result (2.160), if Landau levels are clearly separated.

Secondly, we consider the same monolayer graphene Corbino disk in Chapter 6 without a magnetic
field at elevated temperatures. There electron-electron interaction starts to dominate and one can use
the hydrodynamic description discussed in Sec. 2.4 to describe the system. Already at zero magnetic
field, we obtain interesting effects related to the finite viscosity, due to electron-electron interaction.
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4 Chapter 4

Interaction effects in a bilayer graphene
quantum point contact

Mesoscopic transport in the ballistic regime is usually described quite well without taking interaction
effects into account. In the case of a quantum point contact investigated in this chapter, one may apply
the Landauer-Büttiker formula Eq. (2.164) to find the quantized conductance as discussed in Sec. 3.1.
The only special effect of the used material, bilayer graphene, is then the additional valley degeneracy.
However, there are certain cases in which interaction effects are indeed visible.

A very prominent and still largely unresolved example is the 0.7 conductance anomaly in quantum
point contacts (QPCs), which manifests as an additional shoulder at around 0.7 × 2 e2

h within the first
conductance step. The special temperature and magnetic field dependence of this feature have inspired
several competing microscopic explanations and a lot of experiments have been conducted to test these.
An overview on different microscopic explanations was already given in Sec. 3.1.2.1 and a closer look
at a very fundamental explanation was given in Sec. 3.1.2.2.

Bilayer graphene (BLG) quantum point contacts are a very interesting platform to study interaction
effects like the 0.7 anomaly or the renormalization of the Landé g-factor, due to its additional valley
degree of freedom, as discussed in Sec. 1.2. Moreover, the easy gate tunability of the density of
states and thus electron-electron interaction strength is a feature that is not accessible in most other
systems. While in most materials, the gates, which are needed to tune the spectrum, can lead to a
strong suppression of electron-electron interaction due to screening, it was demonstrated that this gate
screening is only able to strongly suppress electron-electron interaction in mono- and bilayer graphene,
when they are closer than a few nm, which is experimentally inaccessible [119]. For this reasons one
can indeed expect to see and be able to tune electron-electron interaction effects in BLG QPCs.

The reason to specifically consider a QPC setup is the additional amplification of interaction effects
in lower dimensions and at low densities. While previous studies have investigated BLG QPCs in
parallel magnetic field (Ref. [120] and Ref. [52]), the chosen setups, where the QPC constriction was
very wide compared to the experiment presented here, did not allow for the observation of interaction
effects that is possible here. Although the conductance data at the lower temperature of 20 mK pre-
sented here shows both an additional conductance shoulder and Fabry-Pérot oscillations on top of the
quantized conductance curves, the data at higher temperature 4 K does not show any Fabry-Pérot ref-
erences anymore and the conductance steps are clearly smoothened. However, the additional shoulder
still survives, showcasing the well reported thermal activation behavior of the 0.7 anomaly. A phe-
nomenological model is used to show, how a 0.7 anomaly could manifest in a BLG QPC and how the
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Figure 4.1: (a) Schematic illustration of the setup with the QPC formed in BLG subject to the
in-plane magnetic field B. In experiment, the magnetic field B is oriented in plane with an angle
of approximately 45◦ with regard to the black dashed line. (b) Cross-section of the setup along
the dashed line in left panel. The QPC is tunable by the split gates (SG), back gate (BG), and
top gate (TG).
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0

behavior with in-plane magnetic field can be used to distinguish them in an experiment. Finally, this
is applied to an experimental setup.

In this Chapter we try to answer the question which role effects due to electron-electron
interaction play for the conductance of a bilayer graphene quantum point contact and how
they are different from single valley materials. The answer we find is, that interaction
effects visibly change the conductance curves by introducing the additional 0.7 shoulder,
which in bilayer graphene, as in other two dimensional electron gases, can be modeled by
an effective spin splitting, while valley remains degenerate.

The content of this chapter is published in [19] and is based on joint theory- experimental work with
Romain Danneau and Rainer Kraft from KIT.

Reprinted excerpts with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https: // journals. aps. org/ prresearch/
abstract/ 10. 1103/ PhysRevResearch. 4. 023142 , licensed under CC BY 4.0

4.1 Introduction

Exploiting the quantum degrees of freedom of charge carriers offers a potential route for designing new
types of quantum electronic devices. While most studied systems involve the electron’s spin degree
of freedom aiming at spintronic applications [121, 122], more recently the additional valley isospin
in a variety of materials has attracted a growing interest for use in valleytronics [123]. However,
irrespective of the system of choice, the implementation of spin- or valley-based functionalities into
electronic devices requires a full control of the quantum state itself. A quantum point contact that
confines charge carriers into one dimension [124], is one of the basic building blocks for efficient injection,
control, and read-out measures.

Recently, a similar system of an electrostatically-induced quantum point contact (QPC) in bilayer
graphene (BLG) [49, 52, 125–131], i. e., a system with four-fold spin and valley degeneracy, where the
constriction is realized by local band gap engineering with a displacement field perpendicular to the
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BLG plane was investigated in [21]. There, confinement with well-resolved conductance quantization in
steps of 4 e2/h down to the lowest one-dimensional (1D) subband, as well as a peculiar valley subband
splitting and merging of K and K ′ valleys from two non-adjacent subbands in an out-of-plane magnetic
field (see also Ref. [128]) was observed.

Here, we investigate the same system in an in-plane magnetic field. In this context, we became
aware of the publication [129] that reported on conductance measurements in a similar setup and found
certain features additional to the expected conductance quantization. These features were attributed
[129] to the substrate-induced Kane-Mele spin-orbit coupling [132] below the lowest plateau. Since
the reported values of the spin-orbit coupling in monolayer graphene is of the order of 40µeV [133]
(corresponding to temperatures of the order of 0.5 K) and there is no clear mechanism that would
lead to an enhancement of spin-orbit coupling by hexagonal boron nitride (hBN), we expect another
mechanism behind such features. Here, we explore alternative possibilities for the explanation of the
appearance of additional features in the conductance.

A very natural guess is that the lifting of degeneracy is due to interaction effects. While renormalization-
group studies show that the Coulomb interaction in clean graphene becomes marginally irrelevant [134],
BLG behaves more like a typical two-dimensional (2D) electron gas. Non-perturbative approaches to
the effects of long-range interactions show that graphene may feature interaction-induced instabilities.
These effects are expected to be particularly important in very clean samples, at very low densities,
and in high magnetic fields. Proposed theories include superconducting instabilities [134–137], (anti-
)ferromagnetic instabilities [47, 138, 139], excitonic instabilities [140–142], and whole lot of others
[143–149]. For a summary or comparison see, e.g., Refs. [6, 150–155].

One rather notorious phenomenon, where interaction effects show up in transport measurements is
the 0.7 anomaly discussed in Sec. 3.1.2, which we believe to have identified in this experiment. Since
interaction effects are enhanced at low densities, such type of effects would be strongest in the lowest
quantization subband.

In this chapter, we study the conductance of a BLG QPC for in-plane magnetic field orientation.
We start with presenting the experimental results (Sec. 4.2), which were obtained in the same sample
as in Ref. [21], but in another cool down for changing the sample orientation within the magnet. In
particular, we demonstrate the importance of interaction effects in the lowest size-quantized subbands
by measuring the renormalized Landé g-factor governing the Zeeman splitting of the subbands. This
motivates us to employ the picture based on the interaction-induced spontaneous polarization of spin
or valley degrees of freedom to describe the shoulder-like features in the conductance. After a short
reminder on the band structure of BLG and, especially, the influence of external gating on the gap
and the densities (Sec. 4.3), we discuss the conductance of the BLG QPC. In Sec. 4.4 we detail an
extension of a phenomenological model for the 0.7 anomaly proposed in Ref. [20] to BLG. Within this
framework, we investigate all possible scenarios in order to find the one most likely to be present in
this experiment. We do not explicitly consider any microscopic model of the anomaly, but, instead,
assume that some sort of interaction-induced spin and/or valley splitting is present at zero magnetic
field and investigate the consequences of possible types of splitting on the conductance in increasing
magnetic field. In fact, the assumed polarization does not need to be static, it just needs to fluctuate
slowly compared to the traveling time through the constriction, which according to Ref. [115] is indeed
fulfilled. By comparing the experimental results with these scenarios (Sec. 4.6), we conclude that this
sample shows spontaneous spin polarization but no valley splitting. Our findings are summarized in
Sec. 4.7.
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4.2 Experimental results

4.2.1 Fabrication and characterization

The experiment that motivates this chapter was conducted on the same BLG device already presented
in Ref. [21] but with an in-plane magnetic field, see Fig. 4.1. The chosen gate configurations is
VBG = 10 V (back-gate voltage) and VSG = −12 V (split-gate voltage). The device consists of a hBN-
BLG-hBN heterostructure, which is edge contacted with Ti/Al electrodes. The thickness of the top
and bottom hBN layers of the sandwich are 38 nm and 35 nm, respectively. The sandwich is placed
onto a pre-patterned back gate, which is designed on a sapphire substrate that is, in turn, covered by
an additional layer of the dielectric Al2O3. The magnetic field was applied in the plane of the BLG
layer. The measurements were performed under the same experimental condition as in Ref. [21], but
in a different cool down, with the magnetic field oriented in the plane of the BLG (at approximately
45° from the current direction).

The QPC in BLG is engineered electrostatically by means of the split gate placed on top of the
device and the whole sample is covered in an extra layer of Al2O3 with 30 nm thickness before adding
the overall top gate made from Ti/Cu. The measurements were performed at either 20mK or 4K
in a 3He/4He dilution refrigerator BF-LD250 from BlueFors. A two-terminal configuration was used
employing the standard low-frequency (≈ 13Hz) lock-in technique, with an AC-excitation ranging
from 1 to 20µV. For further details of the characterization of the sample the reader is referred to the
Supplemental Material in Ref. [21]. Figure 8 of the Supplemental Material in Ref. [21] also shows the
finite-bias measurements used to extract the gate-coupling parameter.

To the best of our knowledge, there are two reports by other groups that have investigated similar
setups, namely Ref. [120] and Ref. [52]. While both these papers also studied transport through a BLG
QPC, the confinement conditions there were different from those in this setup. This difference might
be crucial for observation interaction effects, including the 0.7 anomaly. Specifically, in the present
work, the QPC is formed by split gates of a physical width w ≈ 65 nm. Because of the additional layers
of Al2O3, the distances between the channel and the global back and top gate are 55 nm and 68 nm,
respectively. In Ref. [120], the physical width of the split gates is 120 nm, while the distance to the
back gate and split gate is not specified. Since Ref. [120] did specify that the BLG is encapsulated in
hBN, the distance to the back gate and the split gate is likely of the order of 30 nm, with an additional
35 nm of Al2O3 between split gates and local top gate. Similarly, Ref. [52] stated a width of 250 nm,
a distance of 25 nm to the back gate (and, probably, a similar one to the split gates), and additionally
25 nm of Al2O3 between split gates and a local top gate. This means, that channel considered here is
a lot narrower, confinement a lot stronger, and, thus, the density of states way larger, which enhances
all interaction effects.

Moreover, interaction effects in Refs. [52, 120] should be more strongly suppressed by the top and
bottom gate, which are closer than the typical distance of interacting electrons within the constriction.
It is worth noting that Ref. [119] stated that gates need to be closer than a few nanometer, to fully
suppress electron-electron interaction in graphene and BLG. At this point, it should be mentioned that,
depending on the exact shape of the constriction, the 0.7 shoulder can appear at different conductance
values (for example, at 0.5 e2/h [83, 84]), which would fit with the alleged spin-orbit gap of Ref. [52].

The global back gate that covers also parts of the leads in this device leads to a smoother coupling in
the QPC region, while also modifying the band structure and gap in the non-QPC regions. As has been
shown, for example, in Refs. [83, 84], both the presence and shape of the 0.7 anomaly depend rather
strongly on the exact constriction profile, so that a smoother constriction region might be necessary
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for its appearance. This also applies to the larger parameter space explored by varying the split gate
and back gate not only along the direction of zero displacement field. Lastly, we want to point out
that most of the results reported here are based on the three lowest size quantized levels, which are
not even resolved in Ref. [120], while Ref. [52] does not reach full pinch-off.

4.2.2 Conductance

We start by investigating the dependence of the conductance on the magnetic field and top-gate voltage.
Figures 4.2(a)-(d) show the experimental data at temperature 20 mK. In Fig. 4.2(d), the conductance
is shown as a function of the top-gate voltage VTG for two different values of in-plane magnetic fields
B∥. The black curve corresponds to B∥ = 0.2 T and the light-blue one to B∥ = 6 T as marked in
Fig. 4.2(a). The light-blue curve highlights the appearance of additional half-step conductance plateaus
in high in-plane magnetic fields. The black curves contains a shoulder marked by the arrow, which
we will attribute to the 0.7 conductance anomaly. We note that the valley degeneracy is apparently
not affected by the application of the in-plane magnetic field, and the Zeeman spin-split subbands
remain degenerate in the two valleys K and K ′. Since the aluminum leads are superconducting at
20 mK, a finite magnetic field is needed to kill this effect and curves below 0.2 T show influence of the
superconducting leads, cf. additional plots presented in Sec. 4.6.5.

Cubic spline fits of the conductance for all measured values of magnetic field between 0.2 T and
6 T are shown in Fig. 4.2(b) and Fig. 4.2(c) for temperatures 20 mK and 4 K, respectively. Curves in
both figures are shifted vertically for clarity and colored according to their first derivative. For both
temperatures, there are two regions of steep incline (orange-red) for high magnetic field, corresponding
to the chemical potential crossing through the spin-split bands. The splitting is both sharper and
higher for the lower temperature, and plateaus are flatter there as well. The lower spin-subband stays
roughly at the same value of VTG.

Figure 4.2(a) shows a grayscale map of the differentiated differential conductance dG/dVTG as a
function of top gate voltage VTG and in-plane magnetic field B∥ for T = 20 mK. Transitions across 1D
subband edges appear as dark lines, while conductance plateaus are visible as light regions in between.
One clearly sees the four well-resolved conductance plateaus. These are separated by the three regions
corresponding to the 1D subbands, which are split roughly symmetrically with the applied in-plane
field for higher bands. This corresponds to the evolution from the spin-degenerate into spin-split energy
levels. The lifting of the spin degeneracy occurs for the lowest three subbands, where the confinement
and interactions are the strongest.

Figure 4.2(e) shows the same data as 4.2(a), but as a function of B∥ and G. The bright horizontal
lines at multiples of 4e2/h correspond to the spin- and valley-degenerate conductance quantization
plateaus for zero magnetic field, the additional half-integer multiples for higher magnetic fields corre-
spond to the spin-split plateaus due to the Zeeman effect.

4.2.3 Extra features of the conductance

Additionally, we note the presence of a shoulder-like feature below the lowest conductance plateau
at about G = 2.5 e2/h, similar to the 0.7 structure described in many other materials [105], which
develops into the lowest spin-split subband at G = 2 e2/h. This feature is well visible in the black
curves in Figs. 4.2(a) and 4.2(d). Since flatter parts of the conductance correspond to brighter color
in Figs. 4.2(c) and 4.2(f), it corresponds to a bright region in between the zeroth and first plateau,
i.e., within the darker region to the left of VTG = −12 V, making it look like a spin splitting of the 1D
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Figure 4.2: Measured conductance of the QPC in BLG for VBG = 10 V and VSG = −12 V. (a): Dif-
ferentiated differential conductance as a function of the top-gate voltage VTG and in-plane magnetic field
B for temperature 20 mK. Plateaus of the conductance corresponds to bright regions, steps correspond to
dark region. The map scale is cut at 0 e2/hV and 8 e2/hV to bring out the details. The black dashed line
corresponds to B = 0.2 T, the lines of blue tones to 2, 4, 6 T. The dots of different shades of pink mark the
development of the spin subbands used to extract the Zeeman splitting and the effective Landé g-factors.
(b) and (c): Cubic spline fit of the differential conductance G as a function of the VTG in elevating B for
20 mK and 4 K, respectively. The curves are shifted vertically with α = 2e2/hT and colored according to
their first derivative. (d): Differential conductance G as a function of VTG at 20 mK for B = 0.2 T (black
curve) and B = 6 T (light blue). The arrow marks the additional shoulder, which we identify as a 0.7
anomaly. (e): Differentiated differential conductance as a function of B and conductance G for 20 mK.
Plateaus of the conductance correspond to bright regions, slopes correspond to dark regions.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain Danneau,
Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/abstract/10.1103/
PhysRevResearch.4.023142, licensed under CC BY 4.0
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Figure 4.3: (a) and (b): Zoom-in view for the lowest plateau of the differential conductance G
at 20 mK and 4 K, respectively, as a function of VTG with horizontal shifts for different values of
magnetic field, α = 0.5 V/T. (c) and (d): Differentiated differential conductance as a function
of VTG for 20 mK and 4 K respectively. Curves for different magnetic field values are shifted
vertically with α̃ = 4e2/(hVT). In all panels, the colored curves correspond to the magnetic field
values introduced in Fig. 4.2(a).
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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subbands at zero magnetic field.
This additional feature is also visible in Fig. 4.3, which shows cadence plots of the conductance at

20 mK and 4 K in Fig. 4.3(a) and (b), respectively, and of the derivative of the conductance at 20 mK
and 4 K in Fig. 4.3(c) and (d), respectively. In all cases, only the lowest band is shown. The cadence
plots for a larger range of conductance variation are shown in Sec. 4.6.5. The colored curves correspond
to the values of magnetic field marked in Figure 4.2(a). In the black curves in both Figure 4.3(a)
and (b) the is an additional shoulder at around 2.5e2/h, which develops into the spin split plateau for
higher magnetic fields. In the cadence plots of the conductance Figure 4.3(c) and (d) this shoulder
corresponds to an additional peak. which clearly develops into the spin split peak for 4 K whereas this
transition is somewhat obscured by yet another feature at 20 mK. We identify this obscuring feature
as part of a larger oscillation pattern discussed later. Similar plots are shown in Ref. [73] for GaAs,
where the observed behavior was attributed to the 0.7 structure.

The extra feature cannot be an effect caused by the finite magnetic field needed to kill supercon-
ductivity, since it is not located on the imaginary line extending the Zeeman splitting down to small
magnetic fields. Instead, a finite magnetic field is needed to bring this feature down to the spin-split
value. Moreover, this feature is seen already at zero magnetic field in Figs. 4.2(c) and 4.3(b) and
(d) at higher temperature, where the contacts are not superconducting. At stronger magnetic fields,
B∥ ≳ 4 T, this feature merges with the shoulder that, at the lowest magnetic fields, splits off the lowest
main conductance quantization plateau at G = 4 e2/h and goes down to form a plateau slightly below
G = 2 e2/h. This behavior is clearly observed as the evolution of the red region above VTG ≈ −12 V
in Fig. 4.2(b). The merging of the two shoulders is also evident in Fig. 4.2(a) as an intersection of the
two bright regions at B∥ ≈ 4 T and VTG ≈ −12 V.

Finally, there are additional oscillations in the conductance (of which the obscuring feature in
Fig. 4.3(c) is one), which are most visible close to conductance plateaus in Figs. 4.2 (d). These
appear as vertical lines in Fig. 4.2(a) and are less visible for the higher temperature in Fig. 4.3(b).
Most notably, a maximum of such an oscillation is seen to go straight through one of the spin-split
bands of the lowest 1D subband in Fig. 4.2(a) and (b) and Fig. 4.3(c), starting at around −12V and 0T
in the lowest plateau, crossing one spin subband at around 3T, and ending up in the 0.5 e2/h plateau
for higher magnetic field. Similar oscillations appear at other voltages in a regular fashion.

4.2.4 Effective Landé g-factor

From the spin splitting of the 1D subbands marked in pink in Fig. 4.2(a) we extract the Zeeman energy
splitting ∆EZ by converting the top-gate voltage VTG into energy, using the splitting rate of the energy
levels in source-drain bias measurements [21], as described in Ref. [156–159]. The confinement in this
cooldown, VBG = 10 V and VSG = −12 V, does not exactly correspond to the setup in the source-drain
measurement, where VSG = −11.6 V. We observed a good agreement between the two measurements
in Ref. [21], which had a bigger difference in the confining potentials. Most importantly, the extracted
gate coupling is the same for all nine visible subbands. Thus, we expect this value to be a very good
fit here as well and use

E = αTG e

(
VTG − V

(0)
TG

)
, αTG = 3.8 × 10−3.

The obtained value of ∆EZ for each of the three lowest subbands is plotted in Fig. 4.4(a) as a function
of magnetic field, revealing linearly increasing Zeeman energy splittings. Remarkably, in case of the
N = 0 subband, the Zeeman splitting shows a linear behavior only for B∥ ≳ 5 T, whereas at smaller
fields an almost constant splitting is observed.
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Figure 4.4: (a) Zeeman energy splitting ∆EZ as a function of magnetic field B for various 1D
subbands. Dashed lines show best linear fits of high-field data points, dotted ones are linear fits
going through zero at zero magnetic field. (b) Extracted effective Landé g-factors |g∗| for the three
quantization subbands [solid dots of the colors corresponding to legend in panel (a)], obtained for
the in-plane magnetic field. The gray line indicates the value bare 2D g-factor g = 2 for BLG.
The error bars mark the 1σ intervals from the two performed fits shown in panel (a). The dotted
points correspond to the dotted lines above, the crosses to the dashed lines. All parameters are
given in Table 4.1.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0

This saturation effect can be linked to the observed additional shoulder in the conductance curves
in Figs. 4.2(b) and 4.2(c) at not too strong magnetic fields. The plateau in the Zeeman splitting
corresponds to the magnetic fields below 4 T in Fig. 4.2(a), where the bright region to the left of
VTG = −12 V disappears. One can either fit the dependence of ∆EZ on the magnetic field requiring a
vanishing splitting extrapolated to zero B or not (using then the best linear fit at high magnetic field).
In the latter case, a finite intercept at ∆EZ ≈ 1.7 meV is observed for N = 0 subband at B∥ = 0, unlike
the cases N = 1 and N = 2, which extrapolate to close to zero energy splitting. This suggests that
a spontaneous spin splitting occurs for the N = 0 subband, where the effects of the interaction and
confinement are expected to be the most prominent. Fitting with a finite intercept, as was done, e.g.,
in Ref. [73], establishes a bound on zero-field splitting without interaction effects. One should note
that this splitting is fully obscured by the much larger, interaction-induced 0.7 anomaly that produces
a much larger value of the zero-B splitting.

From the slopes of the Zeeman splitting in Fig. 4.4(a), we find the (independent of the magnetic field)
values of effective Landé g-factors |g∗

N | for each of the subbands, shown in Fig. 4.4(b), see Table 4.1.
These values are obtained by taking the linear fit to the splitting with and without a finite intercept.
For both fits we use the 1σ intervals to obtain error bars. The obtained |g∗

N | values are increasingly
enhanced for lower subbands compared to the bare 2D g-factor g = 2, with a maximum enhancement
by a factor of about 2–3 for N = 0. This observation also supports the idea of an enhanced role of
interaction effects for the N = 0 subband. Independent of the exact value of the gate coupling, this
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subband 0 1 2
g∗ (no offset) 6.04(6) 4.22(4) 3.73(4)
g∗ (finite offset) 4.91(40) 4.14(17) 3.72(22)
offset in meV 0.438(154) 0.0288(546) 0.00506(755)

Table 4.1: Parameters extracted from the fit of the splitting in magnetic field. The uncertainty
corresponds to the uncertainty of the fit, i.e., a 1σ interval.

enhancement only relies on a gate coupling that is the same for the three subbands. This enhancement
is seen both for a fit with finite intercept or without. Since the reported Kane-Mele spin-orbit gap
of 0.04 − 0.08 meV is in between the finite and the vanishing intercept, it would also not change the
resulting enhancement of the Landé g-factor by more than a few percent.

4.3 Theoretical model

The quantization of conductance in a QPC is a well-known experimental proof of the possibility of
confining charge carriers and it clearly shows their quantum nature [67] and was already discussed in
Sec. 3.1. What makes BLG an interesting platform for such measurements, is its additional valley
degree of freedom and the high electrostatic tunability of its band gap [125, 160], as introduced in Sec.
1.2. In this Section, we discuss the effects of the applied gate voltages on the band structure and, thus,
on the observed conductance within the essentially non-interacting model (interaction here is taken
into account only through the self-consistent screening of the gate potentials).

4.3.1 Effective Hamiltonian and dispersion of BLG

We describe the low-energy properties of BLG relevant for the transport measurements in the QPC
geometry by the effective two-band Hamiltonian, see Ref. [44]. The details of this approximation
are given in Appendix A.2 and the result was already presented in Sec. 1.2. The two-band matrix
Hamiltonian, acting in the space of the pseudospin degree of freedom (Pauli matrices σ̂) combined
with the Zeeman interaction in the spin space (Pauli matrices ŝ), has the form

Ĥ =
(
Ĥ0 + ĤM

)
⊗ ŝ0 + 1

2∆EZ σ̂0 ⊗ ŝz, (4.1)

Ĥ0 = − 1
2m

(
0 (π†)2

π2 0

)
− U

2

(
1 0
0 −1

)
, (4.2)

ĤM = Uv2

γ2
1

(
π†π 0
0 −ππ†

)
. (4.3)

Here, π = ξpx + ipy is the kinetic momentum, with ξ = ± referring to the K± valley. Here, we
disregard possible spin-orbit coupling, which is a small effect at the energy scales of the experiment
and not capable of explaining the zero-field splitting or the magnetic field behavior we observe, as seen
by the obtained zero-field splitting of Fig. 4.4(a). We will return to this issue again below.

In what follows, we disregard the Mexican-hat term ĤM that develops for finite layer asymmetry U
as discussed in Ref. [7]. We also neglect the skew interlayer hopping, which leads to trigonal warping [7,
46]. The effect of these subtle features of the BLG spectrum on the conductance of a QPC in in-plane
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4.3 Theoretical model

magnetic field will be discussed elsewhere. Here, we adopt the simplest model that, as we demonstrate
below, is capable of describing the salient features of the conductance.

Clearly, we have to distinguish the two spatial regions in the physical sample. Away from the
split gates there is no confinement and electrons feel an approximately constant top-gate and back-
gate voltage. Close to the split gate, the shape of the confinement leads to a non-trivial, spatially
dependent effective top-gate voltage.

The dispersion of the spin σ =↑, ↓ band for the low-energy Hamiltonian (4.1) without the Mexican-
hat feature (4.3) is given by

Eσ = ±

√
U2

4 + ℏ4k4

4m2 + σ

2 ∆EZ . (4.4)

This corresponds to a 2D density for spin projection σ:

n2D
σ (µ) = 2 m

8πℏ2

√
4
(
µ− σ

2 ∆EZ

)2
− U2, (4.5)

where the factor of 2 accounts for the valley degree of freedom and the chemical potential µ is measured
with respect to the middle of the asymmetry gap. For a small Zeeman splitting, ∆EZ ≪

√
4µ2 − U2,

one can use the expansion

n2D
σ (µ) ≈ m

4πℏ2

(√
4µ2 − U2 − 2σµ∆EZ√

4µ2 − U2

)
. (4.6)

This expansion tells us that the effect of the Zeeman splitting on the density is enhanced when the
chemical potential is close to the gap. The total density n2D =

∑
σ=± n

2D
σ is, to first order in ∆EZ ,

independent of magnetic field, and we get for the chemical potential in weak fields:

µ(n2D) =

√
m2U2 + 4π2(n2D)2ℏ4

2m

− m3U2(∆EZ)2

16π2(n2D)2ℏ4
√
m2U2 + 4π2(n2D)2ℏ4

. (4.7)

4.3.2 Controlling BLG with gates

In the 2D regions away from the QPC, the effect of a constant back-gate and top-gate voltage is
described by the self-consistent gap equation [7, 8]. The total density n = n↑ + n↓ is electrostatically
determined by the gates and given by

n = ε0εBGVBG
eLBG

+ ε0εTGVTG
eLTG

. (4.8)

Here, ε0 is the vacuum permittivity, LBG (LTG) is the distance from the BLG plane to the back gate
(top gate), and εBG, εTG are the relative dielectric constants of the material between BLG and the
back gate and top gate, respectively. In the absence of screening, the interlayer asymmetry factor U
is given by

Uext = ec0
2εr

(
εBG
LBG

VBG − εTG
LTG

VTG

)
, (4.9)
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where c0 is the distance between the two BLG planes and εr is the relative permittivity between these
sheets.

Since the two layers of BLG screen the effect of the closer gate for the other BLG plane depending
on their density and thus the felt voltage, the actual asymmetry as a function of the density is given
by the self-consistent equation [7]

U(n) = Uext

1 − Λ
2 ln

(
|n|

2n⊥
+ 1

2

√
n2

n2
⊥

+ U2

4γ2
1

)

≈ Uext

1 − Λ
2 ln

(
|n|
n⊥

)−1

, (4.10)

n⊥ = γ2
1

πℏ2v2 , Λ = c0e
2n⊥

2γ1ε0εr
. (4.11)

Thus, changing the top-gate voltage tunes the density n according to Eq. (4.8), which, in turn, influ-
ences the asymmetry factor U according to Eq. (4.10) and hence the dispersion (4.4) and the chemical
potential according to Eq. (4.7). This chemical potential remains constant over the whole sample,
including the QPC constriction, where the density is no longer given by Eq. (4.5):

µ(VBG, VTG) ≃

√√√√√√
 Uext

2 − Λ ln |n2D|
n⊥


2

+
(
πℏ2n2D

m

)2

. (4.12)

Here, the chemical potential depends on VBG and VTG through the corresponding dependence of the
2D density, Eq. (4.8), and the dependence of Uext, Eq. (4.9).

In the experiment, the combination of back-gate and split-gate voltages is used to open a gap U
under the constricted region and tune the chemical potential inside this gap, as shown in Ref. [21],
and thus form the QPC, see Fig. 4.5. The overall top gate is used to tune into the low-density regime,
where the observation of conductance quantization is possible [21]. Importantly, for fixed back-gate
and split-gate voltages, like in the experimental setup, the top-gate voltage tunes the electronic density
in the sample linearly [7].

As proposed in Ref. [68], we model the QPC by projecting the 2D problem onto a one-dimensional
one, as discussed in Sec. 3.1 for a normal Schrödinger equations and in Sec. 4.3.4 for the case of
BLG. The quantization of conductance is already visible in the simplest approximation of hard-wall
boundary conditions, as we will show now. In the case of a channel of width W , the dispersion relation
for the longitudinal wavevector k resulting from Eq. (4.1) takes the form [21]

EN,σ(k) = ±

√
U2

4 + ℏ4

4m2 q
4
N (k) + σ

2 ∆EZ , (4.13)

q2
N (k) = k2 +

(
Nπ

W

)2

, (4.14)

where N = 0, 1, 2 . . . labels the size-quantized bands. While the case N = 0, strictly speaking, requires
a different choice of boundary condition, we still chose to investigate the effect of the resulting k4

dispersion, which one would also get in the 2D setup. It will turn out, that the choice of any non-linear
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Figure 4.5: (a) and (b): Band structure in the 2D regions (dark gray) and inside the constriction
(light gray) for zero magnetic field, with and without spontaneous splitting (s.s.), respectively.
Here, the spontaneous splitting is between spin subbands shown as dashed or dotted lines. Since it
requires the proximity of the chemical potential, there is no s.s. in the valence band. Because of the
split-gate stray fields, the asymmetry gap inside the constriction is larger. Energies are measured
with respect to the middle of the gap in the 2D region. (c): The magnetic field introduces a
spin splitting of the bands with respect to the B = 0 band bottom, which leaves the middle of
the gap at the same value. The splitting inside the constriction is larger, since the Landé g-
factor is enhanced. As observed experimentally, the Zeeman splitting inside the constriction is not
symmetric. To the lowest order in a weak magnetic field, the chemical potential for a fixed total
2D density is independent of magnetic field, see Eq. (4.6).
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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4 Interaction effects in a bilayer graphene quantum point contact

dispersion does not have qualitative consequences for the 0.7 effect. Note that U in Eq. (4.13) differs
from the 2D expression (4.10), since the screening in a 1D channel differs from that in the unconfined
regions of BLG. We also note that the channel width is affected in a non-trivial way by VBG and VTG.

The lowest band is, to leading order, quartic in the momentum, so that the zero-temperature density
resulting from Eq. (4.13) is given by

n1D
σ (µ) = 2

√
2m
πℏ

[
(µ− σ∆EZ/2)2 − U2

]1/4
, (4.15)

as opposed to the square-root dependence of the 2D density (4.5). The total density in the constriction
is again determined electrostatically by the gates, but the stray fields of the split gates make the
evaluation of the dependence of the density on the gate voltages harder. Since the split-gate voltage is
applied additionally in the constricted region, the gap there is larger and the density inside the QPC is
lower than away from the barrier (Fig. 4.5), enabling the observation of the very lowest size-quantized
bands.

4.3.3 Screening and electron-electron correlations

Electrons in the device are subject to Coulomb interaction, which is screened by the electrons them-
selves, by the metallic gates, and by the dielectric material. Let us first discuss the screening effect of
the gates. There are three relevant length scales in the system. The first one is the physical distance
between the split gate fingers is w ≈ 65 nm and the electrostatically induced channel is smaller than
that. The width of the split-gate fingers is of the order of L ≈ 300 nm, so that we can distinguish two
ranges of length scales relevant to electrostatic screening in this device.

On scales smaller or of the order of w, the system is truly 2D, only for larger distances it crosses
over to 1D. Another relevant scale is the distance to the back gate and top gate, which are both of
the order of d ≈ 55 nm. Here, we also take into account the dielectric screening by further assuming,
for simplicity, that the insulating layers in between have the same dielectric constant ϵr (the vacuum
dielectric constant is denoted below by ϵ0). The bare, only dielectrically screened Coulomb interaction
is given by its Fourier component at wave vector q (different in 1D and 2D cases):

V (q) =


e2

2ϵ0ϵr
1
q
, 2D,

e2

2πϵ0ϵr
ln 1
qw

, 1D.
(4.16)

The gate-screened interaction can be found by summing up the infinite series of mirror charges. For
this one starts by placing a single charge e in the BLG layer at z = 0, as shown in Fig. 4.6 (a). Since
the potential exactly in the backgate plane at z = −LB has to vanish, we can model this by placing
an opposite charge −e at position z = −2LB as shown in 4.6 (b). However, the potential also has to
vanish at the topgate position z = LT , which we achieve by putting a charge −e at z = 2LT and a
charge e at z = 2LT + 2LB as shown in Fig. 4.6 (c). For two planes, this amount to an infinite series
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Figure 4.6: (a),(b) and (c): Side view of the BLG plane at z = 0 with the top and bottom gates.
(a) We want to find the screened potential due to a charge e (red) being placed in the BLG plane.
(b) According to the method of image charges, for the lower conducting plane, the backgate, this
is equivalent to placing an opposite charge −e (blue) at z = −2LB. (c) In order to also put the
topgate plane to zero field, we need to place two additional charges. Since now the backgate plane
is not field free, this procedure has to be repeated ad infinitum.

of image charges one needs to place, which has to be summed up. In the 2D case, this leads to

V (q) = e2

2ϵ0ϵr

∞∑
k=−∞

e−2l|k|q

q
− e−2|l′−kl|q

q

 (4.17)

= e2

2ϵ0ϵr
2
q

sinh
(
ql − ql′

)
sinh

(
ql′
)

sinh
(
ql
) (4.18)

= e2

2ϵ0ϵr
tanh

(
qd
)

q
, (4.19)

where l = LTG + LBG, l′ = LBG and in the last line we assumed LTG = LBG = d. This means that
screening strongly alters the interaction if qd ≪ 1. But in the 2D case we require r < w, i.e., q > 1/w,
and thus qd ≳ d/w ≳ 1, so that the interactions are not strongly altered by the screening of the gates.

A closer look, including the screening effects on the interaction for monolayer graphene based on the
perturbative treatment explained in Sec. 2.2.3, is discussed in Ref. [119] and reveals, that gates need
to be closer than a few nanometer to really alter the interaction, which is not experimentally accessible
and certainly not the case here. There, it has also been stressed that for BLG distances need to be
even closer. In the 1D case the presence of the gates is relevant only on scales x > d and q < 1/d.
In this case, we get a constant interaction strength, which is in agreement with our phenomenological
model.

One effect of electron-electron interaction is an enhancement of both the Landé g-factor and spin-
orbit coupling, as discussed in Refs. [161–163]. By introducing the Fermi-liquid constants F0, F1 we
can express the Landé g-factor enhancement as g̃ = g/(1−|F0|). Spin-orbit coupling has an additional
linear momentum dependence, which means that |F1| enters instead of |F0|. Since |F0| > |F1|, this
means that the g-factor will always be more strongly enhanced than the spin-orbit coupling. The
enhancement is largest for large density of states, so that a strong confinement further enhances this
effect.
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4 Interaction effects in a bilayer graphene quantum point contact

4.3.4 Projection procedure

In the experiment, one electrostatically induces a constriction in the shape of a QPC, as introduced in
Sec. 3.1. While the full self-consistent treatment of this electrostatic problem is very involved, the main
features can be described by the inclusion of a local potential in the corresponding Schrödinger equation,
thus neglecting the coupling between the Schrödinger and the Poisson equations. The obtained energy
spectrum would extend dispersion (4.13) and thus also the density (4.15).

In Sec. 3.1 it was already shown, how one can perform a projection procedure to an effectively
one-dimensional problem with an effective potential for each mode in a usual two-dimensional electron
gas. In the present case of BLG it is easier to include the constriction by means of boundary conditions
than a real local potential. The Hamiltonian (4.1) acts as

Ĥ


ψA1↑
ψA1↓
ψB2↑
ψB2↓

 = E


ψA1↑
ψA1↓
ψB2↑
ψB2↓

 (4.20)

on the four-component wave-function in the spin and sublattice space. These four coupled second-order
equations can be decoupled into a fourth-order one and we get for the first two components:(U

2 − U
v2

γ2
1
π†π

)2

+ (π†π)2

(2m)2

ψA1σ

=
(
E − σ

∆EZ

2

)2

ψA1σ. (4.21)

Here, we have used that, without a magnetic field, the momentum operators commute.
We expand the wave-function ψA1σ in transverse modes χnxσ(y) as

ψA1σ(x, y) =
∑

n

ϕnσ(x)χnxσ(y), (4.22)

which leads to a new differential equation, where the x and y component are still coupled. We already
assume, that χnxσ(y) ∝ sin

(
knxσy

)
[cos

(
knxσy

)
] if the solution is antisymmetric [symmetric] when

describing the QPC by imposing hard-wall boundary conditions along the y direction. The width of
the channel W (x) depends smoothly on x and we get standing waves with wavevector

kn(x) = nπ

W (x) .

We decouple the components by neglecting all x derivatives of χnxσ(y), which leads to the effective 1D
equation: (U

2 + ℏ2U
v2

γ2
1

[∂2
x − k2

n(x)]
)2

+ ℏ4[∂2
x − k2

n(x)]2

(2m)2

ϕnσ(x)

= (E − σ
∆EZ

2 )2ϕnσ(x), (4.23)
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where the constriction W (x) acts as an effective 1D potential En(x) = ℏ2n2π2

2mW (x)2 . At low energies,
only the lowest transverse mode contributes and we can approximate the full solution as ψA1σ =
ϕ1σ(x)χ1xσ(y). Choosing, for example, W (x) = cosh

(
x/L

)
we get a very realistic 1D potential con-

taining terms of the form 1/ cosh
(
x/L

)2
.

4.3.5 Conductance quantization

We describe the conductance of the system by means of the Landauer-Büttiker formula introduced in
Sec. 2.3,

G = e2

h

∑
σ,ξ

∫ ∞

−∞
dϵTσ,ξ(ϵ)

[
−f ′(ϵ− µ)

]
, (4.24)

where Tσ,ξ(ϵ) is the transmission of a subband with spin σ and valley ξ and f ′(x) is the derivative
of the Fermi function f(x) = [1 + exp

(
x/kBT

)
]−1. Assuming an idealized step-function transmission

coefficient, where a band contributes to G as soon as it is starting to get filled, the Landauer-Büttiker
conductance is given by

G(T,B) = 2e
2

h

∑
N,σ

f

(
E0

N + 1
2σg

∗µBB − µ

)
, (4.25)

where the factor of 2 accounts for the valley degeneracy,

E0
N =

√√√√U2

4 +
(

ℏ2

2m

)2(
Nπ

W

)4

(4.26)

is the lower band edge of bandN at zero magnetic field, and the Zeeman interaction is written explicitly.
Every time the chemical potential crosses another lower band edge at finite magnetic field, the

conductance makes a step of ∆G = 2 e2/h and, for zero magnetic field, a step of ∆G = 4 e2/h. Each
step has the shape of the Fermi function. The steps are separated by conductance plateaus, thus
giving rise to a staircase structure seen in Fig 4.2 and Fig 4.3. This is the conventional conductance
quantization for a QPC, with an appropriate degeneracy of the bands. In contrast to the case of an
out-of-plane magnetic field [21, 46], the in-plane magnetic field does not couple to the valley degree
of freedom. As discussed in Ref. [53], the direct effect on the band structure is also negligible at
experimentally accessible magnetic fields. Therefore, at arbitrary fields, the steps of non-interacting
conductance have a factor of two corresponding to the two valleys of BLG.

4.4 The 0.7 anomaly in BLG QPC

In contrast to the conductance quantization, the shoulder-like feature appearing in the conductance
cannot be explained by the non-interacting theory presented in Sec. 4.3. In this section, we explore the
possibility of explaining this special feature in the context of the interaction-induced 0.7 conductance
anomaly. As already discussed above, several microscopic theories were used to describe the 0.7
anomaly, but there is none that is universally accepted. An overview on these microscopic theories
is found in Sec. 3.1.2.1. Thus we chose a phenomenological description, which extends the model of
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Ref. [20] to four bands and the BLG band structure from Sec. 1.2. This approach can be microscopically
justified as it is in principle the combination of two aspects. The first ingredient is an effective, low
density approximation of the full, interacting free energy discussed in Sec. 3.1.2.3, which, as shown
in Refs. [116, 117] can indeed have, in their case magnetic, instabilities. The second ingredient is
the observation discussed in Ref. [115] and Sec. 3.1.2.2, that a slowly oscillating spin structure does
indeed result from the combination of local interaction and constriction potential. Thus, we assume
that there is effectively a spin and/or valley polarization, which does not have to be static, but can
fluctuate slowly compared to the typical traveling time through the constriction. For simplicity we
nevertheless describe the model for a static situation. The “classic” 0.7 effect is only seen in the lowest
conductance step, Fig. 4.2, so that below we restrict our consideration to the lowest size-quantized
band shown in Fig. 4.3.

4.4.1 Phenomenological model

Following the general idea of [20], we again use the Landauer-Büttiker formula (4.24) for the conduc-
tance, here for the quantized band N = 0 from Eq. (4.13). The 0.7 effect requires a finite temperature.
Assuming that the energy scale for the variation of the transmission probability is smaller than that
of the thermal distribution function, we approximate the former as a step function. A spin-valley
subband contributes to the conductance as soon as the chemical potential reaches its lower band edge
ϵ0σ,ξ within the temperature window.

In this section, we develop a phenomenological model to describe how interaction effects may influ-
ence these lower band edges beyond the self-consistent screening. There are two ways in which these
can differ from the non-interacting single-particle ones. The first one is the spontaneous polarization
mentioned above, which is assumed to be arbitrary in the space of spin and valleys. Already when the
chemical potential is way below any of the relevant subbands, these subbands may be spontaneously
split to different values of energy. The arrangement of these values, which are acquired for very low
chemical potential and zero magnetic field, is referred to as the initial subband configuration. All
subbands that are above the lowest subband are called minority bands; those that are characterized
by the lowest band edge are majority bands.

The second effect is the dependence of the subbands on the chemical potential when it is close to the
band edge. A particular type of this dependence—pinning of the band edge to the chemical potential—
gives rise to additional plateaus in the conductance. It is this interaction-induced dependence of
the lower band edge of minority bands on the chemical potential that our phenomenological model
describes for any assumed initial configuration. We then consider the corresponding evolution of the
conductance with increasing in-plane magnetic field, and, by comparing the resulting behavior with
the experimentally observed one (Sec. 4.2), infer the initial splitting configuration.

The general consequence of the pinning of a band edge to the chemical potential can be seen by
considering only one band with lower band edge ϵ0σ,ξ(µ), which depends on the chemical potential
according to the following equation

ϵ0σ,ξ(µ) =

µσ,ξ, µ < µσ,ξ

µ− (µ− µσ,ξ)α, µ > µσ,ξ

, (4.27)

where α > 1 has do be deduced from the specific dispersion. The pinning here is represented by the
second line µ > µσ,ξ, which states, that the lower band edge does not stay at the previous constant
value µσ,ξ but moves up with the chemical potential µ. This behavior of the lower band edge is shown
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Figure 4.7: (a) Lower band edge ϵ0σ,ξ of a single subband as a function of the chemical potential
µ for different α at T = 0.7 K and µσ,ξ = −0.8 meV (gray line) according to Eq. (4.27) (b)
Corresponding conductance according to Eq. (4.28). There is an additional, shoulder-like feature,
close to the value of 0.5 e2

h .

in Fig. 4.7 (a). The lower band edge stays at the constant value µσ,ξ, until it is reached by the
chemical potential, at which point it depends on the difference between the chemical potential and
its initial position with a parameter α. Over a certain range of chemical potential it moves up with
µ, which is exactly what we describe as a pinning here. If one plugs this lower band edge into the
Landauer-Büttiker conductance with a step function transmission one would obtain the conductance

Gσ,ξ(µ) = e2

h
f(ϵ0σ,ξ(µ) − µ) (4.28)

for this single band, which is depicted in Fig. 4.7 (b). As soon as the chemical potential reaches the
initial position of the lower band edge, an additional feature, similar to a shoulder, appears close to
the value of 0.5 e2

h . The general idea is, that exactly this could happen for every considered subband.
The reason why it happens, depends on the microscopic model one trusts. The energy, at which the
lowest band bottom is reached is close to the energy at the top of the effective one-dimensional QPC
barrier. This barrier is affected by interactions. In a very naive Hartree-Fock approximation only the
Hartree-type self-energy with the opposite spin species would survive and effectively change the height
of the barrier proportional to the electronic density in exactly this opposite spin subband. If we look at
the effective potential seen by the spin σ subband, this means that by increasing the chemical potential
and thus the density in the −σ band, the barrier height for the σ species increases, which counteracts
the increase of the density in the σ band and thus leads to exactly this type of pinning of the chemical
potential to the lower band edge for the σ subband [115].

4.4.1.1 General four-band model

For a system with four degrees of freedom, like BLG, we label the subbands by their spin and valley
index, i.e., ϵ0σ,ξ. Moreover, we assume that the lower band edges of minority bands start to depend on
the chemical potential once it reaches a certain value µσ,ξ, i.e., ϵ0σ,ξ = ϵ0σ,ξ(µ).

All possible initial spontaneously polarized configurations of the band edges are shown in Fig. 4.8(a).
For the analysis of the dependence of the band edges on µ, we look at the local spin-valley energy-
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Figure 4.8: (a) Subfigures a to h show every possible initial subband structure. The x axis labels
spin and valley degree of freedom and the y axis shows the position of the lower band edges in
energy space with the values used for all plots. The assignment of spin σ and valley ξ to the x
axis is not unique, yet. In a there is no initial splitting, all lower band edges are equivalent. In
case b, three bands are fixed and there is one minority band. Whether the single minority band
is spin up/down or valley K/K ′ can only be distinguished once we include a magnetic field. In c
to d and e to h there are two and three split subbands, respectively. (b) Exemplary conductance
for the initial configuration shown in (a) for zero magnetic field. The parameters are chosen to
suppress the plateaus at multiples of 1 e2/h, where the majority band is filled and minority bands
are not yet populated. The majority bands are fixed at 0.1 meV, the next levels correspond to
ϵ01 = 0.2 meV, ϵ02 = 0.6 meV, ϵ03 = 1 meV. The temperature is T = 0.7 K and C = 6 meV−3 for all
minority bands [see Eq. (4.36)].
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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density functional in the form

F = E [{nσ,ξ}] − µ
∑
σ,ξ

nσ,ξ. (4.29)

Here, F is the free energy of the system and E is its internal energy. A diagrammatic approach
to obtaining such a free energy and a corresponding analysis of possible instabilities in models with
multiple species of quasiparticles is discussed, e.g., in Refs. [116, 117].

The lowest bands in Fig. 4.8 are majority bands with a fixed lower band edge and we decompose
their density into n = n0 +δn. All changes with the chemical potential are included in δn. For minority
bands, we do not make this decomposition, but assume that n = 0 for µ < µσ,ξ. We approximate
the free energy functional F as bilinear in all partial majority density contributions δn and minority
densities n, i.e.

F =
∑

i=σ,ξ

(αi − µ)ni + βi

2 n
2
i +

∑
j=σ′,ξ′

γninj

 , (4.30)

where ασ,ξ, βσ,ξ, and γ are phenomenological constants to be determined experimentally and nσ,ξ is
understood as δnσ,ξ for majority bands. The minimum of the energy functional is achieved when

∂F
∂nσ,ξ

= ασ,ξ − µ+ βσ,ξnσ,ξ + γ
∑
σ′,ξ′

nσ′,ξ′ = 0, (4.31)

which leads to solutions of the form
nσ,ξ ∝ (µ− µσ,ξ) (4.32)

for minority bands, where µσ,ξ is the critical chemical potential of the minority subband that depends
on the parameters of the free energy Eq. (4.30).

4.4.1.2 Application to BLG

At this point, we have to specify the band structure in order to get access to the single-particle densities
entering the energy functional (4.30). For this purpose, we use the results of Sec. 4.3.2 and Sec. 1.2
for the non-interacting 1D dispersion in the BLG QPC, and modify them to include the interaction
effects at the phenomenological level.

Without a magnetic field, we consider a quartic dispersion relation of the form

ϵσ,ξ(k) = ak4 + ϵ0σ,ξ(µ), (4.33)

where a is a constant. This form of the effective—modified by interactions—form of single-particle
energies in BLG QPC is based on the fourth-order expansion of dispersion relation (4.13) for N = 0,
namely

EN=0,σ(k) ≈
(

ℏ2

2m

)2
k4

U
+ U

2 . (4.34)

As shown above, the gap magnitude U depends on the chemical potential through the self-consistent
electrostatic screening. Specifically, U = U(n), according to Eq. (4.10) with additional effects of the
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split gates, and n = n(µ) according to Eq. (4.15). The chemical potential is set by the 2D density
according to Eq. (4.5) and Eq. (4.8). Within the lowest band, these dependencies are very smooth and
do not lead to any additional features. The main role in our consideration is played by the interaction-
induced bandgap that determines the band edge ϵ0σ,ξ(µ). For this reason, we neglect all electrostatic
contributions [effectively fixing U = U(µσ,ξ)] and introduce a new bandgap instead of U/2. One could
just as well assume that this bandgap is applied on top of the fixed gap U(µσ,ξ)/2, since this would
only lead to an overall shift and a redefinition of the origin.

For the dispersion (4.33), we get a one-dimensional density in the form

nσ,ξ(µ) = 2
π

{
1
a

[
ϵ0σ,ξ(µ) − µ

]}1/4

. (4.35)

By combining this with Eq. (4.32), we thus get the dependence

ϵ0σ,ξ(µ) =

µ− Cσ,ξ(µ− µσ,ξ)4, µ > µσ,ξ

µσ,ξ, µ < µσ,ξ

. (4.36)

where Cσ,ξ is a phenomenological constant depending on the parameter a as well as the parameters of
the free energy functional F . This means that once the chemical potential reaches the lower band edge
of a minority band they become pinned together over a certain energy range. For continuity reasons
we require ϵ0σ,ξ = µσ,ξ, i.e., the initial configuration determines the critical chemical potentials. It is
worth emphasizing that the enhanced density of states at the bottom of the almost flat (quartic in
momentum) band in BLG QPC (4.33) is expected to enhance the role of interactions compared to the
case of conventional parabolic bands. This should also be compared with the proposed cases noted in
Eq. (4.27) and shown in Fig. 4.7, where for α = 4 we would expect a stronger shoulder than for the
conventional parabolic case, where α = 2.

4.4.1.3 Resulting conductance

With the step-function transmission probabilities, the conductance reads:

G(T ) = e2

h

∑
σ,ξ

f(ϵ0σ,ξ(µ) − µ). (4.37)

At this point, one should take another look at Fig. 4.8 (b), which describes what happens for a
minority band. If we tune the chemical potential through all band edges, the crossing of a fixed
majority band corresponds to a plateau of 1 e2/h, while for every minority band we get an additional
less sharp shoulder at 0.5 e2/h. Any additional plateau from a majority band at 1 e2/h can be smeared
by temperature. If we have several minority band edges at different initial energies, the distance
between the bands compared to the temperature determines whether lower minority bands already
contribute fully or not, cf. Ref. [20].

The conductance corresponding to the initial splitting configurations from Fig. 4.8(a) is shown in
Fig. 4.8(b). The values of the additional shoulders are summarized in Table 4.2. In experimental
conductance curves in Fig. 4.2(d), there is one additional shoulder at around 2.5 e2/h and another one
around 3.5 e2/h for zero magnetic field. Thus we can rule out case a, because it does not have any
additional shoulder and cases f, g, and h, which have a too low first shoulder from the very beginning.
Only cases b, c,d and e from Fig. 4.8 are relevant here.
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case conductance shoulders in units of e2/h

a none
b 3.5
c 3
d 2.5 and 3.5
e 2.5
f 1.5 and 3
g 2 and 3.5
h 1.5 and 2.5 and 3.5

Table 4.2: Values of conductance shoulders for initial configurations shown in Fig. 4.8

case spin configurations
a (↑↑↓↓)
b (↑↑↓) ↓, (↑↓↓) ↑
c ↑↑↓↓, (↑↓)(↓↑), ↓↓↑↑
d ↑↑↓↓, (↑↓) ↓↑, (↑↓) ↑↓, ↓↓↑↑
e ↓ (↓↑↑), ↑ (↑↓↓)
f ↑↑↓↓, ↓↑ (↑↓), ↑↓ (↑↓), ↓↓↑↑
g ↑↓↓↑, ↓↑↑↓, ↓ (↑↓) ↑, ↑ (↑↓) ↓
h ↑↑↓↓, ↑↓↓↑, ↑↓↑↓, ↓↓↑↑, ↓↑↑↓, ↓↑↓↑

Table 4.3: Different spin configurations for the arrangements shown in Fig. 4.8; brackets “(. . .)”
denote all possible permutations. The order corresponds to the subband ordering shown in
Fig. 4.8. For each permutation we can assign the valley indices in four different ways, which
does not lead to different behavior in this model and is thus not distinguishable. For exam-
ple, the last arrangement in case g corresponds to the eight valley-resolved cases: ↑ (↑↓) ↓ =
{↑1↑2↓1↓2, ↑1↑2↓2↓1, ↑2↑1↓1↓2, ↑2↑1↓2↓1, ↑1↓1↑2↓2, ↑1↓2↑2↓1, ↑2↓1↑1↓2, ↑2↓2↑1↓1}, where the index
1, 2 corresponds to the K,K ′ valley, respectively.
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4.4.2 Behavior of conductance in magnetic field

In order to distinguish between the cases of spin, valley or spin-valley splitting, we consider the behavior
of the conductance in parallel magnetic field B. This is incorporated by the following replacement

ϵ0↑,ξ → ϵ0↑,ξ − 1
2gµB|B|, (4.38)

ϵ0↓,ξ → ϵ0↓,ξ + 1
2gµB|B|. (4.39)

There are in total 6 possibilities of assigning 2×2 spins to four subbands. Since one cannot distinguish
different valley indices this way, after this assigning, the spins are still four-fold degenerate in their
valley index. We only know that each valley has two opposite spins. The permutation of spins within
subbands with the same lower band edge does not change the outcome. From this we get in total 26
different arrangements with distinct development with magnetic field for the eight initial cases shown
in Fig. 4.8. These are shown in Table 4.3.

The magnetic field behavior of the relevant cases b, c, d, e is shown in Fig. 4.9 in analogy to
Fig. 4.3(a). Here one should note, that the initial spontaneous splitting is a spontaneous symmetry
breaking and if the magnetic field is tuned adiabatically, it will always favor the initial splitting in
the direction of the magnetic field. Behavior like case c2, where the initial spontaneous splitting is
opposite to the Zeeman splitting will only be observed if the magnetic field is switched on very fast.

A comparison of the experimental data and theoretical ones for symmetric splitting Eqs. (4.38) and
(4.39) and a phenomenological asymmetric one, where we use

ϵ0↑,ξ → ϵ0↑,ξ − gµB|B|, (4.40)
ϵ0↓,ξ → ϵ0↓,ξ, (4.41)

assuming that the spin up band is energetically higher is shown in Fig. 4.10. From this we see that
an asymmetric splitting, Eqs. (4.40) and (4.41), yields a better agreement with the experimental
observations in this particular case, that will turn out to be the most relevant one. However, owing to
the special dependence of minority bands on the chemical potential, this asymmetric replacement rule
may lead to unphysical half-integer plateaus in high magnetic fields for some initial configurations.
Therefore, we have used the symmetrical splitting introduced in Eqs. (4.38) and (4.39) to produce
Fig. 4.9.

4.5 Possible additional features

Several phenomena, that could in principle play a role in the experiment, were not yet discussed. In
this section we discuss the effects they would have on the conductance curves and why we think, it is
safe to ignore them based on the used experimental data.

4.5.1 Effect of spin orbit coupling

The effective two-band Hamiltonian as derived in Appendix A.2 is given by

H2 = h0 + hU + h3 + hAB + h4 + h∆′ + hZ + hso, (4.42)
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Figure 4.9: Behavior of the four different initial splitting cases a, b, c and e from Fig. 4.8 in
an in-plane magnetic field. Conductance curves for magnetic fields between 0T and 8T are shown
with a horizontal shift parametrized by α = 1.5meV/T. The thick black curve corresponding
to B = 0 T is non-shifted. The blue lines correspond to 2 T , 4 T and and 6 T, as in Fig. 4.3.
Without any initial splitting, there is no continuous development of a shoulder in a, the additional
plateau appears, as soon as it can be resolved. The particular assignment of spin to the subbands
is irrelevant: all six possibilities are indistinguishable. In case c, three different scenarios are
possible. Each case happens for all four possible valley assignments. For cases b and e, there are
two distinguishable spin configurations; for case d four. Same parameters as in Fig. 4.8; according
to the measured Landé g-factor, g=4 was chosen.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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4 Interaction effects in a bilayer graphene quantum point contact

Figure 4.10: Zoom into the evolution of the lowest conductance step with increasing magnetic
fields (without shifts). The colored curves correspond to those marked in Fig. 4.2a. (a): Experi-
mental data for 20 mK. Curves for higher magnetic fields show lower conductance at a fixed value
of the top-gate voltage. (b): Theoretical curve for case c1 in Fig. 4.9 with the non-symmetric
splitting (sp.) introduced in Eqs. (4.40) and (4.41). Same parameters as in Fig. 4.8; according to
the measured Landé g-factor, g=4 was chosen. The behavior of (a) is qualitatively replicated. (c):
Same as in (b), but with a symmetric Zeeman splitting introduced in Eqs. (4.38) and (4.39). There
is a fixed(crossing) point clearly absent in the experimental data. As is apparent by comparing
the distance of the blue plateaus in chemical-potential space in (b) and (c) a symmetric splitting
enhances the g-factor even more.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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where

h0 = −v2

γ1

(
0 (π†)2

π2 0

)
⊗ ŝ0, (4.43)

hU = −U

2

(1 0
0 −1

)
− v2

γ2
1

(
π†π 0
0 −ππ†

)⊗ ŝ0, (4.44)

h3 = v3

(
0 π
π† 0

)
⊗ ŝ0, (4.45)

hAB = δAB

2

(
1 0
0 −1

)
⊗ ŝ0, (4.46)

h∆′ = 2∆′ v
2

γ2
1

(
π†π 0
0 ππ†

)
⊗ ŝ0, (4.47)

h4 = 2v4
v2

γ2
1

(
π†π 0
0 ππ†

)
⊗ ŝ0, (4.48)

hZ = ∆EZ

2

(
1 0
0 1

)
⊗ ŝz, (4.49)

hso = ξ

(
λ1 + λ2 + λu 0

0 −λ1 − λ2 − λd

)
⊗ ŝz. (4.50)

Before, we restrict ourselves to the terms h0, hU , and hZ . This is exactly equation (4.1) and (4.3).
For all calculations, we furthermore neglect the second term of hU that describes the Mexican-hat
feature of the spectrum. The only terms capable of lifting spin degeneracy are hZ and the spin-orbit
term

ξ

(
λu 0
0 −λd

)
⊗ ŝz (4.51)

for asymmetry between the layers λu ̸= λd, which can be caused by the lack of mirror symmetry of
the whole stack [164]. Because of the valley index ξ in this expression, the splitting is opposite in the
two valleys, so that there is no net spin splitting due to spin-orbit interaction at all. If such a term
is present in the Hamiltonian, it would lead to full spin-valley splitting in an applied magnetic field,
i.e., four steps of 1 e2/h. This is, however, not seen in the experiment. This type of effect of spin-orbit
coupling on the first conductance plateau in in-plane magnetic fields for the parameters specified in
Ref. [52] is shown in Fig. 4.11.

4.5.2 Effect of tilted magnetic field

We have investigated the effect of a perpendicular magnetic field on the quantized conductance in
the same device in Ref. [21]. Large out-of-plane magnetic fields lead to a valley splitting, similar to
the Zeeman spin splitting, with characteristic braiding behavior. Since we see neither a lifting of the
valley degree of freedom, which would lead to a full resolution of conductance steps of 1 e2/h for large
magnetic fields, nor any hint at a non-linear splitting, we can exclude a large out-of-plane component
of the magnetic field. The presence of an appreciable out-of-plane component of the magnetic field
would also show up in a curving of the Fabry-Pérot oscillations, which is also not observed here.
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Figure 4.11: Influence of a finite Kane-Mele spin-orbit coupling on the first conductance plateau
in in-plane magnetic field, including the effect of layer-asymmetry encoded in λu ̸= λd for U = 0.
In all plots we chose g = 2 and α = 0.1 meV/T, thus the rightmost curve corresponds to B = 8 T
and the temperature is 20 mK. (a) No spin-orbit coupling, there is no splitting at zero magnetic
field. (b) and (d) Different spin-orbit couplings in the two layers, finite splitting at zero magnetic
field, full lifting of spin and valley degeneracy at higher magnetic field. (c) Same spin-orbit coupling
in both layer, no splitting at zero magnetic field. For finite U we always obtain results as in (d).
The splitting is no spin splitting but a spin-valley splitting.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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4.6 Application to the experiment

For small out-of-plane components the valley splitting is roughly linear [46] and can be easily included
into our model by adding a term τgvB to the energy spectrum, where τ = ±1 corresponds to the valleys
K and K ′, respectively, and gv contains both the angular dependence on the tilt angle and the magnetic
moment due to the non-trivial Berry curvature. The expected effect of the tilt on the conductance
traces is shown in Fig. 4.12. We see that a very small tilt does not lead to any noticeable difference,
while a bigger one leads to a full lifting of all degeneracies at strong magnetic fields. This is in contrast
to quantum dots in BLG, see, e.g., Ref. [165], where all four single-particle energies can be extracted at
all values of magnetic field due to their additional charging energies and one can construct an effective
g-factor by combining spin and valley splitting in a specific way, that would get enhanced over the
bare spin Landé g-factor for one combination, while reducing it for the other combination. Since we
do not observe a valley splitting, this effect would exactly average out in our case.

4.6 Application to the experiment

Let us now compare the results of our phenomenological model with the experimental results reported
in Sec. 4.2. Many, but not all, features in Fig. 4.2, e.g., conventional conductance quantization, can
be explained without considering interaction effects. Other features, e.g., additional shoulders in the
conductance curves and behavior of the g-factor, are compatible with the phenomenological model
presented in Sec. 4.4.

4.6.1 Conductance plateaus

Every time the chemical potential, tuned by the top gate voltage, reaches a new lower band edge, the
conductance makes a step of 1 e2/h per spin and valley. For zero magnetic field, the plateaus are at
multiples of 4 e2/h, which can be clearly seen in the cadence plots in Fig. 4.3. This is in contrast to
Ref. [130], where the valley splitting was observed in a similar setup with changing the split-gate voltage,
but at much higher back-gate voltage. The Zeeman coupling of the spin to the in-plane magnetic field
leads to appearance of steps at multiples of 2 e2/h for higher magnetic field. The additional plateaus
become visible when the Zeeman-split bands have a spacing that can be experimentally resolved, which
occurs in this case above 2 T.

4.6.2 Effective g-factor

The Zeeman splitting in the first three subbands shown in Fig. 4.4(a) for 20mK is very close to linear
at sufficiently high magnetic fields. For the lowest subband, a nearly constant splitting is observed up
to nearly 4T. The extracted g-factors show a strong enhancement compared to the bare value of g = 2
for BLG. We attribute this enhancement to the strong confinement and interaction effects, similar to
those discussed in Ref. [69].

These effects are strongest for the lowest subbands because of lower densities in the almost flat
(quartic) band, which is consistent with the increase of the enhancement with lowering the band index.
This effect should only be present for electrons going through the constriction. Electrons that bounce
back and stay in the 2D region are at too high densities for the interaction-induced enhancement to
be visible. This effect combined with the peculiar low-field behavior of the lowest subband strongly
hints at the importance of interaction effects in this experiment.
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Figure 4.12: Influence of finite tilt angle on the conductance traces for the cases a and c1. In all
plots, we chose gs = 4 and α = 1.3 meV/T, thus the rightmost curve corresponds to B = 8 T and
the temperature is 20 mK. The configurations corresponding those in Fig. 4.8 are marked inside
the panels; the index 1,2 corresponds to the K,K ′ valley respectively. Panels (a) and (b): No
finite tilt and thus no valley splitting. Panels (c) and (d): Finite tilt angle resulting in gv = 0.04.
No change compared to gv=0 is visible. Panels (e) and (f): Finite tilt angle resulting in gv = 0.4.
At a certain magnetic field this would lead to the appearance of additional conductance steps at
1 e2/h and 3 e2/h, which are not observed in this experiment.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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4.6 Application to the experiment

4.6.3 The 0.7 anomaly

There are two additional features below the conventional conductance quantization step at G = 4 e2/h,
which thus only involve the lowest quantized subband. The first one starts at around 3 e2/h at zero
magnetic field, and the second one at around 2.5 e2/h.

One might try to identify both these features with case d in Fig. 4.8, where there are two additional
shoulders at zero magnetic field. However, considering the conductance behavior in magnetic field
shown in Fig. 4.9, one sees that when these two additional shoulder move down with magnetic field,
as in case d4, the additional plateau at 3 e2/h persists for higher magnetic fields. We do not see such
a plateau in the experimental data. The feature starting around 2.5 e2/h in Fig. 4.3(a) moving down
into the 2 e2/h plateau is visible in Fig. 4.2(a) as a splitting of the spin-valley subbands at vanishing
magnetic field, which makes it a strong contender for the 0.7 effect. It also leads to the non-linear
behaviour of the Zeeman splitting in the first subband in Fig. 4.4.

Since we have ruled out case d, only the cases b, c and e in Table 4.2 are still possible. Upon
comparing the magnetic field behavior with Fig. 4.9, we conclude that we are in either case c1 or e1.
While one might not be convinced by the value of the theoretical shoulder of case c, that is 3 e2/h
compared to the experimental one at 2.5 e2/h, which is exactly the value in case e, as shown in Fig. 4.8,
this would require the spin-up state of one valley split to the same energy as the non-spin split bands
of the other valley, which implies an accidental fine-tuning. Instead, if only one valley was spin split,
cases d, f and g would be way more probable, but these were already ruled out. Thus, we identify
the experimentally observed behavior as case c1, which assumes an initial spin splitting, but no valley
splitting.

It is also clear that, in contrast to [52], we do not see any crossing of Zeeman-split bands. A shoulder
similar to the one observed here but at 2 e2/h was attributed to the substrate-enhanced Kane-Mele
spin-orbit coupling in Ref. [52]. We note that such effects of the weak spin-orbit coupling can be
observed only at very low temperatures, but we still see a similar effect at 4K. Finally, the proposed
Kane-Mele spin-orbit splitting would lead to opposite spin splitting in the two valleys, so that there is
no net spin splitting, as detailed in Sec 4.5.1. However, the observed Zeeman splitting at low magnetic
fields suggests the presence of spontaneous net spin splitting in the case considered here, while the
enhancement of the effective g-factor points towards rather strong interaction effects. We thus identify
this feature in the conductance as an interaction-induced 0.7 anomaly. As mentioned in Ref. [84], the
exact value of the shoulder may depend on the exact QPC geometry, so that it may also appear very
close to the value of 0.5 × 4 e2/h.

4.6.4 Fabry-Pérot resonances

We identify the upper feature in the lowest subband conductance at low magnetic field, corresponding
to an additional peak in the low-temperature plot in Fig. 4.3(c) at around −11.8 V that goes vertically
through the right spin-split band, as a Fabry-Pérot resonance [41, 118, 166–170]. In Fig. 4.2(e), this
additional feature is seen as a faint bright curve moving down from the 4 e2/h plateau (at weak fields)
and merging with the 0.7-feature to from the spin-split 2 e2/h plateau at magnetic field around 4 T. Note
that at this same value of magnetic field, the Zeeman splitting of the lowest subband starts growing
linearly with magnetic field, see Fig. 4.4(a). With increasing temperature, this feature disappears, in
contrast to the 0.7 anomaly, see Fig. 4.3(d).

The Fabry-Pérot resonances in this geometry emerge from interferences of electronic waves in the
2D region, which are back-scattered from the interface with the contact on one hand, and the barrier
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created by the split gates, see Ref. [21] and Sec. 3.1.3. In a parallel magnetic field, there are two Fermi-
wavevectors, one for each spin, so that the minima and maxima of these oscillations disperse with the
magnetic field. Since Fabry-Pérot resonances correspond to electrons bouncing back and forth between
the contacts and the split gate, these electrons are inherently two-dimensional and are not affected by
the enhancement of the g-factor in the QPC region. A closer look reveals additional Fabry-Pérot peaks
at other values of the top-gate voltage, which do not move to different plateaus in the considered range
of magnetic fields. In the experiment (Fig. 4.2), the 0.7 shoulder in the conductance of the lowest
subband merged at magnetic field of about 4 T merges with an additional conductance feature, which
was identified with the Fabry-Pérot resonances in the main text. Here, we present additional details
supporting this identification. The transmission coefficient accounting for the Fabry-Pérot resonance
can be described by

T = 1
1 + F sin2

[
Lk cos

(
θ
)] , (4.52)

where F is the finesse and θ is the angle of incidence of the electron wave. At very low temperatures,
the contribution of the resonance to the conductance is given by

G = e2

h

1
1 + F sin2 (LkF

) . (4.53)

One should note that, according to Ref. [171], the Zeeman splitting in BLG is around 1.1 meV for
10T. Using the conversion formula for top-gate voltages to energies from the Supplemental Materials
of [21] for the same device at slightly different voltages, the distance between VTG = −12 V and
VTG = −8 V corresponds to the band splitting of 15.2 meV. Moreover, the density in the 2D region is
not as low as in the constriction, since the split gates do not cover this region. Therefore, the total
spin polarization of these 2D bands cannot be achieved and, since we only observe faint oscillations
on top of the plateaus, the finesse F is small. As a result, this dependence of the conductance on the
magnetic field is not experimentally resolved. These Fabry-Pérot oscillations are clearly visible in the
differentiated differential conductance in Fig. 4.13, where they appear as small oscillations over the
full top-gate and magnetic field range.

An experimental example of the dependence of this conductance contribution on VTG and magnetic
field is shown in Fig. 4.14(a) for the case of vanishing back-gate and split-gate voltage and a theoretical
plot based on Eq. (4.53) in Fig. 4.14(b). The Fabry-Pérot resonances are seen for all magnetic field
values and over the whole top-gate voltage range. These peaks, in contrast to the Zeeman-split
subbands, only weakly depend on magnetic field, since the Zeeman splitting in the 2D bulk is smaller
than in the QPC region.

While the plots in Fig. 4.14 agree qualitatively, there are two points to keep in mind. The theoretical
plot was obtained using no residual density, which is certainly not the case in the experiment, and
does not account for the peculiarity of the screening in the experimental setup in the presence of the
split gates. Even if the split-gate voltage is zero, the split gates affect the electrostatics of the setup
by locally screening the top gate and developing mirror charges for carriers in this region. In addition,
the dielectric layer in the split-gate region is noticeably thinner. This introduces inhomogeneity in the
middle of the sample, and the length scale corresponding to the distance between the leads and the
split gates naturally appears.

In order to fully reproduce the experimentally observed pattern one would need a full electrostatic
simulation. One very apparent difference is the fact that the period stays nearly constant in the
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4.6 Application to the experiment

Figure 4.13: Differentiated differential conductance at 20 mK for different magnetic fields with a
vertical shift with α = 4e2/(hVT). Only magnetic fields with magnitudes of multiples of 0.2 T are
shown for clarity. The blue curves correspond to the magnetic field values given in Fig. 4.2(a). For
all magnetic field values and over the full plotted voltage range repetitive behavior corresponding
to Fabry-Pérot oscillations is visible.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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4 Interaction effects in a bilayer graphene quantum point contact

Figure 4.14: (a) Oscillations of conductance δG = G − Ḡfor VBG = VSG = 0. The smooth
background conductance Ḡ is obtained by means of a Savitzky-Golay Filter of the measured data.
(b) Fabry-Pérot oscillations given by Eq. (4.53) in a magnetic field. The Fermi vectors in magnetic
field were obtained by calculating the gap from Eq. (4.10) and the chemical potential, Eq. (4.7), for
the given voltage and n = c(V − V0). The value c = 0.8 × 3.9 × 1015 was determined in Quantum
Hall measurements and V0 = −1.2 V is the position of the Dirac point for VBG = VSG = 0. The
chosen length L = 230 nm corresponds to the distance between the leads and the split-gate fingers.
The maxima and minima of oscillations stay nearly parallel over a large range of magnetic field.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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Figure 4.15: (a) and (b): Differential conductance G as a function of the top gate voltage VTG for
different values of magnetic field B and for 20 mK and 4 K, respectively. The curves are shifted
with α = 2V/T. Figures 4.3(a) and 4.3(d) are a zoom into the lowest plateau shown here.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0

experiment but not in the theory. While we did take into account the influence of the top-gate voltage
on the density and the gap, the voltage also changes the boundary condition at the contacts and close
to the split-gate fingers. Moreover we neglected any present residual density, which might change the
position within the spectrum and thus the top-gate dependence. Finally, the presence of the split gates
will naturally induce a breaking of translational symmetry, as the side boundaries do, which were not
taken into account. For additional Fabry-Pérot interference data in the same sample, the reader is
referred to the Supplemental Material of Ref. [21]. A more thorough study of Fabry-Pérot interferences
in BLG can be found in Ref. [118].

4.6.5 Additional plots

The 0.7 anomaly discussed before is only visible in the lowest conductance plateau. The other discussed
features, including the Fabry-Pérot resonances, are visible in other plateaus as well. In this Section,
we show cadence plots of the measured conductance for larger ranges of conductances and top-gate
voltages, than in Figs. 4.3(a) and 4.3(b). Figures 4.15(a) and 4.15(b) show the differential conductance
as a function of the applied top-gate voltage with horizontal shift linear in the applied in-plane magnetic
field. The additional 0.7-shoulder is seen in the lowest step for both temperatures. The main difference
between the two temperatures is the smoother and flatter behavior for higher temperatures. Moreover,
there are two additional features that are only visible in the 20 mK case, Fig. 4.15(a). For magnetic
fields below 0.2T, the aluminum leads are still superconducting, so that the conductance is affected by
superconducting fluctuations. Additionally, one sees Fabry-Pérot resonances, which are most clear on
top of plateaus.

Since the aluminum leads are superconducting at 20 mK, a finite magnetic field is needed to kill this
effect and curves below 0.2T show a higher conductance than the quantized values. This should be
contrasted with the data shown in Fig. 4.3(b) for 4K, where there are no superconducting effects even
at vanishing magnetic field. The superconducting proximity effect for the QPC in BLG is out of scope
of the present discussion; the analysis of conductance curves affected by superconducting fluctuations
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is an interesting task from both the experimental and theoretical points of view (for a related analysis
of the supercurrent in this geometry, see Ref. [49]).

Since it is well known that the 0.7 anomaly is very sensitive to the exact shape of the constriction,
we include data of the same sample in a different cool down at T = 20 mK and with a perpendicular
magnetic field of 20 mT. The back-gate voltage is again VBG = 10 V and the split-gate voltage ranges
between −12 V and −11.5 V. Figure 4.16 shows a cubic spline fit of the obtained conductance data in
a form similar to Fig. 4.2 (b) and (c) but the vertical shifts correspond to different split-gate voltages,
starting at VSG = −12 V for the lowest curve and ending with VSG = −11.5 V as a function of VTG.
The curves are colored according to their derivative. The thick solid lines mark the onset of the
conductance plateaus, showing their dependence on the exact confinement condition, i.e., the split-
gate voltage. The lowest curve corresponds to the same split-gate and back-gate configuration as the
data in the main text, where we have identified the 0.7 anomaly by its magnetic field dependence, see
Fig. 4.2 (b) and (e).

In this cooldown, we see a similar feature, marked by the arrow. When following the split-gate
dependence of this feature (black dotted line), one observes that it stays parallel to the onset of the
lowest plateau, which verifies that it is a feature of the QPC modes. Additionally, we again see Fabry-
Pérot oscillation on top of the 4 e2/h and 8 e2/h plateaus (black dashed lines). Since they are generated
by the lead modes, they show a different dispersion with the split-gate voltage. They always appear
at the same electronic 2D density, which is only slightly tuned by the split-gate voltage. The onset
of the conductance steps (and the 0.7 anomaly) is much more strongly dependent on the exact gate
configuration, which makes the two effects clearly distinct.

4.7 Discussion

We have studied an electrostatically defined QPC (Sec. 3.1) in BLG (Sec. 1.2) which shows a zero field
quantized conductance in steps of 4 e2/h owing to the spin and valley degeneracy, which is perfectly
described by the Landauer-Büttiker formula derived in Sec. 2.3. In an in-plane magnetic field, as
discussed in Sec. 3.1.1, a splitting of the first three subbands at 20 mK is observed that results
from the Zeeman spin splitting, while the valley degeneracy is not affected. Additionally, a 0.7-like
structure is located below the lowest size-quantized energy level which develops into the lowest spin
split subband at 2 e2/h. This additional feature is also observed in the 4K data, where only the splitting
of the lowest band is clearly resolved. On top of the quantized conductance we observe Fabry-Pérot
resonances, which were introduced in Sec. 3.1.3. Because of the higher densities in the 2D region and
the relatively small bare Zeeman splitting in BLG, these stay at fixed top gate values with increasing
magnetic field.

From the Zeeman energy splitting, the effective 1D g-factors in an in-plane magnetic field are found
to be increasingly enhanced for lower subbands compared to the bare 2D Landé g-factor g = 2 in BLG.
Moreover, the fact that the linear fitting of the Zeeman energy splitting for N = 0 does not extrapolate
to zero at B = 0 further indicates the spontaneous spin polarization of the lowest subband. The
behavior of the Zeeman spitting is a clear sign of the importance of interaction effects and confinement
in this experiment. Based on this, we also attribute the observed shoulder below the lowest subband
to the 0.7 anomaly stemming from the interaction-induced lifting of the band degeneracy.

We employ a phenomenological model, combining the slowly oscillating spin structure discussed in
Sec. 3.1.2.2 with the free energy discussed in Sec. 3.1.2.3, to qualitatively describe the behavior of this
feature in the applied in-plane magnetic field. In this model we assume, that each spin-valley subband
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Figure 4.16: Cubic spline fit of the differential conductance G of the same sample in a different
cooldown for VBG = 10 V and a perpendicular magnetic field of 20 mT as a function of the VTG in
elevating VSG for 20 mK. The curves are shifted vertically with α = 10e2/hV and colored according
to their first derivative. The onset of the conductance plateau (black solid lines serving as guides
for the eye) shows a clear dependence on the exact gate configuration. The black dotted line shows
the dispersion of a feature, that we identify as a 0.7 shoulder, with a dispersion parallel to the
onset of the plateau, in agreement with its quasi-1D nature. Fabry-Pérot oscillations are marked
by black dashed lines and show a different (weaker) split-gate voltage dependence, since they are
generated by the 2D lead modes.
Reprinted figure with permission from Vanessa Gall, Rainer Kraft, Igor V. Gornyi, and Romain
Danneau, Phys. Rev. Research, 4, 023142 (2022). https://journals.aps.org/prresearch/
abstract/10.1103/PhysRevResearch.4.023142, licensed under CC BY 4.0
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can be spontaneously split by the electron-electron correlations. By comparing the development of
resulting features in a magnetic field, Fig. 4.9, with the experimental conductance curves in Fig. 4.3,
we conclude, that the observed behavior can be explained by the assumption of an effective spontaneous
spin splitting, while the valley degree of freedom is not affected. This is in a full agreement with the
picture of spontaneous spin polarization inferred from the measured Zeeman splitting.

The experimental findings, explained by phenomenological calculations and combined with the re-
sults of Ref. [21] for out-of-plane magnetic field, establish the exquisite tunability of spin and valley
degree of freedom by the application of gates or external magnetic fields. Furthermore, these results
also demonstrate relevance of electron-electron correlations in BLG QPC geometry, as well as a possi-
bility to control the effective strength of interactions by means of electrostatic spatial confinement by
a combination of external gates.

Our results concerning the position of additional shoulders in the quantized conductance are also
relevant for other materials. Generally, if a material has multiple valleys and spin, an asymmetry
between these degrees of freedom is visible already at the level of possible interactions, as shown in
the diagrams (3.12). While the normal Coulomb interaction may change the valley, it does not flip the
spin. For this reason we would expect, that materials without strong spin-orbit coupling will show a
0.7 anomaly, that is consistent with a phenomenological model with spontaneous spin splitting, while
other degrees of freedom remain degenerate. It is only the shape of the shoulder, that depends on the
exact dispersion relation. For flatter band bottoms a stronger shoulder should be observed.

In materials with strong Kane-Mele type spin orbit coupling like transition metal dichalcogenide this
is more involved. The spin up and down bands will be split exactly the opposite direction in opposite
valleys, which leads to a non-interacting conductance similar to the one depicted in Fig. 4.11 (d). A
behavior as in Fig. 4.11 (c) is only obtained for bilayer graphene with U = 0. This leads to a true
plateau at zero magnetic field and a full lifting of all degeneracies in large magnetic field. Interaction
effects would lead to an additional shoulder around 0.7 × 4 e2

h like in case c3 in Fig. 4.9. So one could
expect to see both a shoulder at 0.5 × 4 e2

h and at 0.7 × 4 e2

h .

4.8 Summary and conclusions

In summary, we have found that the zero field conductance in a bilayer graphene quantum point
contact is quantized in steps of height 4 e2

h , while the step height is 2 e2

h , once the in-plane magnetic
field is high enough. This transition is not continuous but appears as soon as the Zeeman splitting
is resolved at the given temperature. In the higher temperature case, the steps are smoother and the
Fabry-Pérot oscillations visible at the lower temperature disappear. These oscillations do not disperse
with the magnetic field in the considered regime.

Additionally we find a shoulder below the first plateau at both temperatures, that continuously
moves into the lowest Zeeman split plateau at higher magnetic field. This behavior can be explained
as a 0.7 anomaly by assuming an effective spontaneous spin splitting, while valley remains degenerate.
The effective Landé g-factor is enhanced for the lowest three size-quantized subbands. We interpret
both of these phenomena as interaction induced, since screening by the gates does not have a very
significant effect at the considered distances for mono- and bilayer graphene.

In conclusion, we can state, that the main features of the conductance curves in a bilayer graphene
quantum point contact can be explained by employing a non-interacting Landauer-Büttiker approach,
similarly to the one presented in Sec. 3.1, except with an additional valley degeneracy. However, on
top of this, electron-electron interaction indeed has a visible influence on the conductance curves. The
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first interaction induced feature is the additional shoulder beneath the first plateau which can, again
similar to a single valley material, be explained by an effective instability in the spin channel, while
valley remains degenerate. The second interaction induced feature is the enhancement of the Landé
g-factor in the three lowest subbands, which is strongest for the lowest subband due to the large density
of states enhanced by the strong confinement.

Our phenomenological model can be extended to materials with additional degrees of freedom or
strong spin orbit coupling. Generally, if Coulomb interaction is the only relevant interaction
in the system and without interaction we have Ns ×Nv degenerate spin and valley degree
of freedom, the symmetry between spin and valley degree of freedom is naturally broken
by the absence of spin-flipping processes. Then we expect a spontaneous spin instead of
valley splitting and one additional interaction induced shoulder at 0.7 × Ns × Nv

e2

h . This
shoulder is expected to be stronger for flatter dispersions. If spin orbit coupling is strong
and of the Kane-Mele type, we would expect an additional plateau at 0.5 ×Ns ×Nv

e2

h , which should
be stronger than the interaction induced shoulder at 0.7 ×Ns ×Nv

e2

h and additional plateaus at high
magnetic field.

Additionally, an enhancement of the effective Landé g-factor due to interactions can
also be expected in quantum wires. While the 0.7 anomaly requires a rather strong local potential,
the effective Landé g-factor is always enhanced at small density, large density of states and reduced
dimensionality and so should be observable in the absence of a 0.7 anomaly.

Interaction effects in bilayer graphene are expected to play a similar role as in other, conventional
two-dimensional electron gases. This is different in monolayer graphene, especially close to the Dirac
point. While effects due to electron-electron interaction have a visible effect on the conductance curves
in this chapter, they turn out to be negligible in Chapter 5, where we specifically consider the influence
of electron-electron interaction on the magnetoresistance in a monolayer graphene Corbino disk at low
temperatures and finite densities in Sec. 5.3.5. In contrast, they dominate in the same monolayer
graphene Corbino disk at elevated temperatures and charge neutrality in Chapter 6, where electronic
correlation allow for a hydrodynamic treatment, as introduced in Sec. 2.4.
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5 Chapter 5

Disorder dominated transport in a
graphene Corbino disk

In this chapter we discuss the magnetoresistance in a graphene Corbino disk (introduced in Sec. 3.2)
at low temperatures, where transport is dominated by disorder. If the magnetic field is high enough,
this can be described by the method introduced in Sec. 2.2.5, which already takes the special band
structure of graphene, discussed in Sec. 1.1, into account. If disorder is strong enough to smear the
clear separation of Landau levels, a semi-classical approach based on the Boltzmann equation in Sec.
2.1.1 is sufficient.

In contrast to the quantum point contact in bilayer graphene discussed in Chapter 4, the system
considered here has a physical size of the order of µm, which is larger than the typical mean-free path
even in a very clean system, so that the clear quantum nature of the electronic liquid will only appear,
if magnetic fields are large enough to fit a whole Landau orbit inside the system. Moreover, it will turn
out, that in this device electron-electron interaction does not lead to any clearly visible effects.

This should also be contrasted to Chapter 6, where the same setup is investigated at elevated tem-
peratures in the hydrodynamic regime. However, as we will point out, as long as the semi-classical
Boltzmann equations are applicable, one can find a similar set of quasi-hydrodynamic equations in the
disorder dominated regime, which is however not based on the assumption of a local equilibrium.

In a Hall-bar geometry both transverse and longitudinal bulk conductivities, σxy(B) and σxx(B),
respectively enter the magnetoresistance and R(B) becomes independent of the magnetic field B, as
can be seen from Eqs. (2.29) and (2.30). In the corresponding Corbino setting, that was introduced
in Sec. 3.2, the magnetoresistivity is determined solely by ρxx(B) def= 1/σxx(B), which, again using
(2.29), leads to pure B2 behavior.

The gate dependence of the coefficient reveals information about the scattering mechanisms in the
sample, allowing for a characterization of the role of scattering on long-range (Coulomb impurities,
ripples) and short-range disorder (adatoms, atomic defects), as well as to separate the bulk resistance
from the contact resistance and thus extract the true bulk mobility. This is demonstrated by an appli-
cation to the measured magnetoresistance of suspended graphene in the Corbino geometry at magnetic
fields up to B = 0.15 T, where Shubnikov-de Haas oscillations are not relevant, yet.

In this chapter we investigate the magnetoresistance of graphene in a Corbino disk geometry. While
the magnetoresistance in the Hall-bar geometry is rather complicated, a semi-classical analysis in the
Corbino geometry leads to a simple quadratic magnetoresistance. Here we introduce a mixed
disorder model and demonstrate that magnetotransport can indeed be dominated by this
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Figure 5.1: (a) Scanning electron microscope image of a suspended graphene Corbino disk (green
part in the center) with 4.5 µm diameter outer Au contact and 1.8 µm diameter inner Au contact;
the scale is given by the white bar. (b) Cross-sectional view of the sample and its basic two-lead
measurement connections. The thicknesses of the SiO2 and LOR layers amount to 285 nm and
500 nm, respectively.
Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

contribution and why measuring the low field magnetoresistance in the Corbino geometry
is an ideal route to characterize the disorder in the sample. For this, one considers the density
dependence of the different kinds of scatterers which can be used to extract their characteristics from
the gate voltage dependence of the data.

This chapter is based on publication [12] and its supplemental material and was a joint work with
the experimental group of Pertti Hakonen from Aalto University.

Reprinted excerpts with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https: // journals. aps. org/ prb/ abstract/
10. 1103/ PhysRevB. 104. 115432
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5.1 Introduction

5.1 Introduction

Graphene exhibits properties, that make it an ideal candidate in electrical transport experiments.
Electrons in monolayer graphene can show ballistic behavior over several microns, but the mean free
path is usually limited by Coulomb scattering and short-range scatterers [172]. In most situations
Coulomb scatterers, that are either embedded in the sustrate or cause by fabrication residue dominate
the transport properties and short-range scattering is only relevant at large carrier densities. It is
however possible, to mimimize the carrier scattering resulting from charged impurities and short-range
defects by using freely suspended graphene flakes and current annealing [173] and thus obtain truly
intrinsic properties of graphene. This strength of suspended graphene samples has been used to reveal
many basic transport properties. An example is for example the suspended graphene in Corbino-ring
geometry, which can be used to inverstigate the fractional quantum Hall states in graphene [174] and
was introduced in Sec. 3.2.

In order to access these basic quantum transport properties, one can for example study the magne-
toresistance, i.e. the dependence of the resistance on an applied magnetic field, as done in Refs. [5,
24, 25, 175, 176]. Typically, the resistance at low temperatures is governed by disorder-induced scat-
tering, while electron-electron and electron-phonon scattering require higher temperatures to become
relevant. The presence of disorder also leads to quantum effects that correct the conductance and lead
to universal conductance fluctuations, which are very sensitive to applied fields. When these quantum
effects can be neglected, the classical magnetoresistance predicts both a linear and a quadratic de-
pendence [177, 178]. Here we show in the Corbino geometry, that the intrinsic behavior of suspended
graphene yields a strong magnetoresistance, which can be used to characterize the sample. By fitting
the gate voltage dependence of the magnetoresistance date with a model containing both short range
and charged impurity scatterers, which show a different density dependence, we are able to characterize
the strength of both types of disorder and extract the true bulk resistance, which, for a clean sample
like this, is smaller than the contact resistance. From this bulk resistance one may then extract the
true bulk mobility, which is much larger than the naively extracted value, which contains the contact
resistance. We carefully take into account, that most of the data is obtained rather close to the Dirac
point at very low residual densities, which is a rather unusual regime for this sort of measurement.

As already discussed in Sec. 3.2, the Corbino geometry is special, since the Hall conductivity
drops out of the magnetoresistance, which is determined solely by the longitudinal conductivity
ρxx(B) def= 1/σxx(B). Previous theoretical studies have focused on the Hall-bar geometry, where the
Hall conductivity σxy enters into the magnetoresistance and thus these are not applicable for the de-
scription and analysis presented here. In a general anisotropic Corbino sample, the magnetoresistance
is calculated in Ref. [179]. We will assume spatial isotropy, in which case one obtains

R(B) = 1
2π ρxx(B) ln rout

rin
. (5.1)

Here rin and rout are, respectively, the inner and outer radii of the disk. The logarithmic geometrical
factor in Eq. (5.1) is obtained by the requirement of current conservation, as we demonstrate in Sec.
3.2. While the magnetoresistance in graphene in the Hall-bar geometry was found to display a complex
magnetic-field dependence [58, 180–182] depending on the assumed disorder, the results obtained here
show a simple, strong parabolic magnetoresistance for all considered disorder potentials and field up
to 0.1 T.
This chapter is organized as follows. In Section 5.2 we present the experimental setup, that motivated
and was analyzed in Ref. [183]. The most relevant data obtained is the resistance R of the device as
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a function of an overall, varying backgate Vg and for low magnetic fields up to 0.15 T. In Section 5.3
we discuss the theory of disorder dominated transport in this setup, which combines the perturbative
calculation from Sec. 2.2.5 with the semiclassical linear response result in Sec. 2.1.1 with the special
geometry of the Corbino disk. We discuss the behavior in the presence of short-range scatterers,
charged impurities and also the influence of low temperature and electron-electron interaction, paying
special notice to the fact, that some data points are obtained close to the Dirac point. In Section 5.4
we show, that this theory can be used to analyze the obtained data, specifically the role of different
kinds of impurities. We end this chapter with the conclusion in Sec. 5.5.

5.2 Experimental setup and sample characterisation

The data presented in this chapter was measured on a Corbino disk with inner and outer radii of
0.9 and 2.25 µm respectively pictured in Fig. 5.1(a) as a false-color scanning electron microscope
picture. The disk consist of suspended graphene and has an overall back gate, with a gate capacitance
of Cg = 1.5 × 10−5 F/m2. There are two leads attached to the disk, which are employed in a standard
voltage-biased measurement, with bias voltages in the range 1−13 mV. The corresponding connections
are shown in Fig. 5.1(b). The field-effect mobility was determined to be µmax

FE ≃ 1 − 2 × 105 cm2/Vs,
which is very high. In this setup, the current passing through the Corbino disk (between inner and
outer contact) was measured for two temperatures T = 4 K and T = 27 K while varying the backgate
voltage Vg and a small perpendicular magnetic field B < 0.15 T.

The thusly obtained magnetoresistance is shown in 5.2. The measured data (dots) are shown together
with a cubic spline fit. Starting with the lowest curve for both temperatures, which corresponds to
the case B = 0 T, one observes a shift of the Dirac point (the point of highest resistance R) away
from Vg = 0 V, which is in opposite directions for the two temperatures. At T = 27 K the shift
amounts to V D

g (0) ≈ 0.2 V, which corresponds to a residual charge density of n0 ≈ 8 × 109 cm−2.
Turning to the the data at finite magnetic field, the resistance increases strongly, while the Dirac point
is further shifter away from zero gate voltage. Each single curve is not mirror symmetric, but shows
finite electron-hole asymmetry, which is to the largest part determined through the contact resistance
at the leads, where the forming pn interface influences electrons and holes differently [184].

In Sec. 5.4, we deduce charge carrier mobility from the measured geometric magnetoresistance. For
comparison, we display in Fig. 5.3 the field-effect mobility defined by µFE = e−1dσxx/dn, obtained
from measurements of differential resistance R(Vg) at the end of the experiments. These data measured
at T = 4 K indicate that, for this sample at a tiny bias voltage, the maximum mobility for holes
µFE ≃ 13 m2/Vs is clearly larger than that for electrons µFE ≃ 7 m2/Vs. However, at the employed
bias voltages 1 . . . 10 mV, the influence of the pn interface at positive gate voltages appears to be
reduced and µFE for electrons and holes becomes almost equal. This corresponds to the much weaker
electron-hole asymmetry in Fig. 5.2. From this strong dependence of the field-effect mobility on the
contact resistance we conclude that this is not a reliable way of characterizing the bulk mobility of the
sample.

As we are going to demonstrate below, looking at the magnetoresistance as a function of temperature
and density (or gate voltage) in a mixed disorder model is a very efficient tool to characterize the
different types of disorder. Specifically, we are able to show a different density dependence for short-
range or Coulomb scatterers, which can be used to extract the concentration of these two types of
scatterers from the data. While previous studies have usually restricted themselves to only one kind
of disorder, we find, that both are necessary in this general sample. Since the density of states and the
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Figure 5.2: Resistance vs. Vg at various magnetic fields. (a) 4 K for magnetic fields from 0 to
0.15 T with 0.005 T step (from bottom to top); the broken curves are cubic spline interpolations
to the data. (b) 27 K for magnetic fields from 0 to 0.15 T with 0.01 T step (from bottom to top);
the broken curves are cubic spline interpolations. The grey area marks the region of increased
resistance due to a broadened resonance level at Vg near −2 V (the feature is more pronounced at
T = 4 K and in the middle of the magnetic field range (middle dark blue line)).
Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432
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Figure 5.3: Field effect mobility µFE at T = 4 K determined from the measured differential
resistance dV/dI at B = 0. The Dirac point shift V D

g (0) has been subtracted off from the gate
voltage before calculating the charge carrier density n. The dip in µFE around n = 0, indicated
by a grey shadow, corresponds to the density range governed by disorder broadening of the Dirac
point. The extend of this range is consistent with the value n∗ given in Table 5.1
Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

conductance do not diverge at the Dirac point [57], looking at values close to that point gives especially
valuable information. These effects observed clearer in a Corbino disk than in a Hall bar, since here
one obtains a quadratic magnetoresistance already from the semi-classical Drude calculation. This
also means, that interaction effects are sub-leading in the temperature range we consider, but should
dominate at very low temperatures.

5.2.1 Shift of the Dirac point and additional feature

In the resistance vs. gate voltage data, Fig. 5.2, we observe a shift of the resistance maximum (asso-
ciated with the position of the Dirac point) with increasing magnetic field. We attribute this shift to
the dependence of the screening length on the magnetic field, which is only relevant for small densities.
In this case, the total charge density induced on the membrane is less at the Dirac point at finite
B, which would indicate generation of more positive charge on graphene by the screening. Thus the
screening should take place by positive carriers and the impurities are negatively charged. In addition,
there was a slow shift of the Dirac point position towards positive Vg over time (on the order of 0.2 V
in one month). It is worth noting that the effect of magnetic field on screening is suppressed at higher
densities and higher temperatures. This is in line with the stronger shift of the resistance maximum
at T = 4 K.

In order to be able to fit the quadratic magnetoresistance, one first has to get rid of this shift of the
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5.2 Experimental setup and sample characterisation

Figure 5.4: Resistance at 4 K (a) and 27 K (b), shifted according to Eq. (5.2). Colored dots are
the shifted measured points and black stars show the data obtained from the spline. (a): V2 = 1V
and V1 = 0; (b): V2 = 1V and V1 = 0.5V.
Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

Dirac point.
Within the picture based on the effect of magnetic field on screening, one should only shift data

points close to the Dirac point, while not affecting those further away from it. Since we have data only
for a discrete set of values of the gate voltage, in order to determine the gate voltage corresponding
to the Dirac point, we find the maximum of the R(V ) curve given by a cubic spline interpolation of
the measured data points. For each value of magnetic field, this maximum V0 is shifted to the same
voltage V1. For all other data points, we adopt a phenomenological Ansatz, where, away from the
Dirac point, the shift reduces exponentially, i.e., a measured point on the curve corresponding to B is
shifted by

V ⇒ V − (V0 − V1)e− |V −V0|
V2 . (5.2)

The voltage V1 is the same for all curves and is determined by the maximum of the most symmetric
curve in the unshifted case, and V2 describes the characteristic voltage window where the effect of
magnetic field on screening is seen. Since the shift for different magnetic fields will generically be
different, one also has to use the spline interpolation to get access to the resistance at the same
voltages for all magnetic fields. We take this voltages to be the ones on the shifted zero magnetic field
curve. A result for thus shifted and unshifted data points is shown in Fig. 5.4.

Comparing Fig. 5.4 with Fig. 5.2, we see that the shifted curves are indeed more symmetric, which
supports the idea of stronger shift around the neutrality point as a result of magnetic-field effect on
screening. We note, however, that a homogeneous (independent of the distance to the Dirac point)
shift, used for the actual fitting procedure, captures correctly the shift near the neutrality point.
Since this is the main manifestation of the screening-induced shift in magnetoresistance curves (the
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5 Disorder dominated transport in a graphene Corbino disk

difference in the tails of magnetoresistance is not that important for the fitting procedure), we adopt
the simplest shifting in our analysis. Note that, in all cases, the small feature close to −2V (attributed
to a quasi-resonance in scattering by adsorbed local impurities) is preserved after shifting the curves.

One more peculiarity seen in the resistance curves plotted over the gate voltage is a feature close
to −2 V, which is marked by a grey region for both temperatures shown in Fig. 5.2. The resistance
around this voltage is somewhat enhanced compared to the resistance away from this voltage. There
is no comparable feature at the electron side of the resistance curve and the feature is stronger for
lower temperatures. We attribute this feature to a broadened resonance level associated with adsorbed
local impurities. When the chemical potential is moved by the gate voltage into the vicinity of this
quasi-resonance, the scattering amplitude for such impurities is enhanced, leading to shorter transport
scattering time and, hence, to the increase in resistance. At the same time, the broadening of this
resonance is sufficiently strong to avoid truly resonant scattering (as, e.g., in the case of vacancies); in
contrast to infinitely strong impurities (vacancies), the position of the quasi-resonance is shifted away
from the Dirac point. Away from the resonant energy, these impurities produce weak short-ranged
disorder.

For higher temperatures, some adsorbed dirt is thermally removed form the sample, leading to a
less pronounced feature. This suggests that the role of scattering off short-range disorder at higher
temperatures could be decreased.

5.3 Theoretical background

In this Section we discuss the basic facts of disorder-dominated transport in graphene (for the hydro-
dynamic - collision-dominated - transport, higher temperatures are typically required than those in
this experiment, 50 K < T < 150 K, while phonons become important at yet higher T [34]). As already
discussed in Sec. 1.1, graphene has a linear energy dispersion relation εk = ±vgℏk and thus also a
linear-in-energy density of states :

ν0(ε) = N |ε|
2πv2

gℏ2 , (5.3)

where vg = 106 m/s is the Fermi velocity, ε is the energy counted from the Dirac point, and N = 4
is the degeneracy due to spin and valley degrees of freedom. Due to this density of states, the charge
carriers density is obtained as

n = N
ε2

F

4πℏ2v2
g

, (5.4)

where εF is the Fermi energy. Another consequence of this special dispersion relation is that the
cyclotron frequency ωc is energy-dependent [5] :

ωc(ε) = eB

mc(ε)
= ℏ
mc(ε)ℓ2B

, (5.5)

where B is the magnetic field and mc(ε) = ε/v2
g is the energy dependent cyclotron mass. The magnetic

length scale is set by ℓB =
√
ℏ/eB.

The linear dispersion relation and the spinor nature of the wave-function also influence the scattering
and relaxation rates of charge carriers. Here we consider a situation, where the major contributions to
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resistance arise from short-range scattering (s) and Coulomb scattering (C) and adopt a mixed-disorder
model [185] to describe the magnetoresistance. When interpreting the effect of charged scatterers, one
should remember, that graphene is not perfectly flat, but has ripples [31–33], who give rise to scattering
behavior similar to charged impurities [34], so that this contribution is effectively included in our
treatment of Coulomb scattering and thus the obtained parameters should be interpreted accordingly.

Let us start by discussing scattering on a short-range impurity potential. We only consider not too
high carrier densities for which the length scale d of random potential variations is smaller than the
carriers wave-length and larger than the interatomic spacing a, i.e., a ≪ d ≪ λ. For this type of
disorder the intervalley scattering can be disregarded, the theory presented in Sec. 2.2.5 applies and
the quantum τq and transport τtr scattering times can be estimated using Fermi’s golden rule [5, 56]:

τ s
q (ε) = ℏγs

|ε|
, τ s

tr(ε) = 2τ s
q (ε) , (5.6)

where

γs =
2ℏ2v2

g

ns
impU

2
0
, (5.7)

ns
imp is the concentration of short-range impurities, and U0 denotes the magnitude of the impurity

potential. The strength of short-range disorder can be characterized by the parameter γs which for
short-range scattering is energy independent. The difference between τtr and τq is caused by the weak
scattering anisotropy due to the spinor nature of the wave functions.

For charged impurities, which we discuss in Sec. 5.3.2), the scattering times can be brought to
similar form, but the effective parameter γC is in general energy dependent and a function of the
Fermi energy, temperature and magnetic field. When one considers sufficiently low temperatures and
magnetic fields, γC can be expressed as:

τC
q (ε) = ℏγ′

C(ε, εF )
|ε|

, τC
tr (ε) = 2ℏγC(ε, εF )

|ε|
, (5.8)

Here γC(ε, εF ) and γ′
C(ε, εF ) are functions of the effective coupling (graphene “fine-structure constant”)

α = e2/(ℏvgϵ∞), with ϵ∞ the background dielectric constant, see Sec. 5.3.2. If there is no screening
environment and the renormalization of velocity by Coulomb interaction is neglected, the nominal value
of this constant is α0 = 2.2. However, both of these [5] effects reduce this value. For intermediate
values of α, one may write the relation τC

tr (ε) ≈ 2τC
q (ε), similar to Eq. (5.6), which is however no

longer exact.
As discussed in Sec. 2.1.1, the conductivity in zero magnetic field in the presence of only short-range

scatterers is given by the Drude formula:

σD
xx = σ0 = 2e2γs

πℏ
. (5.9)

Comparing this to the typical conductivities measured in clean graphene samples, we deduce, that γs

should be of the order of unity if we only take into account short-ranged scatterers.
In Sec. 2.2.5 we discussed the conductivity of disordered graphene in a perpendicular magnetic field

and found, that the conductivity is in essence as obtained from the semi-classical Boltzmann equation,
as long as Landau levels are sufficiently broadened by disorder. This can be quantified by looking
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at the product ωcτ
s
q which exactly describes this broadening of Landau levels. Since for short-range

scatterers both ωc and τ s
q depend on energy [see Eqs.(5.5) and (5.6)], the parameter

x = ωcτ
s
q =

γsℏ2v2
g

ε2ℓ2B
, (5.10)

can be either small or large, depending on the energy ε [58] and it determines the dependence of the
density of states ν(ε) of disordered graphene on magnetic field. For the case of scattering on Coulomb
impurities, the quantum scattering time decreases linearly with energy ε ∝

√
n, which means that

the parameter x = ωcτ
C
q becomes energy independent. Since the transport scattering time τtr has the

same energy dependence as τq, the same parameter x governs the quasiclassical bending of particle
trajectories in magnetic field.

The general result for the longitudinal conductivity σxx(ε) is given by Eq. (4.13) of Ref. [56] and
was discussed in Sec. 2.2.5. Introducing the relative density of states ν̃(ε) = ν(ε)/ν0(ε), where ν0(ε)
is the zero-field density of states, we write the conductivity kernel (conductivity of particles at energy
ε) in terms of ν̃(ε) as follows:

σxx(ε) = σ0
ν̃(ε)2

ν̃(ε)2 + [ωc(ε)τtr(ε)]2
, (5.11)

where

σ0 =
e2v2

g

2 τtr(εF )ν(εF ) ≡ e2γN

2πℏ . (5.12)

Here, we have introduced the dimensionless disorder strength γ that has a meaning of a dimensionless
conductance per spin per valley and combines the effect of short range and Coulomb scatterers. For
only short-range disorder, one has γ = γs. In a mixed disorder model, the total transport time is
determined by

1
τtr(ε)

= 1
τ s

tr(ε)
+ 1
τC

tr (ε)
, (5.13)

and γ is related to the total transport scattering time, as given by Eq. (5.12).
For a finite temperature, the conductivity is given by the kernel (5.11) weighted with the derivative

of the Fermi function nF (ε):

σxx =
∫ ∞

−∞
dε
(

−∂nF (ε)
∂ε

)
σxx(ε) (5.14)

At zero temperature, the derivative of the Fermi function is a delta-distribution and the conductivity
reduces to Eq. (5.11) with ε → εF . At zero magnetic field one simply finds σ0 from Eq. (5.12). The
whole temperature dependence of the Drude conductivity is determined by the energy dependence
in the kernel (5.11) when the thermal broadening of the delta-function is taken into account. At
low temperatures, kBT ≪ εF , the finite-T corrections to the zero-T result are negligible, and the
measured conductivity is given approximately by σxx ≈ σxx(εF , T = 0). Under these conditions, if ν̃0
is independent of the magnetic field, the conductivity in a finite magnetic field can be written in the
conventional Drude form:

σxx(B) = enµ0
1 + (µ0B)2 , (5.15)
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where µ0 is the mobility at B = 0, i.e,

µ0 = σxx(B = 0)
ne

. (5.16)

As can be seen from the calculation of ν̃0(ε) in Refs. [57, 58], corrections to the density of states arising
from the finite magnetic field can be neglected, as long as x ≪ 1, which we will show is true over a
large range of data in the present experiment.

Comparison with Eq. (5.11) shows that ωc(ε)τtr(ε)/ν̃0(ε) corresponds to µ0B. This means that the
Drude conductivity is given by

σxx ≈ e2γN

2πℏ
1

1 +
(

2eγ
πℏn

)2
B2

, (5.17)

which has finite temperature corrections that are detailed in the Sec. 5.3.4. There are also temperature-
dependent quantum corrections to the Drude conductivity, in particular, those arising from the electron-
electron interaction (EEI), as discussed in Sec. 5.3.5.

For both short-range and Coulomb impurities, Eq. (5.11) then yields a parabolic magnetoresistance
in the Corbino geometry. The Drude resistivity in the Corbino geometry takes a simple form

ρxx(B) def= 1
σxx

= 1
σ0

[
1 + (µ0B)2

]
. (5.18)

According to the Mathiessen rule, the inverse mobility can be written as a sum of the contributions of
different momentum-relaxing scattering processes

µ−1
0 = µ−1

C + µ−1
s , (5.19)

which yields in the zero-T limit:

1
µ0

= πℏn
2eγ = πℏn

2e

(
1
γs

+ 1
γC(ε = εF , εF )

)
, (5.20)

γC(ε = εF , εF ) = n

c(α)nC
imp

, (5.21)

with c(α) defined in Sec. 5.3.2. One sees that the contribution of Coulomb scatterers to the inverse
mobility is density independent. On the other hand, the mobility governed by short-range impurities
decreases with charge carrier density as µs ∝ 1/n. Thus, the density dependence of the total mobility
allows one to characterize the role of short-range and Coulomb impurities in transport.

Below a certain chemical potential or the corresponding density n∗, disorder-induced broadening
smears the single-particles energy and the density of states saturates. This energy scale is given by
the self-consistent equation for ε:

ℏ
τq(ε∗) ∼ ε∗ (5.22)

For the mixed disorder model with γs ≫ 1, we get for the corresponding density

n∗ ∼ d(α)nC
imp, (5.23)
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where d(α) is given in Sec. 5.3.2. The value of n∗ depends on the density of charged impurities, fine-
structure constant α. We model this saturation effect by performing the replacement n →

√
n2 + n2

∗,
which effectively interpolates between n at high densities and n∗ at the neutrality point, in all formulas,
when used for plotting or fitting. In order to keep the notation clear, we do not explicitly write down
this replacement. Since this replacement is an approximate interpolation, it describes the behavior of
the density of states (and other observables) at n ∼ n∗ only qualitatively, see Sec. 5.3.3 for details.
Nevertheless, this simple interpolation function allow us to confidently extract the system parameters,
when the range of densities n ≫ n∗ is included in the fit.

5.3.1 Semiclassical transport

Since Landau levels are sufficiently broadened by disorder in the experimental setup considered in
this chapter, one can use the semi-classical Boltzmann equation introduced in Sec. 2.1. There are
two ways to progress from there, the first one is to perform the calculations presented in Sec. 2.1.1,
which directly give the Drude result of the magnetoconductivities shown in Eqs. (2.29) and (2.30).
These however do not yet include any details of the geometry and thus the resistance of the whole
system. This can be archived by using a relation similar to those introduced in Sec. 2.4, specifically
the generalized Navier-Stokes equation (2.206). Here we argue, that a similar description also applied
in the non-hydrodynamic regime presented here, following the calculation in Ref. [186]. Starting from
the stationary Boltzmann equation, where we only consider disorder scattering in SI units(

v · ∇r + 1
ℏ

F · ∇k

)
f(r,k) = Sdis{f}(r,k), (5.24)

F = eE + ev × B (5.25)

we parametrize the difference to the equilibrium Fermi function f0(ϵk) as

f(r,k) = f0(ϵk) − f ′
0(ϵk)F(r, θk), (5.26)

where θk is the polar angle of the momentum. Then we find for low energies and homogeneous magnetic
field to first order in F :

v ·
(
∇rF − eE

)
+ ωc∂θk

F = −F − F0
τ

, (5.27)

where we have used a relaxation time approximation for disorder scattering and the decomposition

F(r, θk) =
∞∑

n=−∞
Fn(r)einθk , (5.28)

Fn(r) =
∫ dθk

2π e
−inθkF(r, θk). (5.29)

Making full use of this decomposition, we find a hierarchy of equations

vg

2

{
∂x

[
Fn−1 + Fn+1

]
− i∂y

[
Fn−1 − Fn+1

]}
− evg

2
[
Ex(δn,1 + δn,−1) − iEy(δn,1 − δn,−1)

]
+ inωcFn = −1

τ

[
Fn − F0δn,0

]
. (5.30)

104



5.3 Theoretical background

If one now introduces the macroscopic quantities

n(r) =
∫

(dk)f(r,k) =
∫

(dk)(f0 − f ′
0F(r, θk))

= n0 + ν0(εF )
∫ dθk

2π F(r, θk) = n0 + ν0(εF )F0(r), (5.31)

the total current

j =
∫

(dk)f(r,k)v =
∫

(dk)(f0 − f ′
0F(r, θk))vg

(
cos θk

sin θk

)

= vgν0(εF )
∫ dθk

2π F(r, θk)
(

cos θk

sin θk

)
= vgν0(εF )

2

(
F1(r) + F−1(r)
iF1(r) − iF−1(r)

)
(5.32)

and the stress tensor

Π(r) =
∫

(dk)k ⊗ vf(r,k) =
∫

(dk)(f0 − f ′
0F(r, θk))vgk

(
cos2 θk cos θk sin θk

sin θk cos θk sin2 θk

)

= Π012 + ν0(εF )εF

4

(
F2 + F−2 + 2F0 i(F2 − F−2)
i(F2 − F−2) −(F2 + F−2 − 2F0)

)
, (5.33)

that describes deformations of the Fermi surface, we can consider certain values of n in the general
equation (5.30) to obtain equations connecting these quantities.

The first equation is found for n = 0

vg

2

{
∂x

[
F−1 + F1

]
− i∂y

[
F−1 − F1

]}
= 0, (5.34)

which can be reexpressed by the macroscopic quantities as

∇ · j = 0, (5.35)

i.e. the current is conserved. For n = ±1 one can combine the two equations

vg

2
{
∂x
[
F0 + F2

]
− i∂y

[
F0 − F2

]}
− evg

2
[
Ex − iEy

]
− iωcF1 = −1

τ
F1 (5.36)

vg

2

{
∂x

[
F−2 + F0

]
− i∂y

[
F−2 − F0

]}
− evg

2
[
Ex + iEy

]
+ iωcF−1 = −1

τ
F−1, (5.37)

to form a generalized Navier-Stokes equation

enE + ej × B − ∇Π = e2n

σ0
j, (5.38)

where we have identified σ0 from equation (5.12) and τ as τtr. This generalized Navier-Stokes equation
will be used again in Chapter 6 to describe the disorder dominated leads.

If one requires, that the series truncates at n = ±2, which leads to

F±2 = −vg

2
(∂x ∓ i∂y)F±1

1
τ ∓ 2iωc

, (5.39)
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we can define a disorder induced viscosity, since we find a connection between the stress tensor Π
and the current j. This gives us access to the disorder induced shear and Hall viscosties η and ηH

respectively via the definition of the off diagonal part of the stress tensor

Π = P − σ′, (5.40)

σ′ = 1
n

(η + iηHτy))
[
(∂xjx − ∂yjy)τz + (∂xjy + ∂yjx)τx

]
(5.41)

and we find

η = µ3

πv2
gℏ2

τ

4
1

1 + 4ω2
c τ

2 , ηH = µ3

πv2
gℏ2

ωcτ
2

2
1

1 + 4ω2
c τ

2 . (5.42)

Using the radial symmetry of the Corbino disk we first find from Eq. (5.35), that the total conserved
current amounts to

I = e

∫
dA · j = 2πerjr (5.43)

and thus

jr = I

2πer (5.44)

and then subsequently

jϑ = −σ0B

en

I

2πer , (5.45)

Er = I

2πer

(
e

σ0
+ σ0B

2

en2

)
, (5.46)

while the gradient of the stress tensor vanishes. Thus we obtain the simple Ohm’s law for the system
under consideration

enE + ej × B = e2n

σ0
j. (5.47)

From this we obtain the voltage drop between the inner and outer radius rin and rout respectively as

U =
∫ rout

rin
Erdr = I

2πe

(
e

σ0
+ σ0B

2

en2

)
log

(
rout
rin

)

= I

2πρxx log
(
rout
rin

)
, (5.48)

ρxx = 1
σ0

(
1 + σ2

0B
2

e2n2

)
, (5.49)

which leads exactly to the magnetoresistance R = U/I reported above. This serves to show, that also
in the region of disorder dominated transport, as long as the Boltzmann equation is applicable, i.e.
Landau levels are sufficiently smeared, one can find a set of equations (5.35) and (5.38) that are similar
to the hydrodynamic description at elevated temperatures.
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More generally, we do not need to truncate the series, if we restrict ourselves to a system with radial
symmetry. After introducing polar coordinates (r, ϑ) we can rewrite the recursion formula (5.35) as

vg

2

e−iϑ

(
∂r − i

r
∂ϑ

)
Fn−1 + eiϑ

(
∂r + i

r
∂ϑ

)
Fn+1

− evg

2 Er

[
e−iϑδn,1 + eiϑδn,−1

]
− inωcFn

= −1
τ

[
Fn − F0δn,0

]
. (5.50)

We separate the angular and radial dependence by introducing

Fn(r, ϑ) = fn(r)e−inϑ, (5.51)

since the only well defined angle is the one between the position vector and the momentum vector.
Then we find the new expression

vg

2


(
∂r − (n− 1)

r

)
fn−1 +

(
∂r + (n+ 1)

r

)
fn+1

− evg

2 Er

[
ei(n−1)ϑδn,1 + ei(n+1)ϑδn,−1

]
− inωcfn

= −1
τ

[
fn − f0δn,0e

inϑ
]
. (5.52)

Defining n as positive we introduce

pn(r) = fn(r) + f−n(r), mn(r) = fn(r) − f−n(r). (5.53)

For n = 0 we then find the condition (
∂r + 1

r

)
p1 = 0 (5.54)

⇒ p1(r) = c1
r
. (5.55)

Taking sum and difference of the n = ±1 equations we find

vg

2

(
∂r + 2

r

)
p2 − evgEr − iωcm1 = − 1

τ
p1 (5.56)

vg

2

(
∂r + 2

r

)
m2 − iωcp1 = − 1

τ
m1 (5.57)

and for n ≥ 2 we find

vg

2


(
∂r + n+ 1

r

)
pn+1 +

(
∂r − n− 1

r

)
pn−1

− inωcmn = − 1
τ
pn (5.58)

vg

2


(
∂r + n+ 1

r

)
mn+1 +

(
∂r − n− 1

r

)
mn−1

− inωcpn = − 1
τ
mn. (5.59)

Generally, these equations can be solved by an Ansatz of the form

mi(pi) =
∞∑

z=−∞
azr

z (5.60)
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and comparing each power. One infinite tower of solutions is found by the Ansatz

pn(r) = cn

rn
, mn(r) = dn

rn
(5.61)

Then we find

d1 = iωcτc1, Er = 1
evgτ

(
1 + ω2

c τ
2
) c1
r
, (5.62)(

cn

dn

)
= (n− 1)vgτ

1 + n2ω2
c τ

2

(
1 inωcτ

inωcτ 1

)(
cn−1
dn−1

)
, n ≥ 2 (5.63)

this is solved by first diagonalizing the matrix(
1 inωcτ

inωcτ 1

)
= S

(
1 + inωcτ 0

0 1 − inωcτ

)
S−1, (5.64)

S = 1√
2

(
1 −1
1 1

)
(5.65)

and thus we find the solution(
cn

dn

)
= S

n∏
m=2

(m− 1)vgτ

1 +m2ω2
c τ

2

(
1 + imωcτ 0

0 1 − imωcτ

)
S−1

(
c1
d1

)
(5.66)

=
Γ(n)

(
ivg

ωc

)n

2τvg



 (1−iτωc)(
1+ i

τωc

)
n

+ (1+iτωc)(−1)n(
1− i

τωc

)
n


 (1−iτωc)(

1+ i
τωc

)
n

− (1+iτωc)(−1)n(
1− i

τωc

)
n

 (1−iτωc)(
1+ i

τωc

)
n

− (1+iτωc)(−1)n(
1− i

τωc

)
n


 (1−iτωc)(

1+ i
τωc

)
n

+ (1+iτωc)(−1)n(
1− i

τωc

)
n




(
c1
d1

)

for the coefficients, where (a)n = Γ(a+n)/Γ(a) is the Pochhammer symbol and for B = 0 this simplifies
to (

cn

dn

)
= (vgτ)n−1Γ(n)

(
c1
d1

)
. (5.67)

This type of solution generally includes the condition (5.39) without requiring a termination. From
this we conclude, that in the Corbino geometry the truncation is not needed as an extra condition.

5.3.2 Charged impurities

Before, we gave the transport and quantum scattering times for short-range impurities (5.6) and
Coulomb impurities (5.8). Here we show how to derive these expressions for large energies. The
behavior close to the neutrality point is discussed in Sec. 5.3.3.

Very generally, the scattering rates can be written as

1
τi(ε)

= nimpν(ε)
8ℏ

∫ 2π

0
dθ
∣∣∣∣V (q(θ))∣∣∣∣2 ×

sin2 θ, i = tr
(1 + cos θ), i = q

, (5.68)
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where ν(ε) is the density of states and we express the transferred momentum as

q(θ) = 2(ε/ℏvg)| sin
(
θ/2

)
|

with θ being the scattering angle. For short-range impurities, V (q) = U0 and nimp = ns
imp; the

integration over θ then leads exactly to Eq. (5.6). In the case of charged impurities, we consider the
screened interaction potential in the random-phase approximation:

V (q) = 2πe2/qϵ∞
1 + (2πe2/qϵ∞)Π(q, 0) . (5.69)

Here ϵ∞ is the background dielectric constant and Π(q) is the static polarization operator which is
given by the thermodynamic density of states (µ is the chemical potential):

lim
q→0

Π(q) = ∂n

∂µ
. (5.70)

This quantity can be connected to the single-particle density of states via

n(µ) =
∫

dε nF (ε)ν(ε) ⇒ ∂n

∂µ
=
∫

dε
(

−∂nF (ε)
∂ε

)
ν(ε).

As mentioned before, the density of states can in general be deduced from Eq. (36) in Ref. [58]. From
there we see that away from the neutrality point, the oscillatory magnetic-field dependent corrections
to the compressibility are exponentially suppressed and hence not seen in the experiment. Moreover,
since we are at temperatures below the chemical potential away from the neutrality point, we can use
a zero T approximation and get

lim
q→0

Π(q, 0) ≈ 2µ
πv2

gℏ2 = ν(µ). (5.71)

By introducing the effective interaction strength

α = e2

ℏvgϵ∞
,

we can bring the screened Coulomb interaction to the form

V (q) = 2πe2

ϵ∞(q +K) , (5.72)

K = 2πe2N

ϵ∞
lim
q→0

Π(q, 0) ≈ 2απℏvgν(µ). (5.73)

We get thus get for the scattering rates:

1
τC

i (ε)
= π2

4 ℏ3v4
gα

2nC
impν(ε)

∫ π

0

dθ(
ε sin θ

2 + αν(µ)πℏ2v2
g

)2 ×

sin2 θ, i = tr
1 + cos θ, i = q

. (5.74)
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At low temperatures, the typical energies are very close to the chemical potential and we can set ε → µ
in the transferred momentum q in the interaction matrix element:

1
τC

tr (ε)
≈ π

4α
2v2

gℏnC
impε

∫ 2π

0

dθ sin2 θ

[µ| sin
(
θ/2

)
| + αNµ/2]2

= π

2 v
2
gℏnC

imp
ε

µ2 c(α), (5.75)

c(α) = α2
∫ π

0

dθ sin2 θ

(sin
(
θ/2

)
+ αN/2)2

. (5.76)

This can be brought into the form

τC
tr (ε) = 2γCℏ

ε
, γC = µ2

πv2
gℏ2nimpc(α) , (5.77)

which is exactly Eq. (5.8) for zero temperature, where µ = εF . Using relation Eq. (5.4), this is also
exactly γC as introduced in Eq. (5.21). Similarly, we get for the quantum scattering rate

1
τC

q

≈ π

2α
2v2

gℏnC
imp

ε

µ2

∫ π

0

dθ (1 + cos θ)
[sin

(
θ/2

)
+ αN/2]2

= π

2 v
2
gℏnC

imp
ε

µ2d(α), (5.78)

d(α) = α2
∫ π

0

dθ(1 + cos θ)
(sin

(
θ/2

)
+ αN/2)2

(5.79)

which again is of the form

τC
q (ε) = γ′

Cℏ
ε
, γ′

C = 2µ2

πv2
gℏ2nC

impd(α)
, (5.80)

as used in Eq. (5.8). The values of c(α) and d(α) for some realistic α are given by

c(α) =



0.14, α = 0.5
0.22, α = 1.0
0.26, α = 1.5
0.29, α = 2

, d(α) =



0.43, α = 0.5
0.55, α = 1.0
0.61, α = 1.5
0.65, α = 2

. (5.81)

Thus, for intermediate α, the relation between the two scattering rates, given by d(α)
2 ≈ c(α), is similar

to that for short-range scattering. Whenever we use a specific value of α, we chose α = 1.3, thus
accounting for the renormalization of velocity, as well as for the screening by the metallic parts of the
setup.

In a general setup, both short-range and Coulomb scatterers are present. Here we discuss how this
mixture affects the scattering times for energies away from the Dirac point, where the density of states
is not affected by disorder. We will stick with the assumption of no inter-valley scattering, diagonality
in the sublattice space, and no correlations between different kinds of scattering. This corresponds to
summing up the self-energies, where we would not consider mixed diagrams, and translates into a sum
rule for transport times, Eq. (5.13). We will further assume that in the relevant limit, the density of
states is not modified by the magnetic field, since corrections are exponentially suppressed. Then we
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can use the transport times as written in Eq. (5.6) and Eq. (5.8) to write the total transport time τtr
as

τtr(ε) = 2γℏ
|ε|

, γ = γCγs

γC + γs
. (5.82)

The conductance kernel, as found from the Boltzmann equation, is then given by

σxx(ε) =
e2v2

g

2
τtr(ε)ν(ε)

1 +
[
ωc(ε)τtr(ε)

]2 = σ0
1 + [ωc(ε)τtr(ε)]2

= 2e2γ

πℏ
1

1 +
(

2γℏ2Ω2

ε2

)2 , (5.83)

where Ω = vg/ℓB, leading to Eq. (5.17).

5.3.3 Vicinity of the Dirac point

As seen in Fig. 5.2, the resistance does not diverge at the Dirac point, as would be expected from
combining the resistivity ρ0 = 1/σ0 from Eq. (5.12) with the effective γ from Sec. 5.3.2 using γC as
expressed in Eq. (5.21). The reason for this is the saturation of the density of states close to the
Dirac point due to disorder [5, 57]. Below a certain chemical potential µ∗, the quasiparticle pole in the
Green’s function is effectively absent, and all quantities should be fixed below this value. The relevant
scale for this behaviour is given by Eq. (5.22). In order to determine the changes this induces and find
Eq. (5.23), we discuss here how to find the relevant scale µ∗ from the condition

ℏ
2τq(µ∗) = µ∗. (5.84)

Below µ∗, the density of states saturates, while it is not affected for larger energies, i.e.

ν(ε) =

ν∗, |ε| ≪ µ∗,

ν0(ε), |ε| ≫ µ∗
. (5.85)

This value enters directly into the calculation of all scattering rates Eq. (5.68) of ; it also directly
determines the screening radius in the Coulomb impurity case Eq. (5.73). While it is clear, that
Eq. (5.68 is only true if the density of states is not strongly broadened, the idea is to approach the
crossover from the side of large energies, where this is the case. We can then calculate the Coulomb
scattering rates as follows:

1
τC

tr (µ)
= π2

4 ℏ3v4
gn

C
impc(α)


ν∗
µ2

∗
, µ ≪ µ∗

ν0(µ)
µ2 , µ ≫ µ∗

, (5.86)

1
τC

q (µ) = π2

4 ℏ3v4
gn

C
impd(α)


ν∗
µ2

∗
, µ ≪ µ∗

ν0(µ)
µ2 , µ ≫ µ∗

, (5.87)

111



5 Disorder dominated transport in a graphene Corbino disk

and, in a similar fashion, we get for short-range scatterers:

1
τ s

tr(µ) = 1
γs

πℏv2
g

4

ν∗, µ ≪ µ∗

ν0(µ), µ ≫ µ∗
, (5.88)

1
τ s

q (µ) = 1
γs

πℏv2
g

2

ν∗, µ ≪ µ∗

ν0(µ), µ ≫ µ∗
. (5.89)

By assuming that the expression for µ ≫ µ∗ is still reasonably close for µ ∼ µ∗ and using both
short-range and Coulomb impurities in Eq. (5.84) we find

µ∗ =

√√√√π

2 v
2
gℏ2d(α)

nC
imp

2 − 1/γs
,

n∗ =
d(α)nC

imp
4 − 2/γs

. (5.90)

which leads to the approximation Eq. (5.23). This value depends on the density of charged impurities
and γs. The effective γ can then be extracted from the definition of γ, Eq. (5.12). We see that the
density of states actually drops out, only the influence of ν(ε) on the electronic density (via µ2) is
relevant. We find the required asymptotics

1
γ

= 1
γs

+


c(α)nC

imp
n∗

, n ≪ n∗

c(α)nC
imp

n
, n ≫ n∗

, (5.91)

which we phenomenologically fulfill by tweaking the relation between density and chemical potential
in graphene to

√
n2 + n2

∗ = N
µ2

4πℏ2v2 , (5.92)

and consequently we replace n by
√
n2 + n2

∗ in all fits and plots, as.
Using the general conductivity formula (5.17) with the finite disorder broadening, Eq. (5.92), we get

the broadened form of Eq. (5.20) and Eq. (5.21):

1
µ0

≈ πℏ
2e

√n2 + n2
∗

γs
+ c(α)nC

imp

 (5.93)

and

1
γ

= 1
γs

+
c(α)nC

imp√
n2 + n2

∗
. (5.94)
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5.3.4 Finite-temperature effects

Before, we have restricted ourselves to the zero temperature limit of Eq. (5.14). Here we discuss finite-
temperature corrections in the Drude formula, as well as effects due to electron-electron interaction
(EEI) which also introduce finite-temperature corrections to Eq. (5.17 and thus Eq. (5.18). Let us
consider, for the illustrative purpose, the case of only short-range potential.

The problem generally has two energy scales, the first one is the temperature kBT , and the second
one is the energy εm introduced by the product ωc(ε)τtr(ε) which we write as

ωc(ε)τtr(ε) =
2eBℏv2

g

ε2 ≡ ε2
m

ε2 (5.95)

We will restrict ourselves to low temperatures kBT ≪ µ and small magnetic fields, εm ≪ µ For finite
but low temperatures and small fields, the integral of the conductance kernel Eq. (5.11) over energies
can be brought into the form [58]:

σxx = σ0

∫ ∞

−∞
dε
(

−∂nF (ε)
∂ε

)(
1 − ε4

m

ε4 + ε4
m

)
= σ0

1 −
∫ ∞

−∞
dε
(

−∂nF (ε)
∂ε

)
ε4

m

ε4 + ε4
m

 , (5.96)

we used Eq. (5.6) and Eq. (5.8) for the transport scattering time. One notices that both the derivative
of the Fermi function and the fraction in the second expression are peaked. The derivative of the Fermi
function is peaked around ε = µ with a width given by the temperature, while the term ε4

m/(ε4 + ε4
m)

is peaked around ε = 0 and its width is determined by εm. Since we assume that both T, εm ≪ µ,
these peaks are well separated, and the integral can be written as a sum of the contributions of the
two peaks, i.e.,

σxx = σ0 −
(
σ(T )

xx + σ(εm)
xx

)
.

For low temperatures, the derivative of the Fermi function has a finite width of the order of T around
ε = µ. To incorporate finite-temperature corrections to the conductivity, we thus expand the fraction
in powers of (ε− µ) and after evaluating the integral with get

σ(T )
xx ≈ σ0

 ε4
m

µ4 + εm
4 − 2π2T 2µ2εm

4

3

(
3εm

4 − 5µ4
)

(
µ4 + εm

4
)3

 . (5.97)

The first term of this expression is the only non-vanishing contribution at zero T and leads exactly to
Eq. (5.17). The contribution of the second peak is found by fixing the value of the Fermi function at
its value at ε = 0 and then evaluating the integral:

σ(εm)
xx ≃ σ0εm

e−µ/T

√
2T

. (5.98)

Thus the total Drude resistivity for short-range impurities is given, in the regime of low temperatures
and low magnetic fields, by

ρxx = 1
σxx

≈ 1
σ0

1 + εm
4

µ4

(
1 + 10π2T 2

3µ2

)
− εm

8

µ8
16π2T 2

3µ2 + πεm√
2T

e− µ
T

 .
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From this expressions we see, that the mobility µ0 itself does not acquire finite temperature corrections,
since they all require finite magnetic field. However the B dependence of the magnetoresistance does
acquire additional terms (in particular, the B4 term which is absent at T = 0, as well as the

√
B term

[58] which is, however, exponentially suppressed at low T ≪ µ). Furthermore, the B2 dependence is
also slightly modified by a finite temperature. Finite-T corrections would have a similar structure if
one includes Coulomb impurities.

5.3.5 Effects of electron-electron interaction

The effect of electron-electron interaction (EEI) on the magnetoresistance of graphene was explored in
Refs. [182, 187]. Since EEI does not influence σxy, we can directly employ their main result, which is
the EEI correction to magnetoresistivity:

∆ρEEI =
[
(ωcτtr)2 − 1

] e2ρ2
0

2π2ℏ
A ln kBTτtr

ℏ
, (5.99)

where

A = 1 + c

1 −
ln
(
1 + F σ

0

)
F σ

0

 , (5.100)

F σ
0 = −α

∫ 2π

0

dθ
2π

cos2 θ/2
sin θ/2 + 2α, (5.101)

and c is the number of multiplets. Depending on the temperature, c = 3, 7, or 15 for very low,
moderately low, and high temperatures, respectively. It describes the number of ungapped non-singlet
two-particle states contributing to Hartree-type correction to the conductivity. Since each electron has
a well defined spin and valley quantum number, which can both take two values, there are in total 16
possibilities for two particle states, one of which will always be a spin and valley singlet. In fact, since
there may be inter- or intra-valley scattering, valley is not necessarily a good quantum number in this
sense, depending of the hierarchy of the temperature, the intra-valley phase breaking time τ∗, and the
inter-valley scattering time τiv.

For kBT < ℏ/τ∗, channels mixing different spins do not contribute, thus there remain 2 × 4 = 8
channels, of which one is a singlet, i.e., c = 7. If kBT < ℏ/τiv, valley is not a good quantum number
anymore, thus we get 4 states, of which one is a multiplet, i.e., c = 3. According to Ref. [182], the
relation τ∗ < τiv is usually fulfilled. Below we give the numerical values of the Fermi liquid constant
F σ

0 for some values of α:

F σ
0 =



−0.18, α = 0.5
−0.21, α = 1
−0.22, α = 1.5
−0.23, α = 2

. (5.102)

While Eq. (5.101) is controlled only for small α, in suspended graphene we often reach values close
to unity. However, this naive calculation already shows, that the value of F σ

0 does not depend strongly
on the choice of α. Correction (5.99) does influence the mobility and it also influences the prefactor of
the B2 dependence. For low temperatures, this is a negative correction.
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Figure 5.5: (a) Scaled resistance R/R(0) vs.B2 at T = 4 K measured at various gate voltage values
Vg between −3 · · · + 3 V (0.8 × 109 cm−2 < |n| < 3 × 1010 cm−2). The Dirac point corresponds
to Vg ≃ 1 V, the data at which is denoted by lilac symbols in the figure. The dashed curves are
guides for the eye, emphasizing an overall parabolic magnetoresistance and slight deviations from
parabolicity. (b) Scaled resistance R/R(0) vs. B2 at T = 27 K measured at various gate voltage
values between −3 · · · + 3 V. The magnetoresistance at low fields grows faster at 27 K than at 4 K.

Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

5.4 Analysis of data and results

The relative magnetoresistance

∆R(B)/R(0) = R(B)/R(0) − 1

of this sample at B < 0.15 T is illustrated in Fig. 5.5 which depicts the relative resistance R(B)/R(0)
as a function of B2 measured at T = 4 K (Fig. 5.5a) and at T = 27 K (Fig. 5.5b). In both data
sets, the magnetoresistance is found to be the strongest at the Dirac point, which is due to the strong
dependence of the mobility on the inverse of the density and the weak (in the case of only short-range
scattering – even absent) dependence of the effective coupling constant on density. Both data sets are
influenced by the growing shift of the Dirac point ∆Vg as B increases.

The strength of the measured magnetoresistance depends only weakly on temperature up to 27 K.
However, when comparing the data at 4 K and 27 K, one observes that the B2 dependence is followed
better at 27 K than at 4 K in small magnetic fields. Qualitatively, this could be a signature of increased
role of electron-electron scattering [58, 182] and macroscopic inhomogeneities [178, 188, 189]. In our
suspended graphene sample such inhomogeneities can be due to static ripples.

The nature of scattering does not appear to play a large role in the measured magnetoresistance.
The parabolic field dependence is followed for both Coulomb and short-range impurities in the range
of parameters covered: |n| ∼ 0.8 − 3 × 1010 cm−2 and T = 4 − 27 K. In general, the B2 dependence
at small magnetic fields is more closely followed in the 27 K data. The 4 K data displays deviations
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T = 4 K T = 27 K
γs 9.6 38.2

n∗ [m−2] 1.7×1014 1.8×1014

c(α)nC
imp [m−2] 1.1×1014 0.88×1014

Table 5.1: Parameters extracted from the fit of the data. These parameters are used in all
following plots.

from B2 behavior at B < 30 mT, which may be a sign of coherent behavior and quantum interference
effects, either regular weak localization type or Corbino-geometry related as predicted for graphene in
Ref. [190]. At the largest magnetic fields around 0.1 − 0.15 T, small deviations from B2 dependence
become obvious, in particular near the Dirac point. One can interpret this deviation as the onset of
the Shubnikov - de Haas (SdH) oscillation regime in the sample [191] that corresponds to x ∼ 1.

On top of this one has to consider the additional contribution Rcont to the measured resistance related
to the contact effects. These contributions are the resistance of the metal-graphene contacts and the
interface resistance of the contact-doped graphene region. The former contribution is a microscopic
material property, which we take to be constant. The latter, discussed in Ref. [184] is of the type
of the pn-junction resistance. This contribution to the total resistance depends on the density of
charge carriers in the bulk of the sample and is the main cause for the usually observed electron-hole
asymmetry in transport measurements. In low magnetic fields the cyclotron radius is larger than the
geometrical length scales characterizing the contact region and, hence, the overall contact resistance
should not show a pronounced magnetic-field dependence.

The parabolic magnetoresistance is associated with the bulk contribution, whereas the total resis-
tance includes the contact resistance: R = Rbulk + Rcont, where Rbulk describes the disorder-induced
bulk resistance and Rcont the contact contribution. Since Rcont depends on the gate voltage, the nor-
malized magnetoresistance shown in Fig. 5.5 is not particularly convenient for extracting the density
dependence of the mobility. Indeed, the value of R(B = 0) in the denominator of the scaled magne-
toresistance is not equal to Rbulk(B = 0) in front of the B-dependent term coming from Eq. (5.18), so
that the coefficient in front of the B2 term in the scaled magnetoresistance is not equal to µ2

0.
To overcome this complication caused by the contact resistance, we have employed a fitting function

of the form of the total resistance,

R(B) −R(0) = MB2, (5.103)

where we have a single fitting parameter M fully determined by the properties of the bulk of the
sample. According to Eq. (5.18) we have M = Rbulk(0)µ2

0, where Rbulk(0) describes bulk resistance at
zero field and µ0 is the mobility. We recall that Rbulk(0) is different from the measured R(0) because
the latter includes the contact contribution. There is no mechanism leading to a strong magnetic-
field dependence of the contact resistance in the range of magnetic fields where no skipping orbits (or
edge states) appear at the interfaces between the sample and the leads. The fact that we are able
to consistently fit the observed magnetoresistance using our model in a wide range of gate voltages
supports this argument.

Since magnetoresistance is related to mobility, the data can be employed to derive information on
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Figure 5.6: Non-normalized magnetoresistance R(B) − R(0) for 4 K in (a) and 27 K in (b) for
various values of U . The points are obtained after shifting the gate voltage by V D

g . The dashed
lines correspond to the fitted function Eq. (5.103) and solid lines to theoretical zero-temperature
magnetoresistance, Eq. (5.18), calculated using the parameters from Table 5.1. since these param-
eters are obtained at finite temperature and are electron-hole averaged, the dashed and solid lines
do not exactly coincide for the same values of the gate voltage.
Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

the impurity scattering in this sample from the obtained fitting parameter M which is given by

M = Rbulk(0)µ2
0 = γ

π2ℏn2 ln rout
rin

= 1
π2ℏn2

(
1
γs

+
c(α)nc

imp
n

)−1

ln rout
rin

. (5.104)

In order to include the disorder-induced saturation of the density of states, we replace n with
√
n2 + n2

∗
in the fitting function, and then extract γs, n∗, and the effective concentration of Coulomb impurities
c(α)nC

imp. We fit the obtained data over the full measured voltage range, with all the results being
electron-hole averaged. The values we extract from these fits are shown in Table 5.1.

Notably, the energy corresponding to n∗ is ε∗ ≈ 9 meV, which is larger than the energies correspond-
ing to 4 K and 27 K, which are 0.3 meV and 2.3 meV, respectively, so that finite-T corrections are small,
even for 27 K. Moreover the value of n∗ is consistent with region corresponding to disorder broadening
of the Dirac point in the field effect mobility shown in Fig. 5.3.

Let us shortly discuss how the fits are performed and how we obtain the parameters for Table 5.1.
The first step is to remove the Dirac point shift as discussed in Sec. 5.2.1. In practice, we do not
employ the inhomogeneous shift introduced there, but rather just shift the curves as a whole, such
that the maximum is at zero voltage. From the cubic spline through the measured data points, we
read off the resistance values at the original voltages and additionally all half integer ones for 27 K.

We then fit the obtained magnetoresitances R(B) −R(0) over the whole measured range of B with
the fit function Eq. (5.103) for all gate voltages. From the thus obtained parameter M we extract all

117

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.115432
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.115432


5 Disorder dominated transport in a graphene Corbino disk

Figure 5.7: Effective disorder parameter 1/γ defined by Eq. (5.94) and its two parts 1/γC and
1/γs for T = 4 K (a) and T = 27 K (b). The parameter γ is smaller for 4 K, which means that
disorder is stronger at lower temperatures. The parameters are given in Table 5.1.
Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

parameters of the theory according to Eq. (5.104). We fit the magnetoresistance with three parameters
γs, c(α)nC

imp, and n∗, expressing M as follows:

1
M

= π2ℏ
(
n2 + n2

∗

) 1
γs

+
c(α)nC

imp√
n2 + n2

∗

 . (5.105)

A plot of the resulting effective disorder parameters γ for the two temperatures is shown in Fig. 5.7.
In order to summarize the effect of the two different types of impurities, in Fig. 5.8 we show the

zero-field conductivity σ0 determined by Eq. (5.12) for both our mixed disorder model and a Coulomb-
impurity model. Already at experimentally accessible density ratios n/nC

imp ≈ 2 we observe the sub-
linear conductivity due to short-range scatterers discussed in Ref. [185].

In Fig. 5.6, we show a comparison of the shifted magnetoresistance and the corresponding fit by the
theoretical curves obtained from Eq. (5.18) for various values of the gate voltage difference

U = Vg − V D
g

relative to the gate voltage V D
g corresponding to the Dirac point, with the fitting parameters from

Table 5.1. Voltage U and density n are connected by the capacitance as n = CgU/e.
With the parameters obtained from fitting the magnetoresistance curves, we get the mobility from

Eq. (5.20), see Fig. 5.9, where the inverse mobility µ−1
0 is displayed as a function of gate voltage

difference U . A clear minimum is found at the Dirac point (maximum for the mobility). The slope of
the inverse mobility away from the Dirac point is determined by the strength of short-range scatterers
γs. We observe that at T = 27 K, the mobility varies only very slightly as a function of the gate
voltage. This indicates that the role of short-range impurities is suppressed at higher temperature.
Possibly, with increasing temperature residual dirt (adsorbed atoms) is removed from the sample.
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Figure 5.8: (a) Conductivity at B = 0T, Eq. (5.12), derived using the parameters extracted from
the 4 K magnetoresistance data. (b) Zero-field conductivity derived from the 27 K data. The blue
curve is the result for our mixed disorder model, the orange one for γs = ∞, i.e., no short-range
scatterers. The parameters are given in Table 5.1, additionally we used α = 1.3 to determine nC

imp.

Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

Figure 5.9: (a) Electron-hole averaged inverse mobility, Eq. (5.20), derived using the parameters
extracted from the 4 K magnetoresistance data. (b) Mobility naively extracted from the scaled
shifted magnetoresistance as R(B)/R(0) = 1 + µ̃2

0B
2: this includes the contribution of the contact

resistance. (c) Inverse mobility derived from the 27 K data. (d) as in (b) for 27 K. The parameters
are given in Table 5.1.
Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432
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Figure 5.10: Zero-B resistance at T = 4 K in (a) and T = 27 K in (b). Blue curves: the measured
resistance. Orange curves: the zero-T bulk resistance calculated from Eq. (5.1) with the electron-
hole averaged parameters from the fit (Table 5.1). Green curves: the contact resistance which
is obtained as the difference of the total measured resistance and the theoretical value of the
bulk resistance. Note that the contact resistance is actually larger than the bulk contribution, as
expected for high-mobility samples.
Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

For comparison, the insets in Fig. 5.9 show the mobility µ̃0 that could be naively extracted from the
formula R(B)/R(0) = 1+µ̃2

0B
2. As mentioned above, this quantity is not the genuine bulk mobility µ0,

since µ̃0 includes the effect of the contact resistance. Note that µ̃0 reveals the electron-hole asymmetry.
Moreover, we rather clearly see a feature on the hole side, stemming from the feature in the resistance
mentioned at Vg = −2V in Fig. 5.2. Since we extract this from the shifted data, Vg = −2V is mapped
to different U for each magnetic field and thus this feature is not as clearly localized anymore. Mobility
obtained this way is lower, since it is affected by the contact-resistance contribution.

Thus, looking at the deduced impurity scattering strengths from the obtained mobilities, the mag-
netoresistance data should reflect effects related to both Coulomb and short-range scatterers. Note
that here the Hall mobility is slightly smaller than the field-effect mobility obtained using R(Vg) which
yields approximately 105 cm2/Vs near Dirac point for the average mobility of electrons and holes. The
value of mobility extracted from the analysis of the magnetoresistance is consistent with the field-effect
mobility.

Subtracting the disorder-induced bulk resistance with the parameters obtained from the measured
magnetoresistance, we get access to the overall contact resistance, which is shown in Fig. 5.10. The
obtained value of the contact resistance is somewhat higher than the one reported for similar samples
in the Corbino geometry, which can be related to the fact that the sample has been cooled down several
times and the contact structure on top of LOR resist is not very rigid around room temperature.
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Figure 5.11: The product ωcτtr at B = 0.1 T with the parameters from the fit (Table 5.1) for 4 K
in (a) and 27 K in (b). The transport time is larger for the higher temperature, which is consistent
with the reduction of the contribution of short-range impurities to scattering processes.
Reprinted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

5.4.1 Effects of finite temperature and electron- electron interaction in the experiment

While we argued, that finite temperature effects and electron-electron interaction apparently don’t
have a strong influence on the measurement, one can use the parameters obtained in Tab. 5.1 and
take a look at the qualitative difference of these effects on the resulting magnetoresistance. The first
quantity to look at is the product ωcτtr for B = 0.1T at the two temperatures using the obtained
parameters to calculate τtr including both types of disorder, which is shown in Fig. 5.11.

We see that for B = 0.1 T the bending of cyclotron trajectories should be already substantial.
Since the quantum scattering time in graphene is smaller by about a factor of two compared to the
transport scattering time, the parameter x = ωcτq is still smaller than one, and hence Landau levels
overlap strong enough to not lead to any more intricate effects in the range magnetic fields B < 0.15 T
addressed here. Next we address the effect of electron-electron interaction alone for the case of T = 4
K, which is shown in Fig. 5.12

By plugging the value of γ obtained from the fit of magnetoresistance in the analytical expression
for zero T , Eq. (5.18), we obtain the left panel of Fig. 5.13. For comparison, in the right panel of
Fig. 5.13, we show the result of numerical evaluation of Eq. (5.14) at T = 27 K, without the EEI
correction. The EEI correction at T = 27 K is almost negligible, since the diffusive logarithm vanishes.
Instead one would find a correction of the form

∆ρEEI ∝ B2/(Tτtr)x, (5.106)

where x depends on the nature of disorder [182, 192]. This is consistent with the result of Ref. [182]
that finds a crossover to the ballistic regime at 20 K, where one should consider the higher quality
of the device considered here. At the same time, the EEI produces the leading finite-T correction at
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Figure 5.12: Magnetoresistance at T = 4 K with parameters from the fit (Table 5.1) without the
EEI correction (a) and including it (b). The EEI correction leads to a small suppression of the
magnetoresistance, without changing the functional form. This negative correction is shown in
inset (c). Here α = 1.3 and c = 3 were chosen.
Adapted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432

T = 4 K. Overall, we observe that the effect of finite temperature is rather weak in the considered
range of parameters.

In combination, finite temperature does change the mobility and it also influences the magnetic field
behaviour of the resistance, so that formula (5.18) is no longer exact and the relation (5.104) does not,
strictly speaking, yield the true parameters. However, as we see from Figs. 5.12 and 5.13, these effects
are rather small in the experimentally accessed range, which justifies the neglect of these effects in the
main analysis of the data.

5.5 Discussion

We have investigated the geometric magnetoresistance in a suspended graphene (Sec. 1.1) Corbino
disk (Sec. 3.2) at T = 4 K and T = 27 K and small magnetic fields. The main features of the
measured curves are captured well by a simple zero-temperature analysis, as performed in Sec. 2.1.1.
The corrections obtained for large magnetic fields calculated in Sec. 2.2.5 can be neglected here, since
disorder sufficiently smears the Landau levels in the considered magnetic field range. Both short-range
and charged impurities lead to the observed quadratic magnetic field dependence.

The gate dependence of the measured magnetoresistance can be used to estimate the contributions of
the short-range and long-range impurity scattering to the mobility individually. Away from the Dirac
point it is exclusively determined by short-range scattering, while scattering on long-range disorder
(Coulomb impurities or ripples) dominates close to charge neutrality. The magnetic field dependence
does not show a fundamental difference, it is quadratic in both cases.

The bulk mobility extracted from the parabolic magnetoresistance is high (of the order of 105
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Figure 5.13: (a) Magnetoresistance obtained from the zero-temperature solution (5.18) with
the parameters from the fit (Table 5.1) for T = 27 K. (b) Magnetoresistance obtained by using
the parameters from the fit and solving Eq. (5.14) numerically. The inset (c) shows the finite
temperature corrections to the magnetoresistance. Depending on the magnitude of the magnetic
field this correction is either positive or negative and it also changes the functional form very
slightly.
Adapted figure with permission from Masahiro Kamada, Vanessa Gall, Jayanta Sarkar, Manohar
Kumar, Antti Laitinen, Igor Gornyi, and Pertti Hakonen, Physical Review B, 104, 115432 (2021).
Copyright 2021 by the American Physical Society. https://journals.aps.org/prb/abstract/
10.1103/PhysRevB.104.115432
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cm2/Vs), which agrees with previous estimates obtained in slightly cleaner samples. Somewhat coun-
terintuitively, the mobility is actually higher for the higher temperature considered. It is important to
remember, that the total measured resistance is the sum of the bulk resistance, which is determined
by the intrinsic properties of graphene, and a contact contribution, which in the case considered here,
is higher than the bulk contribution, due to the high quality of the sample.

It should be emphasized, that taking into account this contact resistance is essential when analyz-
ing the data. According to Eq. (5.104), the magnetoresistance is proportional to Rbulkµ

2
0B

2 where
Rbulk = R − Rcont. If instead one uses R, one overestimates the reduction of µ0 obtained from the
magnetoresistance data as a function of gate voltage. Naively fitting the normalized data in Fig. 5.5b
would lead to a reduction in µ2 by a factor of two, while from Fig. 5.9b we obtain only < 13% reduction
in µ2. Thus, in the former case the strength of the short-range scattering would appear almost three
times larger than in the correct analysis.

Thus we could show, that the magnetoresistance in the Corbino geometry in graphene is in general
strongly influenced by both short range and charged impurities. Away from the Dirac point it is
dominated by short-range scattering, while scattering on long-range disorder (Coulomb impurities or
ripples) dominates close to charge neutrality. This is especially interesting close to the Dirac point, but
should generally be taken into account. In the chosen temperature range the Drude result dominated
the magnetoresistance, but for very low temperatures one should find, that electron-electron interaction
leads to the leading contribution.

In the temperature range of this experiment, transport is dominated by disorder. Nevertheless we
showed, that one can obtain a conservation of charge continuity equation (5.35) and a generalized
Navier-Stokes equation (5.38) from the semiclassical Boltzmann equation introduced in Sec. 2.1 to
describe the system. How this description has to be extended to describe hydrodynamic transport at
elevated temperatures was introduced in Sec. 2.4 and what this means for the same setup is discussed
in Chapter 6.

5.6 Summary and conclusions

In summary, we find that the magnetoresistance in a graphene Corbino disk in the considered magnetic
field regime can be modeled by a simple mixed disorder model on a semi-classical level. Effects of finite
temperature and electron-electron interaction can be neglected at the considered temperatures of 4 K
and 27 K, but due to the proximity to the Dirac point, the saturation of the density of states has to
be taken into account. The resulting magnetoresistance is simply quadratic, but the included short
range and charged scatterers possess a different density dependence. Since this density is controlled by
the external gates, we can directly use the data at different voltages to characterize the role of them
separately.

In a clean sample like this, the contact resistance is large and a priori unknown. Since it depends
both on the used materials and fabrication and on the relative densities of those, it will also generally
have a gate voltage dependence. It should not depend on the magnetic field in the range under
consideration. By analyzing the density dependence of the magnetoresistance, we can find the true
bulk resistance and bulk mobility and can thus estimate the contact resistance. The thusly obtained
true bulk mobility is larger, than the one naively determined, in which mobility is suppressed by the
high contact resistance.

As will become important in Chapter 6, starting from the Boltzmann equation, one may derive a
generalized Navier-Stokes equation with disorder induced viscosity also in this regime. In the given
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setup, viscosity however drops out and one finds a simple Ohm’s law instead. It is important to point
out, that the validity of a generalized Navier-Stokes equation is not enough to find hydrodynamic
behavior. Transport here is disorder dominated and one does not find collective behavior or a local
equilibrium needed for true hydrodynamic transport.

In conclusion, magnetoresistance in graphene in the Corbino geometry is dominated by
the Drude-Boltzmann result in the parameter range considered here and can be described
by a mixed disorder model. A similar result can be expected in two-dimensional materials
with a quadratic dispersion, although there the density dependencies will be different
[193]. At 4 K the most relevant correction is due to electron-electron interaction and leads
to a diffusive logarithmic correction, which can be of the order of 10%. The gate voltage
dependent analysis of the graphene magnetoresistance in the Corbino geometry allows
one to extract parameters of different scattering mechanisms and clearly distinguish the
bulk from the contact resistance. For this reason, it appears that the setup is a very
powerful tool for the characterization not only of graphene samples.

While electron-electron interaction did not play an important role in this chapter and “only” lead to
additional effects on top of the non-interacting conductance curves in Chapter 4, it is the dominating
process in Chapter 6, where we study the same monolayer graphene Corbino disk but at elevated
temperatures.
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6 Chapter 6

Hydrodynamic transport in a graphene
Corbino disk

Since in Chapter 5 we already studies electronic transport in a graphene Corbino disk (Sec. 3.2) at
low temperatures, where the transport is disorder dominated, the question regarding the behavior at
elevated temperatures arises quite naturally. In graphene, one may reach a temperature regime where
ℓee is the shortest length scale of the problem, and thus dominated by electron-electron interaction over
disorder scattering, electron-phonon coupling and interference effects with the finite sample size. As
discussed in Sec. 2.4, the behavior in this regime is characterized by a collective behavior of charge
carriers, which can be described by similar equations as the hydrodynamics in classical fluids.

This should be contrasted with the setup discussed in Chapter 4, where effects due to electron-electron
interaction did show up in the conductance curve of a bilayer graphene quantum point contact, but could
in principle still be treated on a perturbative level and only lead to additional features. In this chapter
however, they completely change the behavior of the electronic liquid and thus the applicable treatment.

While this is interesting at any doping level, the behavior at charge neutrality is especially intriguing,
since there, the individual number of carriers in each band is not necessarily conserved but undermined
by recombination processes. Moreover, the charge current j = nu + δj becomes purely dissipative (i.e.
only exists because of the electron-electron interaction), while the energy current jE = Wu remains
finite without these effects. Thus, the electronic transport and heat transport decouple. However, as
we will show, the electronic transport is still influenced by hydrodynamics, which results in jumps of
temperature and electrochemical potential at the interface between the graphene sample and leads. This
transport is, however, dominated by energy relaxation as opposed to viscosity.

In this chapter we will approach the question whether hydrodynamic effects can still
be seen in electronic transport measurements performed in a charge neutral graphene
Corbino disk. This question can generally be answered positively, since we indeed find
jumps of the electrochemical potential and the temperature at the interface, that are
induced by hydrodynamics. However, when only looking at the total resistance of such a device,
the hydrodynamic effects are small. Generally, energy relaxation dominates over the role of viscosity.

The content of this chapter is based on a preprint available at [22] and is the result of joint project
with Boris N. Narozhny from KIT.
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6.1 Introduction

In many materials transport properties can be described by a perturbative treatment of interaction
effects, since the effective electron-electron coupling constant is small [55], like it was discussed in Sec.
2.2. This changes, if electron-electron interaction is indeed not weak, which is the case in very clean
graphene samples at elevated temperatures [194–206], where one may observe signatures of collective
carrier motion, which resembles the motion of a classical fluid. In this context, electron-electron
interaction specifically gives rise to an electronic viscosity, which has been discussed theoretically for
quite some time [207–212] but could be experimentally investigated only recently [194, 201]. The
viscosity enters through the dissipative correction of the stress tensor, but only, if the flow in the
sample is non-uniform. This requires special limits in common geometries, like Hall bars [213–217],
but is trivially the case in the Corbino geometry, as was already shown in Sec. 3.2. For this reason,
hydrodynamic flow of electrons in a Corbino geometry has been the subject of intensive research, both
experimentally [218] and theoretically [219–222].

Away from charge neutrality, these systems can be described by a Navier-Stokes equation with an
additional weak damping term to account for finite disorder scattering in the sample, which is indeed
needed to form a local equilibrium, since energy current in graphene is proportional to the momentum,
which doesn’t get relaxed by electron-electron interaction alone. In this degenerate regime, charge
current j = nu and energy current jE = Wu are both carried by the hydrodynamic velocity u and
simply proportional to each other. This changes at charge neutrality, n(µ = 0) = 0, where the energy
current remains finite, while the electric current is carried by the dissipative corrections δj alone.
Since electron-electron interaction conserves momentum, the energy current does not obtain similar
corrections. Electronic transport in this “Dirac fluid” has been subject of intensive research [201, 214–
217, 223–231] leading to the general consensus, that in the absence of magnetic field, B = 0, resistivity
of neutral graphene is determined by the electron-electron interaction

R0 = π

2e2T ln 2

(
1
τ11

+ 1
τdis

)
−→

τdis→∞
1
σQ

(6.1)

where τ11 ∝ α−2
g T−1 describes the appropriate electron-electron collision integral introduced in Sec.

2.4.1.1 and σQ is the “intrinsic” or “quantum” conductivity of graphene and disorder is characterized
by the mean free time τdis. This describes the uniform bulk current and is independent of the viscosity.

In the traditional Hall bar geometries, the interface with external leads is a very small region and
for sufficiently long samples can be neglected. Similarly, the flow close to the outer edges will simply
be parallel to these edges. This is very different in a Corbino disk, where we do not have any interfaces
to the vacuum, and, unless the diameter of the disk is very large, effects related to the lead-sample
interfaces can also not be neglected, but fix the boundary conditions of the leads.

The setup we consider here, is that of a Corbino disk made of graphene at charge neutrality, which
is contacted by an inner circular lead of radius r1 and an outer ring lead with inner radius r2 to
preserve rotational symmetry. The outer lead is assumed to be grounded, but both have the same
doping level and temperature. In the middle of the inner lead, one attaches a current source along the
third dimension, thus preserving the symmetry. The leads can in general be made of any good metal,
but for the sake of completeness we will assume that they consist of highly doped graphene, in which
transport is disorder dominated, as introduced in Sec. 5.3.1. The most easily measurable quantity in
such a system is the resistance R = U/I, that we assume to be measured at a fixed current I across
the whole disk between the points rin and rout in Fig. 6.1. The total voltage drop U between these
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Figure 6.1: Setup considered in this chapter. A charge neutral graphene Corbino disk of inner
radius r1 and outer radius r2 is placed between two leads (green). The current I is injected in the
middle, and the voltage drop U between the points rin and rout is determined.

points includes the voltage drop across the graphene sample and the leads, but also across the two
interfaces.

While the leads’ resistance should be minimal, the contact resistance is generally important in clean
systems. A very simplistic description of these interfaces, like it is done in Ref. [226], relates the jump
in electrochemical potential across this interface solely to a phenomenological contact resistance due
to the different work functions of the materials. On the other, as was demonstrated in Refs. [220,
232], there is an additional, specifically hydrodynamic jump, which is induced due to the mismatch of
dissipation between the leads and the sample, specifically, if they are of different viscosity.

This chapter is organized as follows. We start with an overview of the general hydrodynamic equa-
tions including dissipative corrections in graphene in an external magnetic field in Sec. 6.2, and give
their simplified form in polar coordinates at charge neutrality and vanishing field In Sec. 6.3.2 we
introduce, how the disorder dominated leads can be described by a similar set of equations, which
naturally arises from the Boltzmann equation. In the following Sec. 6.3.3, we state the boundary
conditions at the interface, which can be obtained from the continuity equations and the full solution.
These results are discussed in Sec. 6.3. Finally, we discuss in Sec. 6.4, how one can use the notion,
that energy should not accumulate directly at the interface, to find the jump of the electrochemical
potential. This chapter end with a Discussion (Sec. 6.5) and a Summary and Conclusions in Sec. 6.6.

6.2 General hydrodynamic transport in graphene

As explained in Sec. 2.4, graphene in the hydrodynamic regime, i.e. in a setup, where ℓee is the
shortest length scale of the problem, can be described by the following set of hydrodynamic equations

∂tn+ ∇·j = 0, (6.2a)

129



6 Hydrodynamic transport in a graphene Corbino disk

which describes the exact conservation of charge

∂tnI + ∇·jI = −nI −nI,0
τR

= −12 ln 2
π2

nI,0µI

TτR
, (6.2b)

where nI,0 = πT 2/(3v2
g) is the equilibrium value of the total quasiparticle density (i.e., at µI = 0) and

τR is the recombination time. The individual densities in two bands are indeed not conserved, if one
takes into account recombination processes, which are characterized by this timescale τR. There is a
similar equation for the energy density

∂tnE + ∇·jE = ejE − nE − nE,0
τRE

, (6.2c)

which is relaxed with the energy-relaxation time τRE.
The hydrodynamic velocity u satisfies the generalized Navier-Stokes equation

W(∂t + u·∇)u + v2
g∇P + u∂tP + e(E·j)u = v2

g

[
η∆u + enE + e

c
j×B

]
− Wu
τdis

, (6.2d)

where P and η are the thermodynamic pressure and shear viscosity and B is a static, external magnetic
field. The enthalpy density satisfies W = nE + P . The full hydrodynamic equations also includes the
thermal transport equation (2.210), which describes the entropy s and its conjugated current. Using
Eqs. (6.2a) and (6.2b) this can be brought to the simpler form

T

[
∂s

∂t
+ ∇r ·(su)

]
+ µ∂tn+ µI∂tnI = δj·

[
eE+ e

c
u×B

]
(6.2e)

+ η

2
(
∇αuβ +∇βuα−δαβ∇·u

)2
− nE −nE,0

τRE
+ Wu2

v2
gτdis

.

This should be supplemented with the dissipative corrections discussed in Sec. 2.4.1.1, which describe
the corrections due to electron-electron interaction explicitly.

6.3 Application to charge neutral graphene

In the present case, the graphene sample is assumed to be at charge neutrality and we further restrict
ourselves to the stationary solution in linear order of the driving field, which will be the current I
transmitted from the lead attached to the inner contact. Then the hydrodynamic equations in charge
neutral graphene can be simplified to

∇·δj = 0, (6.3a)

nI,0∇·u + ∇·δjI = −(12 ln 2/π2)nI,0µI/(TτR), (6.3b)

∇δP = η∆u + (e/c)δj×B − 3Pu/(v2
gτdis), (6.3c)

3P∇·u = −2δP/τRE , (6.3d)
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Since the Coulomb interaction conserves momentum, there is no dissipative correction due to
electron-electron interaction for the energy current jE to linear order, but only j = nu + δj and
jI = nIu + δjI , which, at charge neutrality and in linear response, are given by

δj = 1
e2R̃

eE + ωBeB ×

 α1δI∇µI

τ−1
dis +δ−1

I τ−1
22

− 2T ln 2
v2

g

u


, (6.4a)

δjI = − δI

τ−1
dis +δ−1

I τ−1
22

1
e2R̃

×

α1ωBeB ×eE+ 2T ln 2
π

e2R0∇µI +α1ω
2
B

2T ln 2
v2

g

u

,
where the resistivity R̃ is given by

R̃ = R0+α2
1δIR̃B. (6.4b)

From the integrated collision integrals due to electron-electron interaction, one obtains timescales τ11
and τ22. These do not enter in the sense of a relaxation time approximation. They are given by [231]

τ11(22) =
4π ln 2t11(22)

α2
gT

, (6.5)

t11 ≈ 1
33.13 , t11 ≈ 1

5.45 (6.6)

We further need the constants δI ≈ 0.28 and α1 = 2.08 and

R0 = π

2 ln 2
1
e2T

(
1
τ11

+ 1
τdis

)
, (6.7)

R̃B = π

2e2T ln 2
ω2

B

τ−1
dis + δ−1

I τ−1
22
. (6.8)

At B = 0 one can find u, δj, E, µI and δP rather easily. First a look at Eq. (6.3d) reveals, that the
fluid remains compressible in linear response and energy relaxation τRE introduces a term similar to
a bulk viscosity. Next one excludes δP from Eq. (6.3c) by use of Eq. (6.3d). This leads to a second
order differential equation for u

η′∆u = 3P u
v2

gτdis
, η′ = η + 3PτRE

2 , (6.9)

which is of the form of the standard Navier-Stokes equation, but with a renormalized viscosity. While
in general ∆u = ∇(∇ · u) − ∇ × (∇ × u), the cross product term vanishes for radial symmetry and
B = 0 and hence we can directly combine τRE and the viscosity η. In radial symmetry, the general
solution for the radial component has the form

ur = a1I1

(
r

ℓGE

)
+ a2K1

(
r

ℓGE

)
, ℓ2GE =

v2
gη

′τdis

3P , (6.10)

where I1 and K1 are Bessel functions. Here one notices the characteristic lengthscale ℓGE. Hydrody-
namic transport is usually characterized by a different characteristic lengthscale ℓ2G = v2

gητdis
3P , which

131



6 Hydrodynamic transport in a graphene Corbino disk

is known as the Gurzhi length [208]. By comparison one notices, that ℓGE corresponds to a corrected
Gurzhi length that is renormalized by energy relaxation processes with τRE. The coefficients will be
fixed by requiring continuity of entropy current at the interface.

The non-equilibrium quantities δP and µI can now be found easily. The pressure δP follows by
using solution (6.10) in Eq. (6.3d) and µI can be found by substituting Eq. (6.4b) into Eq. (6.3b)
and using solution (6.10). Their coefficients are fixed by requiring continuity of charge and imbalance
current. From their combination we find δT . The details of this calculation are given in Secs. 6.3.1,
6.3.2 and 6.3.3 and the full solution is given in Sec. 6.3.4.

In order to determine the two-terminal resistance R we also need the behavior of the electrochemical
potential ϕ at the interface. Traditionally, this behavior is dominated by a contact resistance, that
depends on the used materials and their mismatch of chemical potential. Here, viscosity provides
another channel of dissipation, that leads to a jump of ϕ at the interface discussed in Sec. 6.4.

6.3.1 Charge neutral Corbino disk at B = 0

Independent, of whether one applies a perpendicular magnetic field or no magnetic field, rotational
symmetry will be preserved, and we may most easily solve the problem in polar coordinates (r, ϑ).
Then, all quantities can only depend on the radial component r and for the case of zero magnetic field
considered here, the hydrodynamic equations (6.2) can be transformed to

1
r

∂(rδjr)
∂r

= 0, (6.11a)

nI,0
1
r

∂(rur)
∂r

+ 1
r

∂(rδjIr)
∂r

= −12 ln 2
π2

nI,0µI(r)
TτR

, (6.11b)

uϑ = 0, (6.11c)

∂δP

∂r
= η∂r

(
1
r

∂(rur)
∂r

)
− 3Pur

v2
gτdis

, (6.11d)

3P 1
r

∂(rur)
∂r

= −2δP (r)
τRE

. (6.11e)

The electric field E does not enter the hydrodynamic equations at all in the case of charge neutrality,
the current within the sample is carried solely by the dissipative correction δj. Instead, the pressure
δP enters in a very similar fashion, which corresponds to the replacement −enϕ → δP . A similar term
is also present away from charge neutrality, as mentioned for example in Refs. [232], but there it is
usually either neglected (by assuming constant density n, temperature T and chemical potential µ in
the sample), or argued away based on the fact, that one usually measures voltages and not pressures
in these samples.

However, as we show here, it is very much not clear, how one should distribute the obtained results
between the voltage part enϕ and the pressure part δP away from charge neutrality, if one does allow
for these variations. This also becomes clear in Ref. [220], where only the case n = 0 for the whole
device is considered.

All angular components like uϑ have to vanish in the absence of a magnetic field and the dissipative
corrections are

δjr = Er(r)
eR0

(6.12a)
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δjϑ = 0 (6.12b)

δjIr = − δI

τ−1
dis +δ−1

I τ−1
22

2T ln 2
π

∂µI

∂r
, (6.12c)

δjIϑ = 0 (6.12d)
At B = 0 the stress tensor, including a finite viscosity, which in the hydrodynamic regime is caused
by electron-electron interaction, is given by

ΠE = P − σ, (6.13)

σ = η
[
(∂xux − ∂yuy)τz + (∂xuy + ∂yux)τx

]
, (6.14)

σrr = −σϑϑ = η

(
∂r − 1

r

)
ur, σrϑ = σϑr = η

(
∂r − 1

r

)
uϑ, (6.15)

where the last line is the second one in polar coordinates. In the graphene bulk at charge neutrality,
Hall viscosity ηH vanishes. Similarly Hall viscosity also vanishes for B = 0.

6.3.2 Description of leads

The donut shaped leads, which are attached at the inner and outer radius of the Corbino disk, are
assumed to be a normal metal, in which transport is dominated by disorder scattering, with a relaxation
time τL. For concreteness sake, we consider them to be made of graphene as well, which has however
a large density and µ ≫ T , in which case we may restrict ourselves to one band. As is demonstrated
in Ref. [186] and was discussed in Sec. 5.3.1, one can find continouity equations from the Boltzmann
equation, also in the disorder dominated regime. The corresponding distribution function f(r,k, t) =
f0(εk) − f ′

0(εk)F(r, θk, t) does however not fulfill the notion of a local equilibrium, as it would in the
hydrodynamic regime. Instead, from the Fourier decomposition of F(r, θk, t) and their connection to
the macroscopic quantities nL, j and ΠE , we find the following set of equations

∂tnL + ∇j = 0 (6.16)

m∂tj + ∇Π̌E − enLE − e

c
j × B = −m

τL
j, (6.17)

Π̌E = P − σ̌, ηL = µ3τL

4πv2
gℏ2 , (6.18)

where σ has the same form as in Eq. (6.15), but with the disorder induced viscosity ηL.
In this disorder dominated regime, one can not speak of a hydrodynamic velocity u, but one may

still introduce a drift velocity uL, which then fulfills j = nLuL. The effective mass m = µL/v
2
g can

then be used, to construct a momentum current density

mj = 3PL

v2
g

uL, (6.19)

where to lowest order in temperature we find PL = µ3

3πv2
gℏ2 and thus in the stationary state at B = 0

in linear order of the current I

∇uL = 0, (6.20)

∇Π̌E + enL∇ϕ = − 3PL

v2
gτL

uL. (6.21)
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Experimentally, the density nL and the chemical potential µ are fixed by the gates. Moreover, leads
are usually assumed equilibrate very fast, so that we can assume T to be fixed in the leads as well The
general variation of PL is found to be

δPL =

2πµTδT
3v2

g

+ πT 2δµ

3v2
g

+ µ2δµ

πv2
g

 (6.22)

and thus vanishes under the condition we consider. Since the leads are highly doped, we find n =
n+ = nI , while the imbalance chemical potential µI vanishes.

6.3.3 Boundary conditions

The differential equations (6.11) and (6.12) should be supplemented by a suitable set of boundary
conditions. One should note, that the Corbino setup is indeed a special setup in this perspective, since
there are no interfaces to the vacuum, but only to the leads. As can be seen from Eq. (6.2a), charge
conservation is exact and also holds in the leads. This implies

jr(r1 − ϵ) = δjr(r1 + ϵ), δjr(r2 − ϵ) = jr(r2 + ϵ) (6.23)

and we further find in a radially symmetric system by fixing the total current I

I = e

∫
dA · j = 2πerjr. (6.24)

Further we assume, that none of the τs diverge at the interface and thus find, that the radial components
imbalance current jI,r and entropy current sur are conserved across the interface as well. For the
interface r1 this means

jr(r1 − ϵ) = nLur(r1 − ϵ) = δjr(r1 + ϵ), (6.25)
jI,r(r1 − ϵ) = nLur(r1 − ϵ) = nI,0ur(r1 + ϵ) + δjI,r(r1 + ϵ) = δjr(r1 + ϵ), (6.26)
sLur(r1 − ϵ) = sBur(r1 + ϵ) (6.27)

and similarly at the second interface

jr(r2 + ϵ) = nLur(r2 + ϵ) = δjr(r2 − ϵ), (6.28)
jI,r(r2 + ϵ) = nLur(r2 + ϵ) = nI,0ur(r2 − ϵ) + δjI,r(r2 − ϵ) = δjr(r2 − ϵ), (6.29)

sLur(r2 + ϵ) = sBur(r2 − ϵ). (6.30)

Notably, the imbalance current and the entropy current are not conserved within the sample, due to
recombination processes and energy relaxation.

With these conditions, we can completely find the hydrodynamic quantities and their related coun-
terparts in the leads.
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6.3.4 Solutions

Starting with the leads, we find

uL,r = I

2πenLr
, uL,ϑ = 0, (6.31)

σrr = −IηL

πenLr2 , σrϑ = 0, (6.32)

Er = 2PL

enLv2
gτL

I

2πenLr
, (6.33)

ϕ(r) = − I

2π
2PL

e2n2
Lv

2
gτL

log
(
r

r0

)
. (6.34)

With the found form of uL,r and the assumption δP = 0 we find a simple 1/r behavior for the
electrical field Er as well. Notably, we then indeed find a constant charge density inside the leads from
the Poisson equation. While the disorder dominated viscosity ηL does not enter the electric field, the
viscous stress tensor itself is not zero, which will be relevant later.

The entropy s is always defined as

Ts = 3P − µn− µInI . (6.35)

For µ ≫ T we find

PL = πT 2µ

3v2
g

+ µ3

3πv2
g

= P T
L + P T =0

L , (6.36)

n = πT 2

3v2
g

+ µ2

πv2
g

(6.37)

sLT = 3P − nµ = πT 2µ

v2
g

+ µ3

πv2
g

− πT 2µ

3v2
g

− µ3

πv2
g

= 2
3
πT 2µ

v2
g

= 2P T
L , (6.38)

so we need to keep finite temperature corrections in the leads as well.
In the graphene sample, the situation is a bit more involved. Firstly, one notices, that the differential

equations (6.11) and (6.12) decouple into two disjunct sets. The first one consists of equations (6.11a)
and(6.12a), which has the solution

δjr = I

2πer , (6.39)

Er = IR0
2πr , ϕ = −IR0

2π log
(
r

r0

)
. (6.40)

The constant r0, which is also present in the leads (and not necessarily the same) is not fixed by the
boundary conditions we have imposed so far. For the entropy s we find in the sample

Ts = 3P = 33T 3ζ(3)
πv2

g

. (6.41)
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The second set of equations consists of (6.11b), (6.11d), (6.11e) and (6.12c). We immediately find,
expressing δP through ur

0 = ∂r

(
1
r

∂(rur)
∂r

)
− ur

ℓ2GE
(6.42)

1
ℓ2GE

=
(
η + 3PτRE

2

)−1 3P
v2

gτdis
. (6.43)

This shows, that for this set of equations it is usually the combination η′ =
(
η + 3P τRE

2

)
that enters,

i.e. the Gurzhi length is renormalized by τRE. The other two equations can be combined to form

∂r

(
1
r

∂(rur)
∂r

)
−M∂r

1
r

∂(r ∂µI
∂r )

∂r

 = −M

ℓ2R

∂µI(r)
∂r

(6.44)

M = 2T ln 2
nI,0π

δI

τ−1
dis +δ−1

I τ−1
22
, ℓ2R = δI

τ−1
dis +δ−1

I τ−1
22

πT 2τR

6nI,0
. (6.45)

Thus we are left with a set of two coupled Bessel differential equations for ur and ∂rµI . Defining the
differential operator D = ∂r(1/r)∂rr we can write this system as

D
(

1 0
1 −M

) ur
∂µI
∂r

 =

 1
ℓ2

GE
0

0 − M
ℓ2

R


 ur

∂µI
∂r

 ⇔ D

 ur
∂µI
∂r

 =

 1
ℓ2

GE
0

1
Mℓ2

GE

1
ℓ2

R

 ur
∂µI
∂r

 . (6.46)

Once we write  1
ℓ2

GE
0

1
Mℓ2

GE

1
ℓ2

R

 = Û−1D̂Û (6.47)

and D̂ is diagonal with eigenvalues d1 and d2 (with units of inverse length squared). This coupled
Bessel differential equation then has the general solution

ur = M

(
1 − ℓ2GE

ℓ2R

)f1I1

(
r

ℓGE

)
+ f2K1

(
r

ℓGE

) (6.48)

∂µI

∂r
= f1I1

(
r

ℓGE

)
+ f2K1

(
r

ℓGE

)
+ g1I1

(
r

ℓR

)
+ g2K1

(
r

ℓR

)
, (6.49)

where the coefficients f1, f2, g1 and g2 still need to be fixed. From the conservation of entropy current
Eq. (6.27) and (6.30) we then find f1 and f2 and thus

ur = IsL

2πenLsB

×


I1
(

r
ℓGE

)(
r1K1

(
r1

ℓGE

)
− r2K1

(
r2

ℓGE

))
−K1

(
r

ℓGE

)(
r1I1

(
r1

ℓGE

)
− r2I1

(
r2

ℓGE

))
r1r2K1

(
r1

ℓGE

)
I1
(

r2
ℓGE

)
− r1r2I1

(
r1

ℓGE

)
K1

(
r2

ℓGE

)
 . (6.50)
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This leads to the stress tensor element

σrr = ηIsL

2πeℓGEnLsB

I2
(

r
ℓGE

)(
r1K1

(
r1

ℓGE

)
− r2K1

(
r2

ℓGE

))
+K2

(
r

ℓGE

)(
r1I1

(
r1

ℓGE

)
− r2I1

(
r2

ℓGE

))
r1r2

(
K1

(
r1

ℓGE

)
I1
(

r2
ℓGE

)
− I1

(
r1

ℓGE

)
K1

(
r2

ℓGE

)) ,

(6.51)
σrϑ = 0 (6.52)

and

δP = −3PτRE
2

1
r

∂(rur)
∂r

= −3PτRE
2

IsL

2πeℓGEnLsB

×


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(
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ℓGE
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ℓGE
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ℓGE
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ℓGE
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ℓGE
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ℓGE
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(
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ℓGE

)
I1
(

r2
ℓGE

)
− r1r2I1

(
r1

ℓGE

)
K1

(
r2

ℓGE

)
 , (6.53)

Using the conservation of the imbalance current Eqs. (6.26) and (6.29) we further find the imbalance
chemical potential

µI(r) = IsLℓR
2πeMnLr1r2sB(ℓ2GE − ℓ2R)


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(
r
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)(
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(
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(
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(
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) (6.54)

+
ℓGEℓRK0
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(
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)
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and the dissipative correction to the imbalance current

δjIr(r) = InI,0sL

2πenLr1r2sB
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From δP and µI we find δT , which amounts to

δT =
πv2

g

9T 2ζ(3)δP − π2

27ζ(3)µI . (6.56)

Our hydrodynamic system is not characterized by a local thermal conductivity κ, that relates the heat
current

jQ(r) = 3Pu − µj − µIjI (6.57)

and the temperature gradient ∇δT (r) at the same point r. Instead, we can obtain a non-local (integral)
relation between jQ(r) and ∇δT (r′) characterized by a non-local kernel κ(r, r′). This follows from the
fact that the equation for u(r) is now a second-order differential equation with a non-local Green’s
function. Expressing δP (r) there in terms of δT (r) and µI(r), we have a non-local relation between
u(r), δT (r′) and ∇µI(r′). Substituting this u(r) into the definition of jQ(r), we obtain a non-local
thermal conductivity. As a result one can only introduce the thermal conductance for the whole
setup, relating the temperature difference between the contacts with the total heat current through
the system. This will be done in a subsequent publication.

6.4 Dissipation and total resistance

This still does not suffice to describe the resistance between the point rin and rout in the inner and
outer lead respectively, since we do not know, how the potential ϕ behaves at the interface. In general
the contact resistance between two materials is a manifestation of their different work functions and
a mismatch of their chemical potential. We already saw, that this contribution can be large in clean
samples in Chapter 5. However, there is an additional effect due to electron-electron interaction, which
in the ballistic case may give rise to a “Knudsen-Poiseuille” crossover [208] and drive the electronic
system to the hydrodynamic regime. This hydrodynamic flow possesses another channel for dissipation
through viscosity [232]. At charge neutrality, this effect is subtle, since the electric current is decoupled
from the hydrodynamic energy flow, but both are induced by the current source providing the energy
dissipated not only by Ohmic effects, but also by viscosity [232] and energy relaxation processes [233]
that should be taken into account in the form of an additional voltage drop.

For this, we generalize the idea proposed by Ref. [232] and take a look at the dissipation, since
energy should not accumulate directly at the interface. While the ohmic resistivity alone may be
small, energy is also dissipated by viscosity and energy relaxation. Since the electric field inside the
sample is completely determined by R0, this additional dissipation channels appear in form of a jump
directly at the interface. Microscopically, this jump in voltage is due to an excess electric field in the
Knudsen layer around the interface.

To find the magnitude of the jump, we consider the kinetic energy. The kinetic energy can be
generally found from the energy density,

E =
∫

dV
(
nE − nE(u = 0)

)
≈
∫

dV 6P
v2

g

u2 (6.58)

where we have expanded to second order in u and thus the drive I. Thus the dissipation is

A = Ė = 26P
v2

g

∫
dVu∂tu = 0, (6.59)
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since we are in the steady state. This can be simplified by use of the generalized Navier-Stokes equation.
At a finite density we find in the leads

3PL

v2
g

u∂tu = u

−3PL

v2
g

u
τL

− ∇ΠE + nLeE


= − 3PL

v2
g

u2

τL
− ∇δPu + u∇σ′ − ej∇ϕ.

= −3P
v2

g

u2

τL
− ∂ui

∂xj
σ′

ij + ∇
(
uσ′ − ejϕ− uδP

)
. (6.60)

Here we recognize, that the term enLuE = ejE is exactly the Joule heating. Using the divergence
theorem we can divide this into a boundary and a bulk term

0 = A = Aboundary − Abulk, (6.61)

Aboundary = 4
∫

dA
(
uσ′ − uδP − ejϕ

)
, (6.62)

Abulk = 4
∫

dV

3P
v2

g

u2

τL
+ ∂ui

∂xj
σ′

ij

 . (6.63)

The boundary term includes the energy, that is transmitted through the interface.
Since the current density is conserved at the interface, we can immediately write down the corre-

sponding equation in the neutral graphene sample, where the Joule heating is given by eδjE. Then we
find

0 = A = Aboundary − Abulk, (6.64)

Aboundary = 4
∫

dA
(
uσ′ − uδP − eδjϕ

)
, (6.65)

Abulk = 4
∫

dV

3P
v2

g

u2

τdis
+ δjeE + ∂ui

∂xj
σ′

ij − δP (∇ · u)

 . (6.66)

As stated above, under realistic experimental conditions the non-equilibrium part of the pressure at
u = 0 on the lead side vanishes

δP = 0 (6.67)

while we find on the side of the graphene sample

δP =

9T 2δTζ(3)
πv2

g

+ πµIT
2

3v2
g

 = T 2

v2
g

(
9δTζ(3)

π
+ πµI

3

)
. (6.68)

Using the hydrodynamic equations one may replace δP by −3PBτRE
2

1
r

∂(rur)
∂r , thus for finite τRE δP is

completely determined and does not require any additional boundary conditions. The same goes for
µI . Thus we know the jump of δP at the interface and the viscous part of the dissipation will only
enter the difference in electrochemical potential.
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6 Hydrodynamic transport in a graphene Corbino disk

We require, that without any phenomenological contact resistance, energy does not accumulate at
the interface. When we include this type of resistance, we additionally include the term

I2Rc = IT ŘI, (6.69)

where I includes charge and entropy current and Ř includes the thermoelectric coefficients of the
interface.

For B = 0 uϑ and σ′
rϑ are both zero and in the leads we have δP = 0. Thus we find the condition

4π
[
r
(
urσ

′
rr

)]
r1−ϵ

− 2Iϕ(r1 − ϵ) = 4π
[
r
(
urσ

′
rr − urδP

)]
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(
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at the first interface and analogously for the second interface
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Using the full solution we find in the bulk this includes the expression

σ′
rr − δP = IsL
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(6.72)
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Then we find at r1
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Then we find the total resistance R of the system with

IR = ϕ(rin) − ϕ(rout) = I(RL +RB + 2RC +Rdiss
L +Rdiss

B ), (6.73)
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RC = IT ŘI
I2 , (6.75)
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This is the central result of this chapter, which we now analyze in various relevant limits.

6.5 Analysis of results

The behavior of these quantities thus depends on the hierarchy of the length scales r1, r2, r2 − r1, ℓGE
and ℓR. In order to remain inside the hydrodynamic regime, these cannot take on all values. In this
section, we restore all units of ℏ and kB. We will show plots, which are obtained for the following
quantities. The density in the leads is given by nL = 5 × 1014 m−2 and the equilibrium temperature
in the whole device, including the leads and the sample, is fixed to T = 100 K. The current, that is
supplied by the source is I = 1 µA and we assume that the effective interaction constant is screened to
α = 0.2. We further use τdis = 1.25 × 10−12 s and τL = 0.189 × 10−12 s [12], since the density is higher
in the leads. This is enough, to fix all the other parameters, except for τRE and τR or alternatively ℓGE
and ℓR. Since these quantities are difficult to obtain, we will show plots for three different regimes.

The times related to electron-electron interaction are given by [231]

τii = ℏ
4π log 2tii
α2kBT

, (6.78)

t11 = 1
33.13 , t22 = 1

5.45 . (6.79)

and for the used parameters we find τ11 = 0.5 × 10−12 s and τ22 = 3 × 10−12 s. The viscosity is found
to be

η = 0.446k2
BT

2

α2v2
gℏ

(6.80)

and amounts to ν = v2
gη

3P = 0.25 m2/s. From this we also find

R0 = πℏ2

2 log 2e2kBT

(
1
τ11

+ 1
τdis

)
= 1985.33Ω (6.81)
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6 Hydrodynamic transport in a graphene Corbino disk

All other parameters are easy to find.
When describing the hydrodynamic velocity ur and the pressure δP one can consider three different

limits. If ℓGE ≪ r1, r2, which is achieved for very small τdis, one finds

ur ≈
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))
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ℓGE

) (6.82)

which means, that the velocity vanishes exponentially close to the interface and is very small in the
bulk of the sample. In the opposite limit ℓGE ≫ r1, r2 ur shows a behavior similar to the drift velocity
in the leads with logarithmic corrections
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Finally, if r2 − r1 ≪ r1, r2, ℓGE we find the same 1/r behavior as in the leads

ur ≈ IsL

2πenLrsB
(6.84)

The resulting velocity ur and pressure δP is shown in Fig. 6.2. In the leads, the drift velocity shows a
simple 1/r behavior, while one finds a jump due to the mismatch of entropy directly at the interface.
Inside the sample, the situation depends on the relative size of ℓGE. If ℓGE ≪ r1, r2 we indeed observe,
that the velocity decreases rapidly close to the interface and exactly vanishes in the bulk of the sample.
This behavior is generally only observable in rather large samples, since the quantity τdis cannot be
arbitrarily small while still staying in the hydrodynamic regime. In the same situation, the pressure
is constant in the bulk of the sample. In all other cases, ur resembles a 1/r behavior, that is slightly
modified by logarithmic corrections.

The plots for µI and δT are shown in Fig. 6.3. In the limit of ℓGE ≪ r1, r2 both the imbalance
chemical potential and the non-equilibrium part of the velocity δT vanish in the bulk of the sample.
In this limit energy relaxation processes transfer any heating, that may develop in the sample to the
substrate and out of the device. There is only a small finite effect very close to the interface. Since this
is an effect of τR it is in principle independent of ℓGE and τRE, however we need ℓR < ℓGE to remain
in the hydrodynamic regime. In all other scenarios, there is a finite temperature profile, which may
amount to 0.5% of the equilibrium temperature.

Finally we take a look at the total resistance R of the system. In general one might place the
measuring points rin and rout very close to the interface, in which case the bulk resistance of the leads
RL would not contribute to the total resistance R. We will further disregard the influence of the
phenomenological contact resistance RC , which only depends on the used materials and their relative
chemical potential. Then one can consider again three limiting cases of the hydrodynamic, dissipative
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Figure 6.2: (a) Hydrodynamic velocity ur in the graphene sample and drift velocity uL,r in the
leads as a function of the radius r for a large (main panel) and small sample (inset). Due to the
mismatch in entropy, there is a finite jump at the interface. (b) Non-equilibrium pressure δP as
a function of the radius r for a large (main panel) and small sample (inset). The non-equilibrium
pressure was assumed to vanish in the leads. Both: we used ℓGE = 1µm and ℓGE = 10µm which
corresponds at the stated τdis to τRE = 1.1×10−12 s and τRE = 159×10−12 respectively. The gray
area marks the leads.

Figure 6.3: (a) Imbalance chemical potential µI as a function of the radius r for a large (main
panel) and small sample (inset). In the leads, the imbalance chemical potential vanishes. (b)
Non-equilibrium temperature δT as a function of the radius r for a large (main panel) and small
sample (inset). The non-equilibrium temperature was assumed to vanish in the leads. Both: the
used ℓR =

{
0.2, 0.8, 2, 8

}
µm correspond to τR =

{
0.56, 9, 56, 900

}
× 10−12 s respectively. The

gray area marks the leads.
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6 Hydrodynamic transport in a graphene Corbino disk

contribution to the resistance Rdiss
B . The first limit is ℓGE ≪ r1, r2 in which case we find
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where the second approximation requires r1 − r2 ≫ ℓGE. The result of Ref. [232] corresponds to
neglecting the term proportional to ℓGE. The second limit is the case ℓGE ≫ r1, r2 and we find
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which introduces a logarithmic correction of exactly the same form as the bulk resistance RB of the
sample. The final limit is r2 − r1 ≪ r1, r2, ℓGE where we find the result
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. (6.88)

If one instead directly takes the limit τRE → 0, and additionally ℓG ≪ r1, r2, r2 − r1 one would obtain
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This is the result for the viscous correction to the resistance at charge neutrality in the setup of Ref.
[220].

The plots for ϕ(r) and R = RB +Rdiss
B +Rdiss

L are shown in Fig. 6.4 (a) and (b) respectively. In the
case of the potential ϕ we find a logarithmic dependence on the radial position r in both the leads and
the sample, where the overall prefactor is however different. In all considered cases, the jump at the
interface is in the same direction, which for the second interface is opposite to what Ref. [232] obtains.
This is due to the fact, that in our case the contribution of δP is larger than the contributions due
to η and ηL alone. The jump is larger, for larger ℓGE. As seen in Fig. 6.4 (b), the total measured
resistance is only slightly changed. The correction shown in the inset of 6.4 (b) is nearly logarithmic
for the larger ℓGE, while is saturates for the smaller ℓGE.

6.6 Summary and conclusions

In summary, we have solved the hydrodynamic equation in charge neutral graphene in linear response.
To completely determine the solutions, we have imposed boundary conditions based on conservation of
entropy current, charge and imbalance current directly at the interface with the highly doped graphene
leads. Using these boundary conditions we see, that depending on the relative magnitude of the radii
of the disk and the lengths ℓGE and ℓR, set by energy relaxation and recombination processes, the
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Figure 6.4: (a) Electrical potential ϕ as a function of the radius r for a large and small sample
in the inset. In the leads, electrical potential behaves logarithmically. The jump at the interface
is determined by the dissipation in the regions, the phenomenological contact resistance is disre-
garded. (b) Total resistance R = RB +Rdiss

B +Rdiss
L of the system as function of the effective width

radius r2/r1 for r1 = 1.5µm and dissipative contribution Rdiss
B only in the inset. Both: The gray

area marks the leads.

hydrodynamic velocity may stay finite in the bulk or vanish. We find a temperature profile, that shows
jumps in opposite directions at the two interfaces, while in all considered scenarios the potential jumps
have the same sign at both interfaces. This is a strong indicator of the relevance of energy-relaxation
over viscosity in this setup.

In conclusion we find, that in charge neutral graphene, charge and energy transport decouple. While
the energy current is carried by the hydrodynamic velocity u, charge transport becomes fully dissipa-
tive. Nevertheless, electronic transport is influenced by hydrodynamics, which leads to
jumps of both the temperature and the electrochemical potential at the interface between
leads and the sample, which can be measured by modern imaging techniques (the local
temperature variation can be measured using the approach of Refs. [234–236], while measurements of
the local potential are at the heart of the technique proposed in Refs. [202, 237]). In contrast to
the finite density case, the fluid remains compressible in linear response, which brings
the energy relaxation rate 1/τRE into the picture. In the regime of applicability of hydro-
dynamics, this energy relaxation will dominate and renormalize the effective viscosity.
The most easily measurable quantity, the resistance of the whole device, is only slightly modified by
hydrodynamics and it is quite hard to extract the viscosity from such measurements, since it is masked
by energy relaxation.

One can extend this analysis to different temperatures in the leads and thus study the heat transport.
In this situation one should take another closer look at the used boundary conditions.

In contrast to Chapter 4 we see, that here strong electron-electron interaction can no longer be
treated on a perturbative level, but completely changes the behavior of the electronic liquid and how
we should describe it. Strongly correlated electrons in graphene show collective behavior and can be
described similarly to a classical liquid. If one considers the same device at lower temperatures, as
in Chapter 5, electron-electron interaction turns out to be completely negligible, which clearly shows,
how strongly temperature affects the internal processes in graphene.
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7 Chapter 7

Conclusion and outlook

7.1 Summary

In this thesis I have studied the electronic transport in graphene based devices in three different setups.
Summaries of the individual situations are given in the following.

7.1.1 Interaction effects in a bilayer graphene quantum point contact

At first I considered transport in a bilayer graphene quantum point contact (BLG QPC) in Chapter
4. In this setup, the transport can be essentially described by the Landauer-Büttiker formula. I find
a quantization of conductance in multiples of 4 e2

h for vanishing magnetic field and in multiples of 2 e2

h
for sufficiently large, in-plane magnetic field. This is the expected behavior for weak interactions.

In fact, the experiment finds additional features in the conductance curves that indicate that inter-
action effects are indeed present here. While the present gates screen the Coulomb interaction, for
the given distance between the gates and the BLG plane, the screening is indeed not strong enough
to fundamentally alter the interaction. The first of these features is an additional shoulder in the
conductance at a value close to 3 e2

h for vanishing magnetic field. For increasing in-plane magnetic field
it continuously develops into the lowest Zeeman split level. The other feature is an increase of the
extracted Landé g-factor for the three lowest size-quantized levels, which is strongest for the lowest
subband. I interpret both of these effects as induced by electron-electron interaction.

I propose a phenomenological model to explore which interaction induced conductance features are
in principle possible in BLG, considering the additional valley degree of freedom. By considering their
behavior in an in-plane magnetic field and comparing it to the experimental data, I conclude that the
observed feature can be interpreted along the same lines as the 0.7 anomaly in other two-dimensional
electron gases, since the valleys remain degenerate. I also show that this initial splitting cannot be
explained by substrate-enhanced spin-orbit coupling of the Kane-Mele type, since it would be an order
of magnitude smaller than the zero field splitting I observe and should show up at higher magnetic
fields as well, where I don’t see any traces of it.

The enhancement of the Landé g-factor can also not be explained by a finite out-of plane component
of the magnetic field, which would again show up as a full splitting of spin and valley degree of
freedom for higher magnetic fields, which are not observed. The experimental data also shows Fabry-
Pérot oscillations on top of the quantized conductance curves for the lower temperature of 20 mK,
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which however do not disperse with magnetic field and show a different voltage dependence, making
them distinguishable from the 0.7 feature. Moreover, the oscillations are completely gone at the higher
temperature of 4 K, where the conductance traces are already quite smeared out, while the 0.7 feature
remains visible, as one would expect.

Thus I could show that interaction effects indeed lead to visible features in narrow
bilayer graphene quantum point contacts. The observed 0.7 anomaly can be modeled by
a phenomenological model based on an effective spontaneous spin splitting, while valley
remains degenerate. A similar behavior is expected in other materials that possess Ns

spin and Nv valley degrees of freedom, that are all degenerate without interaction effects.
This feature is stronger for a flatter dispersion. Coulomb interaction does not induce
spin-flip processes but allows for valley flips, so that a spin-valley symmetry of the non-
interacting model is broken down. As a result, spin splitting can occur, while valley
remains degenerate.

7.1.2 Disorder dominated transport in a graphene Corbino disk

In Chapter 5 I consider the situation where both spatial dimensions are larger than the impurity
scattering length, thus transport is dominated by disorder. In this regime, I investigated the two-
terminal magnetoresistance in a graphene Corbino disk, which is special, since in this geometry the
Hall conductivity does not enter into the resistance. The applied perpendicular magnetic field B ≤ 0.15
T turned out to be small enough to disregard quantum effects due to Landau levels, since they were
sufficiently smeared by disorder.

In this situation one may use a semiclassical analysis, based on the Boltzmann equation, to obtain
the longitudinal conductivity, which, up to a geometric factor, completely determined the magnetore-
sistance of the device and leads to a simple quadratic dependence on B. The only information related
to the disorder in the sample that enters the Boltzmann equation is the transport time τtr, which
I determined for both short range scatterers and charged impurities, assuming that the total τtr is
determined by the reciprocal sum, i.e. applying a mixed disorder model, where scattering events from
different types of disorder are independent.

Since the two considered transport times show a different density dependence, one may extract
details, like the concentration of the different types of disorder, by investigating the voltage dependence
of the measured magnetoresistance, as was obtained from the experiment. Because the sample was very
clean, the resistance was dominated by the contact resistance of the leads, which has to be subtracted
to find the true bulk mobility, but is in general not known. Using the assumption that this contact
resistance may depend on the gate voltage, but not on the magnetic field, I was able to extract the true
bulk parameters and an estimate of said contact resistance, which indeed dominates the resistance.
The true bulk mobility, obtained from the this procedure, is larger by a factor of up to two, than the
naively determined mobility, which is typically used to characterize the sample.

In all of this, particular attention was aimed at the fact that the data includes densities very close
to the Dirac point, where effects related to the saturation of the density of states have to be taken
into account. These considerations where applied at zero temperature, so I considered the influence of
finite temperature on the magnetoresistance curves, using the parameters obtained from the T = 0K
fit, which turned out to be very small, for the considered temperatures of 4 K and 27 K. The influence
of electron-electron interaction leads to a diffusive logarithmic correction at 4K, while at 27K finite
temperature corrections dominate.

Thus I could show, that magnetotransport in a Corbino geometry is dominated by the
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Drude-Boltzmann result in the considered regime, where it is important to consider a
mixed disorder model. A similar conclusion is expected for other two-dimensional elec-
tron gases, although the density dependencies will be different. Because of this magne-
toresistance measurements performed at different densities and small magnetic fields and
low temperatures in a Corbino disk, can be used to accurately characterize the disorder
in the sample, if one performs a careful analysis.

7.1.3 Hydrodynamic transport in a graphene Corbino disk

In Chapter 6 I considered a similar graphene Corbino disk but at elevated temperatures, without a
magnetic field and at charge neutrality. In this regime, electron-electron interaction sets the smallest
length scale and the hydrodynamic approach introduced in Sec. 2.4 is applicable. At charge neutrality
and zero magnetic field, the transport of energy and charge completely decouple. While energy is
carried by the hydrodynamic velocity u, charge current becomes completely dissipative and should
lead to a simple ohmic resistance of the device.

Nevertheless, hydrodynamics does influence the electric potential and the resistance of the device.
In the considered setup, where highly doped graphene leads are attached to the inner and outer radius
of the charge neutral graphene sample and a current is injected from the middle, I use the conservation
of entropy, current and imbalance current at the interface to determine the hydrodynamic quantities,
taking into account recombination processes, disorder and energy relaxation.

It turns out that in this geometry, the hydrodynamic velocity is characterized by a new Gurzhi length
ℓGE that is renormalized by energy relaxation and effectively dominated over the viscosity. If this new
length scale is smaller than the radii of the disk, the hydrodynamic velocity vanishes in the bulk. In all
other cases it stays finite. The temperature profile within the disk is determined by this renormalized
Gurzhi length ℓGE and a second length scale related to recombination processes and shows jumps in
opposite directions at the two interfaces, which can be measured by modern imaging techniques.

Finally I argue that to find the potential profile and thus the resistance of the device, one has to
take into account that there is viscous dissipation in the sample, which has to be balanced at the
interface, to avoid an accumulation of dissipation there. To this end, I take a look at the dissipation
and find that the joule heat at the interface exactly balances this dissipation and thus leads to a jump
of potential there. Finally, one obtains the resistance of the device, which shows small, size dependent
corrections to the ohmic result.

In summary, I find that electronic transport at charge neutrality is influenced by hy-
drodynamics, which leads to jumps of both the temperature and the electrochemical
potential at the interface between the leads and the sample, which can be measured by
modern imaging techniques. Contrary to the finite density case, the electronic fluid is
compressible even in linear response. In the regime of applicability of hydrodynamics,
energy relaxation will dominate and renormalize the effective viscosity.

7.2 Outlook

The popularity of graphene and untwisted bilayer graphene has recently been rivaled by the advent
of twisted bilayer graphene but the reason for this is not that these systems are perfectly understood
already. In the following, I will state additional predictions based on my findings and further possible
directions.
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7 Conclusion and outlook

7.2.1 Interaction effects in a bilayer graphene quantum point contact

While the main transport features in quantum point contacts (QPCs) can be described without taking
into account interaction effects, the possible low density and high density of states enhance even these
weak effects. This happens in all materials but screening due to the gates was shown to be largely
unchanged for distances relevant to transport experiments in graphene and bilayer graphene [119], so
these materials are especially interesting.

Predictions Using the extended phenomenological model, I would predict a similar behavior as in
BLG in other materials with Ns spin degrees of freedom and Nv valley degrees of freedom, which
are degenerate without interaction effects. Since Coulomb interaction allows for valley but not spin
flipping processes, they should show an interaction induced shoulder, which appears close to the value
of 0.7 × Ns × Nv

e2

h . This feature is stronger the flatter the dispersion at the bottom of the lowest
subband. If the material has strong spin orbit coupling of the Kane-Mele type, an additional, stronger
plateau at 0.5 ×Ns ×Nv

e2

h should appear.

Future directions In the experiment considered in Chapter 4, these effects were an enhancement
of the Landé g-factor and an additional shoulder in the conductance. Both of these effects were only
treated on phenomenological grounds in this thesis. Except for the additional valley degree of freedom,
interaction effects in bilayer graphene are expected to be similar to a more conventional two dimensional
electron gas, so the enhanced Landé g-factor should be treatable similarly to Refs. [161–163], where
one should however also include the effective one dimensional nature imposed by the quantum point
contact. This effect should also be visible in quantum wires.

As discussed at length already, the second feature, the 0.7 anomaly has evaded an accepted micro-
scopic theoretical explanation for more than 20 years and this is certainly not changed by this thesis.
While the functional renormalization group treatment developed in Refs. [83, 84, 115] looks compelling
to a large degree, the produced shoulder is much weaker than what is seen in experiment and analytical
solutions exist not even in a perturbative limit.

There are several additional ingredients that could be combined with this sort of setup. In particular,
in Ref. [238] it was observed that, at least if there is a substantial gap and the trigonal warping is
relevant, electrons might predominately orient along the lattice directions and not take the shortest
path, which is expected to affect the conductance of the QPC in the corresponding regime of gate
voltages.

Further, while the intrinsic spin-orbit coupling in BLG is very weak, using an additional layer with
strong spin-orbit coupling, e.g., a layer of a transition metal dichalcogenide, should induce noticeable
proximity spin-orbit related effects [239, 240] and may lead to topologically nontrivial states.

In addition, the introduction of a finite twist between the layers may also lead, at certain fillings
and twist angles, to topological states [43, 240]. In order to open a gap in such a system, spin-orbit
coupling has to be added as well. To what extent these states can be manipulated with gates and
external magnetic fields and what role interaction effects play in such engineered sample are questions
worth exploring. The analysis presented here serves as the starting point for further studies in this
direction.
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7.2 Outlook

7.2.2 Disorder dominated transport in a graphene Corbino disk

Electrical transport in the disorder dominated regime in graphene at low temperatures and low mag-
netic fields, as discussed in Chapter 5 seems to be largely understood.

Predictions A similar regime, where magnetoresistance is dominated by the Drude-Boltzmann result
should exist in other two-dimensional electron gases. By using the transport scattering times calculated
in Ref. [193] I would predict, that for a parabolic spectrum one can also characterize and distinguish
short range and charged scatterers. For a parabolic spectrum, the product ωcτq does not depend on
the energy, so tuning between the classical and the quantum regime is only possible by changing the
disorder strength or the magnetic field.

Future directions If one keeps temperature low but increases the magnetic field, Landau level physics
will become important and the semiclassical approach discussed in 5 will no longer work. Instead, one
should use the perturbative results discussed in Sec. 2.2.5. There should however still be a regime,
where this Kubo result dominates over interaction induced corrections.

When one instead increases the temperature, electron-electron interaction starts to dominate at some
point and hydrodynamic transport should be observed. As shown in Chapter 6, this already leads to
interesting effects, like viscosity induced jumps at the interfaces without an external magnetic field.
If one does apply such a perpendicular magnetic field, the scenario becomes even more interesting,
particularly, since the perpendicular components of currents do not enter the equations for charge,
imbalance and energy conservation, so additional boundary conditions have to be found. Moreover,
the viscosity induced jump at the interface will acquire a magnetic field dependence, which might lead
to another way of measuring the viscosity. This is a direction I am already working on.

7.2.3 Hydrodynamic transport in a graphene Corbino disk

Predictions As already remarked, the expected jumps of temperature and electrochemical potential
should be observable by modern imaging techniques (the local temperature variation can be measured
using the approach of Refs. [234–236], while measurements of the local potential are at the heart
of the technique proposed in Refs. [202, 237]). Since energy relaxation dominates the viscosity in
the graphene sample, the jumps of the electrochemical potential are in the same direction at both
interfaces, in contrast to the prediction of Refs. [220] and [232].

Future directions While the found solution in the vanishing magnetic field case is already interesting,
the situation becomes more complex with a finite magnetic field. This field couples the energy and
charge modes. Since I already argued that resistance measurements in a charge neutral graphene
Corbino disk without a magnetic field are not well suited to determine quantities like the interaction
induced viscosity and both the temperature and potential profile are dominated by energy relaxation
over viscosity, magnetoresistance measurements might solve this problem. This is especially interesting,
since the fitting experiment has already been realized.

Finally, one may extend this theory to the study of thermoelectric phenomena and find all ther-
moelectric coefficients. Since it was already found that the thermoelectric response is anomalous, i.e.
violates the Matthiessen’s rule, the Wiedemann-Franz law and the Mott relation in Ref. [220], it
would be interesting to see how these conclusions change, if one treats the interface more carefully and
considers energy relaxation processes.
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A Appendix A

Mono- and bilayer graphene: Calculations

A.1 Eigensystem monolayer graphene

Following Ref. [56] we can also consider the system in the presence of a perpendicular magnetic field
B = Bez, where we have

π̂ = imωB

[x+ 1
mωB

q̂y

]
− iξ

1
mωB

q̂x

 , π̂† = −imωB

[x+ 1
mωB

q̂y

]
+ iξ

1
mωB

q̂x

 , (A.1)

q̂x = −iℏ∂x, q̂y = −iℏ∂y, mωB = eBℏ
c
. (A.2)

Defining raising and lowering operators

â = i√
2ℏmωB

π̂†, â† = −i√
2ℏmωB

π̂, (A.3)

which fulfill [â, â†] = ξ leaves us with the Hamiltonian

Ȟ0 = ξ
vg

ℏ
√

2ℏmωB

(
0 −iâ
iâ† 0

)
, (A.4)

and after decoupling the two components F = (u, v) we find for the first one

ε2 − 2
v2

g

ℏ
mωB ââ

†

u(x, y) = 0. (A.5)

For ξ = +1 â and â† fulfill the requirements for ladder operators and we find the eigenenergies

ε+,s,n = s
√

2vg

√
eB

c

√
n+ 1, (A.6)
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A Mono- and bilayer graphene: Calculations

where s = ± label two sets of bands and n is assumed to be integer. In general, eigenstates remain
translationally invariant along y direction with a wave vector ky, then the lowest mode fulfills

âu0(x, y) = 0, (A.7)(
x− ℏ

mωB
ky + i

mωB
qx

)
e−ikyyũ0(x) = 0, (A.8)

⇒ ũ0(x) = Ce
− 1

2
mωB

ℏ

(
x− ℏky

mωB

)2

, (A.9)

and all higher states are found via

un,ky ,+(x, y) = (â†)n

√
n!
e−ikyyũ0(x). (A.10)

The second component is then given by

vn,ky ,+(x, y) = i
vg

ℏ
√

2ℏmωB
i

εn,+
â†un,ky ,+(x, y). (A.11)

A.2 Two band theory BLG

Here we state, how the four band Hamiltonian (1.11) can be used, to construct an effective low energy
theory. In order to find an effective low-energy theory, which is defined by energies |E| ≪ γ1, we follow
the derivation of Ref. [44]. First we reorder the basis states to (ψA1, ψB2, ψA2, ψB1) ⊗ (↑, ↓), since then
the first half corresponds to the low-energy, non-dimer states while the second half corresponds to the
dimer states, that are coupled by the large energy γ1. After this reordering, we can define the Green’s
function of the total Hamiltonian Ȟ = Ȟi + ȞZ + Ȟso

i as follows:

Ȟ =
(
H11 H12
H21 H22

)
, (A.12)

Ǧ =
(
G11 G12
G21 G22

)
= (Ȟ − E)−1

=

G(0)−1
11 H12

H21 G
(0)−1
22

−1

, (A.13)

G(0)
αα = (Hαα − E)−1. (A.14)

We now aim to find a closed expression for G11, from which we define the new Hamiltonian Ȟ2
according to

G11 = (Ȟ2 − E)−1 ⇔ Ȟ2 = G−1
11 + E. (A.15)

We find

G11 =
(

1 −G
(0)
11 H12G

(0)
22 H21

)−1
G

(0)
11 (A.16)
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A.2 Two band theory BLG

and, thus,

Ȟ2 = G−1
11 + E = H11 −H12G

(0)
22 H21. (A.17)

Nest we expandG(0)
22 = (H22−E)−1 in E/γ1 ≪ 1. Then we obtain to linear order in U,∆′, δAB, v4, v3, λ,∆EZ ,

the effective two-band Hamiltonian:

Ȟ2 = ȟ0 + ȟU + ȟ3 + ȟAB + ȟ4 + ȟ∆′ + ȟZ + ȟso, (A.18)

where

ȟ0 = −v2

γ1

(
0 (π†)2

π2 0

)
⊗ š0, (A.19)

ȟU = −U

2

(1 0
0 −1

)
− v2

γ2
1

(
π†π 0
0 −ππ†

)⊗ š0, (A.20)

ȟ3 = v3

(
0 π
π† 0

)
⊗ š0, (A.21)

ȟAB = δAB

2

(
1 0
0 −1

)
⊗ š0, (A.22)

ȟ∆′ = 2∆′ v
2

γ2
1

(
π†π 0
0 ππ†

)
⊗ š0, (A.23)

ȟ4 = 2v4
v2

γ2
1

(
π†π 0
0 ππ†

)
⊗ š0, (A.24)

ȟZ = ∆EZ

2

(
1 0
0 1

)
⊗ šz, (A.25)

ȟso = ξ

(
λ1 + λ2 + λu 0

0 −λ1 − λ2 − λd

)
⊗ šz. (A.26)
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B Appendix B

Perturbative calculations

B.1 Derivation Landauer-Büttiker formula

Let us assume, that we have two leads, that can be practically described as one dimensional metals
with parabolic spectrum. Then the conductance G in linear response to an external field is given by

G = lim
ω→0

ie2

ω
CR

II(ℏω), (B.1)

CR
II(t− t′) = −iΘ(t− t′)

〈
[I(t), I(t′)]

〉
, (B.2)

where the one dimensional current operator is defined as

I(x, t) = ℏ
2mi

∑
σ

[
Ψ†(x, t)

(
∂xΨ(x, t)

)
−
(
∂xΨ†(x, t)

)
Ψ(x, t)

]
. (B.3)

For all calculations we make use of the Matsubara formalism and compute CII(τ − τ ′) instead. After
Fourier transforming we use the analytical continuation CR

II(ω) = CII(iωn → ω+ iϵ). In order to make
a numerical solution easier, we keep track of all ℏs. This means, that β = ℏ

kBT is an inverse frequency
(or a time) and Matsubara frequencies iωn ∝ 1

β are actual frequencies instead of energies. This way
the imaginary time τ is also an actual time. Greek symbols like ϵ and ω represent frequencies, energies
are noted by upper case roman letters like E. Wavevectors are called k, but are not a good quantum
number, since the system will not have translational invariance.

We consider the case, where we can express the field operators as

Ψ̂σ(x, τ) =
∑

η

∫
dω m

2πℏψω,η(x)cσ,ω,η(τ) =
∑

1
ψ1(x)c1,σ(τ), (B.4)

For consistency this requires the normalization

ψω,η(x) → eik(ω)x√
k(ω)

, (B.5)

which lets us reexpress the current as

I(x, τ) = ℏ
2mi

∑
σ

∑
1,2

[
ϕ∗

1(x)
(
∂xϕ2(x)

)
−
(
∂xϕ

∗
1(x)

)
ϕ2(x)

]
c†

1,σ(τ)c2,σ(τ) (B.6)

=
∑

σ

∑
1,2

⟨1|Ĵ(x)|2⟩c†
1,σ(τ)c2,σ(τ), (B.7)
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where

⟨1|Ĵ(x)|2⟩ = ℏ
2miϕ

∗
1(x)

(
∂xϕ2(x)

)
−
(
∂xϕ

∗
1(x)

)
ϕ2(x). (B.8)

The current-current correlator can thus be expressed as

CII(τ − τ ′) = −⟨Tτ−τ ′I(x, τ)I(x, τ ′)⟩ (B.9)

= −
∑
σ,σ′

∑
1,2,3,4

⟨1|Ĵ(x)|2⟩⟨3|Ĵ(x)|4⟩⟨Tτ−τ ′c†
1,σ(τ)c2,σ(τ)c†

3,σ′(τ ′)c4,σ′(τ ′)⟩ (B.10)

= −
∑
σ,σ′

∑
1,2,3,4

⟨1|Ĵ(x)|2⟩⟨3|Ĵ(x)|4⟩⟨Tτ−τ ′c2,σ(τ)c4,σ′(τ ′)c†
3,σ′(τ ′)c†

1,σ(τ)⟩ (B.11)

= −
∑
σ,σ′

∑
1,2,3,4

⟨1|Ĵ(x)|2⟩⟨3|Ĵ(x)|4⟩G(2)(2τ, 4τ ′; 1τ, 3τ ′) (B.12)

We would generally evaluate the two particle Greens function using a perturbative expansion for a pair
interaction W (x, y) using∫ β

0
dτŴ (τ) = 1

2

∫
dx
∫

dy
∫ β

0
dτ
∫ β

0
dτ ′Ψ†(x, τ + δ)Ψ†(y, τ ′ + δ)W (x, y)δ(τ − τ ′)Ψ(y, τ ′)Ψ(x, τ)

(B.13)

=
∫ β

0
dτ
∫ β

0
dτ ′ 1

2
∑

1,2,3,4
W12,43c

†
1(τ + δ)c†

2(τ ′ + δ)c3(τ ′)c4(τ)δ(τ − τ ′), (B.14)

W12,43 =
∫

dx
∫

dyϕ∗
1(x)ϕ∗

2(y)W (x, y)ϕ4(x)ϕ3(y). (B.15)

For the free case, we can immediately rewrite the the two particle Greens function using Wick’s
theorem

G
(2)
0 (2τ, 4τ ′; 1τ, 3τ ′) = G0(2τ ; 1τ)G0(4τ ′; 3τ ′) −G0(2τ ; 3τ ′)G0(4τ ′; 1τ). (B.16)

The first term does not contribute for finite frequencies. Since Matsubara Green’s function can only
depend on the imaginary time difference, we can immediately write down the Fourier transform only
keeping the second term

CII(iωn) =
∑
σ,σ′

∑
1,2,3,4

⟨1|Ĵ(x)|2⟩⟨3|Ĵ(x)|4⟩ 1
β

∑
iqn

G0(23, iωn + iqn)G0(41, iqn). (B.17)

The free Matsubara Green’s functions are given by

G0(x1, τ1, σ1;x2, τ2, σ2) def= −
〈
Tτ Ψ̂(x1, τ1, σ1)Ψ̂†(x2, τ2, σ2)

〉
(B.18)

= δσ1,σ2

∑
34
ψ3(x1)ψ∗

4(x2) 1
β

∑
iωn

e−iωn(t1−t2) δ34
iωn − ω3

, (B.19)

G0(3, 4; iωn) def= δ34
iωn − ω3

; G0(3; iωn) def= 1
iωn − ω3

. (B.20)
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One should further note, that

δ12 = 2πℏ
m

δ(ω1 − ω2)δη1,η2 , (B.21)

so G0(3, 4; iωn) and G0(3; iωn) have actually different units. We can then evaluate the Matsubara sum
as

1
β

∑
iqn

G0(23, iωn + iqn)G0(41, iqn) = 1
β

∑
iqn

δ23
iωn + iqn − ω2

× δ14
iqn − ω1

(B.22)

= δ23δ14
nF (ω2) − nF (ω2)
iωn − ω2 + ω1

, (B.23)

nF (ω) = 1
1 + eβω

. (B.24)

Thus we get

CII(iωn) =
∑
σ,σ′

∑
1,2

⟨1|Ĵ(x)|2⟩⟨2|Ĵ(x)|1⟩nF (ω1) − nF (ω2)
iωn − ω2 + ω1

. (B.25)

Next up we realize that

⟨2|Ĵ(x)|1⟩ = ⟨1|Ĵ(x)|2⟩∗, (B.26)

i.e.

CII(iωn) =
∑
σ,σ′

∑
1,2

|⟨1|Ĵ(x)|2⟩|2nF (ω1) − nF (ω2)
iωn − ω2 + ω1

. (B.27)

The real part of the conductance is thus given by

Re(G) = −e2 lim
ω→0

Im(CII(iωn → ω + iδ))
ℏω

(B.28)

= e2

ℏ
π
∑
1,2

∣∣∣⟨2|Ĵ(x)|1⟩
∣∣∣2 lim

ω→0
δ(ω − ω2 + ω1)nF (ω1) − nF (ω2)

ω
(B.29)

= −e2

ℏ
π
∑
1,2

∣∣∣⟨2|Ĵ(x)|1⟩
∣∣∣2 δ(−ω1 + ω2)∂nF (ω2)

∂ω2
. (B.30)

As a next step we restore the integrals as

∑
1

→
∑

η1=±1

m

2πℏ

∫
dω1 (B.31)

to get

Re(G) = −e2m2

4πℏ3

∑
η1=±1

∑
η2=±1

∫
dω1

∫
dω2

∣∣∣⟨2|Ĵ(x)|1⟩
∣∣∣2 δ(−ω1 + ω2)∂nF (ω2)

∂ω2
. (B.32)
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Since the conductance is invariant under translations of x, we can chose a large x, where a scattering
state approximation is well justified. For the particularly simple case of a delta barrier at x = 0 we
get at x = +ϵ

ϕ1(ϵ) = 1√
k1

t1 η1 = +1
1 + r1 η1 = −1

,
ϕ1(x)
x

(ϵ) = ik1√
k1

t1 η1 = +1
−1 + r1 η1 = −1

(B.33)

Thus we find

⟨1|Ĵ(x)|2⟩ = ℏ
2m

√
k1k2

k1

(
t1t

∗
2 t1(1 + r∗

2)
t∗2(−1 + r1) (1 + r∗

2)(−1 + r1)

)
+ k2

(
t1t

∗
2 t1(−1 + r∗

2)
t∗2(1 + r1) (−1 + r∗

2)(1 + r1)

) .
(B.34)

where η1 = ±1 and η2 = ±1 correspond to the rows and columns of the matrix, respectively. Alterna-
tively one can evaluate this current at x = −ϵ. Translation invariance of the current then leads to the
following restrictions:

1 = t∗1t2 + r∗
1r2, and 0 = t∗1r2 + r∗

1t2 (B.35)

and

(r2 = r∗
1 xor k1 = k2) (B.36)

and (t2 = t∗1 xor k1 = k2). (B.37)

For k1 ̸= k2 this has the physical solution r1 = r2 = 1 and t1 = t2 = 0, i.e. there is no current between
modes of different frequencies. Thus we can simplify this to

⟨1|Ĵ(x)|2⟩ = δE1,E2
ℏ
m

(
T1 t1r

∗
1

−t1r∗
1 −T1

)
= δE1,E2Jη1η2 . (B.38)

If both are at the same frequency we can simplify this as

⟨1|Ĵ(x)|2⟩ = ℏ
m

(
T1 t1r

∗
1

t∗1r1 −T1

)
= Jη1η2 (B.39)

and thus get

Re(G) = −e2m2

4πℏ3

∫
dω2

∂nF (ω2)
∂ω2

∑
η1=±1

∑
η2=±1

Jη1η2J
∗
η1η2 (B.40)

= −e2m2

4πℏ3

∫
dω2

∂nF (ω2)
∂ω2

Tr(J†J) (B.41)

= e2

h

∫
dω2

(
−∂nF (ω2)

∂ω2

)
T (ω2), (B.42)

where we used the unitarity of the S-matrix. This is the Landauer-Büttiker formula of conductance,
which we will use to describe the conductance in quantum point contacts (see Chapter 4).
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