
Improving Human Activity Recognition Models by
Learnable Sparse Wavelet Layer

Haibin Zhao
haibin.zhao@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Yexu Zhou∗
yexu.zhou@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Till Riedel
till.riedel@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Michael Hefenbrock
michael.hefenbrock@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Michael Beigl
michael.beigl@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

ABSTRACT
Modern machine learning algorithms for human activity recogni-
tion based on artificial neural networks often require a large amount
of labelled training data to generalize between human subjects and
training contexts. Large degrees of freedom make them susceptible
to overfitting and often computationally intensive to implement
on portable hardware. In this work, we introduce wavelet-based
learnable filters as a feature extraction layer that greatly improves
the generalization capability of the detector model. Our evaluations
on six benchmark datasets show significant improvements in macro
𝐹1 score when our wavelet-based learnable filter layer is prepended
to three state-of-the-art human activity recognition models. As a
side effect, in many cases we could drastically reduce the required
model size to achieve competitive performance on the benchmark
dataset, which is an important requirement for use in wearable
computing.

CCS CONCEPTS
• Information systems → Extraction, transformation and loading;
• Human-centered computing → Human computer inter-
action (HCI); Ubiquitous and mobile computing; • Computing
methodologies→ Supervised learning by classification.
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1 INTRODUCTION
With the growing attention to health, human activity recogni-
tion (HAR) plays an increasingly important role in daily life. In-
spired by the wavelet analysis such as the work [26], we lever-
age the wavelet filters to the HAR models. Compared to the data-
oriented convolutional kernels (CKs), wavelets are designed from
dominant knowledge and don’t need to be learned from data. Mean-
while, necessary properties for general signal-filtering such as bi-
orthogonality are held by the wavelets. We believe that, combined
with a learning scheme, wavelets can expose superior performance.

Currently, the majority of feature extraction is done by the CKs
in convolutional neural network (CNN) [10]. However, the CKs
are usually trained from random initialization and driven only
by the objective function. Therefore, the final values of CKs are
discouraged from a full exploration of the entire search space and
tend to overfit the training data. This is often the core reason for
suboptimal inter-subject generalizability. To address this overfitting
problem, either the quantity or quality of data should be improved.
Unfortunately, both ways are challenging: First, labeling for HAR
data collected in natural settings is commonly expensive, as labeling
often relies on auxiliary information like video, from which people
can recognize the activity of subjects. This difficulty of annotation
hinders HAR datasets from large natural setting. Moreover, the
large diversity between individuals impedes labeled HAR data being
sufficiently representative.

We therefore believe that by combining wavelets with HAR
models, we can better deal with the deficiencies of available data
and which should be observable in superior performance (macro
𝐹1 score) in Leave-One-Subject-Out (LOSO) Cross-Validation.

Several works combining wavelets and machine learning algo-
rithms have already been done. In [29] and [19], wavelets are com-
bined with CNN for HAR tasks. However, only few pre-selected
wavelets are utilized (1 wavelet in [29] and 7 wavelets in [19]),
besides, the wavelets in these works are not learnable. A frame-
work for learnable "wavelet" filters is proposed in [23], nevertheless,
only the form of wavelet transformation (i.e., correlation & down-
sampling) are respected, the necessary properties of wavelets such
as bi-orthogonality and energy conservation are not guaranteed.

In our work, we extend state-of-the-art (SOTA) HAR models by
a learnable sparse wavelet layer, which functions as a feature extrac-
tion layer. The learnable sparse wavelet layer consists of multiple
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learnable filters based on wavelet primitives followed by filter prun-
ing. With this approach, the performance of the HAR model can
be improved. Particularly, the improvement is noticeable when the
model size is small. This advantage enhances the real-time HAR and
facilitates the deployment of HAR models to wearable computing
hardware with low computational power.

In summary, the contributions of this work are:
• We propose the learnable wavelet layer to extend the HAR
models. The layer is composed by multiple wavelets.

• To ensure the sparsity of the learnable wavelet layer and to
decrease the computational cost on embedded devices, we
introduce the filter pruning.

• We prepend the learnable sparse wavelet layer to three SOTA
HARmodels. Their performances on six benchmark datasets
show a great improvement.

2 METHODOLOGY
The learnable sparse wavelet layer is a convolutional layer com-
posed by several learnable wavelet filters. To keep the sparsity of
this layer, some non-informative filters are pruned during training.
In the following, we firstly describe the generation, selection and
pre-processing of the wavelets in detail. Then, we explain the im-
plementation of the learnable part of wavelets. Lastly, we introduce
the filter pruning for the reduction of computational costs.

2.1 Wavelet Filters
In this work, we chose the expressive and widely used wavelets [1]
as the primitives of our learnable filters. There are various mother
wavelets representing different underlying information, e.g., the
Shannon-wavelet performs as an ideal band-pass filter [11], while
the Morlet-wavelet acts more like a low-pass filter which is closely
related to human perception [5, 18]. Some filters are beyond frequency-
domain filters, such as Daubechies-wavelet [27]. By using these
wavelets, generally robust features can be extracted forHAR tasks [26].
Different from the approaches in [29] and [19], we do not pre-
specify the utilized wavelets, i.e., we select all the 127 discrete
mother wavelets provided by PyWavelets1 at the beginning. We
then sample them to the same length as the sliding window used
for activity recognition. To initially reduce the number of mother
wavelets without losing their expressiveness, we apply K-means
to cluster the mother wavelets w.r.t. both the temporal and the fre-
quency domain. The distance between the 𝑖-th and the 𝑗-th mother
wavelet is defined as ∥𝒇 𝑖−𝒇 𝑗 ∥2+∥F𝑖−F𝑗 ∥2, where𝒇 𝑖 and F𝑖 denote
the 𝑖-th wavelet as well as its Fourier transformation. The number
of clusters can be determined by the silhouette coefficient [25]. In
order to respect the law of energy conservation in filtering, we
normalize the wavelets by

𝒇̃ 𝑖 =

{𝒇 𝑖 , 𝐸𝑖 ≤ 1,
𝒇 𝑖/𝐸𝑖 , 𝐸𝑖 > 1, 𝐸𝑖 =

�����∑︁
𝑡

𝒇 𝑖 [𝑡]
����� , (1)

where𝒇 𝑖 [𝑡] denotes the value of the 𝑡-th element in the 𝑖-th wavelet.
We apply this normalization not only to the mother wavelets, but
all wavelets after the temporal scaling (see Section 2.2).

1https://pywavelets.readthedocs.io

2.2 Learnable Wavelets
To make the selected wavelets learnable without losing their func-
tional properties, we introduce a temporal scaling factor 𝒌 as a learn-
able parameter. Since we utilized discrete wavelets in this work, the
temporal scaling of filters can only be achieved by down-sampling,
therefore, 𝒌 cannot be optimized by gradient-based methods, as
the gradient of a scaled wavelet w.r.t. the temporal scaling factor
∇𝒌 𝑓 [𝒌𝑡] does not exist. Therefore, we introduce another learnable
parameter𝒘 that indicates the informativeness of each filtered sig-
nal in the HAR model. The informative factor𝒘 will be multiplied
with the corresponding filtered signals. Due to the existence of the
informative factor𝒘 , we are able to optimize the scaling factor 𝒌
by dropping the scaling factors related to non-informative filtered
signals (see next subsection for more details).

In ourwork, we implement the temporal scaling by down-sampling
the mother wavelets by power-of-two scaling factors and normalize
scaled wavelets after the down-sampling by Equation 1.

2.3 Filter Pruning
Asmentioned in the last section, we aim to exclude non-informative
filters. Similar problems have been studied in the field of neural
architecture search [7], namely the neural network pruning. In this
work, we use the similar strategy as [16] and [14]. Specifically,
we first train the HAR model as well as the informative factors.
After the training, the non-informative input signals as well as the
corresponding wavelets can be removed. After the removal, we
re-train the model again to mitigate the changes caused by the
removal of temporal scaling factors.

ℓ1 regularization. To reduce the number of remaining scaling
factors, we add a penalty term to the objective function to encour-
age more zero-valued informative factors. Ideally, this penalty term
should be ℓ0 (𝒘), indicating the number of non-zero elements in𝒘 ,
also known as the sparsity of𝒘 . However, ℓ0 (·) is ill-conditioned [30]
and can not be solved by gradient-based optimization. Coincidently,
it has been proven that, ℓ0 (𝒘) can be usually substituted by the sum
of the absolute values of all the elements in the vector 𝒘 [6], i.e.,
ℓ1 (𝒘) =

∑
𝑖 |𝒘𝑖 |.

Pruning & fine-tuning. After the training, we remove all informa-
tive factors lower than a threshold and as well as the corresponding
wavelets. Figure 1 shows the comparison of the filtering before and
after pruning. Since the informativeness of the pruned signals is not
exactly zero, the performance of the model usually becomes worse
after pruning. Therefore, the model will be fine-tuned to adapt to
the pruned input. Moreover, since the ℓ1 regularization behaves as
a trade-off between the sparsity of the informative factor and the
performance of the model, we remove this term in fine-tuning.

3 EXPERIMENTS
To verify the improvement of the learnable sparse wavelets layer
for the HAR models, we grafted the layer on three SOTA HAR
models and perform the experiment on six benchmark datasets
(see Section 3.1). The experiment2 is executed with NVIDIA® A100
GPU with 40GB memory. The result is reported in Section 3.2.

2The code is available at https://github.com/teco-kit/ISWC22-HAR

https://pywavelets.readthedocs.io
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Figure 1: Pipeline of the proposed algorithm. Left: exemplary original data. Middle: the proposed learnable sparse wavelet
layer. Right: a machine learning model for HAR. 𝐶 = number of channels, 𝐿 = length of sliding window, 𝐹 = number of initially
selected filters, 𝐹 ′ = number of filters after pruning.

3.1 Experiment Setup
In this section, benchmark datasets, baseline models, the implemen-
tation details as well as the evaluation metrics are described.

Datasets. We select six benchmark datasets for the experiment
and use the same setup as described in [8, 15, 24]. More specific
information about the datasets are:

• Opportunity [4] with 79 input channels (including A, G,
andM)3 and 18 classes on 4 subjects. The sampling frequency
is 30Hz, while the length of the sliding window is 1 s.

• Skoda [28] with 30 input channels (including only A) and
10 classes on 1 subject. The frequency is down-sampled to
33Hz, while the length of the sliding window is 2.56 s.

• PAMAP2 [22] with 18 input channels (including A and G)
and 12 classes on 9 subjects. The frequency is down-sampled
to 33Hz, while the length of the sliding window is 5.12 s.

• DSADS [3] with 6 input channels (including A and G) and
12 classes on 30 subjects. The sampling frequency is 25Hz,
while the length of the sliding window is 5 s.

• Daphnet [2] with 9 input channels (including only A) and
2 classes on 10 subjects. The sampling frequency is 64Hz,
while the length of the sliding window is 1 s.

• WISDM [13] with 3 input channels (including only A) and
6 classes on 36 subjects. The sampling frequency is 20Hz,
while the length of the sliding window is 5 s.

Baselines. To verify the effectiveness of the learnable sparse wavelet
layer, we apply the layer to three SOTA benchmark HAR models,
DeepConvLSTM [21], Multibranch CNN (MCNN) [20] and Self-
Attention HAR (SA-HAR) [17]. These three models are chosen as
they represent three typical structures of HAR models. MCNN is a
purely convolution-based model which leverages late-fusion tech-
niques to optimally fuse multimodal sensor data. DeepConvLSTM
is a hybrid model of CNN and LSTM that combines the advantages
of the CNN and LSTM. SA-HAR is a purely self-attention based
HAR model without any recurrent structures. It utilized sensor
modality attention, self attention blocks and global temporal atten-
tion to extract the inter- and intra-modality features. We evaluate
the baseline models with different model sizes by employing the

3A = accelerometer, G = gyroscope, M = magnetrometer

width scaling method [9]. With the model scaling factor 𝛼 , both
the number of input and output channels are modified. When, e.g.,
𝛼 = 0.5, the number of the CKs and the number of parameters in
each CK are halved. Therefore, the model size will be quadratically
reduced to around 𝛼2 = 0.25 of the original model size.

Training & Validation. As the optimizer, we select Adam [12]
with default settings and the learning rate being 10−4. The learning
rate is multiplied by 0.1 with 5-epoch patience on the valid loss.
The maximal training epochs are set to 150, while the early-stop
strategy is adopted with 15-epoch patience on valid loss. The size
of each mini-batch is 256. The above settings are also identically
used in fine-tuning process. Regarding the sparsity of the learnable
sparse wavelets layer, we pruned the number of wavelets down to
50 for all datasets. Note that, this number can also be tuned as a
hyperparameter. Moreover, for all datasets except Skoda, we do
LOSO Cross-Validation. Since there is only one subject in Skoda,
5-fold Cross-Validation is performed. For each dataset, we run three
approaches (baseline & baseline + learnable sparse wavelet layer
& baseline + learnable wavelet layer without pruning) with four
model scaling factors (𝛼 ∈ {0.25, 0.5, 0.75, 1}) for 5 different
random seeds (ranging from 1 to 5).

Evaluation. After training, we use test data to evaluate the trained
models. Same as work [17], we use window-wise and sample-wise
data split for training and testing respectively. I.e., the stride of
sliding windows for training and validation data equal 50% window
size, whereas the stride for the test data is only 1. As evaluation met-
ric, we use macro 𝐹1 score to suppress the influence of unbalanced
classes in the datasets. For each random seed, the macro 𝐹1 scores
of all Cross-Validations are averaged for all subjects. After the five
runs, the expectation of averaged macro 𝐹1 score w.r.t. random seed
is calculated (see Section 3.2). Moreover, we calculate the floating
point operations for each model on each dataset.

3.2 Result
From Figure 2 we conclude preliminary that, the learnable sparse
wavelet layer can improve the overall performance of the baseline
HAR models. Moreover, the introduction of pruning significantly
reduces the computational cost without reducing (or occasionally
even improving) performances. Additionally, we notice that, for the
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Figure 2: Result of the experiment. Different colors indicate different HAR models (green for DeepConvLSTM, purple for
SA-HAR, and blue for MCNN). Different linetypes denote the macro 𝐹1-scores from different setups (dash lines for baselines,
solid lines for learnable sparse wavelet layers, and dot lines for learnable wavelet layers without pruning). The bars with
different intensities refer to the number of floating point operations required by different setups, namely light colors for
baselines, normal colors for learnable sparse wavelet layers, and dark colors show learnable wavelets without pruning.

datasets Opportunity, Skoda, DSADS, andWISDM, the perfor-
mance of baselines deteriorate as the model sizes decrease, i.e., less
information can be learned when the models are smaller. In this
case, the information extracted by learnable wavelets compensates
significantly for the lack of model size in those cases. Particularly,
the contribution of learnable wavelets increases as the model size
scales down. Conversely, as the model is close to the saturation
size, learnable wavelets may not provide additional information
to improve the model (e.g., Opportunity with 𝛼 = {1, 0.75, 0.5}).
Regarding Daphnet, we speculate that the baselines overfit, i.e.,
with growing model sizes, the generalizability (which is reflected
by the performance on test data) decreases. As hypothesized in Sec-
tion 2.1, learnable wavelets, due to their non-data-oriented nature,
should not overfit the training data to an equal extend, and thus,
may be able to remedy the generalizability of the models to some
extent.

3.3 Discussion
From the experiments, we can see that the learnable wavelets gen-
erally enhance the performance of the baseline HAR models. We
believe that the improvement can be summarized in two aspects
that support our initial hypothesis: When the model tends to over-
fit the training data due to large size, learnable wavelets do not
overfit. In this way, the generalization ability of the model can
be ameliorated. In contrast, when the model size is too small and
therefore lacks learning capability, the rich representational ability
of the wavelets can help extract more robust and useful informa-
tion and consequently improve the performance. Particularly, the
improvement gets more noticeable when the model size is smaller.
This advantage renders our approach a strong candidate for the
deployment of HAR models on hardware with limited computing
capacity, such as wearable devices.

4 CONCLUSION
In this work, we proposed the learnable sparse wavelets layer by
leveraging the superior properties of wavelets. Tomake thewavelets
capable of learning without losing the ability to extract generally
useful features and necessary properties for general signal-filtering,
we designed the temporal scaling factors 𝒌 and informative factor
𝒘 as learnable parameters. Our hypothesis is supported by our ex-
periment that, the learnable sparse wavelets layer extracts rich and
general information for the subsequent HAR model, and thus, the
performance can be improved. Furthermore, the proposed layer is
more pronounced when the model is the smaller, this facilitates the
deployment of the HAR models on wearable devices.

Future work. In this work, the temporal scaling factor 𝒌 can not
be optimized by gradient-based approaches due to the discrete-
ness of the mother wavelets 𝑓 [𝑡]. In the future, analytical mother
wavelets 𝑓 (𝑡) should be used, so that the gradient w.r.t. tempo-
ral scaling factors ∇𝒌 𝑓 (𝒌𝑡) exists. Moreover, the learnable sparse
wavelet layer functions as a data pre-processing that extract more
useful and general information. To further decrease the computa-
tional cost of HAR, more efficient HAR models can be designed.
Generally, more ablation studies are expected to fully understand
the positive effects of learnable wavelets in HAR models.
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