TinyHAR: A Lightweight Deep Learning Model Designed for Human Activity Recognition

Yexu Zhou†
yexu.zhou@kit.edu
Karlsruhe Institute of Technology
Karlsruhe, Germany

Haibin Zhao†
haibin.zhao@kit.edu
Karlsruhe Institute of Technology
Karlsruhe, Germany

Yiran Huang
yiran.huang@kit.edu
Karlsruhe Institute of Technology
Karlsruhe, Germany

Michael Hefenbrock
michael.hefenbrock@kit.edu
Karlsruhe Institute of Technology
Karlsruhe, Germany

Till Riedel
till.riedel@kit.edu
Karlsruhe Institute of Technology
Karlsruhe, Germany

Michael Beigl
michael.beigl@kit.edu
Karlsruhe Institute of Technology
Karlsruhe, Germany

ABSTRACT

Deep learning models have shown excellent performance in human activity recognition tasks. However, these models typically require large amounts of computational resources, which makes them inefficient to deploy on edge devices. Furthermore, the superior performance of deep learning models relies heavily on the availability of large datasets to avoid over-fitting. However, the expensive efforts for labeling limits the amount of datasets. We address both challenges by designing a more lightweight model, called TinyHAR. TinyHAR is designed specifically for human activity recognition employing different saliency of multi modalities, multimodal collaboration, and temporal information extraction. Initial experimental results show that TinyHAR is several times smaller and often meets or even surpasses the performance of Deep-ConvLSTM, a state-of-the-art human activity recognition model.

CCS CONCEPTS

• Human-centered computing → Ubiquitous and mobile computing; Human computer interaction (HCI); • Computing methodologies → Supervised learning by classification.

KEYWORDS

human activity recognition, time series processing, lightweight deep learning model

ACM Reference Format:

† Authors contributed to the work equally and should be regarded as co-first authors.

1 INTRODUCTION

Sensor streams can only be represented in abstract ways and the recorded data typically cannot be interpreted easily by humans [25]. This problem leads to difficulties in post-hoc annotation, which limits the availability and size of annotated human activity recognition (HAR) datasets. Given the complexity of sensor-based HAR tasks, such large datasets are typically necessary to apply state-of-the-art (SOTA) machine learning. Although deep learning (DL) models have shown extraordinary performance on HAR tasks, most DL models for HAR have large sizes (numerous trainable network parameters). When available data is limited, overly large network parameters make the model prone to overfitting, limiting or even jeopardizing its generalization performance. The second challenge arises from the fact that wearable devices that are intended to use the HAR model typically have limited resources. As a result, an excessive number of network parameters complicates the deployment of such models on end devices.

To address these challenges, it is desirable to design an efficient and lightweight DL model. By reviewing related work, we found only few works that considered designing a lightweight HAR model. To this end, we propose an efficient and lightweight DL model which has small model size and low inference latency. In summary, the contributions of this work are:

• We introduce a set of designing guidelines to design lightweight DL models for HAR.
• Based on the summarized design guidelines, we propose an efficient HAR model named TinyHAR.
• We conduct extensive experiments on six benchmark HAR datasets and the result shows great improvement both in performance and model size.

The proposed TinyHAR model meets or even surpass the optimized DeepConvLSTM [4] with reduced model size by more than 93% on five datasets. This reduction in model size facilitates the deployment of the model on common off-the-shelf low-cost devices such as the Seed Studio’s RISC-V based Sipeed MAix Bit platform, which we are currently using for developments. The implementation of TinyHAR can be currently found in GitHub† and may be freely used for wearable computing applications.

†https://github.com/teco-kit/ISWC22-HAR
2 RELATED WORK

Deep learning for HAR. DCNN [27] first demonstrated the potential of convolutional neural networks (CNNs) for HAR tasks, which has excellent local dependency extraction capability. To investigate how to optimally extract and fuse features from multimodal sensor data, MCNN [18] proposed multibranch CNNs. However, CNNs usually need to be stacked very deep to obtain a larger receptive field to capture the long-term temporal dependencies. To efficiently capture the long-term dependencies, different recurrent neural networks (RNNs) variants were introduced to HAR tasks. Additionally, various CNN-RNN hybrid models were proposed [20, 21, 30]. DeepConvLSTM [21], a popular benchmark HAR model, first used a CNN subnet to extract local features from different sensor modalities and feed the extracted features into a long-short-term-memory (LSTM). However, RNNs still have difficulties capturing temporal dependencies over long ranges, as they suffer from the “forgetting” defect [11]. In recent years, self-attention based models [26] have shown superior performance over RNN-based models in capturing long-term temporal dependencies. The utilization of attention mechanism for HAR has also been explored [17, 19]. Almost all work has focused on adding more innovative structures to the DL models for improving the ability of models to extract features. However, most previous works have typically not taken the size of the model into account.

Lightweight DL models for HAR. Only a few works considered to design lightweight and efficient DL models for HAR. Based on the benchmark DeepConvLSTM model, the works in [4, 22] attempt to optimize the number of channels or LSTM layers of DeepConvLSTM model. In [7], only shallow CNN model is considered. Since CNN models need to be stacked multiple times to obtain global information, the work in [7] concentrates on improving the performance of CNNs by incorporating the classical machine learning model. The work in [15] attempts to use grouped convolution in CNN-based models, but the optimized models still have more than half million parameters. We thus try to investigate smaller model structures designed from scratch while considering the unique characteristics of the HAR tasks.

3 METHODOLOGY

Figure 1 gives an overview of the proposed TinyHAR model. In this section, we first introduce the design guidelines, that we gathered from previous experimentation with HAR models. Then, we propose our TinyHAR that follows those guidelines.

3.1 Practical Guidelines for Efficient HAR

Model Design

Designing an optimal, lightweight DL model requires careful consideration of the characteristics of target tasks and the factors which could reduce the inference time and operations number. Based on these two considerations, we developed the following guidelines to design lightweight HAR models:

- **G1:** The Extraction of local temporal context should be enhanced. Unlike the NLP task, where each word has meaning in the sequence, the values at a single point in time series bring limited information [1, 21].

- **G2:** Different sensor modalities should be treated unequally. These modalities include different sensor types and wearing positions. Only some modalities are informative for the recognition of certain activities, while other modalities may also contain patterns that are irrelevant to the activity [6, 28]. Irrelevant modalities may influence the recognition and undermine the performance [6].

- **G3:** Multi-modal fusion. The activity is carried out collectively through the movement of the various body parts. Extracting features without considering interaction between different modalities may limit the models’ performance [14].

- **G4:** Global temporal information extraction. Human activities are sequentially embedded as transient information in the sensor readings. Information on some time steps may show more salient patterns [19] than their temporal surrounding.

- **G5:** The temporal dimension should be reduced appropriately. Compared to image data, HAR data usually has a much larger temporal than spatial dimension. Excessively long temporal dimension poses a problem to the effective extraction of global temporal dependencies [11]. Reducing the temporal dimension can alleviate this problem and also reduce the computational cost.

3.2 TinyHAR

Following the guidelines above, TinyHAR consists of five parts. The input data of the model $X \in \mathbb{R}^{T \times C \times F}$, where T denotes the temporal sliding window size, C is the number of sensor channels, and F indicates the number of filters ($F = 1$ for the raw data input, which has not been processed).

3.2.1 Individual Convolutional Subnet. To enhance the local context, we applied a convolutional subnet to extract and fuse local initial features from the raw data (G1). Considering the varying contribution of different modalities, each channel is separately processed through four individual convolutional layers (G2). For each convolutional layer, ReLU nonlinearities and batch normalization [10] are used. Individual convolution means that the kernels have only 1D structure along the temporal axis (the kernel size is 5×1). To reduce the temporal dimension (G5), the stride in each layer is set to 2. All four convolutional layers have the same number of filters F. The output shape of this convolutional subnet is thus $\mathbb{R}^{T' \times C \times F}$, where T' denotes the reduced temporal length.

3.2.2 Transformer encoder: Cross-Channel Info Interaction. Work [1] successfully adopted self-attention mechanism to learn the collaboration between sensor channels. Inspired by this, we utilized one transformer encoder block [26] to learn the interaction, which is performed across the sensor channel dimension (G2) at each time step. The transformer encoder block consists of a scaled dot-product self-attention layer and a two-layers Fully Connected (FC) feed-forward network. The scaled dot-product self-attention is used to determine relative importance for each sensor channel by considering its similarity to all the other sensor channels. Subsequently, each sensor channel utilized these relative weights to aggregate the features from all the other sensor channels. Then the feed-forward layer is applied to each sensor channel, which further
fused the aggregated feature of each sensor channel. Until now, the features of each channel are contextualized with the underlying cross-channel interactions.

3.2.3 **Fully Connected Layer: Cross-Channel Info Fusion.** In order to fuse the learned features from all sensor channels (G3), we first vectorize these representations at each time step, $X \in \mathbb{R}^{T \times C \times F}$ to $X \in \mathbb{R}^{T \times F \times F}$. Then one FC layer is applied to weighted summation of all the features. Compared to the attention mechanism used in [16], in which the features of same sensor channel share the same weights, FC layer allows different features of same sensor channel to have different weights. Such flexibility of the FC layer leads to more sufficient feature fusion. This FC layer works also as a bottleneck layer in the proposed TinyHAR, which reduce the feature dimension to F'. In our work we set $F' = 2F$.

3.2.4 **One-Layer LSTM: Global Temporal Info Extraction.** After the features are fused across sensor and filter dimension, we obtain a sequence of refined feature vectors $\in \mathbb{R}^{F \times F}$ ready for sequence modeling. We then apply one LSTM layer to learn the global temporal dependencies.

3.2.5 **Temporal Attention: Global Temporal Info Enhancement.** Given that not all time steps equally contribute to recognition of the undertaking activities, it is crucial to learn the relevance of features at each time step in the sequence. Following the work in [16], we generate a global contextual representation $c = \mathbb{R}^{F'}$ by taking a weighted average sum of the hidden states (features) at each time step. The weights are calculated through a temporal self-attention layer. Because the feature at the last time step $x_T \in \mathbb{R}^{F'}$, has the representation for the whole sequence, the generated global representation c is then added to the x_T. Here, we introduce a trainable multiplier parameter γ to c, which allows the model has the ability to flexibly decide, whether to use or discard the generated global representation c.

4 EXPERIMENT

4.1 Experiment Setup

In this section, we describe our evaluation methodology, including benchmark HAR datasets, compared baselines and model training.

Benchmark HAR datasets. In order to validate the effectiveness of the proposed TinyHAR, we evaluate it on six widely used HAR benchmark datasets [1, 8, 14, 28]. The datasets were selected to exhibit a great diversity in terms of the sensing modalities used, installation locations, sampling frequency, data collection scenarios and activities to be recognized. Important information is summarized in Table 1. Defined window sizes are consistent with the settings used in [8, 14, 24].

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Freq (Hz)</th>
<th>#Subject</th>
<th>#Class</th>
<th>#Sensors</th>
<th>#SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAMAP2 [23]</td>
<td>33</td>
<td>9</td>
<td>12</td>
<td>18 A,G</td>
<td>5.12 s</td>
</tr>
<tr>
<td>Skoda [29]</td>
<td>33</td>
<td>1</td>
<td>10</td>
<td>30 A</td>
<td>2.56 s</td>
</tr>
<tr>
<td>DSADS [3]</td>
<td>25</td>
<td>30</td>
<td>12</td>
<td>6 A,G</td>
<td>5 s</td>
</tr>
<tr>
<td>Daphnet [2]</td>
<td>64</td>
<td>10</td>
<td>2</td>
<td>9 A</td>
<td>1 s</td>
</tr>
<tr>
<td>WISDM [13]</td>
<td>20</td>
<td>36</td>
<td>6</td>
<td>3 A</td>
<td>5 s</td>
</tr>
</tbody>
</table>

Evaluation rules and metric. On all datasets (except the Skoda), we performed Leave-One-Subject-Out (LOSO) Cross-Validation (CV) to assess the performance of the model with focus on inter-subject generalization. As there is only one subject in Skoda dataset, a 5-fold CV was performed on this data. During training, the data was split by a sliding window with 50% overlap between adjacent windows. For the test data, the window was slid forward by one time step [1]. We used the macro average F1-score F_1 as the evaluation metric, which reflects the ability of the model to identify each activity, regardless of commonly unbalanced class distributions. The CV experiments are performed for five runs with pseudo-random number seeds (1,2,3,4,5). For each run, the mean F_1 score of all subjects are calculated. Then, the scores of five runs are averaged and reported as the final performance.

Baselines. We compare the TinyHAR with the optimized DeepConvLSTM from [4], which is widely used as a benchmark model in various works. Specifications of all layers of the model are consistent with [4]. Furthermore, we introduce a model shrinking hyper-parameter width multiplier α [9] to thin DeepConvLSTM uniformly at each layer. By setting $\alpha = [0.25, 0.5, 0.75]$, the model size will be reduced to approximately 1/2, 1/4 and 1/16 respectively (referred as DeepConvLSTM_0_75, DeepConvLSTM_0_50 and DeepConvLSTM_0_25). We adjust the filter number F of TinyHAR, so that has a comparable number of parameters to DeepConvLSTM_0_25.
We observed an overfitting trend of DeepConvLSTM variants for with model size for the baseline is that, Skoda data was collected with a patience equal to 5 epochs. We train models for a maximum temporal-spatial patterns in multimodal sensing. DSADS suggests that TinyHAR has a great capability to capture size. The Performance on Dahpnet, PAMAP2, SKODA, WISDM, and 6% HAR still reaches the same performance with around subjects through controlled, laboratory conditions, which reduces CV is smaller. Similarly, the WISDM dataset was collected from 36 statistical independence of training and test samples within the 0.36% the performance between both models. TinyHAR is, however, additionally compared TinyHAR to a DeepConvLSTM with α DeepConvLSTM model variants. Therefore, for Daphnet data, we 0.10% on Skoda dataset and slightly higher F_1M on WISDM dataset. Significant tests show that there is no statistically significant difference in the performance between both models. TinyHAR is, however, much smaller than the comparison model and performs significantly better than DeepConvLSTM_0.25 with a similar size. We speculate that the reason for the positive correlation of performance with model size for the baseline is that, Skoda data was collected from only one subject, so it does not penalize overfitting as the statistical independence of training and test samples within the CV is smaller. Similarly, the WISDM dataset was collected from 36 subjects through controlled, laboratory conditions, which reduces the effect of generalizability. Even under this condition, the TinyHAR still reaches the same performance with around 6% model size. The Performance on Dahpnet, PAMAP2, SKODA, WISDM, and DSADS suggests that TinyHAR has a great capability to capture temporal-spatial patterns in multimodal sensing. However, TinyHAR obtains lower F_1M score on Opportunity. Compared to other datasets, dataset Opportunity has much more sensor channels. We assume that the poor performance is owing to the fact that the model is too small to effectively extract and fuse information from so many channels. Thus, we increased the filter number F from 28 to 42 (model size 370082). The model’s F_1M performance of 41.22% ± 1.19% in this case (as predicted) exceeds the performance of all DeepConvLSTM variants.

As shown in Figure 2 (third row), we also utilized the computational cost (number of FLOPs) as an efficiency metric. The TinyHAR model has a much smaller number of FLOPs compared to the DeepConvLSTM model. Compared to the DeepConvLSTM_0.25 model, the TinyHAR model achieves better results on all datasets, although it has a higher number of FLOPs.

5 CONCLUSION
Through a HAR-specific design, we were able to develop a lightweight but highly competitive DL model. Particularly, when taking the model size into account, which is of great importance for wearable computing, the model clearly outperforms the DeepConvLSTM as an example of a state of the art HAR model in our experiments.

Instead of only adapting an architecture from another domain and letting the optimizer do its magic, different saliency of multi modalities, multimodal collaboration and temporal information extraction were specifically translated into a network architecture to achieve this performance. We believe that this shows that there is still a great potential for improvement in HAR models with the focus on deployment on wearable computing devices.

ACKNOWLEDGMENTS
This work has been partially supported by the Carl-Zeiss-Foundation as part of “stay young with robots” (Jubot) project, the German Ministry of Research and Education as part of the SDBL (01IS19030A), and the Ministry of Economic Affairs, Labour and Tourism Baden-Württemberg as part of CC-KING.

Table:

<table>
<thead>
<tr>
<th>Model</th>
<th>F1 Score</th>
<th>Model Size</th>
<th>FLOPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeepConvLSTM</td>
<td>89%</td>
<td>17786</td>
<td>23M</td>
</tr>
<tr>
<td>DeepConvLSTM_0.75</td>
<td>88%</td>
<td>12759</td>
<td>10M</td>
</tr>
<tr>
<td>DeepConvLSTM_0.50</td>
<td>86%</td>
<td>9831</td>
<td>75M</td>
</tr>
<tr>
<td>DeepConvLSTM_0.25</td>
<td>85%</td>
<td>6285</td>
<td>200M</td>
</tr>
<tr>
<td>TinyHAR</td>
<td>89%</td>
<td>12199</td>
<td>0M</td>
</tr>
</tbody>
</table>

Figure 2: LOSO CV Performance comparison. For each dataset, the averaged F_1M, the corresponding model size (number of trainable parameters) and number of FLOPs are shown separately.

Training. The training is performed using the Adam optimizer [12] with an initial learning rate 10^{-4}. The learning rate decays to 10% with a patience equal to 5 epochs. We train models for a maximum of 150 epochs with early stopping, and the batch size is 256. All models were trained on a single NVIDIA A100 40G GPU.

4.2 Result
As summarized in Figure 2, TinyHAR by design has the smaller size than the baseline. However, it achieves a better performance on the three datasets (PAMAP2, DSADS and Daphnet) compared to its competitors. On these three datasets, TinyHAR outperforms the baseline in original size in terms of F_1M by 1.8%, 3.1% and 9.78%. We observed an overfitting trend of DeepConvLSTM variants for the PAMAP2 and Daphnet dataset in comparison with the reduced DeepConvLSTM model variants. Therefore, for Daphnet data, we additionally compared TinyHAR to a DeepConvLSTM with $\alpha = 0.21$ (model size 17786), which achieved an F_1M of 55.93% ± 1.75%. Although the performance has gotten better, it is still 5.36% lower than TinyHAR. For PAMAP2 dataset, we additionally reduced α to 0.23 (model size 36254). In this case, we observe a degradation of the performance (74.36% ± 1.02%)

Compared to the baseline, TinyHAR obtains slightly lower F_1M on Skoda dataset and slightly higher F_1M on WISDM dataset. Significant tests show that there is no statistically significant difference in the performance between both models. TinyHAR is, however, much smaller than the comparison model and performs significantly better than DeepConvLSTM_0.25 with a similar size. We speculate that the reason for the positive correlation of performance with model size for the baseline is that, Skoda data was collected from only one subject, so it does not penalize overfitting as the statistical independence of training and test samples within the CV is smaller. Similarly, the WISDM dataset was collected from 36 subjects through controlled, laboratory conditions, which reduces the effect of generalizability. Even under this condition, the TinyHAR still reaches the same performance with around 6% model size. The Performance on Dahpnet, PAMAP2, SKODA, WISDM, and DSADS suggests that TinyHAR has a great capability to capture temporal-spatial patterns in multimodal sensing.