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Abstract: Multicore optical fibers and ribbons based on fiber arrays allow for massively 
parallel transmission of signals via spatially separated channels, thereby offering attractive 
bandwidth scaling with linearly increasing technical effort. However, low-loss coupling of light 
between fiber arrays or multicore fibers and standard linear arrays of vertical-cavity surface-
emitting lasers (VCSEL) or photodiodes (PD) still represents a challenge. In this paper, we 
demonstrate that 3D-printed facet-attached microlenses (FaML) offer an attractive path for 
connecting multimode fiber arrays as well as individual cores of multimode multicore fibers to 
standard arrays of VCSEL or PD. The freeform coupling elements are printed in situ with high 
precision on the device and fiber facets by high-resolution multi-photon lithography. We 
demonstrate coupling losses down to 0.35 dB along with lateral 1 dB alignment tolerances in 
excess of 10 m, allowing to leverage fast passive assembly techniques that rely on industry-
standard machine vision. To the best of our knowledge, our experiments represent the first 
demonstration of a coupling interface that connects individual cores of a multicore fiber to 
VCSEL or PD arranged in a standard linear array without the need for additional fiber- or 
waveguide-based fan-out structures. Using this approach, we build a 3 25 Gbit/s  transceiver 
assembly which fits into a small form-factor pluggable module and which complies with the 
requirements for 100GBASE-SR4 transceivers according to the IEEE 802.3 standard. 

1. Introduction 
In recent years, increasing throughput of optical communication systems has primarily relied 
on higher symbol rates and advanced modulation formats [1]. Giving the steadily rising demand 
for communication bandwidth, however, the limits of these approaches are becoming 
increasingly obvious [2,3], especially for short-reach intra-datacenter links, where cost- and 
energy-efficient implementation is key [4]. Parallel transmission via spatially separated 
channels is seen as an attractive alternative for bandwidth scaling with linearly increasing 
technical effort [3,5]. To maintain the associated fiber installations manageable, significant 
effort has been spent to replace single fibers by more compact fiber ribbons [6−17], comprising 
fiber arrays (FA), or by multicore fibers (MCF) [18−28]. However, low-loss coupling of light 
between FA or MCF and standard linear arrays of vertical-cavity surface-emitting 
lasers (VCSEL) or photodiodes (PD) still remains challenging. Current solutions for coupling 
of VCSEL or PD to FA rely, e.g., on high-precision injection-molded plastic parts that contain 
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refractive and reflective optical elements to adapt the spot size of the emitted light for efficient 
coupling to the corresponding fiber [6−10,13,15,17,29]. However, these schemes often require 
multi-step assembly processes, starting with a precise mechanical socket that needs to be 
carefully aligned and fixed to the on-board VCSEL / PD array. This socket is equipped with a 
pluggable interface to a detachable mechanical connector that has to be glued to a FA in a 
separate step and that can then be connected to the on-board socket. These schemes require 
high-precision visual alignment of the socket with respect to the VCSEL / PD array as well as 
precise mounting of the connector to the FA, while typical losses range between 1 dB and 
2 dB [13]. Moreover, these schemes are not applicable to MCF, which either have rely on fan-
out structures to address individual fiber cores [18,30,31], often in conjunction with custom 
connector and fiber arrangements [18−20,32,33], or which require device [21−26,28] or grating 
coupler (GC) [27] arrays in non-standard 2D arrangements that are precisely matched to the 
cross-section of the respective MCF. Such solutions are technically complex and challenging 
to scale, in particular when it comes to compact short-reach data-center transceivers that are 
subject to stringent constraints in footprint and in assembly costs. 

In this paper, we show that 3D-printed facet-attached microlenses (FaML) [34] may offer 
an attractive alternative for efficiently connecting multimode fiber arrays (MM-FA) as well as 
individual cores of multimode multicore fibers (MM-MCF) to standard arrays of VCSEL or 
PD having industry-standard pitches of, e.g., 250 µm. The FaML are printed directly on the 
device and fiber facets by multi-photon lithography [35], thereby ensuring sub-100 nm 
precision in a fully automated fabrication step. The freeform coupling elements are designed to 
collimate the associated beams to large diameters of tens of micrometers, which greatly relaxes 
alignment tolerances such that subsequent assembly steps can entirely rely on passive 
positioning using industry-standard machine vision. We demonstrate the viability of the 
proposed concepts in a series of proof-of-concept experiments. In a first set of experiments, we 
show connections between VCSEL / PD arrays and MM-FA, achieving average coupling losses 
as low as 0.35 dB for the transmitter (Tx) and 0.70 dB for the receiver (Rx) along with lateral 
1 dB alignment tolerances of 17µm  (Tx) and 62µm  (Rx), respectively. To the best of our 
knowledge, these results are among the lowest losses and the highest alignment tolerances so 
far demonstrated for coupling between VCSEL / PD arrays and MM-FA. In a second set of 
experiments, we extend this concept to MM-MCF containing densely spaced cores with a 
separation of 39 µm. Using appropriately designed FaML, these cores can be connected to 
VCSEL and PD that are arranged in linear arrays with a standard pitch of 250 µm, reaching 
average coupling losses of 0.67 dB (Tx) and 0.63 dB (Rx) along with lateral 1 dB alignment 
tolerances of 18µm  (Tx) and 25µm  (Rx), respectively. To the best of our knowledge, 
these experiments represent the first demonstration of a coupling interface that connects 
individual cores of an MCF to VCSEL / PD arranged in a standard linear array without the need 
for additional fiber- or waveguide-based fan-out structures. Using this approach, we finally 
build a 3 25 Gbit/s  transceiver assembly which fits into a small form-factor pluggable (SFP) 
module and which complies with the requirements for 100GBASE-SR4 transceivers according 
to the IEEE 802.3 standard. 

2. Coupling concept 
Figure 1 illustrates the concept of using 3D-printed facet-attached microlenses (FaML) for 
connecting linear arrays of vertical-cavity surface-emitting lasers (VCSEL) and 
photodiodes (PD) to fiber arrays (FA) and multicore fibers (MCF). The VCSEL and PD arrays 
transmit light to or receive light from the associated FA or MCF, which are glued into an 
industry-standard mechanical transfer (MT) ferrule. The FaML are designed to redirect, 
expand, and collimate the beams emitted or accepted by the VCSEL, the PD, the FA or the 
MCF such that the alignment tolerances increase both in axial and in transverse direction of the 
beam. The simultaneously decreased angular tolerance can be usually accepted when using 
industry-standard assembly machinery. The VCSEL and the PD array are mounted to the 
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printed circuit board (PCB) next to the Tx and Rx driver integrated circuits (IC), see Fig. 1(a). 
Fibers and VCSEL / PD arrays are equipped with 3D-printed FaML that are structured directly 
on the respective facets by multi-photon lithography. This approach allows to use the full design 
freedom of 3D-printed freeform structures and ensures highly precise alignment with deviations 
well below 100 nm in a fully automated fabrication step. A custom pick-and-place machine is 
then used to mount the MT ferrule to the PCB in a fully automated process relying solely on 
industry-standard camera-based machine vision and height measurements. Figure 1(b) 
illustrates the concept for connecting individual VCSEL or PD of a linear Tx or Rx array, 
respectively, to a MM-FA having the same pitch. On the VCSEL (PD) side, a single FaML is 
used to emit (receive) a collimated beam. Within the FaML on the fiber facet, the beam is 
redirected by a total-internal-reflection (TIR) mirror. We further demonstrate that VCSEL and 
PD in a linearly arranged array can be connected to individual cores of a single MM-MCF using 
appropriately designed FaML, see Fig. 1(c). In the example shown in Fig. 1(c), the MCF are 
glued to the MT ferrule in a well-defined orientation such that the axes of three fiber cores lie 
in a common z-normal plane. To compensate for the pitch mismatch between the MCF cores 
and the VCSEL / PD, the outer FaML are tilted such that the emitted or received beams are 
slightly inclined with respect to the z-direction. Note that this concept could be extended further 
to also utilize the remaining four cores of the depicted seven-core MCF, e.g., by using two-
dimensional device arrays in combination with more complicated FaML arrangements on the 
fiber facets. We have performed proof-of-concept experiments of both the arrangements shown 
in Fig. 1(b) and (c), which we describe in more detail in the following sections. 
 

Fig. 1: Concept of a multi-lane transceiver assembly using 3D-printed facet-attached microlenses (FaML) for 
connecting linear arrays of vertical-cavity surface-emitting lasers (VCSEL) and photodiodes (PD) to fiber arrays (FA) 
or multicore fibers (MCF). The VCSEL and PD arrays transmit light to or receive light from the associated FA or MCF, 
which are glued into an industry-standard mechanical transfer (MT) ferrule. The FaML are designed to redirect, 
expand, and collimate the beams emitted or accepted by the VCSEL, the PD, the FA or the MCF such that the alignment 
tolerances increase both in axial and transverse direction with respect to the beam. (a) Overview of a transceiver  
assembly. Transmitter (Tx), receiver (Rx), and MT ferrule mounted to a printed circuit board (PCB) in a small form-
factor pluggable (SFP) layout. (b) Four linearly arranged VCSEL or PD of a Tx or Rx array, respectively, coupled 
to four fibers of a FA. The device and fiber facets are equipped with 3D-printed FaML, which contain curved refractive 
surfaces as well as total-internal-reflection (TIR) mirrors to shape and redirect the beams. 3D-printed markers facilitate 
passive alignment during the assembly process. (c) A linear array of three VCSEL or PD is used to couple to three 
cores of a single MCF. The receiving (emitting) MCF are glued to the MT ferrule such that the axes of three fiber cores 
lie in a common z-normal plane. To compensate for the pitch mismatch between the MCF cores and the VCSEL / PD, 
the outer FaML are designed to produce beams that are slightly inclined with respect to the z-direction. Note that the 
depicted concept can be extended further to the remaining four cores of the depicted seven-core MCF, e.g., by using 
two-dimensional device arrays in combination with more complicated FaML arrangements on the fiber facets. 



4 
 

3. Connecting VCSEL / PD to multimode fiber arrays (MM-FA) 
We demonstrate the viability of the coupling concept shown in Fig. 1(b) by connecting four 
linearly arranged VCSEL (Broadcom AFCD-V64JZ, 850nm   [36]) and PD (Broadcom 
SPD2025-4X, responsivity 0.5A/WS   [37]) of a pair of Tx / Rx modules to a MM-FA, see 
Fig. 2(a). The MM-FA feature a pitch of 250 µm, matched to the pitch of the VCSEL / PD 
array, and are equipped with MM fibers having a core diameter of 2 26µm.a   Figure 2(b) 
provides a more detailed view of the Tx VCSEL array connected to four MM fibers of the MT 
ferrule. The Rx PD array is connected via an identical arrangement but differently designed 
FaML. Inset (i) of Fig. 2(b) shows the FaML on the fiber side, each comprising a TIR mirror 
and a beam-expander lens, while Inset (ii) depicts the expander FaML at the VCSEL. Technical 
drawings with further details are given in Fig. 2(c), where the left-hand side shows a projection 
of a FaML pair along the y-direction (“front view”). For better visibility, the distance between 
the two FaML has been reduced in the drawing. Note that the MT ferrule used in our experiment 
was equipped with MM fibers (OFS MCF-MM-7-39) containing seven cores each, out of which 
only the central one was used, see cross section at the upper left in Fig. 2(c). The right-hand 
side of Fig. 2(c) shows a cut through the FaML arrangement along the x-normal plane through 
the line A‒A’ as indicated on the left. 

To achieve high coupling efficiency, the shapes of the refractive surfaces are optimized 
using a home-made wave-propagation algorithm, which is based on the theory described in [38] 
and which has been successfully used for similar tasks [39,40]. Multimode light propagation 
through the FaML assembly is emulated by using Gaussian beams with an effective wavelength

2
eff ,M   where 2 4.2 5.4M    is the measured beam quality factor, see Appendix A and 

B for a more detailed explanation. At the Tx, the refractive surface S1 on the laser side is 
designed to produce a mode-field diameter (MFD) of 49 µm half-way between the two FaML. 
The beam then enters the FaML on the Tx fiber facet through refractive surface S2, which is 
designed to illuminate the central core of the MM-MCF up to 70 % of the core radius 

13µma   upon redirection by a flat TIR mirror with surface S3, see Section 3.2 for a more 
detailed discussion of the launch conditions [41]. The distance between the apices of 
surfaces S1 and S2 amounts to 1150µm,d   Fig. 2(c). We also connected a PD array to a MM-
FA. At the Rx side, the refractive surface S2 is designed to produce a MFD of 61 µm half-way 
between the two FaML. The refractive surface S1 on the PD is designed to focus the incoming 
beam to a spot with a MFD of 12 µm, well within the light-sensitive PD area, which has a 
diameter of 32 µm. As before, the distance between the apices of surfaces S1 and S2 amounts 
to 1150µm.d   

3.1 Module assembly 
As a first step of the assembly process, the VCSEL array and the PD array are mounted to the 
PCB next to the Tx and Rx driver IC. The FaML are then printed directly to the fiber, to the 
VCSEL, and to the PD facets by multi-photon lithography using a negative-tone photoresist 
with a refractive index 1.54n   at 850 nm. Precise alignment of the FaML relative to the 
respective facet is ensured by machine vision. After exposure, the fabricated structures are 
developed in propylene-glycol-methyl-etheracetate (PGMEA), flushed with isopropanol, and 
subsequently blow-dried.  

A custom pick-and-place machine is then used to mount the MT ferrule to the PCB in a 
fully automated process relying solely on industry-standard camera-based machine vision and 
height measurements with a confocal chromatic imaging sensor (Precitec CHRocodile S [42]). 
We first detect the centers of the FaML belonging to the outermost VCSEL / PD channels and 
extract the connecting line. For improving the accuracy of the image recognition, the FaML on 
the VCSEL / PD are surrounded by a collar, see Fig. 2(b) and lower inset. The MT ferrule is 
then gripped by an air-pressure activated tool, and the line between the two 3D-printed marker 
holes, denoted M1 and M2 in Fig. 2(b), is extracted. In a next step, the MT ferrule is moved in 
x- and y-direction to align the connection M1–M2 to the formerly found connecting line defined 
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by the VCSEL / PD FaML. The ferrule is then laterally shifted along the M1-M2 connection 
for positioning the upper FaML exactly vertically above the corresponding lower FaML. In 
doing so, we iteratively correct for any tilt of the fiber plane in relation to the plane on which 
the VCSEL / PD chips are mounted, until an angular tilt of the two planes by less than 0.1° is 
reached. Finally, the z-position of the MT ferrule is adjusted to provide the designed distance 
of 1150µmd   between the FaML apices, and the final position is fixed by applying a low-
shrinkage UV-curable epoxy glue at the four corners of the MT ferrule (EMI Optocast 3410 
Gen2), Fig. 2(a). 

3.2 Alignment tolerance and coupling loss 
For quantifying the alignment tolerances, we perform an experiment prior to applying the glue, 
using the gripper to move the MT ferrule in x- and y-direction or to introduce a tilt angle φ. 
Note that due to the expanded spotsize of the beams a precise alignment along the beam 
direction (z-direction) is not required. The tilt is defined with respect to a rotation axis R1 that 
is parallel to the x-axis and that passes through the mid-points between the correponding FaML 
apices, see Fig. 2(c). We either let the VCSEL emit light into the central core of one of the four 
Tx MM-MCF, or we receive light from one of the MM-MCF cores by the associated PD. In 
the experiment, we measure the misalignment excess loss by comparison to loss measured in 
the optimum position. Note that the various modes of an MM fiber may experience vastly 
different propagation losses and that a reliable quantification of coupling losses should hence 
refer to a “steady-state” modal distribution that is reached in the limit of long propagation 
distances [41,43]. Such a steady-state distribution of modal power can approximately be 
achieved by a so-called limited phase-space (LPS) launch [41]. In this approach, the fiber is fed 
by a multimode excitation field, having a Gaussian power distribution for which the 1/e2 
diameter of the intensity profile corresponds to 70 % of the fiber-core diameter while the 1/e2 
divergence angle is adjusted to 70 % of the maximum acceptance angle, which is found in the 
center of the core in case of graded-index MM fibers. In our experiment, it was not possible to 

Fig. 2: Photograph and technical drawings of a four-lane transceiver, implemented according to the concept in 
Fig. 1(b). Four VCSEL are connected to the cores of four MM fibers, arranged in an array with a standard 250 µm 
pitch.  (a) Overview photograph of the Tx side. (b) Microscope image showing the Tx VCSEL array and the 
associated FaML. The PD array is connected with a similar arrangement. Inset (i) shows the FaML on the fiber side, 
containing TIR mirrors and beam-expander lenses. Inset (ii) depicts the FaML on the VCSEL facet. A collar surrounds 
the VCSEL FaML for facilitating image recognition during passive assembly. Two markers are 3D-printed to the facet 
of the MT ferrule for reliable detection of the z-position and tilt correction. (c) Technical drawings of coupling 
structures. Left: Projection of a FaML pair along the y-direction (“front view”). Right: Cross-sectional view along the 
x-normal plane through the line A‒A’ shown on the left. The beam is shaped  and redirected by the refractive 
surfaces S1 and S2 as well as by the TIR mirror S3. The distance between the apices of surfaces S1 and S2 amounts to

 For measuring the angular misalignment loss, the MT ferrule is rotated in φ-direction about the rotation
axis R1, that is parallel to the x-axis and that passes through the mid-points between the correponding FaML apices. 
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simulatenously fulfill both requirements. In our lens design, we therefore adjusted the beam 
diameter to 70 % of the core diameter, while the acceptance cone was filled by more than 70 %. 
To arrive at a realistic estimate of the coupling losses, we used a cladding-mode stripper 
consisting of a piece of fiber that was coiled around an approximately 20 mm-thick metal 
rod [44,45]. The power of the resulting steady-state modal power distrubution was finally 
measured by an integrating sphere. 

Using this technique, we measure the lateral misalignment excess loss related to the 
optimum position  0µm, 0µmx y   for one of the four identical FaML-based VCSEL-fiber 
connections of the Tx module, see Fig. 3(a). White curves indicate the contour lines of constant 
loss. For a 1 dB loss, a deviation of 17µmx    in x-direction and of 13µmy    in y-
direction can be tolerated. The position obtained by the machine-vision-based automated 
passive assembly procedure is also indicated by a white cross in the first quadrant of Fig. 3(a) 
at  1µm, 5µm ,x y   see white lettering “ passive”. We attribute the larger positioning 
uncertainty along the y-direction to errors in measuring the tilt of the VCSEL bar about the x-
axis. Note that the long side of the VCSEL bar is aligned along the x-direction, while the short 
axis is parallel to the y-direction, see Fig. 2(b). Since our tilt measurements rely on sampling 
the z-position of the chip surface with the confocal chromactic imaging sensor, we thus expect 
larger uncertainties for tilts about the long axis (x) as compared to tilts about the short axis (y). 
For an incorrectly compensated tilt about the x-axis, the emitted beam will hit the corresponding 
FaML on the fiber facet with a small offset in the y-direction, which is observed in our 
measurements shown in Fig. 3(a). Still, the automated passive alignment loss is well inside the 
1 dB tolerance. The absolute average coupling loss for active alignment amounts to 0.35 dB, 
measured in the 0 dB point of Fig. 3(a). This result can well compete with the coupling losses 
and alignment tolerances obtained for more complex multi-step assembly techniques relying 
on precision molded plastic parts which were actively aligned to the underlying VCSEL 
array [6,7,9,10,13,15,17]. Specifically, lateral 1 dB alignment tolerances of 17µm  in 

Fig. 3: Measured misalignment excess loss of a four-lane transmitter (Tx, VCSEL) and receiver (Rx, PD), where each 
device is coupled to a corresponding core of a MM-FA. We move the MT ferrule along the x- and y-direction, and we 
rotate it in φ-direction about the rotation axis R1, see Fig. 2(c). The excess loss is zero at the optimum position. 
Cladding-mode strippers are used to approximate a steady-state distribution of modal power within the MM fiber.
(a) Excess loss for lateral misalignment measured for one of the four identical FaML-based VCSEL-fiber connections 
at the Tx. White curves indicate the contour lines of constant loss. For a 1 dB loss, a deviation of  in x-
direction and of  in y-direction can be tolerated. The position obtained from automated passive assembly
at  is indicated by a white cross (“passive”), leading to an excess loss of 0.15 dB. The absolute 
average coupling loss in the optimum position  amounts to 0.35 dB. (b) Angular misalignment 
excess loss measured at the Tx by rotating the MT ferrule in φ-direction about axis R1 in Fig. 2(c). The angular 1 dB 
tolerance is 1.3°. (c) Lateral misalignment excess loss measured at the Rx for one of the four FaML-based fiber-PD
connections. For simplicity, we restrict our experiment to linear movements along the x-direction (left panel) and along 
the +y-direction (right panel). Note that the movement in –y-direction is restricted to avoid collision of the MT ferrule 
and the PD chip, see Fig. 2(c). For a 1 dB loss, a deviation of  in x-direction and of  in y-
direction can be tolerated. The position obtained from automated passive assembly at is indicated 
by grey tick labels (“passive”). The associated excess loss can be neglected. The absolute average coupling loss in the 
optimum position  amounts to 0.70 dB. 
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combination with minimum coupling losses of 0.5 dB have been demonstrated in [10]. In a 
similar experiment [15], the lateral 1 dB alignment tolerances were increased to 35µm  at the 
expense of a slightly higher coupling loss of 1 dB. Note that the MM fibers used in our 
experiment have core diameters of only 26 m – significantly smaller than the more standard 
core diameters of 50 m, that have, e.g., been used in [15]. Using larger core diameters would 
further increase the alignment tolerances in our experiment. For the automated passive 
alignment of our assembly, the average coupling loss is 0.5 dB, larger by only 0.15 dB 
compared to active alignment. This again outperforms previous demonstrations of passively 
aligned coupling interfaces between VCSEL and MM-FA [11], where losses down to 0.7 dB 
along with alignment tolerances of 18µm  have been reached for comparatively large core 
diameters of 62.5 m. To evaluate the angular alignment tolerance, we rotate the MT ferrule 
by the tilt angle φ about the rotation axis R1, see Fig. 2(c). Note that the movement in –φ-
direction was restricted to avoid collision of the MT ferrule and the VCSEL chip, see Fig. 2(c). 
The results are plotted in Fig. 3(b). The angular 1 dB tolerance is 1.3°. 

We also measure the lateral misalignment excess loss for one of the four identical FaML-
based fiber-PD connections of the Rx module, see Fig. 3(c). For simplicity, we only perform 
one-dimensional movements of the MT ferrule along the x-direction (left panel) and along the 
+y-direction (right panel). Note that the movement in –y-direction was restricted to avoid 
collision of the MT ferrule and the PD chip, see Fig. 2(c). For a 1 dB loss, a deviation of 

62µmx    in x-direction and of [ ]54µmy     in y-direction can be tolerated, where the 
boundary for a movement to the –y-direction was estimated from its counterpart in +y-direction. 
The position obtained by the machine-vision-based passive assembly procedure is indicated at 
 4µm, 4µm ,x y   see grey tick label “passive”. Again, the automated passive alignment 
loss is well inside the 1 dB tolerance. For measuring the absolute coupling losses to the PD, we 
inject light into each of the central cores of the four Rx fibers and measure the power of the 
associated steady-state distribution after the mode stripper using an integrating sphere. The 
power incident on the PD is obtained from the respective photocurrents and the data-sheet 
specification of the responsivity S. The average measured loss of the four couplers amounts to 
0.70 dB for the optimum position  0µm, 0µm ,x y   measured in the 0 dB point of 
Fig. 3(c). The same result is obtained for the passively aligned position. These losses are 
slightly worse than the 0.5 dB that have previously been demonstrated both for actively and for 
passively aligned interfaces between PD and MM-FA [11,15] while the alignment tolerances 
are comparable. 

4. Coupling of VCSEL / PD to multiple cores of an MCF 
In a second set of experiments, we demonstrate the viability of our concept by connecting linear 
VCSEL and PD arrays to MM-MCF. The associated coupling scheme of Fig. 1(c) is displayed 
in more detail for the Tx in Fig. 4(a) and for the Rx in Fig. 4(b). In Figure 4(a), three Tx VCSEL 
are coupled to three MM-MCF cores of the Tx fiber labelled ❶, ❷, and ❸, that lie in a 
common z-normal plane. Figure 4(b) shows the corresponding coupling of three Rx PD to three 
cores of the Rx fiber, labelled ❹, ❺, and ❻. The outer FaML ❶ and ❸ on the VCSEL as well 
as the outer FaML ❹ and ❻ on the PD are tilted. Figure 4(c) and (d) display technical drawings 
of the Tx coupling scheme ❷ and of the Rx coupling arrangement ❺, respectively, in an x-
normal plane. For the Tx, Fig. 4(c), the refracting Surface S1 collimates the VCSEL beam to a 
MFD of 28 µm, measured half-way between the two FaML. The entrance Surface S2 of the 
center FaML on the Tx MM-MCF is located at a distance 525µmd   from the apex of the 
corresponding FaML on the VCSEL. Surface S2 is designed to reduce the MFD at the position 
of the TIR mirror S3 to 22 µm to avoid clipping due to limited lateral size of the TIR mirror as 
dictated by the 39 µm pitch of the fiber cores. Refracting Surface S4 forms the beam such that 
the MM-MCF core is illuminated up to 70 % of the core radius 13µma   and up to 70 % of 
the numerical aperture of 0.21. This excitation approximates an LPS launch [41] such that, in 
combination with a cladding-mode stripper, an under-estimation of the coupling loss is avoided. 
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For the Rx, Fig. 4(d), a TIR mirror S5 redirects the beam towards the PD. The exit Surface S6 
of the FaML at the MCF collimates the beam to a MFD of 28 µm, measured again half-way 
between the two FaML, while the input Surface S7 of the FaML at the PD focuses the expanded 
beam to a spot with a MFD of 15 µm, significantly smaller than the diameter of 32 µm of the 

Fig. 4: Concept for coupling of VCSEL and PD arrays to MM-MCF as shown in Fig. 1(c) along with corresponding 
technical drawings. (a) Three VCSEL coupled to three MCF cores, labelled ❶, ❷, and ❸, that lie in a common z-
normal plane. (b) Three PD coupled to three cores of the Rx fiber, labelled ❹, ❺, and ❻. (c) Technical drawing 
of the Tx coupling scheme ❷. The refracting Surface S1 collimates the VCSEL beam. The entrance refracting 
Surface S2 of the FaML on the MCF is located at a distance  It reduces the MFD at the position of the 
TIR mirror S3 to avoid clipping that would occur to limited lateral size of the TIR mirror as dictated by the 
pitch of the fiber cores. Refracting Surface S4 forms the beam for illuminating the MM-MCF core up to 70 % of the 
core radius, and up to 70 % of the numerical aperture for approximating an LPS launch [41]. (d) Technical drawing 
of the Rx coupling scheme ❺. A TIR mirror S5 redirects the beam towards the PD. The exit Surface S6 of the FaML
at the MCF collimates the beam, and Surface S7 at the entrance face of the FaML at the PD focuses the beam to a spot, 
significantly smaller than the diameter of the light-sensitive PD area. The apices of Surfaces S6 and S7 are again 
separated by  (e) Technical drawing of FaML ❸ and ❻ viewed in y-direction. The outer Tx 
FaML ❶, ❸ and the Rx FaML ❹, ❻ are tilted. The VCSEL / PD beam is directed by an angled Surface S0, designed 
for a beam tilt angle  with respect to the z-axis. 
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light-sensitive PD area. The apices of Surfaces S6 and S7 are again separated by 525µm.d   
Figure 4(e) shows a technical drawing of the FaML ❸ and ❻ in a y-normal plane. The 
VCSEL / PD beam is redirected by an angled Surface S0, designed for a beam tilt angle 

14.6°   with respect to the z-axis. 
A photograph of the transceiver module following the concept in Fig. 1(c) is depicted in 

Fig. 5(a). Figure 5(b) shows a close-up of three VCSEL / PD, each connected to three cores of 
a Tx / Rx MM-MCF, respectively. Inset (i) of Fig. 5(b) gives a magnified view of the FaML on 
the fiber facet containing TIR mirrors and beam-expander lenses. Inset (ii) of Fig. 5(b) depicts 
the FaML attached to the VCSEL array. 

4.1 Module assembly 
In contrast to the assemblies discussed in Section 3, where Tx and Rx fibers were mounted into 
separate MT ferrules, the MM-MCF scheme relies on a single MT ferrule that contains both 
the Tx and the Rx MCF, see Fig. 5(a). As a consequence, the VCSEL / PD arrays need to be 
mounted to the PCB collinearly with the correct pitch. Specifically, the distance between the 
center VCSEL and PD elements ❷ and ❺ needs to match the distance of 1750 µm between 
the central cores of the Tx and the Rx MM-MCF, see Fig. 5(b). Given the rather high 
positioning tolerances of the MM coupling interfaces, this step is well manageable using state-
of-the-art pick-and-place equipment. Apart from this, the assembly process for the MM-MCF 
scheme relies on the same machine and is largely similar to the procedure used for the Tx and 
the Rx modules presented in Section 3.1. In a first step, we grip the MT ferrule and perform a 
tilt correction to align the plane defined by the fiber axes exactly parallel to the plane in which 
the PD and VCSEL arrays are mounted. We then use camera-based machine vision to detect 
the positions of the FaML at the Tx VCSEL ❷ and Rx PD ❺, exploiting a collar that surrounds 
the FaML to improve the accuracy of the image recognition, see Fig. 5(b). We then extract the 
connecting line between VCSEL ❷ and PD ❺ as a reference for aligning the MT ferrule. The 
MT ferrule is then moved in x- and y-direction for adjusting the line M1−M2 between the 3D-
printed marker holes M1, M2 vertically above the connecting line between VCSEL ❷ and 

Fig. 5: Three-channel transceiver module implemented on a small form-factor pluggable PCB. Three Tx 
VCSEL ❶, ❷, and ❸ and three Rx PD ❹, ❺, and ❻ are connected to three cores of the associated MM-MCF.
(a) Overview photograph corresponding to schemes illustrated in Fig. 4(a) and (b). (b) Micrograph of the optical 
couplers. Inset (i) gives a magnified view of the fiber-attached optical elements, see technical drawing in Fig. 4(c) for 
details. Inset (ii) depicts the expander lenses attached to the three VCSEL, and the “collar” supporting machine vision.
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PD ❺, Fig. 5(b). For lateral alignment, we extract the mid-point of the connecting line between 
markers M1 and M3 to locate the position of the apex belonging to FaML ❷ on the fiber side. 
This apex point is then laterally shifted along the M1−M3 connection to position it exactly 
vertically above the FaML on top of VCSEL ❷. The z-position of the MT ferrule is then 
adjusted to provide the designed distance of 525µmd   between the apices of the center 
FaML on VCSEL ❷ and PD ❺ and the corresponding apex on the MCF FaML, see Fig. 4(c) 
and (d). A low-shrinkage UV-curable epoxy glue (EMI Optocast 3410 Gen2) is used at the four 
corners of the MT ferrule to fix its final position. 

4.2 Alignment tolerance and coupling loss 
For quantifying the alignment tolerances, we repeat the experiments described in Section 3.2, 
where we move the MT ferrule in x- and y-direction prior to applying the glue. Note that due 
to the expanded spotsize of the beams a precise alignment along the beam direction (z-direction) 
is again not required. By recording the power in the three cores ❶, ❷, and ❸ of the Tx MCF 
and by measuring the photocurrents of the three Rx PD ❹, ❺, and ❻, we extract the respective 
excess loss at the Tx and Rx coupling interfaces for lateral displacements along the x- and +y-
direction, see Fig. 6(a) and (c). The average optimum position maximizing the sum of the 
powers in all three Tx channels is at  0µm, 0µm ,x y   and the excess losses of the 
individual Tx and Rx channels are indicated in relation to the loss of the respective channel 
found at this position. For a 1 dB excess loss for the Tx coupling, a deviation of 18µmx    
in x-direction and of [ ]13µmy     in y-direction can be tolerated, where the movement to 
negative y-coordinates was again restricted to avoid collision of the MT ferrule and the VCSEL 
chip, see Fig. 4(a), and where the boundary for a movement to the –y-direction was estimated 
from its counterpart in +y-direction. For passive alignment of the MT ferrule, we find offsets 
of 1µmx   measured along the longer side of the VCSEL chip base and of 4µmy   
measured along the shorter side – these positions are again marked by the tick labels “passive” 
in Fig. 6(a) and (c). The offset along the y-direction is again larger than the offset along the x-
direction, which we attribute to the fact that the tilt measurement of the VCSEL chip about its 
long axis is subject to higher uncertainties, see Section 3.2 for a more detailed discussion. At 
the optimum position, the average power in the Tx MCF cores ❶, ❷, and ❸ reaches 1.93 dBm 
for a bias current of 3.3 mA applied to the VCSEL. This corresponds to an absolute average 
coupling loss of 0.67 dB. For the automated passive alignment, the average power is 1.59 dBm 
which corresponds to an average coupling loss of 1.0 dB. 

For measuring the absolute losses of the Rx PD, we use an MCF connector to inject a known 
power into the three relevant cores of the Rx MCF and measure the photocurrents of the 
respective Rx PD. The photocurrents are translated into optical power levels using the data-
sheet specification of the responsivity S. For a 1 dB excess loss, a deviation of 23µmx    in 
x-direction and of [ ] 25µmy     in y-direction can be tolerated, where the movement to 
negative y-coordinates was again restricted to avoid collision of the MT ferrule and the PD 
chip, see Fig. 4(b), and where the boundary for a movement to the –y-direction was estimated 
from its counterpart in +y-direction. The position-dependent excess losses for the three 
channels ❹, ❺, and ❻ exhibit plateaus due to the fact that the 15 µm spot size generated by 
the FaML on the PD surface is smaller than the 32 µm diameter of the active PD area. As a 
consequence, the measured absolute average loss of the three Rx channels amounts to 0.63 dB 
both for the optimum Tx position at  0µm, 0µmx y   and for the passively aligned 
position, indicated again by tick marks “passive”, see Fig. 6(c). The excess losses of the three 
Rx channels shown in Fig. 6(c) are again measured with respect to the absolute loss of the 
respective channel found at this position  0µm, 0µm .x y   

To the best of our knowledge, these experiments represent the first demonstration of a 
coupling interface that connects individual cores of an MCF to VCSEL / PD arranged in a 
standard linear array without the need for additional fiber- or waveguide-based fan-out 
structures. Other approaches relying on custom device arrays in 2D arrangements matched to 
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the cross-section of the respective MCF have been pursued [21−26]. Such demonstrations, 
however, still rely on active alignment, leading, e.g., to minimum coupling losses of 0.98 dB 
between VCSEL and a seven-core MM-MCF [25]. These losses are slightly higher than the 
0.67 dB and the 0.63 dB achieved by active alignment in our experiments for the Tx and Rx, 
respectively, and our passively assembled module can still well compare to these losses – 
besides avoiding non-standard device arrangements that are adapted to the cross section of the 
respective MCF. It should be noted that coupling schemes based on custom device arrays 
require a generally denser spacing of the VCSEL / PD compared to the traditional 250 µm 
pitch, which may limit the high-speed performance of the devices due to higher 
temperatures [23]. 

 

Fig. 6: Alignment tolerances and eye diagrams of a three-lane transmitter (Tx, VCSEL) ❶, ❷, ❸, and a three-lane
receiver (Rx, PD) ❹, ❺, ❻, each lane coupled to one of three cores of a MCF, Fig. 4. We extract the respective excess 
loss at the Tx and Rx coupling interfaces for lateral displacements along the x- and +y-direction. The average optimum 
position maximizing the sum of the powers in all three Tx channels is at  and the excess losses 
of the individual Tx and Rx channels are indicated in relation to the loss of the respective channel found at this position. 
The excess loss for an automated passive assembly is indicated by the tick labels “passive”. (a) Lateral misalignment 
excess loss measured at the Tx for the three FaML-based VCSEL-fiber connections. For simplicity, we restrict our 
experiment to linear movements along the x-direction (left panel) and along the +y-direction (right panel). For a 1 dB
excess loss, a deviation of  in x-direction and of  in y-direction can be tolerated. Note that 
the movement to negative y-coordinates was restricted to avoid collision of the MT ferrule and the VCSEL / PD chip, 
Fig. 4 (c) and (d), and that the boundary for a movement to the –y-direction was therefore estimated from its counterpart 
in +y-direction. The average excess loss for passive automated assembly at  is 0.33 dB. At the 
optimum position, the average power in the Tx MCF cores ❶, ❷, ❸ reaches 1.93 dBm for a bias current of 3.3 mA 
applied to the VCSEL. This corresponds to an absolute average coupling loss of 0.67 dB. For the automated passive 
alignment, the average power is 1.59 dBm which corresponds to an average coupling loss of 1.0 dB.
(b) Characterization of the Tx with on-off-keying (OOK) signals at line rates of 25.78125 Gbit/s, which are coupled to 
the Tx driver IC, see Fig. 5. Each VCSEL is operated at a bias current of 3.3 mA and a peak-to-peak modulation current
of 4 mA. The optical output from cores ❶, ❷, and ❸ of the Tx fiber is sent to a sampling oscilloscope. As an example, 
we show the eye diagram measured from Tx core ❷ while the two other Tx VCSEL ❶ and ❸ are in operation. The 
transmitter-and-dispersion eye-closure (TDEC) penalty is 3.5 dB. (c) Lateral misalignment excess loss measured at 
the Rx for the three FaML-based fiber-PD connections. For simplicity, we restrict our experiment to linear movements
along the x-direction (left panel) and along the +y-direction (right panel). For a 1 dB excess loss, a deviation of 

 in x-direction and of  in y-direction can be tolerated, where the boundary for a movement 
to the –y-direction was again estimated from its counterpart in +y-direction. The position-dependent excess losses for 
the three channels ❹, ❺, and ❻ exhibit plateaus due to the fact that the 15 µm spot size generated by the FaML on 
the PD surface is smaller than the 32 µm diameter of the active PD area. As a consequence, the measured absolute 
average loss of the three Rx channels amounts to 0.63 dB both for the optimum Tx position at 
and for the passively aligned position, indicated again by tick marks “passive”. (d) Characterization of the Rx with 
OOK signals at a line rate of 25.78125 Gbit/s. The signal from an optical transmitter with known specifications is fed 
to the three cores ❹, ❺, and ❻ of the Rx MCF, detected by the Rx PD, and the output signals of the Rx driver IC are
recorded by a sampling oscilloscope. The eye diagrams for Rx ❹, ❺, and ❻ are shown, indicating the peak-to-peak 
voltage of the corresponding receiver. 
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4.3 Data-transmission experiments 
To demonstrate the viability of the presented concept, the assembled 3 25 Gbit/s  transceiver 
module was characterized according to the IEEE 802.3 industry standard [46]. To this end, we 
use the SFP interfaces on the PCB to feed the Tx driver IC with three on-off-keying (OOK) 
signals, each having a line rate of 25.78125 Gbit/s. We set the bias current of the VCSEL to 
3.3 mA and use a current modulation of ± 2 mA, i.e., a peak-to-peak swing of 4 mA, for the 
OOK signals. The optical output from cores ❶, ❷, and ❸ of the Tx fiber, see Fig. 5, is sent to 
a sampling oscilloscope. Figure 6(b) shows an exemplary eye diagram measured from Tx 
core ❷ with the two other Tx VCSEL ❶ and ❸ in operation. The transmitter-and-dispersion 
eye-closure (TDEC) penalty is 3.5 dB, which is clearly below the maximum value of 4.3 dB 
specified for 100GBASE-SR4 transceivers in the IEEE 802.3 standard [46]. The average Tx 
power amounts to 1.56 mW (1.9 dBm) while an optical power modulation amplitude (OMA) 
of 1.35 mW (1.1 dBm) is measured. Consequently, the OMA related to the TDEC amounts to 
‒2.4 dBm – well above the minimum value of –7.3 dBm specified in the IEEE 802.3 
standard [46]. Finally, an extinction ratio of 3.7 dB and an average off-state transmitter power 
‒36 dBm are measured, which also fulfill the requirements imposed by the IEEE 802.3 
standard [46]. For the receiver characterization, the signal from an optical transmitter with 
known specifications is fed to the three cores ❹, ❺, and ❻ of the Rx MCF. The signal is then 
detected by the PD, and the output signals of the Rx driver IC are recorded by a sampling 
oscilloscope. Figure 6(d) shows the eye diagrams for Rx ❹, ❺, and ❻, indicating the peak-to-
peak voltage of the corresponding receiver. The average received power per lane amounts to 
1.07 mW, 1.39 mW, and 1.18 mW, again fulfilling the specifications of the IEEE 802.3 
standard [46]. 

5. Summary 
We demonstrate that 3D-printed facet-attached microlenses (FaML) open an attractive path for 
connecting multimode fiber arrays (MM-FA) as well as individual cores of multimode 
multicore fibers (MM-MCF) to standard arrays of vertical-cavity surface-emitting 
lasers (VCSEL) or photodiodes (PD) with pitches of 250 µm. The FaML, which can be printed 
by high-precision multi-photon lithography directly on the device and fiber facets, are designed 
to collimate the associated beams to large diameters of tens of micrometers, thereby greatly 
relaxing alignment tolerances in both the transvers and axial direction. We demonstrate the 
viability of the proposed concepts, we perform a series of proof-of-concept experiments using 
a custom pick-and-place machine to mount the FaML-equipped fiber arrays to the PCB in a 
fully automated process, controlled by machine vision and height measurements. We show 
connections between VCSEL / PD arrays and MM-FA, achieving average coupling losses as 
low as 0.35 dB for the Tx and 0.70 dB for the Rx along with lateral 1 dB alignment tolerances 
of 17µm  (Tx) and 62µm  (Rx), respectively. To the best of our knowledge, these results 
are among the lowest losses and the highest alignment tolerances so far demonstrated for 
coupling between VCSEL / PD arrays and MM-FA. We further connect a linear VCSEL / PD 
array to distinct cores of a single MCF, reaching average coupling losses of 0.67 dB (Tx) and 
0.63 dB (Rx) along with lateral 1 dB alignment tolerances of 18µm  (Tx) and 25µm  (Rx), 
respectively. To the best of our knowledge, these experiments represent the first demonstration 
of a coupling interface that connects individual cores of an MCF to VCSEL / PD arranged in a 
standard linear array without the need for additional fiber- or waveguide-based fan-out 
structures. Using this approach, we finally build a 3 25 Gbit/s  transceiver assembly which 
fits into a small form-factor pluggable module and which complies with the requirements for 
100GBASE-SR4 transceivers according to the IEEE 802.3 standard. We believe that 3D-
printed FaML could pave a path towards highly scalable transceiver assemblies that exploit 
readily available VCSEL and PD arrays in combination with parallel transmission through 
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multimode multicore fibers without the need for expensive multi-step assembly procedures or 
technically complex fan-out structures. 

Appendix 
A. Beam quality measurements 

For designing the facet-attached microlenses (FaML), multimode light propagation is emulated 
by using Gaussian beams with an effective wavelength 2

eff M   that is increased with 
respect to the true vacuum wavelength   of the underlying device by the measured beam 
quality factor 2M . In the following, we shortly sketch the mathematical background of this 
approach, the foundations of which are explained in more detail in [47−56]. 

One of the most general mathematical descriptions valid for all types of coherent and non-
coherent optical beams relies on the so-called Wigner distribution function (WDF), first 
introduced by Wigner in 1932 in the context of quantum states represented as a distribution in 
terms of both position and momentum [54]. In the following, we assume Cartesian coordinates 
( , , ),x y z  where the beam axis corresponds to the z-axis without loss of generality, and where 
the transverse position vector is given by T

t ( , ) .r x y
  For the most general case, the complex-

valued components ( , , )E x y z


 of the electric field are non-stationary stochastic processes in x 
and y, and the associated coherence function (autocorrelation) t,1 t,2( , ; )r r z

   depends 
individually on both transverse positions t,1r  and t,2r  rather than on the difference t,1 t,2r r   
only. The WDF is obtained by re-writing the coherence function as  t t t t' 2, ' 2;r r r r z  

   

with position vector T
t ( , )r x y
  and offset vector T

t ' ( ', ')r x y
  and by computing the two-

dimensional Fourier transform with respect to t ',r  
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( , ; ) , ; d 'd '.

2 2
k rr r

W r k z r r z e x y      
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 
      (1) 

The corresponding components t,xk  and t, yk  of the transverse spatial-frequency vector tk


 can 
be interpreted as transversal projection T

t t, t, t( , )x yk k k k  
 

 of a paraxial wave-propagation 
vector ,k


 where 2k n c n     denotes the wavenumber in the respective medium with 

refractive index n  and where T
t ( , )x y  


 indicates the direction of the transverse wave-
vector components. One can then rewrite Eq. (1) as 
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   (2) 

where we use the notation W  without the tilde to denote the WDF in terms of the arguments 
x  and .y  While it is difficult to assign a physical meaning to the WDF itself, the 

corresponding marginal distribution obtained by integration over x  and y  can be interpreted 
as the spatial intensity distribution ( , ; ),I x y z  
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The total power P  of the beam is obtained by integrating the spatial intensity distribution over 
the two transverse coordinates x and y, 
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In analogy to Eqs. (3) and (4), the marginal distribution obtained by integration over x and y 
corresponds to the z-dependent spatial power spectrum, and the total power of the beam is again 
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obtained by ( )f z  additionally integrating over x  and .y  With the previous definitions in  
Eqs. (2)–(4), one can then define a normalized average value  of any function ( , , , )x yf x y    
weighted by the WDF, 
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In the following, we assume that the propagation of light in our assemblies can be described by 
so-called aligned simple astigmatic (ASA) beams, which is a common assumption for laser 
beams [55]. For ASA beams, the x- and the y-axis of the coordinate system can be chosen such 
that the WDF T T(( , ) , ( , ) ; )x yW x y z   can be separated and expressed by a product of two 
functions 1( , ; )xf x z  and 2 ( , ; ),yf zy   each of which depends only on one of the transverse 
directions x or y and on the corresponding transverse components x  or y  of the direction 
vector t .


 In the case of light emitted by a laser, an ASA beam can be thought of as a beam 

with elliptical intensity distributions in the transverse plane, where the major and minor axis of 
the ellipses are aligned along the x and the y-direction. The second central moments 2 ( )x z  and 

2 ( )y z  of the intensity distribution ( , ; )I x y z  can then be found by adopting Eq. (5) 
accordingly, 
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denote the first moments of the intensity distribution ( , ; ).I x y z  Assuming beams that 
propagate along the z-direction within the limitations of the paraxial approximation, it can be 
shown [53] that the second central moments 2 ( )x z  and 2 ( )y z  of the intensity distributions as 
given by Eq. (6) evolve according to a simple quadratic relationship, 

 2 2 2 2 2 2 2 2
0, 0, 0, 0,( ) ( ) , ( ) ( ) .

yxx x x y y yz z z z z z              (8) 

The two expressions in Eq. (8) are governed by an overall six parameters: The waist positions 
0,xz  and 0, ,yz  the associated variances 2

0,x  and 2
0, y  of the WDF or, equivalently, of the 

intensity distribution along the x and the y-direction, and two additional parameters 2
x

  and 
2

y
 that describe the divergence of the beam in x and y-direction, respectively. 

The previous relations can also be applied to a fundamental Gaussian TEM00 beam, i.e., a 
monochromatic Gaussian beam containing only the fundamental Hermite–Gaussian mode, 
propagating under the restrictions of paraxial optics. In this case, the divergences in the x- and 
y-direction are directly linked to the corresponding variances 2

G0,x  and 2
G0, y  of the intensity 

distributions in the respective waist at 0,xz z  and 0, ,yz z  
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This leads to a constant product of the standard deviations G0, G0,, yx   and of corresponding 
divergence parameters G, G,tan , tan ,x y   
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Note that the variances 2
G,x  and 2

G, y  specified in Eq. (9) relate to the radius over which the 
Gaussian intensity profile has dropped by a factor of 1/e compared to the on-axis maximum of 
the intensity. These variances can be translated into more widely used definitions of beam radii 

G, G,2x xw   and G, G,2 ,y yw   which refer to the 1/e2 intensity points. Similarly, the beam 
divergence parameters G,tan x  and G,tan y  refer to the half-angle of an elliptical cone 
defined by the 1/e intensity contour lines, whereas it is more common to specify beam 
divergences G, G,tan 2 tanx x   and G, G,tan 2 tany y   that relate to the 1/e2 contours. 

For multimode beams, the direct connection between the standard deviations and 
divergence parameters according to Eq. (10) does not apply anymore. Still, it can be shown that 
the product of the divergence parameters tan , tanx y   and the standard deviations 0, 0,, yx   
of the intensity distribution in the respective beam waist is an invariant property of the beam 
which is conserved by any lossless transformation of the beam, e.g., through lenses or 
mirrors [56]. The behavior of the multimode beam can thus be approximated by using a virtual 
fundamental Gaussian TEM00 beam with an effectively increased wavelength 2

eff M   that 
leads to the same product of divergence parameter and corresponding variance of the intensity 
distribution. The beam-quality factor 2

eff 1M     is then a measure of the 
multimodedness of the beam. This consideration can be done separately for the x and the y-
direction, which may result in separate beam quality factors 2

xM  and 2 ,yM  

 2 2
0, 0,tan , tan .

4 4x x y yx yM M
n n

 
   

 
    (12) 

The only remaining task is now to extract the quality factors 2
xM  and 2

yM  of the beams emitted 
by our devices. To this end, we measure the intensity profiles ( , ; )I x y z  in a series of positions 
along the propagation direction z using a microscope objective and a camera. We drive the 
VCSEL and move it with respect to the fixed objective using a motorized stage. All 
measurements are performed at a bias current of 3.3 mA, which was also used for the coupling-
loss and data-transmission experiments, see, e.g., Section 3.2. From the recorded beam intensity 
profiles ( , ; ),I x y z  we extract the second central moments 2

x  and 2
y  in x and y-direction 

according to Eq. (6). In the measurement, sensor saturation must be avoided, and any 
background illumination needs to be subtracted. The waist positions 0,xz  and 0, ,yz  the 
associated variances 2

0,x  and 2
0, y  of the intensity distribution, and the beam-divergence 

parameters 2
x

  and 2
y

  are then extracted via a parameter fit using Eq. (8). The beam quality 
factors 2

xM  and 2
yM  are then given by 2

0,(4 / ) tanx x xM n     and 
2

0,(4 / ) tan ,y y yM n     where the vacuum wavelength amounts to 850nm.   
The result of the VCSEL beam characterization is shown in Fig. 7, where we plot the beam 

radii 2x xw   (round markers) and 2y yw   (square markers) as a function of the axial 
position s( ),z z  where sz  corresponds to the surface of the VCSEL. Fitting the data to Eq. (8) 
yields the plots shown in blue and red, characterized by 2 5.4xM   and 2 4.2yM   for beam-
waist radii of 0, 0, 7µmx yw w   at 0, 0, 0µm.yxz z   The average Rayleigh length for the 
profiles in x and in y-direction amounts to R 38µmz   as indicated by the vertical line. 
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B. Microlens simulations 

For simulation of the FaML, we use an in-house developed simulation software based on the 
scalar wide-angle unidirectional wave-propagation method for step-index structures [38]. For 
all lens surfaces in our experiments, we use a rotational symmetric even-order polynomial with 
three free parameters 0 2,c c  and 4c  to represent the lens surface height above the (x,y)-plane, 

 2 4 2 2
0 2 4( ) ..., .h r c c r c r r x y       (13) 

Simulations are carried out by using the effective beam quality factor 2 22
eff 4.8,x yM MM    

which is obtained as the geometrical mean [55] of the measured beam quality factors 2 5.4xM   
and 2 4.2yM   along the respective principle axis of the beam, see Appendix A. Note that this 
simplified description by a single effective beam quality factor 2

effM  in fact implies treating 
the beam as a stigmatic beam which is rotationally symmetric with respect to the z-axis [51]. 
This assumption is backed by the fact that the average ellipticity parameter 

  11 ( ) ( )N
i ii y xN w z w z    over the 21N   measured z-positions is larger than 0.87 and the 

beam profiles may therefore be considered to be of circular symmetry according to the 
ISO/IEC 11146-1 standard [55]. The multimode beam at vacuum wavelength 850nm   is 
consequently emulated by a single effective wavelength 2

eff eff 4.08µmM    [50,52]. 
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