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ABSTRACT
Today, the collection of decentralized data is a common scenario:
smartphones store users’ messages locally, smart meters collect en-
ergy consumption data, and modern power tools monitor operator
behavior. We identify different types of outliers in such data: local,
global, and partition outliers. They contain valuable information,
for example, about mistakes in operation. However, existing outlier
detection approaches cannot distinguish between those types. Thus,
we propose a “tandem” technique to join “local” and “federated”
outlier detectors. Our core idea is to combine outlier detection on a
single device with latent information about devices’ data to discrim-
inate between different outlier types. To the best of our knowledge,
our method is the first to achieve this. We evaluate our approach
on publicly available synthetic and real-world data that we collect
in a study with 15 participants operating power tools.

CCS CONCEPTS
•Computingmethodologies→Anomaly detection;Distributed
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1 INTRODUCTION
Edge computing decentralizes data analysis bymoving computation
tasks away from a central processing unit, closer to the edge of
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Figure 1: Outlier types in decentralized data

a network of edge devices. Each edge device, like a smart meter
or power tool, collects data about its environment or usage. Thus,
each device has a “local” data set which is a share of all the data
generated in the network. We call it a partition.

Finding outliers in partitions is crucial for many applications
including predictive maintainance [14, 23] and energy consumption
analysis [11]. In such applications, outlier labels are often hard to
obtain as it would require asking the owner of the edge device.
Outlier detection for edge computing should thus be unsupervised.

Existing approaches for unsupervised outlier detection in decen-
tralized data fall into three categories. First, centralized approaches
transfer the partitions to a cloud instance for further processing [9]
which is inefficient and raises privacy concerns. Second, local ap-
proaches only consider individual partitions without sharing infor-
mation between peer devices. Third, decentralized approaches lever-
age Federated Learning (FL) [10] to collaboratively train a shared
outlier detector [12, 17, 21]. FL does not require any exchange of
raw data and is thus appealing if data is plenty or privacy-sensitive.
We refer to outlier detection with FL as federated outlier detection.

We observe that local and federated outlier detection in isolation
fail to identify the different types of outliers that exist in decentral-
ized data, namely local outliers, global outliers, and partition outliers,
as the 1-dimensional example in Figure 1 illustrates. Global outliers
are observations that deviate from the data on all devices. Local
outliers are observations that deviate from their partition, but do
not deviate from data from other devices. Last, a partition can also
be outlying (a partition outlier) if it is significantly different from
other partitions. Consider the following real-world example:

Example 1 (Connected power tools). Workers on construction
sites use multiple power tools of the same type for different tasks. For
example, they keep a drill head for wood attached to device A and
for metal to device B. As long as the workers use the drill heads for
their intended materials, devices A and B record characteristic data
patterns for the specific tasks. However, if a worker mistakenly uses
device A to drill metal, the new data is different from the existing



patterns in the partition. Such misuse leads to a local anomaly because
the recorded pattern is novel on device A, yet frequent on device
B. In contrast, mistakes in power tool operation (e.g., drilling in an
unintended material) may lead to a pattern that has not been observed
on any device. Hence, these outliers are global.

Next, local observations may reflect a worker’s skills, as unskilled
workers tend to make systematic mistakes. Consequently, many ob-
servations on their device deviate from the data of other workers. We
call this a partition outlier.

In summary, outlier detection in decentralized data should (1)
identify local, global and partition outliers, (2) work unsupervised,
and (3) utilize device collaboration without raw data exchange.

Contributions
Ourmain contribution is an outlier detection framework that fulfills
these requirements. It combines local and federated anomaly
detection in tandem which allows to distinguish between the
three outlier types without disclosing sensitive information.

We conduct a real-world study in the field of power tools.
The open source1data set contains high-quality sensor readings
from the usage patterns of power tools from 15 individuals.

Our experiments show the practical value of our tandem
on the real world use case of smart power tools. The code for
all experiments is available on GitHub1 for reproducibility.

2 NOTATION
We consider a network N = {c1, c2, . . . , c |N |} with |N | devices, or
“clients”. We associate a partition, i.e., a set of observations, di =
{xi1,xi2, . . . ,xi |di |} to each client ci ∈ N where xi j ∈ Rd . We call
D = d1 ∪ d2 ∪ . . . ∪ d |N | the global data set of size |D |. We assume
that the observations xi j ∈ di come from an underlying distribution
Xi . The joint distribution of all Xi is the global distribution XG .
Our goal is to distinguish three types of outliers:

Definition 1 (Partition Outlier). A partition di is a partition
outlier if the probability that di was sampled from XG \ X i is less
than α , i.e., Pr (di ∼ XG \ Xi ) < α .

Definition 2 (Local outlier). An outlier xi j is local if it is
outlying only with respect to di but not with respect to D.

Definition 3 (Global outlier). An outlier xi j is global if it is
outlying with respect to D.

3 RELATEDWORK
FL addresses decentralized training of neural networks, and Feder-
ated Averaging is arguably its most well known variant [10]: Each
device trains a model on local data, which a server then averages
into a global model. This process is repeated until convergence.

Existing work in FL for outlier detection tends to address outlier
detection purely via FL [16, 17], or provides application specific
solutions [12, 15]. However, no approach combines federated outlier
detection with local outlier detection. Hence, they are unable to
distinguish between the three outlier types that we listed earlier.

Previous work has used different notions of local and global
outliers. In distributed settings, an anomaly is local if it occurs
1https://github.com/heymarco/TandemOutlierDetection

multiple times in a small geographical region [3, 20], e.g., if multiple
devices that are close to each other observe the same, unusual
phenomenon. Global outliers, in contrast, do not show such a spatial
relationship. In our setting, devices can be mobile and their spatial
relationship is irrelevant.

Last, [22] provide a definition similar to ours: local outliers are
those in a single partition, and global outliers are outlying in the
union of all partitions. Accordingly, an outlier could be global and
local depending on the data available for outlier detection. Our
definitions of local and global outliers in turn are mutually exclusive.

Next, our definition of “partition outlier” is related to the notions
of “second-order outlier” [18], or “infected device” [12] in the liter-
ature. Existing approaches to detect such outliers share sensitive
information such as individual observations [7], or mean and vari-
ance [6] of the data. In contrast, our approach only uses aggregated
outlier scores which do not contain such sensitive information.

There exist several approaches for outlier detection in Wireless
Sensor Networks, a related field. However, they are not suitable
to our setting, as they either do not (1) handle multivariate data,
(2) distinguish between different outlier types, (3) preserve privacy
and security [8, 19] or (4) consider mobile devices [2, 5, 20, 22].

4 OUR APPROACH
Our approach consists of two outlier detectors per device referred
to as F (federated) and Li (local). They differ in the data used for
outlier detection: Li acts locally and only considers the partition
di of the associated device. F is a federated outlier detector and
identifies anomalies in the global data set D.

For each observation xi j ∈ di , F and Li return outlier scores,
denoted as osFi j and os

L
i j , which are random samples from unknown

outlier score distributions OSF and OSLi .
Like a tandem, F and Li work together to perform a common

task: finding and distinguishing outliers in decentralized data. First,
the clients fit Li on the local data di and F through FL. After-
wards, they obtain sets of outlier scores osFi = {osFi1,os

F
i2, . . .},

osLi = {osLi1,os
L
i2, . . .} for their data. Finally, each client identifies

local and global outliers (see also Section 4.1) based on a client-
specified detection thresholds εFi and εLi and evaluates if the local
data is a partition outlier (see also Section 4.2).

Related work suggests that Autoencoders (AEs), a type of Neural
Network that learns a compressed representation of the data, are
particularly useful for outlier detection [13]. In addition, one can
train them with FL. Hence we use them in our framework.

4.1 Identification of local and global outliers
Finding outliers in a decentralized settingwould require exchanging
sensitive information between clients to estimate XG based on the
global data set D. It is thus not possible if privacy is a concern. Our
method instead uses the empirical distribution of outlier scores,
assuming that it is a good proxy for Xi and XG .

F identifies outliers w.r.t. the global data set D. Li , in contrast,
finds outliers in an isolated partition di . As a result, F can only
identify global outliers while Li can find local and global outliers
but is unable to distinguish them. Combining F and Li is thus key
to discriminate between local and global anomalies.



Our approach identifies and classifies an observation xi j (1) as
global outlier if both F and Li identify it as an outlier, i.e., if osLi j >
εLi and osFi j > εFi and (2) as local outlier if the observation is only
anomalous w.r.t. the local data set, i.e., if osLi j > εLi and osFi j ≤ εFi .

4.2 Identification of partition outliers
We observe that outlier scores in partition outliers are significantly
higher than those of normal devices if they use identical outlier
detectors. Hence, we can identify partition outliers by evaluating
for which clients the outlier scores obtained with F – which is
identical for all ci – deviate significantly from the rest. For that we
use a decentralized variant of the one-sided Mann-Whitney-U test:

(1) ScoreAggregation: Each client ci divides the sorted fed-
erated outlier scores into bins of size b and computes the
mean for each bin. It transfers the set of means, os∗i , to the
server. This step reduces data transmission b-fold and masks
information about point outliers.

(2) ServerEvaluation: Next, the server computes the p-value
for each client ci using the Mann-Whitney-U statistic be-
tween os∗i and (os∗1 ∪ os∗2 ∪ . . . ∪ os∗|N | ) \ os

∗
i .

(3) ClientEvaluation: At last, a client evaluates if pi < αi , a
client-dependent significance level. For brevity, we will refer
to αi as α from now on.

Note that step (1) introduces a trade-off between statistical power
and data transmission – large choices of b provide effective data
compression and small choices improve the test’s statistical power.
We will give a recommendation for b in Section 5.1.

5 EXPERIMENTS
Next, we evaluate our approach. As an ablation, we compare to local
and federated outlier detection on the synthetic data. Our results
are the average of 10 repetitions with the random seed set to the
repetition index.

We use Autoencoders (AE) as F and Li with one hidden layer of
size η ·d [13], with η = 0.7 on synthetic data and η = 0.4 on power
tool data. We apply ReLu activation in the hidden and Sigmoid
in the output layer on the synthetic data. The output layer uses a
linear activation function on the power tool data set due to standard
normalized input. In FL, the clients train for one local epoch E = 1
and 20 communication rounds with a batch size of B = 32.

5.1 Evaluation on Synthetic Data
5.1.1 Local and global outliers. We generate synthetic data from a
10-component Gaussian mixture (GMM) with 10 dimensions rep-
resenting XG . We use 30 clients with |di | = 1000 observations
sampled from five randomly chosen GMM-components represent-
ing X i . Hence, the global data set D = d1 ∪ d2 ∪ . . . ∪ d30 has ten
components, while each di only contains five components.

We sample from those patterns not present in the local data to
introduce local outliers and random observations for global outliers.
Each partition receives 4 % outliers. We vary the ratio between local
and global outliers over the course of 6 experiments.

For our approach, we set εFi and εLi to the 96th percentiles of osFi
and osLi . For the baselines, i.e., local and federated outlier detection,
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Figure 2: Results for local and global outliers in synthetic
data. The amount of global outliers is 4% minus % local out-
liers.

|di | b shift [std]
0.0 0.25 0.5 0.75 1.0

100 1 0.39 0.36 0.14 0.16 0.09
10 0.47 0.41 0.28 0.27 0.14
100 0.45 0.39 0.26 0.25 0.13

1000 1 0.68 0.34 0.18 0.02 0.00
10 0.66 0.34 0.22 0.04 0.02
100 0.60 0.41 0.31 0.12 0.08
1000 0.66 0.38 0.30 0.09 0.07

10000 10 0.56 0.19 0.01 0.00 0.00
100 0.55 0.30 0.10 0.03 0.00
1000 0.53 0.38 0.26 0.10 0.03
10000 0.55 0.28 0.10 0.06 0.03

Table 1: Detection of partition outliers:p-values for different
partition sizes, b, and shift distances. p < α = 0.05 are bold.

we also use the 96th percentile. Further, we assume that local out-
lier detection always predicts local outliers and federated outlier
detection always global outliers, as suggested in [22].

Figure 2 reports precision, recall, and F1 score. We consider a
classification correct iff the detector classified the exact label, i.e.,
inlier, local outlier or global outlier.

One can see that our approach outperforms federated and local
outlier detection, achieving a higher precision and recall, except if
the data contains solely local outliers. To our surprise, the tandem
even outperforms federated outlier detection if the data contains
only global outliers – a task at which we expected the federated
approach to excel.

5.1.2 Partition outliers. We use the same setting as before and
shift the data of c0 by shift standard deviations. Table 1 reports the
p-values for c0 for different choices of b, |di |, and shift.

One observes that our approach returns high p-values if shift =
0.0, i.e., if the partition is an inlier. Also, one notices that, for a fixed
b, p decreases the larger shift. This confirms that p is indeed a good
indicator of the similarity between XG \ X0 and X0. Last, one can
see that our test becomes more sensitive the larger |di | and the
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Figure 3: Evaluation on power tool data

smaller b. Hence, we suggest to choose b smaller, say b = 10, for
smaller partitions and larger, e.g., b > 100, for larger partitions.

5.2 Power Tool Case Study
We conducted a user study with 15 participants operating a cordless
screwdriver PDC 18/4 Quaddrive by Festool. An attached data log-
ger [4] recorded battery current and voltage, and inertial measure-
ment units (IMUs) measured accelerations and angular velocities.
We extracted d = 1, 665 features using TSFEL [1] after removing
inactive phases of the power tool.

First, we examine local and global anomalies for one of the
power tool operators, c15. Figure 3a shows the battery current for
two exemplary anomalies. A normal screwing process, e.g., in the
interval [50.5s, 52.5s], shows a characteristic pattern of increasing
current which spikes when the screw head enters the wood. This
pattern is absent in the identified global anomaly. In the video, we
could see that the operator slipped off the screw head.

In contrast, the local outlier in the graph has a high similarity
to regular executions. Further investigation did not reveal any sig-
nificant mistakes except minor deviations from the usual usage
patterns, which were confirmed by video analysis. Local anomaly
detection alone would have raised a false alarm in such a case.

Next, we evaluate partition outliers. Figure 3b shows the distribu-
tion of osFi for each participant. We use our recommended b = 10 as
|di | ∈ [240, 718]. Our approach identifies c4 as partition outlier. The
graph shows that the outlier scores of c4 are indeed significantly
higher than those of the other devices. However, the anomaly of c4
would have been undetectable without incorporating knowledge
about other clients. In our study, we used the information to gain
knowledge about the power tool usage of non-professionals.

6 CONCLUSION
This paper presents a tandem approach for unsupervised outlier
detection in decentralized data. We show that existing approaches,
i.e., local and federated anomaly detection, fail to classify local and
global outliers reliably, while our approach does. Also, we provide
a technique to identify partition outliers with a client-specific level
of confidence. We conduct a user study with 15 participants in
the power tools domain, demonstrating the applicability of our
approach in practice.

In the future, we plan to extend our approach the data stream
setting and apply it to applications in healthcare and energy.
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