KIT | KIT-Bibliothek | Impressum | Datenschutz

Seasonal sub-basin-scale runoff predictions: A regional hydrometeorological Ensemble Kalman Filter framework using global datasets

Borne, Maurus ORCID iD icon 1; Lorenz, Christof ORCID iD icon 2; Portele, Tanja C. 2; Martins, Eduardo Sávio P. R.; Vasconcelos Junior, Francisco das Chagas; Kunstmann, Harald 2
1 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT)

Abstract:

Study region
The São Francisco River Basin (SFRB) in Brazil

Study focus
In semi-arid regions, interannual variability of seasonal rainfall and climate change is expected to stress water availability and increase the recurrence and intensity of extreme events such as droughts or floods. Local decision makers therefore need reliable long-term hydro-meteorological forecasts to support the seasonal management of water resources, reservoir operations and agriculture. In this context, an Ensemble Kalman Filter framework is applied to predict sub-basin-scale runoff employing global freely available datasets of reanalysis precipitation (ERA5-Land) as well as bias-corrected and spatially disaggregated seasonal forecasts (SEAS5-BCSD). Runoff is estimated using least squares predictions, exploiting the covariance structures between runoff and precipitation. The performance of the assimilation framework was assessed using different ensemble skill scores.

New hydrological insights for the region
Our results show that the quality of runoff predictions are closely linked to the performance of the rainfall seasonal predictions and allows skillful predictions up to two months ahead in most sub-basins. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000150274
Veröffentlicht am 31.08.2022
Originalveröffentlichung
DOI: 10.1016/j.ejrh.2022.101146
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2022
Sprache Englisch
Identifikator ISSN: 2214-5818
KITopen-ID: 1000150274
HGF-Programm 12.11.33 (POF IV, LK 01) Regional Climate and Hydrological Cycle
Erschienen in Journal of Hydrology: Regional Studies
Verlag Elsevier
Band 42
Seiten Art.-Nr.: 101146
Schlagwörter Hydro-meteorology; Seasonal forecast; River basin management; Data-assimilation
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 2 – Kein HungerZiel 6 – Sauberes Wasser und Sanitär-EinrichtungenZiel 11 – Nachhaltige Städte und GemeindenZiel 13 – Maßnahmen zum Klimaschutz
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page