KIT | KIT-Bibliothek | Impressum | Datenschutz

Ultralow‐Power Atomic‐Scale Tin Transistor with Gate Potential in Millivolt

Xie, Fangqing 1,2; Ducry, Fabian; Luisier, Mathieu ; Leuthold, Juerg; Schimmel, Thomas 1,2,3
1 Institut für Angewandte Physik (APH), Karlsruher Institut für Technologie (KIT)
2 Materialwissenschaftliches Zentrum für Energiesysteme (MZE), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

After decades of continuous scaling, further advancement of complementary metal-oxide-semiconductor (CMOS) technology across the entire spectrum of computing applications is today limited by power dissipation, which scales with the square of the supply voltage. Here, an atomic-scale tin transistor is demonstrated to perform conductive switching between bistable configurations with on/off potentials ≤2.5 mV in magnitude. In addition to the low operation voltage, the channel length of the transistor is determined experimentally and with density-functional theory to be ≤1 nm because the atoms instead of electrons are information carriers in this device. The conductance at on-states of the bistable configurations varies between 1.2 G$_{0}$ to 197 G$_{0}$ (G$_{0}$ = 2e$^{2}$ h$^{-1}$, e stands for the electron charge and h for Planck's constant). Thus, the device can supply driving current from 1 to ≈375 µA in magnitude for logic circuits with the drain-source dc voltage at decades of millivolts. The switching frequency of the atomic-scale tin transistor has reached 2047 Hz. Furthermore, the on/off potentials in millivolts can reduce the energy consumption in the interconnects of integrated circuits at least by ≈400 times. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000150276
Veröffentlicht am 31.08.2022
Originalveröffentlichung
DOI: 10.1002/aelm.202200225
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Institut für Nanotechnologie (INT)
Materialwissenschaftliches Zentrum für Energiesysteme (MZE)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2199-160X
KITopen-ID: 1000150276
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Advanced Electronic Materials
Verlag John Wiley and Sons
Band 8
Heft 10
Seiten Art.-Nr.: 2200225
Vorab online veröffentlicht am 01.07.2022
Schlagwörter 2021-027-030749 EBL
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page