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Abstract

The surgery theorem ofWraith states that the existence of metrics of positive Ricci curvature is pre-
served under surgery if certain metric and dimensional conditions are satisfied. We generalize this
theorem by relaxing the conditions on the dimensions involved and by generalizing the surgery
construction itself. As applications we construct metrics of positive Ricci curvature on manifolds
obtained by plumbing. Specifically, this construction provides an extension of a result of Burdick
on the existence of metrics of positive Ricci curvature on connected sums of linear sphere bundles,
and, moreover, it yields infinite families of new examples of manifolds with a metric of positive
Ricci curvature in all dimensions divisible by 6.
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Introduction 1

Riemannian geometry studies connections between curvature and the shape of objects. In this
context, the Ricci curvature appears naturally in many settings. For example, it is part of equations
with far reaching geometric and topological consequences, like the Bochner formula for the Hodge
Laplacian and the second variation formula of energy along hypersurfaces. Furthermore, the Ricci
curvature is part of the Ricci flow equation, which, by the work of Hamilton and Perelman, has
made substantial contributions to 3-dimensional geometry and topology. In physics, the Ricci
curvature is of interest in general relativity as, for example, it is contained in the Einstein field
equations.

Lower bounds on the Ricci curvature directly affect geometric quantities, like distance and vol-
ume, as well as topological quantities, like Betti numbers and the fundamental group. Therefore,
the question, which manifolds admit a complete Riemannian metric with a given lower Ricci cur-
vature bound, is of great interest. In this thesis, we are interested in the condition of positive Ricci
curvature.

In dimension 2, where Ricci curvature coincides with the classical notion of Gaussian curva-
ture, it follows from the Gauss-Bonnet formula that the only closed surfaces with positive Ricci
curvature are the 2-dimensional sphere and the real projective plane. A similar result holds in
dimension 3, where, as a consequence of the aforementioned Ricci flow techniques, a closed mani-
fold with a Riemannian metric of positive Ricci curvature is finitely covered by the 3-dimensional
sphere.

In higher dimensions, however, the situation is much less clear. Here the condition of pos-
itive Ricci curvature lies between the rather flexible and comparably well-understood condition
of positive scalar curvature and the very restrictive condition of positive sectional curvature. By
the theorem of Bonnet-Myers, a closed manifold that admits a metric of positive Ricci curvature
has finite fundamental group. This result, together with obstructions to the existence of metrics
of positive scalar curvature, is the only known topological obstruction for a manifold to admit a
Riemannian metric of positive Ricci curvature. Thus, Riemannian metrics of positive Ricci cur-
vature could potentially exist on a wide range of manifolds. However, when compared with the
case of positive scalar curvature, examples of manifolds with a Riemannian metric of positive Ricci
curvature are rare.

The majority of known methods to construct Riemannian metrics of positive Ricci curvature
rely on the existence of certain additional structures, such as bundles structures, group actions,
complex structures or Sasakian structures. An overview of these constructions is given in Section
3.1. While these methods produce many interesting examples of manifolds with a Riemannian
metric of positive Ricci curvature, the necessity of the existence of these additional structures
heavily restricts the range of applications.
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1. IntRoduction

Another approach to construct Riemannian metrics of positive Ricci curvature is surgery.
Surgery, which will be introduced in Section 4.1, is a procedure to modify manifolds by cutting
out and gluing in certain predefined parts. There exist different types of surgery, which are distin-
guished by a natural number, called the codimension of the surgery. Applying surgery to questions
about curvature has been proven to be very successful in the case of positive scalar curvature, since
it was shown independently by Gromov–Lawson [50] and Schoen–Yau [101], that the existence
of Riemannian metrics of positive scalar curvature is preserved under any surgery of codimension
at least 3. Since this result does not impose any assumptions on the Riemannian metric involved
(except of having positive scalar curvature), it has far reaching consequences and establishes the
existence of Riemannian metrics of positive scalar curvature on a wide range of manifolds, includ-
ing all closed, simply-connected manifolds in dimensions 5, 6 and 7, see Section 3.4.

For positive Ricci curvature it is open whether a surgery theorem in the same generality holds.
However, if one imposes additional assumptions on the Riemannian metrics involved, there exist
surgery results for positive Ricci curvature, which can be divided into two categories: results
on connected sums, which is surgery in codimension n (where n denotes the dimension of the
manifold), by Perelman [90] and Burdick [21, 22, 23, 24], and results on higher surgeries by Sha–
Yang [107] and Wraith [121, 122].

In the first case, to construct Riemannian metrics of positive Ricci curvature, Burdick intro-
duced the notion of core metrics. These are Riemannian metrics of positive Ricci curvature, which,
roughly speaking, contain a large round disc, see Section 5.2. Based on Perelman’s work he then
showed the following result.

Theorem 1.1 ([22, Theorem B], Proposition 5.2.6). LetMn
1 , . . . ,M

n
k be manifolds that admit core

metrics. If n ≥ 4, then the connected sumM1# . . . #Mk admits a Riemannian metric of positive Ricci
curvature.

Thus, the question for which manifolds their connected sum admits a Riemannian metric of
positive Ricci curvature reduces to the question of which manifolds admit a core metric. Examples
of manifolds with core metrics are the standard sphere, complex projective spaces and total spaces
of certain linear sphere bundles, see Proposition 5.2.7.

For higher surgeries, Sha and Yang proved a surgery theorem for positive Ricci curvature,
which was later extended by Wraith. For that, suppose we have the following:

(S1) A Riemannian manifold (Mp+q−1, gM ) of positive Ricci curvature.

(S2) An isometric embedding ι : Sp−1(ρ) × Dq
R(N) ↪→ M , where Sp−1(ρ) denotes the round

(p− 1)-sphere of radius ρ > 0 and Dq
R(N) denotes the ball of radius R > 0 in Sq(N).

(S3) A smooth map T : Sp−1 → SO(q), which induces a diffeomorphism T̃ : Sp−1 × Sq−1 →
Sp−1 × Sq−1 defined by (x, y) 7→ (x, Tx(y)).

Theorem 1.2 ([122, Theorem 0.3], Theorem 5.5.2). Under assumptions (S1)-(S3) let p ≥ q ≥ 3. Then
there is a constant κ = κ(p, q, R/N,T ) > 0, such that if ρ

N < κ, then the manifold

M̂ =M \ im(ι)◦ ∪T̃ (Dp × Sq−1)

admits a metric of positive Ricci curvature.

The condition ρ
N < κ can be interpreted as requiring the disc Dq to be large compared to the

sphere Sp−1. As a consequence, since it is not clear in a general setting whether for a given embed-
ded sphere there exists a neighborhood of this form, one cannot apply this theoremwithout having
some knowledge on the global structure of the manifold. The assumptions are for example satis-
fied for total spaces of linear sphere bundles, or, more generally, manifolds obtained by plumbing,
which is a procedure that glues disc bundles to each other in a certain way, see Section 4.2.
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Theorem 1.3 ([121, Theorems 2.2 and 2.3], Theorem 5.5.3). Let W be the manifold obtained by
plumbing linear n-disc bundles over n-spheres according to a simply-connected graph or by plumbing
together two disc bundles over spheres (where fiber and base dimension may differ). If the fiber and
base dimensions are at least 3, then ∂W admits a metric of positive Ricci curvature.

Theclass ofmanifolds obtained as boundaries of plumbings as in this theorem containsmany in-
teresting examples, including all homotopy spheres that bound parallelizable manifolds and many
highly-connected manifolds, see Theorem 3.1.12.

We generalize these theorems as follows:

Theorem A ([97, Theorem A]). Under the assumptions (S1) and (S2) letBp be a manifold with a core
metric gB , let E

π−→ B be a linear Sq−1-bundle, and let r > 0. If p, q ≥ 3, then there is a constant
κ = κ(p, q, R/N, gB , r) > 0, such that if ρ

N < κ, then the manifold

M̂ =M \ im(ι)◦ ∪∂ π−1(B \Dp◦)

admits a metric of positive Ricci curvature. This metric coincides outside a neighborhood of the gluing
area with a submersion metric on E with totally geodesic and round fibers of radius r and with a
scalar multiple of the metric gM onM .

Note that under the assumptions B = Sp and p ≥ q we precisely obtain Theorem 1.2 from
Theorem A, with T being the clutching function for the bundle π. Thus, the generalization is two-
fold: We relax the condition on the dimensions involved and we allow a wider range of manifolds
to be glued in.

Similarly as in Theorem 1.3, we obtain the following consequence:

Theorem B ([97, Theorem B]). LetW be the manifold obtained by plumbing according to a simply-
connected graph with compact base manifolds. Suppose that the dimensions of base manifolds and
fibers are all at least 3. Let B be one of the base manifolds and suppose that all other base manifolds
admit core metrics. Then

1. If B admits a Riemannian metric of positive Ricci curvature, then ∂W admits a Riemannian
metric of positive Ricci curvature.

2. IfB admits a core metric and the fiber overB has dimension at least 4, then ∂W admits a core
metric.

Burdick [23] has shown that the total space of a linear Sp-bundle over a compact manifold
Bq admits a core metric if p, q ≥ 3 and B admits a core metric1, see Proposition 5.2.7. As a
consequence of Theorem B, we can extend this result.

Theorem C ([97, Theorem C] ). Let E → Bq be a linear Sp-bundle and suppose that

• p = 2 and q ≥ 4, or

• q = 2 and p ≥ 4.

If B is closed and admits a core metric, then E admits a core metric.

Finally, we consider applications in dimension 6k. As mentioned above, every closed, simply-
connected 6-manifold admits a Riemannian metric of positive scalar curvature. For positive Ricci
curvature, however, all known examples either have small Betti numbers, or have a simple coho-
mology ring structure, see Section 3.5. The only known examples of 6-manifolds with a core metric
are S6, CP 3, S3 × S3 and connected sums of copies of these manifolds.

1In [23] it is claimed that this result holds if p ≥ 3 and q ≥ 2. However, if q = 2 then, the proof given in [23] is not
valid, see Remark 5.2.8.
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1. IntRoduction

We will apply Theorem B to extend the class of known examples. To identify the manifolds,
we will use classification results that only hold in dimension 6. However, results, for which these
classification results are not required, will also hold in any dimension 6k.

To state our result, given a closed, simply-connected and oriented 6k-dimensional manifoldM
with torsion-free homology, we have a trilinear form µM : H2k(M)×H2k(M)×H2k(M)→ Z
defined by

µM (x, y, z) = 〈x ^ y ^ z, [M ]〉.

Further invariants we will consider are the k-th power of the second Stiefel-Whitney class

w2(M)k ∈ H2k(M ;Z/2) ∼= H2k(M)⊗ Z/2

and the k-th Pontryagin class

pk(M) ∈ H4k(M) ∼= Hom(H2k(M),Z).

In particular, these invariants are all defined on the cohomology group H2k(M). For k = 1,
by the classification of Jupp [67], see also Theorem 6.1.1, these invariants already determine the
diffeomorphism type ofM up to connected sumswith copies ofS3×S3. Given a finitely generated
free abelian group H , a symmetric trilinear form µ on H , an element w ∈ H ⊗ Z/2 and a linear
form p onH , we call the system (H,µ,w, p) admissible in dimension 6k, if it can be realized as the
invariants of a closed, simply-connected 6k-dimensional manifold with torsion-free homology.

In Section 6.2 we introduce the notion of algebraic plumbing graphs. These are bipartite graphs
G = (U, V,E, (α, k+, k−)), where U and V are the sets of vertices and E ⊆ U × V is the set of
edges. Further, we have a labeling (α, k+, k−) : U → Z× N2

0 for vertices in U . We draw vertices
u ∈ U as follows:

α(u)

k−(u)

k+(u)

If one of k+(u) and k−(u) vanishes, then we will omit it. Vertices in V will simply be drawn as
dots. An example for such a graph is given as follows:

5
7

2

-1

3

1

42
9

6

An algebraic plumbing graph G defines for every k a 6k-dimensional manifold, denoted byM
G

k .
Important invariants, such as the cohomology group H2k(M

G
k), the trilinear form µM

Gk
, and

characteristic classes can be computed directly from the data provided by the algebraic plumbing
graph if it is simply-connected. For example, if no vertex in v is a leaf, then H2k(M

G
k) has rank

|U |−|V | andM
G

k is spin if and only if k− = k+ ≡ 0. The fact, that the invariants can be obtained
from the graph data if G is simply-connected, motivates defining invariants (HG, µ

k
G, wG, p

k
G) in

a similar way for any algebraic plumbing graph G. We set µG = µ1
G and pG = p1G.

4



Theorem D. Let G be an algebraic plumbing graph.

• If k = 1, then the system of invariants (HG, µG, wG, pG) is admissible in dimension 6.

• If every connected component of G is simply-connected, then the system of invariants
(HG, µ

k
G, wG, p

k
G) is admissible in dimension 6k and realized by the manifoldM

G
k . Further,

M
G

k admits a core metric.

• If k = 1 and every connected component of G is simply-connected, then any closed, simply-
connected 6-manifold with torsion-free homology, whose invariants are equivalent to
(HG, µG, wG, pG), admits a core metric.

Since different algebraic plumbing graphs can have equivalent systems of invariants, it is not
clear a priori, how large the class of manifolds is that we obtain in this way. To analyze this further,
we introduce a reduced form in Section 6.3 and conjecture that systems of invariants obtained from
different reduced forms are indeed not equivalent, see Question 6.3.4. The difficulty lies in the
problem that in general it is hard to determine whether two given trilinear forms are equivalent
or not. In Section 6.4 we prove the conjecture for graphs G with rank(HG) ≤ 2, except for the
case where rank(HG) = 2 and wG = 0. Here the reduced graphs are of the form

α1 α2 or

α1

α2 α3

with αi 6= 0 in the second case. By using invariant theory of SL(2,C) we can show that for any
graph of this form there exists at most one other graph of this form with an equivalent system of
invariants, see Proposition 4.3.4. This fact, however, is sufficient to show that we obtain infinitely
many diffeomorphism types in this way, so that infinitely many of these graphs define new ex-
amples of 6-manifolds with a Riemannian metric of positive Ricci curvature and of 6-manifolds
with core metrics, see Remark 6.5.3. Further, by using the classification of Schmitt [100], we can
analyze how large the class of 6-manifolds constructed in this way is within the class of all closed,
simply-connected spin 6-manifolds M with torsion-free homology and b2(M) = 2, see Propo-
sition 6.5.4. An interesting subfamily of these graphs is given by certain graphs for which the
corresponding 6-manifolds split as a connected sum, where one of the summands is a homotopy
CP 3, see Proposition 6.5.9.

For larger Betti numbers, using Theorem D, we have the following results.

Theorem E. For every k ∈ N and for every odd l ∈ N sufficiently large there exists an infinite family
M6k
j of pairwise non-diffeomorphic closed 6k-dimensional manifolds with torsion-free homology with

the following properties:

• Mj is (2k − 1)-connected with b2k(Mj) = l,

• Mj does not split non-trivially as a connected sum,

• Mj is not diffeomorphic to the total space of a linear sphere bundle, a homogeneous space, a
biquotient, a cohomogeneity one manifold or a Fano variety,

• Mj admits a core metric.

Further, if k = 1 or k is even, then we can replace the conclusion thatMj is (2k − 1)-connected by
Mj being simply-connected and non-spin.

5



1. IntRoduction

It follows that the manifoldsMj are new examples of manifolds with a metric of positive Ricci
curvature.

We also consider limitations of this technique. In fact, the total space of any linear S2k-bundle
over S2k × S2k , which is known to admit a core metric for k ≥ 2 and a Riemannian metric of
positive Ricci curvature for k = 1, cannot be constructed via an algebraic plumbing graph as in
Theorem D, see Proposition 6.5.7.

This thesis is organized as follows: Chapter 2 summarizes the notation used. In Chapter 3 we
give an overview over known constructions and obstructions for Riemannian metrics of positive
Ricci curvature. We also briefly survey the situation for positive scalar and sectional curvature and
explicitly consider the known examples of manifolds with a Riemannian metric of positive Ricci
curvature in dimensions up to 6. In Chapter 4 we introduce surgery and the plumbing construction
and analyze topological properties of manifolds obtained by plumbing. In Chapter 5 we consider
surgery on manifolds with a Riemannian metric of positive Ricci curvature and prove Theorems
A, B and C. Finally, we consider applications to 6k-dimensional manifolds in Chapter 6 and give
the proof of Theorems D and E. The appendices provide basic properties of Riemannian manifolds,
fiber bundles, graph theory and invariant theory.

6



Notation and General Background 2

By N we denote the set of natural numbers and we use the convention that 0 6∈ N. We set N0 =
N∪{0}. As usual, Z denotes the ring of integers andQ, R and C denote the fields of rational, real
and complex numbers, respectively.

Manifolds

For the definitions and basic properties of manifolds, vector bundles, Lie groups and Riemannian
metrics we refer to [75], [76] and [94]. Basics of Riemannian geometry and of fiber bundles are
introduced in Appendices A and B, respectively. Here, the term manifold denotes a smooth man-
ifold, possibly with boundary. The boundary of a manifold M is denoted by ∂M . For x ∈ M
we denote by TxM the tangents space at x and by TM the tangent bundle ofM . By Int(M) we
denote the interior ofM . IfX ⊆M , we denote byX◦ the interior ofX as a subspace ofM . Note,
that if X is a submanifold, these two notions of the interior do not necessarily coincide.

All maps between manifolds will be assumed to be smooth. For a manifoldM we will write
Mn to indicate that M has dimension n. By Dn we denote the closed n-dimensional disc and
by Sn = ∂Dn+1 the n-dimensional sphere. Real, complex and quaternionic projective spaces are
denoted by RPn, CPn and HPn, respectively.

IfM1 andM2 are two manifolds, such that there exists a diffeomorphism φ : ∂cM2 → ∂cM1

between boundary components ∂cMi ⊆ ∂Mi, we denote by

M1 ∪ϕM2

the space obtained fromM1 tM2 by gluing along φ. The smooth structures ofM1 andM2 carry
over to this space and turn it into a manifold in a natural way, see e.g. [58, Theorem 8.2.1]. If the
identification φ is clear, then we also write

M1 ∪∂cM2
M2,

and if ∂cMi = ∂Mi, we simply write
M1 ∪∂ M2.

(Co-)Homology

If not stated otherwise, we use homology and cohomology with coefficients inZ. For basic notions
of (co-)homology we refer to [55]. IfM is oriented, then −M denotesM with the reversed orien-
tation. If a compact manifoldMn is oriented with respect to a commutative ring R, we denote by

7



2. Notation and GeneRal BacKgRound

[M,∂M ;R]∈ Hn(M,∂M ;R) its fundamental class. We will leave out ∂M or R in this notation
if ∂M = ∅ or R = Z, respectively. Note that an orientation of M in the classical sense, which
corresponds to an orientation with respect to Z, induces an orientation with respect to any ring
R, since in this case, we have

Hn(M,∂M ;R) ∼= Hn(M,∂M)⊗R ∼= R.

An important tool will be Lefschetz duality: If A,B ⊆ ∂M are submanifolds such that
∂A = ∂B = A ∩B, then cap product with [M,∂M ;R] defines an isomorphism

· ∩ [M,∂M ;R] : Hi(M,A;R)→ Hn−i(M,B;R),

see e.g. [55, Theorem 3.43].
The Lefschetz dual of 1 ∈ H0(M ;R) ∼= R in Hn(M,∂M ;R) is denoted by

[M,∂M ;R]∗ ∈ Hn(M,∂M ;R).

In particular, we have 〈[M,∂M ;R]∗, [M,∂M ;R]〉 = 1 ∈ R.
By

bi(M) = rank(Hi(M)) = rank(Hi(M))

we denote the i-th Betti number ofM . Finally,

χ(M) =
∑
i

(−1)ibi(M)

denotes the Euler characteristic ofM .

8



Positive Ricci Curvature 3

In this chapter we give an introduction to positive Ricci curvature. We will first survey the known
methods to construct metrics of positive Ricci curvature in Section 3.1 and topological obstructions
to the existence of such metrics in Section 3.2. We then illustrate its connections to the related
conditions of positive sectional and positive scalar curvature in Sections 3.3 and 3.4. Finally, in
Section 3.5, we list all known examples of closed, simply-connected manifolds with a metric of
positive Ricci curvature in dimensions up to 6.

3.1 Constructions of Metrics of Positive Ricci Curvature

Recall (cf. Appendix A), that for a Riemannianmanifold (Mn, g) the Ricci curvature is a symmetric
(0, 2)-tensor onM defined by

Ric(u, v) = trg(g(R(·, u)v, ·))

for all p ∈M , u, v ∈ TpM , and (M, g) is said to have positive Ricci curvature, if Ric(v, v) > 0 for
all v ∈ TM .

In the following we will only consider results for compact manifolds, since this is our main
focus.

The most basic example of a manifold with a metric of positive Ricci curvature is the sphere
Sn. Indeed, the round metric of radius r > 0, denoted by r2 · ds2n, is the metric induced from the
standard metric on Rn+1 when we identify Sn with

{v ∈ Rn+1 | ‖v‖ = r}.

We will also write Sn(r) for (Sn, r2 · ds2n). If n ≥ 2, then r2ds2n has positive Ricci curvature. In
fact, the Ricci tensor is given by

Ric =
n− 1

r2
ds2n, (3.1.1)

see e.g. [94, 4.2.1]. Further, for any finite group Γ ⊆ O(n) that acts freely on Sn, the quotient
Sn/Γ with the induced metric of ds2n is locally isometric to Sn(1), hence it also has positive Ricci
curvature. These spaces are called spherical space forms.

That the round metric has positive Ricci curvature is also a special case of the following result
by Nash.

9



3. Positive Ricci CuRvatuRe

Theorem 3.1.1 ([86, Proposition 3.4]). Let G be a compact Lie group and let H ⊆ G be a closed
subgroup. Then the homogeneous space G/H admits a metric of positive Ricci curvature if and only
if π1(G/H) is finite. In fact, if π1(G/H) is finite, then every biinvariant metric on G induces a
metric of positive Ricci curvature on G/H .

The sphere Sn is the homogeneous space SO(n+1)/SO(n) (cf. Example B.1.3), henceTheorem
3.1.1 applies. Further applications are the projective spaces

RPn = O(n+ 1)/(O(n)× O(1)),

CPn = U(n+ 1)/(U(n)× U(1)),

HPn = Sp(n+ 1)/(Sp(n)× Sp(1)),

OP 2 = F4/Spin(9).

A generalization of homogeneous spaces are biquotients. For a Lie group G and a closed sub-
groupH ⊆ G×G consider the action ofH on G defined by

(h1, h2) · g = h1gh
−1
2

for g ∈ G and (h1, h2) ∈ H . If the action is free, then the quotient, denoted byG//H , is a smooth
manifold. A special case is whereH = H1 ×H2 for closed subgroupsH1,H2 ⊆ G. Then we also
writeH1\G/H2. ForH1 the trivial group we then recover the definition of a homogeneous space.
Theorem 3.1.1 was extended to biquotients by Schwachhöfer and Tuschmann.

Theorem 3.1.2 ([104, Theorem A]). Let G be a compact Lie group and let H ⊆ G × G be a closed
subgroup so that G//H is a biquotient. Then G//H admits a metric of positive Ricci curvature if and
only if π1(G//H) is finite. In fact, if π1(G//H) is finite, then every biinvariant metric on G induces
a metric of positive Ricci curvature on G//H .

If we decrease the degree of symmetry, we arrive at the notion of cohomogeneity one manifolds.
Let G be a compact Lie group. Then a cohomogeneity one manifold for G is a manifoldM with
an action ofG, so that the orbit spaceM/G is a 1-dimensional manifold (possibly with boundary).
Grove and Ziller showed, that for cohomogeneity one manifolds a result similar to Theorem 3.1.1
holds.

Theorem 3.1.3 ([53,TheoremA]). LetG be a compact Lie group and letM be a closed cohomogeneity
one manifold for G. Then M admits a G-invariant metric of positive Ricci curvature if and only if
π1(M) is finite.

This theorem was extended by Schwachhöfer and Tuschmann to quotients by subgroups ofG.

Theorem 3.1.4 ([104, Theorem B]). Let G be a compact Lie group and let M be a closed cohomo-
geneity one manifold for G. Let L ⊆ G be a subgroup that acts freely onM . ThenM/L admits a
NormG(L)-invariant metric of positive Ricci curvature if and only if π1(M/L) is finite.

Here NormG(L) = {g ∈ G | gLg−1 = L} is the normalizer of L.
Applications of Theorem 3.1.3 include Brieskorn manifolds. For a0, . . . , an ∈ N the Brieskorn

manifold B(a0, . . . , an) is the intersection of the zero set of the polynomial

za00 + · · ·+ zann

inCn+1 with the unit sphere inCn+1. The spaceB(a0, . . . , an) has the structure of a smooth man-
ifold of dimension 2n− 1, see [19]. The Brieskorn manifolds B(d, 2, . . . , 2) are of cohomogeneity
one for the group O(n)×S1, henceTheorem 3.1.3 applies. This class contains the class of Kervaire
spheres, which are certain odd-dimensional homotopy spheres that are exotic if they are of dimen-
sion 2n− 1 and n+ 1 is not a power of 2. By taking finite quotients of Kervaire spheres, one can
construct manifolds that are homotopy equivalent, but not diffeomorphic to RP 4k+1, which then

10



3.1. Constructions of Metrics of Positive Ricci Curvature

also admit actions of cohomogeneity one and hence a metric of positive Ricci curvature, see [104,
Section 7]. Note that this result has also been obtained in the context of Sasakian geometry, see
Theorem 3.1.10 below and subsequent remarks.

It had already been shown previously by Cheeger [28, Example 4], by using the same descrip-
tion as a cohomogeneity one manifold, that all Kervaire spheres admit metrics of positive Ricci
curvature. A further construction of metrics of positive Ricci curvature on Brieskorn manifolds
was achieved by Hernandez [56], who considered the metric on B(a0, . . . , an) induced from the
standard metric on Cn+1. His main result is given as follows:

Theorem 3.1.5 ([56, Theorem III.4]). Let a0, . . . , am ≥ 2. Then there exists an integer N =
N(a0, . . . , am), such that, if we set ai = 2 for i > m, the Brieskorn manifold B(a0, . . . , am+p)
admits a metric of positive Ricci curvature for all p ≥ N .

For example, in this way one obtains metrics of positive Ricci curvature onmany exotic spheres
that bound parallelizable manifolds, see [56, Theorem IV.1]

If the action is of higher cohomogeneity, i.e. the quotient M reg/G, where M reg denotes the
union of the principal orbits, has dimension at least 2, there is no classification as in Theorems
3.1.1 and 3.1.3 known. The following result by Searle and Wilhelm gives a partial answer.

Theorem 3.1.6 ([105, Theorem A]). LetG be a compact and connected Lie group and let (M, g) be a
Riemannian manifold on which G acts isometrically and effectively. If the fundamental group of the
principal orbits is finite and the induced metric onM reg/G has Ricci curvature ≥ 1, thenM admits
a G-invariant metric of positive Ricci curvature.

This theorem is motivated by a result of Lawson and Yau, see Theorem 3.4.14 below, which
asserts that any closed manifold, on which a non-abelian Lie group acts effectively, admits a metric
of positive scalar curvature.

We now consider metrics of positive Ricci curvature on fiber bundles. It is not hard to see
that the product of two manifolds with metrics of positive Ricci curvature again has positive Ricci
curvature, see Remark A.4. For fiber bundles in general there exist results going back to Poor [96]
and Nash [86], which are consequences of the following more general result:

Theorem 3.1.7 ([47, Theorem 2.7.3], see also [27, Theorem 1.6]). Let π : E → B be a fiber bundle
with fiber F and structure group G. If F and B are compact and admit metrics of positive Ricci
curvature, so that the action ofG on F is isometric, thenE admits a metric of positive Ricci curvature.

Theorem 3.1.7 provides numerous ways to construct manifolds with metrics of positive Ricci
curvature. Indeed, one can apply it to fiber bundles with fiber F and structure group G, where
F is a homogeneous space or a cohomogeneity one manifold for G for which Theorem 3.1.1 or
3.1.3 applies. Of particular interest are linear sphere bundles, which are discussed in more detail
in Section B.2.

In the special case of a principal bundle, all bundles admitting an invariant metric of positive
Ricci curvature were determined by Gilkey, Park and Tuschmann [45], provided that the base
manifold admits a metric of positive Ricci curvature.

Theorem 3.1.8 ([45, Theorem 0.1]). LetG be a compact and connected Lie group and let π : P → B
be a principal bundle, so that B admits a metric of positive Ricci curvature. Then P admits a metric
of positive Ricci curvature if and only if π1(P ) is finite.

Note that the fiber G does not necessarily need to admit a metric of positive Ricci curvature,
e.g. ifG is a torus. By considering total spaces of principal torus bundles over simply-connected 4-
manifolds, Corro and Galaz-García [31] constructed metrics of positive Ricci curvature on certain
connected sums of sphere bundles.

Complex geometry can also be used to construct metrics of positive Ricci curvature. As a result
of Yau’s proof of the Calabi conjecture [125], we have the following theorem.

11



3. Positive Ricci CuRvatuRe

Theorem 3.1.9 ([125]). LetM be a compact Kähler manifold. Then any closed, real (1, 1)-form on
M , whose cohomology class is the first Chern class ofM , is the Ricci curvature of a Kähler metric on
M . In particular, if the first Chern class can be represented by a closed, real (1, 1) form that is positive
definite, thenM admits a Kähler metric of positive Ricci curvature.

Applications of Theorem 3.1.9 are given by so-called Fano varieties, which we will consider in
Section 3.5.

Theorem 3.1.9 only applies to manifolds whose real dimension is even. In odd dimensions one
can consider Sasakian geometry, which is a subfield of contact geometry, see e.g. [13]. For Sasakian
manifolds, there exists a notion of positivity, and the analogue of Theorem 3.1.9, proven by Boyer,
Galicki and Nakamaye [17], is given as follows.

Theorem 3.1.10 ([17]). LetM be a compact manifold that admits a positive Sasakian structure. Then
M admits a metric of positive Ricci curvature.

Theorem 3.1.10 has turned out to provide many examples of manifolds with a metric of pos-
itive Ricci curvature, including rational homology spheres in dimension 5 [12, 14], all homotopy
spheres that bound parallelizable manifolds, including all homotopy spheres in dimensions 7 and
11, and homotopy real projective spaces [18], and many odd-dimensional highly-connected man-
ifolds which are homotopy equivalent to a connected sum of products of spheres [15]. Note that
some of these results have independently been obtained via surgery techniques by Wraith [121]
and Crowley–Wraith [33], see Theorem 3.1.12 below.

We also mention the techniques involving surgery, which are the main topic of this thesis. The
process of surgery will be introduced in Section 4.1 and surgery in the context of positive Ricci
curvature will be discussed in Chapter 5.

The surgery techniques for positive Ricci curvature were first introduced by Sha and Yang
[107]. As a result of their surgery theorem they obtained the following manifolds with metrics of
positive Ricci curvature.

Theorem 3.1.11 ([107, Theorem 1]). Let p, q ≥ 2. Then, for any k ∈ N, the manifold #k(Sp × Sq)
admits a metric of positive Ricci curvature.

The family of manifolds in Theorem 3.1.11 were the first example of an infinite family of mani-
folds with a metric of positive Ricci curvature in a fixed dimension with arbitrarily large total Betti
number. In particular, this shows that almost all of these manifolds cannot admit a metric of non-
negative sectional curvature by Theorem 3.3.2 below. Theorem 3.1.11 got subsequently extended
by Wraith [124] to connected sums of products of spheres, where the summands may differ from
each other.

A modification of the surgery theorem of Sha and Yang is Theorem 1.2 and was developed by
Wraith [122]. It led to the following applications.

Theorem 3.1.12 ([33],[121]). The following manifolds admit metrics of positive Ricci curvature:

1. Every homotopy sphere that bounds a parallelizable manifold,

2. Up to connected sum with a homotopy sphere every highly connected manifold in dimension
4k − 1, k ≥ 2, which is (2k − 1)-parallelizable if k ≡ 1 mod 4, including all 2-connected
7-manifolds,

3. Up to connected sum with a homotopy sphere every highly connected manifold in dimension
4k + 1, k ≥ 1, that is 2k-parallelizable and has torsion-free homology.

For connected sums, which is a special case of surgery, Perelman [90] constructed a metric of
positive Ricci curvature on any finite connected sum of copies of±CP 2. For that he introduced a
gluing technique for metrics of positive Ricci curvature.
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3.2. Topological Obstructions to Positive Ricci Curvature

Theorem 3.1.13 ([90]). Let Mn
1 , M

n
2 be manifolds that admit metrics of positive Ricci curvature.

Assume that there exists an isometry φ : ∂cM1 → ∂cM2 between compact boundary components
∂cM1 ⊆ ∂M1 and ∂cM2 ⊆ ∂M2. If the second fundamental forms II∂cMi

satisfy

II∂cM1
+ φ∗II∂cM2

≥ 0,

thenM1 ∪ϕ M2 admits a metric of positive Ricci curvature that coincides with the original metrics
onM1 andM2 outside an arbitrarily small neighborhood of the gluing area.

Perelman’s ideas were later adapted by Burdick [21, 22, 23, 24], who introduced the notion
of core metrics and showed that the connected sum of a finite number of manifolds with core
metrics admits a metric with positive Ricci curvature, cf. Theorem 1.1. This approach, which we
will discuss in detail in Section 5.2, combined with the surgery techniques, provides the most
promising approach so far to construct metrics of positive Ricci curvature, since the manifolds
constructed in this way do not need to have any additional structure, like admitting a certain
group action, bundle structure or Kähler/Sasakian structure.

Finally, we mention two deformation results that allows to deform a metric of non-negative
Ricci or sectional curvature to a metric of positive Ricci curvature. The first one, which is due to
Ehrlich, uses so-called local convex deformations. For a given point these deformations decrease
the Ricci curvatures at this point while increasing the Ricci curvatures on an annulus around
this point. By a repeated application of this deformation, if the manifold has non-negative Ricci
curvature and positive Ricci curvature at one point, one can spread the positivity of the Ricci
curvatures to the whole manifold.

Theorem 3.1.14 ([41]). Let M be a manifold that admits a complete metric of non-negative Ricci
curvature. If there is a point inM at which all Ricci curvatures are positive, thenM admits a complete
metric of positive Ricci curvature.

The second result, which is due to Böhm and Wilking, uses the Ricci flow. In fact, it shows
that a metric of non-negative sectional curvature on a closed manifold evolves to a metric with
positive Ricci curvature under the Ricci flow unless the original metric has a flat factor, which can
only be the case if the manifold has an infinite fundamental group.

Theorem 3.1.15 ([9]). Let M be a closed manifold that admits a metric of non-negative sectional
curvature. If π1(M) is finite, thenM admits a metric of positive Ricci curvature.

3.2 Topological Obstructions to Positive Ricci Curvature

Themain obstruction to the existence of metrics of positive Ricci curvature is the classical theorem
of Bonnet–Myers.

Theorem 3.2.1 ([85], or [94, Theorem 6.3.3]). A closed manifold that admits a metric of positive Ricci
curvature has finite fundamental group.

This shows that the existence of a metric of positive Ricci curvature has strong implications on
the global structure of the manifold. For example, for any closed manifoldM , the productM ×S1

does not admit a metric of positive Ricci curvature.
Further, ifM has finite, but non-trivial fundamental group, we have the following obstruction

by Chen and Wu [29].

Theorem 3.2.2 ([29,TheoremA]). There exists a constant p(n) > 0 such that for any closed manifold
Mn that admits a metric of positive Ricci curvature, we have

b1(M,Z/p) ≤ n− 1

for all primes p ≥ p(n).
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3. Positive Ricci CuRvatuRe

Any finitely presented group can be realized as the fundamental group of a closed 4-manifold,
in fact one can always find such a manifold that admits a metric satisfying the weaker condition of
positive scalar curvature, see e.g. [25, Corollary 2]. Thus, Theorem 3.2.2 provides numerous mani-
folds that cannot admit a metric of positive Ricci curvature, such as manifolds whose fundamental
group is the product (Z/mZ)m or the symmetric group Sm form sufficiently large.

IfM is simply-connected, then, besides the known obstructions for metrics with scalar curva-
ture (see Section 3.4), there are no obstructions known. Hence, we can ask the following question.

Question 3.2.3. Let M be a closed, simply-connected manifold that admits a metric of positive
scalar curvature. DoesM admit a metric of positive Ricci curvature?

While the answer toQuestion 3.2.3 is affirmative in dimensions 2 and 3 (the only closed, simply-
connected manifolds in these dimensions are spheres), it is expected to be negative in general. A
counterexample would be given by a proof of the Stolz conjecture: Given a closed string mani-
fold M4k , Stolz [110] conjectured, that the so-called Witten genus of M vanishes. Provided the
conjecture holds, Stolz showed that there are counterexamples toQuestion 3.2.3 in all dimensions
4k = 24 or 4k ≥ 32.

For manifolds with boundary there exist topological obstructions if one additionally imposes
conditions on the boundary. The first such result was proven by Lawson [71] and involves the
mean curvature at the boundary.

Theorem 3.2.4 ([71,Theorem 1]). LetM be a compact connected manifold with non-empty boundary
that admits a metric of positive Ricci curvature. If the mean curvature at the boundary is positive,
then ∂M is connected and the map π1(∂M)→ π1(M) induced by the inclusion is surjective.

In particular, if a compact manifoldMn admits a metric of positive Ricci curvature and convex
boundary, i.e. the second fundamental form on the boundary is positive definite, then there is
only one boundary component. Further, Wang [118] showed, that the “degree of convexity ”of
the boundary affects the topology of the interior. For that, let λ be the smallest eigenvalue of the
second fundamental form of ∂M over all points in ∂M . Then define

Λ(Mn) = λ

(
vol(∂M)

ωn−1

) 1
n−1

,

where ωn−1 is the volume of Sn−1(1). The constantΛ(Mn) can be interpreted as a measure of the
convexity of the boundary, which is constructed so that it is invariant under scaling of the metric.

Theorem 3.2.5 ([118, Theorem 1′]). Let (Mn, g), n ≥ 4, be a compact, connected manifold. Then
there exists a constant δn ∈ (0, 1), so that if

1. Ricg > 0,

2. Λ(Mn) > 1− δn, and

3.
(

Ric∂g

n−2

) 1
2
(

vol(∂M)
ωn−1

) 1
n−1

> 1− δn,

thenM is contractible.

For example, if ∂M is isometric to Sn−1(r) for some r > 0, then the left-hand side of item
(3) in Theorem 3.2.5 equals 1, hence the inequality holds. Then the theorem asserts, that if the
boundary is sufficiently convex, thenM must be contractible.

Finally, although these are not obstructions to the existence of metrics of positive Ricci cur-
vature in general, we also discuss limitations of some of the techniques presented in Section 3.1.
First we consider group actions.
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3.2. Topological Obstructions to Positive Ricci Curvature

Proposition 3.2.6. There exists a constantC(n) so that ifM is a compact homogeneous space, biquo-
tient or cohomogeneity one manifold of dimension n, then for any field K, we have

n∑
i=0

bi(M ;K) ≤ C(n).

Proof. Since every homogeneous space, and more general, every biquotient admits a metric of non-
negative sectional curvature (cf. [104, Section 2]), the claim follows directly from Theorem 3.3.2
below in this case.

A compact cohomogeneity one manifoldM for a compact Lie group G can only be of one of
the following forms, see e.g. [61]:

• M/G ∼= S1 andM has the structure of a fiber bundle over S1 with fiber G/H for a closed
subgroupH ⊆ G, or

• M/G ∼= [−1, 1] and M is the union of tubular neighborhoods of the non-principal orbits
G/K± over ±1.

In the first case,M can alternatively be described as the mapping torus

Tf = [0, 1]× (G/H)
/
(0, x) ∼ (1, f(x))

of a diffeomorphism f : G/H → G/H . We consider G/H ⊆ Tf via G/H ∼= {0} × G/H ⊆ Tf .
Then we have for i > 0, where we consider cohomology with coefficients in K,

Hi(Tf , G/H) = Hi(Tf/(G/H)) = Hi((G/H × S1)/(G/H)) = Hi(G/H × S1, G/H)

and
Hi(G/H × S1, G/H) ∼= Hi−1(G/H)

by the long exact sequence of the pair (G/H × S1, G/H). Hence, the long exact sequence of the
pair (Tf , G/H) is given by

· · · −→ Hi(Tf , G/H) −→ Hi(Tf ) −→ Hi(G/H) −→ . . . ,

so

n∑
i=0

bi(Tf ) ≤
n∑
i=0

bi(Tf , G/H) + bi(G/H) =
∑
i=0

bi−1(G/H) + bi(G/H) ≤ 2C(n− 1)

for the constant C(n) in Theorem 3.3.2.
In the second case, there exists a long exact sequence

. . .Hi−l−−1(G/K−) −→ Hi(M) −→ Hi(G/K+) −→ Hi−l−(G/K−) −→ . . . ,

where l± denotes the dimension of K±/H and H ⊆ G is the isotropy subgroup of the principal
orbits, see e.g. [63]. Hence,

n∑
i=0

bi(M) ≤
n∑
i=0

bi−l−−1(G/K−) + bi(G/K+) ≤ 2C(n− 1).

Alternatively, Schwachhöfer and Tuschmann showed that any closed cohomogeneity one man-
ifold admits ametric of almost non-negative sectional curvature, see [103,TheoremA]. ByTheorem
3.3.2 below, which also applies to metrics of almost non-negative sectional curvature, the claim
follows.
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3. Positive Ricci CuRvatuRe

For applications of Theorem 3.1.9 we have the following limitation.

Proposition 3.2.7 ([35, Theorem 2.1]). In every dimension n there exist only finitely many diffeo-
morphism types of Fano varieties.

For positive Sasakian structures an analogous result does not hold as we will see in Section
3.5. However, besides the fact that Sasakian structures only exist in odd dimensions, there exist
additional obstructions:

Proposition 3.2.8. LetM2n+1 be a Sasakian manifold. Then

• The top Stiefel-Whitney class w2n+1(M) vanishes, and

• IfM is compact and simply-connected and the Sasakian structure is positive, thenM is spin.

Proof. By definition,M admits a unit length vector field, see e.g. [13, Definition-Theorem 6]. By
[82, Proposition 4.4] this implies that w2n+1(M) = 0, showing the first claim. For the second
claim we refer to [17, Proposition 2.6].

3.3 Positive Sectional Curvature

In this section we briefly summarize the known results concerning the existence of metrics of
positive sectional curvature on closed manifolds. We refer to [127] for a survey.

Recall (cf. Appendix A), that for a Riemannian manifold (M, g) and linearly independent vec-
tors v, w ∈ TpM , p ∈M , the sectional curvature sec(u, v) is defined by

sec(u, v) =
g(R(u, v)v, u)

g(u, u)g(v, v)− g(u, v)2

and that positivity of sec implies positivity of Ric.
There are strict topological obstructions to the existence of metrics of positive sectional curva-

ture. First, the theorem of Bonnet-Myers (Theorem 3.2.1) can also be applied to metrics of positive
sectional curvature, showing that closed manifolds with a metric of positive sectional curvature
have finite fundamental group. Further obstructions are given as follows:

Theorem 3.3.1 (Synge [112],or [94, Theorem 6.3.6]). LetMn be a manifold that admits a metric of
positive sectional curvature.

1. Suppose n is even. IfM is orientable, thenM is simply-connected. IfM is not orientable, then
π1(M) ∼= Z/2.

2. Suppose n is odd. ThenM is orientable.

As a consequence, the product RPn × RPn cannot admit a metric of positive sectional cur-
vature, which shows that the existence of metrics of positive sectional curvature is in general not
preserved under Cartesian products. In the simply-connected case it is conjectured for the product
S2 × S2 that it does not admit a metric of positive sectional curvature, called the Hopf conjecture.

Theorem 3.3.2 (Gromov [48] and [49], or [94, Theorem 12.5.1]). There is a constant C(n) so that
for any closed manifoldMn that admits a metric of non-negative sectional curvature, we have

1. π1(M) is generated by at most C(n) elements, and

2. For any field K, the inequality
n∑
i=0

bi(M ;K) ≤ C(n)

holds.

16



3.4. Positive Scalar Curvature

It is conjectured that C(n) can be chosen to be 2n. This value is attained for the torus Tn,
which admits a flat metric, so in particular a metric of non-negative sectional curvature.

Examples of closed manifolds with a metric of positive sectional curvature are rare. In par-
ticular, all except two of the known examples are homogeneous spaces or biquotients, as we will
describe now.

For a compact Lie group G and a closed subgroup H ⊆ G, a normal homogeneous metric
on G/H , that is, a metric induced from a biinvariant metric on G, has non-negative sectional
curvature (see e.g. [8, Proposition 7.87]). The simply-connected homogeneous manifolds with an
invariant metric of positive sectional curvature have been classified by Berger [7], see also [119],
Wallach [116] and Bérard-Bergery [6]. They include the rank-one symmetric spaces Sn, CPn,
HPn and OP 2 as in the case of positive Ricci curvature. Further, all spherical space forms Sn/Γ
have positive sectional curvature. In particular, if Γ = Z/2 acts via the antipodal map, we obtain
the real projective space RPn. In fact, in dimensions 2 and 3, spherical space forms are the only
closed manifolds that admit a metric of positive sectional curvature. In dimension 2 this follows
from the classification of surfaces together with Theorem 3.2.1. In dimension 3 it was shown by
Hamilton [54]. In higher dimensions there exist additional examples. It is worth noting, however,
that only in dimension 7 we obtain an infinite family, called the Aloff-Wallach spaces [1].

Further examples can be constructed via biquotients. As in the case for homogeneous spaces,
a biinvariant metric on G induces a metric of non-negative sectional curvature on G//H . By de-
forming this metric, Eschenburg [42, 43] obtained metrics of positive sectional curvature on a
6-dimensional biquotient, and on an infinite family of 7-dimensional biquotients, called the Es-
chenburg spaces. Finally, Bazaikin [5] constructed an infinite family of manifolds in dimension 13,
called the Bazaikin spaces that admit a metric of positive sectional curvature.

The only further examples are due to Grove–Verdiani–Ziller [52] and Dearricott [36] given
by a 7-dimensioanl orbifold fibration, and by Petersen–Wilhelm [95] (although not published yet)
given by a 7-dimensional exotic sphere.

3.4 Positive Scalar Curvature

In this section we briefly summarize the known results concerning the existence of metrics of
positive scalar curvature on closed manifolds. We refer to [98] for a survey.

Recall (cf. Appendix A), that for a Riemannian manifold (Mn, g) the scalar curvature scal is
defined by

scalp =
n∑
i=1

Ric(ei, ei)

for p ∈ M and an orthonormal basis (e1, . . . , en) of TpM , and that positivity of Ric implies
positivity of scal.

The condition of positive scalar curvature is much weaker than the condition of positive sec-
tional curvature, as can be seen both from the much weaker topological obstructions and the
number of examples known as we will describe below.

There are several different obstructions to the existence of metrics of positive scalar curvature.
We start with obstructions emerging from index theory of Dirac operators. One such obstruction
is the alpha-invariant, which assigns to a spin manifoldMn an element α(M) ∈ KO−n(pt) in the
real K-theory of a point. It only depends on the spin bordism class ofM .

Theorem 3.4.1 (Hitchin [60]). LetM be a closed spin manifold that admits a metric of positive scalar
curvature. Then α(M) = 0.

If n ≡ 0 mod 4, then KO−n(pt) ∼= Z, and the alpha-invariant α(M) coincides, up to a factor,
with the Â-genus Â(M), which can be computed from the Pontryagin classes ofM . In this case,
Theorem 3.4.1 had already been proven by Lichnerowicz [78].
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Example 3.4.2. 1. The K3-surface is a closed, simply-connected spin 4-manifold with
Â(K3) = 2. Hence, it does not admit a metric of positive scalar curvature.

2. Hitchin [60] (see also [73, Theorem II.8.13]) showed that in every dimension n ≥ 9 with
n ≡ 1, 2 mod 8 there exist exotic spheres Σn with α(Σ) 6= 0. Hence they do not admit a
metric of positive scalar curvature.

For manifolds with non-trivial fundamental group, Gromov and Lawson [51] introduced the
notion of enlargeable manifolds. For example, any closed manifold that admits a metric of non-
positive sectional curvature, is enlargebale ([73, Theorem IV.5.4]). In particular, the torus Tn is
enlargeable. Further, the connected sum of any manifold with an enlargeable manifold is enlarge-
able, and the product of two enlargeable manifolds is enlargeable ([73, Theorem IV.5.3]).

Theorem 3.4.3 ([51, Theorem A] or [73, Theorem IV.5.5]). An enlargeable spin manifold admits no
metric of positive scalar curvature.

Note that there is a discrepancy in the definitions of enlargeable manifolds in [73] and [51]
about whether the manifold, or a cover of it, is required to be spin. In any case, Theorem 3.4.3 only
applies to manifolds that have a cover that is spin.

Theorems 3.4.1 and 3.4.3 require the manifolds to be spin. There exist many variations and
generalizations of these result. However, in order to have some form of Dirac operator available,
all of these results require the manifold, or a cover of it, to have some sort of generalized spin
structure, such as spinc, or pin structures. The next obstruction, which was developed by Schoen–
Yau, is of different nature, and does not require the spin assumption.

Theorem 3.4.4 ([101]). LetMn be a closed oriented manifold that admits a metric of positive scalar
curvature and let Hn−1 ⊆ M be an orientable stable minimal hypersurface. Then H also admits a
metric of positive scalar curvature.

Together with existence and non-existence results for hypersurfaces, one can apply Theorem
3.4.4 to show inductively that certain manifolds do not admit a metric of positive scalar curvature.
The downside of this technique is that the existence of suitable smooth hypersurfaces in Theorem
3.4.4 is only guaranteed for n ≤ 7. As an application one obtains that Mn#Tn for any closed
manifoldMn with n ≤ 7 does not admit a metric of positive scalar curvature, see [101, Corollary
2]. Note that a yet unpublished result [102] indicates, that this technique can be extended to all
dimensions.

Finally, we note that there are obstructions exclusively for dimension 4, the Seiberg-Witten
invariants. Every closed, oriented 4-manifoldM admits a spinc structure. If b+2 (M) ≥ 2, then for
every spinc structure ξ there exists an invariant SW(ξ) ∈ Z, which, roughly speaking, counts the
number of solutions of certain non-linear equations involving the Dirac operator.

Theorem 3.4.5 ([120] or [87, Corollary 2.3.8]). LetM be a closed, oriented 4-manifold with b+2 (M) ≥
2. IfM admits a metric of positive scalar curvautre, then SW(ξ) = 0 for every spinc structure ξ on
M .

For example, for anym ≥ 0, the manifold K3#mCP 2
admits no metric of positive scalar cur-

vature as it has a spinc-structure with non-trivial Seiberg-Witten invariant, see e.g. [87, Corollaries
3.3.3 and 4.6.7].

On the positive side, a powerful tool to construct metrics of positive scalar curvature is surgery
(for the definition of surgery see Section 4.1). It was developed independently by Schoen–Yau and
Gromov–Lawson.

Theorem 3.4.6 ([101, Corollary 6], [50, Theorem A]). LetM be a manifold that admits a complete
metric of positive scalar curvature. Then any manifold obtained fromM by surgery of codimension
at least 3 also admits a complete metric of positive scalar curvature.
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3.4. Positive Scalar Curvature

We refer to Section 5.1 for a detailed discussion of Theorem 3.4.6.
A direct consequence of Theorem 3.4.6 with q = n is the following (cf. Lemma 4.1.3):

Corollary 3.4.7. LetMn
1 ,M

n
2 be manifolds of dimension at least 3 that admit a complete metric of

positive scalar curvature. Then the connected sumM1#M2 admits a complete metric of positive scalar
curvature.

Theorem 3.4.6 has turned out to be very powerful to construct metrics of positive scalar curva-
ture. For example, the following results are consequences of Theorem 3.4.6.

Theorem 3.4.8 ([50, Theorem B and subsequent comment]). Every closed, simply-connected mani-
fold in dimension 5, 6 and 7 admits a metric of positive scalar curvature.

Theorem 3.4.9 ([50, Corollary C]). Every, closed, simply-connected manifold of dimension at least 5,
that is not spin, admits a metric of positive scalar curvature.

Further, it was shown by Stolz [109], that in the simply-connected case the converse ofTheorem
3.4.1 holds.

Theorem 3.4.10 ([109, Theorem A]). A closed, simply-connected spin manifoldM of dimension at
least 5 admits a metric of positive scalar curvature if and only if its alpha-invariant α(M) vanishes.

Together with Theorem 3.4.9, Theorem 3.4.10 provides a full classification of closed, simply-
connected manifolds with a metric of positive scalar curvature in dimension at least 5. For the
non-simply-connected case there is no such classification known. For conjectures in this direction
we refer to [98, Section 1.3].

In view of the gluing techniques we will use for metrics of positive Ricci curvature, it is worth
noting the following result by Gromov and Lawson.

Theorem 3.4.11 ([51,Theorem 5.7]). LetM be a compact manifold that admits a metric with positive
scalar curvature and positive mean curvature on the boundary. Then the doubleM ∪∂ (−M) admits
a metric of positive scalar curvature.

In fact, this result was generalized by Bär and Hanke (in a yet unpublished article). It can be
seen as an analogue of Theorem 3.1.13 for positive scalar curvature.

Theorem 3.4.12 ([2, Theorem 42]). LetMn
1 ,M

n
2 be manifolds that admit metrics of positive scalar

curvature, so that there exists an isometry φ : ∂cM1 → ∂cM2 between compact boundary components
∂cM1 ⊆ ∂M1 and ∂cM2 ⊆M2. If the mean curvaturesH∂cMi

satisfy

H∂cM1 +H∂cM2 ◦ φ ≥ 0,

thenM1 ∪ϕM2 admits a metric of positive scalar curvature that coincides with the original metrics
onM1 andM2 outside an arbitrarily small neighborhood of the gluing area.

A consequence of this gluing technique is the following result:

Corollary 3.4.13. LetMn, n ≥ 5, be a closed, simply-connected manifold. ThenM#(−M) admits
a metric of positive scalar curvature.

Proof. By [72, (1.1)], M \ Dn admits a metric of positive sectional curvature and positive mean
curvature on the boundary. Hence, by Theorem 3.4.11,

(M \Dn) ∪∂ (−M \Dn) ∼=M#(−M)

admits a metric of positive scalar curvature.
Alternatively, ifM is non-spin, thenM#(−M) admits a metric of positive scalar curvature by

Theorem 3.4.9. IfM is spin, then, since α is a homomorphism on the spin bordism group, we have

α(M#(−M)) = α(M)− α(M) = 0,

soM#(−M) admits a metric of positive scalar curvature by Theorem 3.4.1.
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3. Positive Ricci CuRvatuRe

Due to the great amount of flexibility of positive scalar curvature, there exist numerous other
construction methods for such metrics. Wemention one further tool, which appears in the context
of group actions.

Theorem 3.4.14 ([74]). LetM be a closed manifold that admits an effective action by compact, con-
nected, non-abelian Lie group. ThenM admits an invariant metric of positive scalar curvature.

3.5 Positive Ricci Curvature in Low Dimensions

In this section we attempt to list all known examples of closed, simply-connected manifolds with
a metric of positive Ricci curvature in dimensions up to 6.

In dimensions 2, since sec, Ric and scal are equal up to a constant factor, the classification of
manifolds with a metric of positive sectional curvature carries over to the case of positive Ricci
and scalar curvature, that is, the only manifolds admitting such a metric are S2 and RP 2. In di-
mension 3, Hamilton [54] showed that the only closed manifolds with a metric of positive Ricci
curvature are spherical space forms, and hence these are also the only closed manifolds with a met-
ric of positive sectional curvature in this dimension. For positive scalar curvature, it follows from
Perelman’s work on the Ricci flow with surgery [91, 92, 93], that a closed, orientable 3-manifold
admits a metric of positive scalar curvature if and only if it is diffeomorphic to a connected sum
of copies of S1 × S2 and spherical space forms. In particular, the only closed, simply-connected
manifolds in dimensions 2 and 3 that admit metrics of positive sectional, Ricci or scalar curvature,
are the spheres S2 and S3 (these are also the only closed, simply-connected manifolds in these
dimensions).

In dimension 4, we have the homogeneous spaces S4, S2 × S2 and CP 2. By Theorem 3.1.7,
the total space S2×̃S2 of the unique non-trivial linear S2-bundle over S2 also admits a metric of
positive Ricci curvature. Further, we can construct metrics of positive Ricci curvature on any finite
connected sum of copies of these manifolds.

Proposition 3.5.1. Any finite connected sum of copies of±CP 2, S2×S2 and S2×̃S2 admits a metric
of positive Ricci curvature.

Proof. First note that there exist diffeomorphisms

S2×̃S2 ∼= CP 2#(−CP 2) and (S2 × S2)#(±CP 2) ∼= CP 2#(−CP 2)#(±CP 2),

see e.g. [69, Corollaries I.4.2 and I.4.3]. Thus, we only need to consider manifolds of the form

(S2 × S2)# . . . #(S2 × S2) and (±CP 2)# . . . #(±CP 2).

The first case is covered byTheorem 3.1.11, while the second case is covered by Perelman’s gluing
construction [90].

To the best of our knowledge, the manifolds in Proposition 3.5.1 are the only known exam-
ples in dimension 4. Indeed, any compact, simply-connected homogeneous space in dimension 4
is diffeomorphic to S4, CP 2 or S2 × S2, see [46], while for biquotients the only additional dif-
feomorphism types appearing are CP 2#(−CP 2) and CP 2#CP 2, see [37]. Further, every closed,
simply-connected cohomogeneity one manifold in dimension 4 is diffeomorphic to S4, S2 × S2,
CP 2 or CP 2#(−CP 2), see [61]. Finally, Fano varieties of (complex) dimension 2, also called del
Pezzo surfaces, are either diffeomorphic to S2×S2 or to a finite connected sum of copies of±CP 2,
see e.g. [40, Corollary 8.1.17].

In dimension 5, closed, simply-connected manifolds were classified by Barden [3]. He defined
closed, simply-connected 5-manifoldsMk for k ∈ {1, 2, . . . ,∞} and Xj for j ∈ {−1, 0, . . . ,∞}
and showed that every closed, simply-connected 5-manifoldM can uniquely be written as a con-
nected sum

M ∼= Xj#Mk1# . . . #Mks , (3.5.1)
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3.5. Positive Ricci Curvature in Low Dimensions

where k1 > 1 and ki divides ki+1 or ki+1 = ∞. The manifolds Mk are spin with H2(Mk) ∼=
(Z/k)2 for 1 < k < ∞, while the manifolds Xj are non-spin for j 6= 0 with H2(Xj) = (Z/2j)2
for 0 < j <∞. Further, we haveM1 = X0 = S5,M∞ = S2×S3,X∞ = S2×̃S3 andX−1 is the
homogeneous space SU(3)/SO(3), also called theWu manifold, which satisfiesH2(X−1) ∼= Z/2.

ByTheorem 3.1.11, finite connected sums of copies ofM∞ = S2×S3 admit a metric of positive
Ricci curvature. Further, Theorem 3.1.11 can be extended to connected sums of the form

(S2×̃Sq)#(S2 × Sq)# . . . #(S2 × Sq),

cf. [107, Theorem 5] or Section 5.5, showing that in dimension 5 we also obtain all manifolds of
the formX∞#M∞# . . . #M∞. In particular, all closed, simply-connected 5-manifolds with torsion-
free homology admit a metric of positive Ricci curvature.

The only additional example we obtain via group actions is the Wu manifoldX−1, which is a
homogeneous space. Indeed, every compact, simply-connected homogeneous space in dimension
5 is diffeomorphic to one of S5, S2 × S3 and SU(3)/SO(3), see [46], and the only additional
diffeomorphism type we obtain via biquotients is S2×̃S3, see [37]. Further, any closed, simply-
connected 5-dimensional cohomogeneity one manifold is diffeomorphic to one of S2×S3, S2×̃S3

and SU(3)/SO(3), see [61].
Concerning Sasakian geometry, rational homology spheres that admit a positive Sasakian

structure have been classified by Kollár [70], see also [16, Corollary 10.2.20]. The classification
asserts, that a closed, simply-connected 5-dimensional rational homology sphere admits a positive
Sasakian structure if and only ifM is one of

1. Mk , if k is not a multiple of 30,

2. nM2 for all n > 1, or

3. 2M3, 3M3, 4M3, 2M4, 2M5.

Further, for manifolds with non-trivial second Betti number, there are positive Sasakian structures
on the manifolds

4. Mm#(kM∞) for all 1 ≤ k ≤ 8 andm ≥ 12,

5. Mm#(2M∞) for allm > 1 not divisible by 3,

6. Mm#(3M∞) for allm > 1 not divisible by 2,

7. Mm#(4M∞) for allm > 1 not divisible by 2,

8. (2M2)#(4M∞) and (2M2)#(5M∞),

9. Mm#(kM∞) for allm > 1 and 6 ≤ k ≤ 8,

see [16, Theorem 10.2.25 and Table B.4.2].
While Sasakian geometry produces many examples of 5-manifolds with a metric of positive

Ricci curvature, there are limitations to this technique. In fact, besides a finite number of excep-
tional cases, the torsion subgroup of H2(M), whereM is a closed, simply-connected 5-manifold
with a positive Sasakian structure, is isomorphic to (Z/m)2 for somem ∈ N, see [70,Theorem 1.4].
In particular, no manifold that containsX−1 as a summand in (3.5.1) can admit a positive Sasakian
structure (which also follows from Proposition 3.2.8). Further, the manifoldsMm#(kM∞) cannot
admit a positive Sasakian structure ifm ≥ 12 and k ≥ 9.

Finally we consider the known examples in dimension 6. Here we follow [97, Section 5.1]. By
Theorem 3.1.7, fiber bundles with homogeneous fibers admit a metric of positive Ricci curvature
if both base and fiber admit a metric of positive Ricci curvature. We obtain the following list of
manifolds that admit a metric of positive Ricci curvature:
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3. Positive Ricci CuRvatuRe

1. Linear S2-bundles over B = #k(±CP 2) (if k = 0 then B = S4) or B = #k(S2 × S2) (the
base B admits a metric of positive Ricci curvature by Proposition 3.5.1),

2. S3 × S3,

3. S2×̃S4,

4. Projective bundles, i.e. CP 2-bundles, over S2.

Next, we list all closed simply-connected 6-dimensional homogeneous spaces, cohomogeneity
one manifolds and biquotients that are not already contained in the list above, by using the clas-
sification results of Gorbatsevitch [46], Hoelscher [62], and DeVito [38], ordered by their second
Betti number. These manifolds are:

5. S6;

6. The oriented Grassmannian G̃2(R5) ∼= SO(5)/(SO(3) × SO(2)) (which is a homogeneous
space);

7. The homogeneous space SU(3)/T 2 and the biquotient SU(3)//T 2;

8. Biquotients of the form (S3)3//T 3 that are diffeomorphic to a (CP 2#CP 2)-bundle over S2

or to one of 4 sporadic examples (see [38, Proposition 4.23], and note that the other families
appearing in this proposition are already contained in the previous items).

Further, Fano 3-folds were classified by Iskovskih [65, 66] for b2 = 1 and by Mori–Mukai
[83, 84] for b2 ≥ 2. Their result can be summarized as follows (note that we omit the manifolds
with b2 > 5 as they are all diffeomorphic to a product of S2 and a connected sum of copies of
±CP 2, i.e. they are contained in item 1):

9. 18 types of Fano 3-folds with b2 = 1 and 83 types of Fano 3-folds with 2 ≤ b2 ≤ 5.

Finally, we have metrics of positive Ricci curvature on the following connected sums of sphere
bundles:

10. #k(S2 × S4)#l(S3 × S3), by a modification of Theorem 3.1.11, see [107, (5)] and Section 5.5,

11. (S2×̃S4)#k(S2 × S4)#k+2(S
3 × S3) by an application of Theorem 3.1.8, see [31].

Note that the manifolds in items 10 and 11, together with the linear S2-bundles in item 1, are
the only manifolds where the second Betti number is greater than 5.

In view ofQuestion 3.2.3, dimensions 5 and 6 are of special interest, since there exist classifica-
tions in these dimensions (see Section 6.1 for the 6-dimensional classification) and further, since
by Theorem 3.4.8 every closed, simply-connected manifold in these dimensions admits a metric
of positive scalar curvature. Thus, potentially all closed, simply-connected 5- and 6-manifolds
could admit a metric of positive Ricci curvature, and the classification results help to quantify any
progress in this direction.
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Surgery and Plumbing 4

This chapter provides an introduction to surgery and plumbing in Sections 4.1 and 4.2, respectively.
Furthermore, in Section 4.3 we consider modifications of plumbing graphs that do not change the
diffeomorphism type of the corresponding manifold and in Section 4.4 we calculate the fundamen-
tal group, characteristic classes and the cohomology ring of a manifold obtained by plumbing.

4.1 Surgery

The process of surgery relies on the fact, that the manifolds Sp−1 ×Dq and Dp × Sq−1 have the
same boundary Sp−1 × Sq−1.

Definition 4.1.1. Let ϕ : Sp−1 ×Dq ↪→ Int(Mn) be an embedding so that n = p+ q − 1. Then

Mφ = (M \ im(ϕ)◦) ∪φ|Sp−1×Sq−1
(Dp × Sq−1)

is the manifold obtained by surgery of dimension (p− 1), or surgery of codimension q, fromM .

For every surgery operation there is a dual surgery operation: If ϕ : Sp−1 ×Dq ↪→ Int(M) is
an embedding, then we have an embedding ϕ̃ : Sq−1 ×Dp ↪→ Mφ given by the identification of
Sq−1 ×Dp with the second factor in

Mφ = (M \ im(ϕ)◦) ∪Sp−1×Sq−1 (Dp × Sq−1).

It is then clear by construction that
(Mφ)φ̃ ∼=M.

Hence, every surgery of dimension (p−1) can be undone by its dual surgery, which is of dimension
q.

Note that for q = n we have p = 1, so

Sp−1 ×Dq = S0 ×Dn = Dn tDn,

hence ϕ is the embedding of two copies ofDn. If these two copies ofDn are mapped to different
connected components, we obtain the connected sum of these connected components.

Definition 4.1.2. Let Mn
1 and Mn

2 be connected manifolds. The connected sum of M1 and M2,
denoted by M1#M2, is defined as follows: Let ϕi : Dn ↪→ Int(Mi) be embeddings and assume
that precisely one of ϕ1, ϕ2 is orientation-preserving if bothM1 andM2 are orientable. Then we
define

M1#M2 = (M1 \ ϕ1(D
n)◦) ∪φ1◦φ−1

2
(M2 \ ϕ2(D

n)◦).
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4. SuRgeRy and Plumbing

Similarly, ifMn
1 andMn

2 are connectedwith connected and non-empty boundaries, then the bound-
ary connected sum ofM1 andM2, denoted byM1\M2 is defined as follows: Let ϕi : Dn−1 ↪→ ∂Mi

be embeddings and assume that precisely one ofϕi is orientation-preserving if both ∂M1 and ∂M2

are orientable. Then we define

M1\M2 =M1 ∪φ1◦φ−1
2
M2.

For the boundary connected sum, since we only glue along a subset of the boundary, we addi-
tionally need to straighten the corners to turnM1\M2 into a smooth manifold. Then we have by
construction that

∂(M1\M2) = ∂M1#∂M2.

By the disc theorem of Palais [89, Theorem 5.5] any two embeddings of Dn into a manifoldMn,
that are orientation-preserving ifM is orientable, are isotopic. Thus, the connected sum operation
and the boundary connected sum orientation are well-defined. Further, we have the following
immediate consequences:

• M1\M2 'M1 ∨M2,

• Mn#Sn ∼=M ∼=M\Dn, and

• M = M1#M2 orM = M1\M2 is orientable if and only if bothM1 andM2 are orientable,
in which caseM has an orientation that agrees with that ofMi onMi \ imϕ◦

i .

Lemma 4.1.3. Let ϕ : Dn tDn ∼= S0 ×Dn ↪→ Int(Mn) be an embedding. Let ϕi, i = 1, 2, be the
restriction of ϕ to the i-th copy ofDn. ThenMφ is diffeomorphic to

• M#(S1 × Sn−1), ifM is connected, and precisely one of ϕi is orientation-preserving ifM is
orientable,

• M#(S1 ×̃Sn−1), ifM is connected, and ϕi are both orientation-preserving or both orientation-
reversing ifM is orientable,

• M1#M2, if M = M1 tM2 with Mi connected and ϕi maps to Mi. If M is orientable, the
orientation onMi is chosen so that precisely one of ϕi is orientation-preserving.

Proof. The last case follows directly from the construction ofMφ. So suppose thatM is connected.
Any two (orientation-preserving if M is orientable) embeddings of Dn into M are isotopic by
[89, Theorem 5.5], hence we can assume that im(ϕi) are both contained in an embedded disc
Dn ⊆ M . By fixing an orientation on this disc, we can speak of ϕi being orientation-preserving
or orientation-reversing, even ifM is not orientable.

The disc Dn ⊆ M with the images of each ϕi removed is then diffeomorphic to a sphere Sn

with 3 pairwise disjoint discs removed, which in turn is diffeomorphic to (D1 × Sn−1) \Dn◦ for
an embedded discDn ⊆ Int(D1 × Sn−1). Hence,

Mφ
∼= (M \Dn◦) ∪Sn−1 ((D1 × Sn−1) \Dn◦) ∪Sn−1⊔Sn−1 D1 × Sn−1

∼= (M \Dn◦) ∪Sn−1 ((D1 × Sn−1) ∪Sn−1⊔Sn−1 (D1 × Sn−1)) \Dn◦

∼=M#((D1 × Sn−1) ∪Sn−1⊔Sn−1 (D1 × Sn−1)).

The gluing of the two copies ofD1×Sn−1 is either by the identity or a fixed orientation-reversing
isometry α of Sn−1, depending on whether the embeddings ϕi preserve or reverse the orien-
tation. If both gluings are via the identity or both via α, which is the case if precisely one of
ϕi is orientation-preserving, we obtain S1 × Sn−1, and in the other case the non-trivial bundle
S1×̃Sn−1.
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4.1. Surgery

IfMn
1 andMn

2 are connected with n ≥ 3, then it follows from van Kampen’s theorem that

π1(M1#M2) ∼= π1(M1) ∗ π1(M2). (4.1.1)

We can also calculate the cohomology as follows. For that let pi : M1#M2 → Mi be the maps
given by collapsingM3−i \ ϕ3−i(D

n)◦ to a point.

Lemma 4.1.4. LetR be a commutative ring and letMn
1 ,M

n
2 be connected, closed and orientable over

R. Then
p∗1 ⊕ p∗2 : H∗(M1;R)⊕H∗(M2;R)→ H∗(M1#M2;R)

is surjective with kernel generated by 1H0(M1;R)− 1H0(M2;R) and [M1, ∂M1;R]
∗− [M2, ∂M2;R]

∗.
Further, if c ∈ Hj(BSO(p), R) is a characteristic class, that is stable if j = n, then

c(M1#M2) = p∗1c(M1) + p∗2c(M2).

Proof. To simplify notation we will writeH∗(−) forH∗(−;R). First consider the one point-union
M1 ∨M2. We have maps p̌i : M1 ∨M2 →Mi given by collapsingM3−i and ι̌i : Mi ↪→M1 ∨M2

given by inclusion. By the Mayer-Vietoris sequence, the induced map

p̌∗1 ⊕ p̌∗2 : H∗(M1)⊕H∗(M2)→ H∗(M1 ∨M2)

is surjective with kernel generated by 1H0(M1) − 1H0(M2).
Now consider the long exact sequence in cohomology for the pair (M1#M2, S

n−1), where we
identified the gluing area for the connected sum with Sn−1. Then, for i > 0 we have

Hi(M1#M2, S
n−1) ∼= Hi(M1#M2/S

n−1)

and M1#M2/S
n−1 ∼= M1 ∨M2. For 0 < i < n − 1 we have Hi(Sn−1) = 0, so the collapse

map ρ : M1#M2 → M1 ∨M2 induces isomorphisms on cohomology. This also holds for i = 0
since both spaces are connected. Hence, it remains to consider the following part of the long exact
sequence:

0 −→ Hn−1(M1 ∨M2)
ρ∗−→Hn−1(M1#M2) −→ Hn−1(Sn−1)

−→ Hn(M1 ∨M2)
ρ∗−→ Hn(M1#M2) −→ 0.

The groupsHn(M1 ∨M2) andHn(M1#M2) are free and generated by (p̌∗1[M1;R]
∗, p̌∗2[M2;R]

∗)
and [M1#M2;R]

∗, respectively. Since the corresponding dual classes in homology are repre-
sented by the manifolds ι1(M1), ι2(M2) andM1#M2, respectively, they satisfy ρ∗[M1#M2;R] =
ι1∗[M1;R] + ι2∗[M2;R]. Thus, we obtain in cohomology that

ρ∗(p̌∗i [Mi;R]
∗) = [M1#M2;R]

∗,

so ρ∗ is surjective in degree n with kernel generated by p̌∗i ([M1;R]
∗ − [M2;R]

∗). Since
Hn−1(Sn−1) ∼= R, the map Hn−1(Sn−1) → Hn(M1 ∨ M2) is injective and ρ∗ is an isomor-
phism in degree (n− 1). Then the claim follows from the fact that pi = p̌i ◦ ρ.

For the characteristic classes first assume that j 6= n and denote by

ιi : Mi \Dn◦ ↪→M1#M2, ι′i : Mi \Dn◦ ↪→Mi

the inclusions. Then, by naturality, we have

ι∗i c(M1#M2) = c(Mi \Dn◦), ι′i
∗
c(Mi) = c(Mi \Dn◦).

Since ι′i = pi ◦ ιi and since ι′j
∗ is an isomorphism in degrees j 6= n, the map

(ι′1
∗−1 ◦ ι∗1, ι′2

∗−1 ◦ ι∗2) : Hj(M1#M2)→ Hj(M1)⊕Hj(M2)
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is the inverse of p∗1 ⊕ p∗2. Hence,

c(M1#M2) = p∗1 ◦ ι′1
∗−1 ◦ ι∗1c(M1#M2) + p∗2 ◦ ι′2

∗−1 ◦ ι∗2c(M1#M2) = p∗1c(M1) + p∗2c(M2).

Finally, assume that j = n and that c is stable. Let W be the boundary connected sum of
[0, 1]×M1 and [0, 1]×M2 along the boundary components {1} ×M1 and {1} ×M2. Then

∂W ∼= (M1 tM2) t (M1#M2).

Further, W ' M1 ∨M2 and the maps ι̌1, ι̌2 and ρ can be identified with the inclusions of the
boundary componentsM1,M2 andM1#M2, respectively. Since c is stable, we have

c(M1#M2) = c(T (M1#M2)⊕ RM1#M2)) = ρ∗c(TW |ρ(M1#M2)) = ρ∗c(W ).

Similarly,
c(Mi) = ι̌∗i c(W ).

Since in degree n, the map p̌∗1 ⊕ p̌∗2 is an isomorphism with inverse (ι̌∗1, ι̌
∗
2), it follows that

p∗1c(M1) + p∗2c(M2) = ρ∗(p̌∗1c(M1) + p̌∗2c(M2)) = ρ∗c(W ) = c(M1#M2).

Remark 4.1.5. The condition that c is stable if j = n is necessary. In fact, if Mn is a closed an
oriented manifold, then, by [82, Corollary 11.12], we have

χ(M) = 〈e(M), [M ]〉.

Further, we have for closed, connected and orientable manifoldsM1,M2 that

χ(M1#M2) = χ(M1) + χ(M2)− (1 + (−1)n)

by Lemma 4.1.4. Thus, if n is even, then the conclusion of Lemma 4.1.4 does not hold for the Euler
class.

For higher surgeries there exists in general no simple description of the cohomology ring of
Mφ in terms of the cohomology ring ofM . We will consider this for the special case of plumbing
in Section 4.4.

For a fiber bundleE π−→ Bq with fiberF and structure groupGwe have a preferred embedding
ϕ : Dq × F ↪→ E defined as follows: Let ι : Dq ↪→ B be an embedding, that is orientation-
preserving if B is orientable. By the disc theorem of Palais [89, Theorem 5.5], the embedding ι is
unique up to isotopy. By possibly shrinking the embedding, we can assume that ι(Dq) is contained
in a local trivialization (Uα, ϕα), so we obtain a diffeomorphism

ϕπ : D
q × F → π−1(ι(Dq)).

For different choices of local trivializations the resulting diffeomorphisms are related to each other
via transition functions Dq → G. If G is connected, then, since Dq is contractible, all these
transition functions are smoothly homotopic to the constant map 1G, hence ϕπ , considered as an
embedding Dq × F ↪→ E, is unique up to isotopy.

Definition 4.1.6. Let E π−→ Bn be a fiber bundle with fiber F and structure group G. If G is
connected, then the embedding ϕπ : Dq × F ↪→ E is called the standard embedding of Dq × F
into E.
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4.2. Plumbing

From the definition it follows that a standard embedding ϕπ : Dq × F → E is a bundle map.
For an oriented linear sphere bundle E π−→ Bq with fiber Sp−1, i.e. a fiber bundle with fiber

Sp−1 and structure group SO(p), we obtain an embedding ϕπ : Dq ×Sp−1 ↪→ E, along which we
can perform surgery. Surgeries of this form will play an important role in the subsequent sections.

By using standard embeddings, we can define a generalization of the connected sum. For that,
let η : Int(Dq) \ {0} → Int(Dq) \ {0} be the diffeomorphism

(x1, . . . , xq) 7→
1− |x|
|x|

(−x1, x2, . . . , xq).

Definition 4.1.7. let E1
π1−→ Bq1 , E2

π2−→ Bq2 be fiber bundles, both with fiber F and connected
structure groupG, so that bases, fibers and total space are oriented compatibly. The fiber connected
sum of π1 and π2 is the fiber bundle with fiber F and structure group G, whose total space E is
obtained from (E1 \ϕπ1({0}×F ))∪ (E2 \ϕπ2({0}×F )) by identifying ϕπ1(IntD

q \ {0}×F )
and ϕπ2

(IntDq \ {0} × F ) via
ϕπ2
◦ (η × idF ) ◦ ϕ−1

π1
,

base space B = B1#B2 and bundle projection π induced from π1 and π2. The local trivializations
are obtained from those local trivializations (U,ϕ) of πi so that πi(ϕπi

(0, y)) 6∈ U for y ∈ F .

Equivalently, we can construct the space E as the space obtained from

(E1 \ ϕπ1
(IntDq × F )) ∪ (E2 \ ϕπ2

(IntDq × F ))

by gluing the boundaries along the diffeomorphism

ϕπ2
◦ (rSq−1 × idF ) ◦ ϕ−1

π1
,

where rSq−1 : Sq−1 × Sq−1 is the diffeomorphism

rSq−1(x1, . . . , xq) = (−x1, x2, . . . , xq).

Indeed, the restriction of η to the sphere of radius 1
2 , denoted by Sq−1( 12 ), is the map rSq−1 and

we obtain this description of E by cutting it along Sq−1( 12 )× F .
In fact, by considering a manifold as a fiber bundle with fiber {pt} and structure group the

trivial group, we recover the definition of the connected sum.

4.2 Plumbing

The plumbing construction was introduced by Milnor [81] to construct manifolds with prescribed
intersection form. We also refer to [59], [20, Section 5] and [33, Section 2] for further details on
plumbing.

Let Dp ↪→ E1
π1−→ Bq1 and Dq ↪→ E2

π2−→ Bp2 be oriented linear disc bundles over oriented
and connected manifolds Bi, such that fibers, base and total space are oriented compatibly. Let
ϕπ1

: Dq × Dp ↪→ E1 and ϕπ2
: Dp × Dq ↪→ E2 be standard embeddings. Now define the

diffeomorphism I±p,q : D
p ×Dq → Dq ×Dp by

I±p,q(x1, . . . , xp, y1, . . . , yq) = (±y1, y2, . . . , yq,±x1, x2, . . . , xp).

Definition 4.2.1. Themanifold obtained by plumbing E1 and E2, denoted by E1□E2, is obtained
from E1 t E2 by identifying ϕπ1

(Dq ×Dp) and ϕπ2
(Dp ×Dq) via ϕπ1

◦ I±p,q ◦ ϕ−1
π2

.

The spaceE1□E2 indeed has a manifold structure after smoothing out the corners which arise
at the boundary of the identification area. Since standard embeddings are unique up to isotopy,
the diffeomorphism type ofE1□E2 only depends on the signs we use in the definition of I±p,q . We
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4. SuRgeRy and Plumbing

then say thatE1□E2 is the manifold obtained by plumbingE1 andE2 with sign±1. Independent
of the sign, the map I±p,q is orientation-preserving if p or q is even and orientation-reversing if both
p and q are odd. Hence, the manifold E1□E2 is oriented compatibly with E1 and E2 if p or q is
even, and E1□E2 is oriented compatibly with E1 and −E2 if both p and q are odd.

We will be interested in the boundaries of plumbings. If E is the total space of a disc bundle,
we denote by E the total space of its sphere bundle. From the definition we obtain

∂(E1□E2) ∼= (E1 \ ϕπ1(D
q × Sp−1)◦) ∪φπ1

◦I±p,q◦φ−1
π2

(E2 \ ϕπ2(D
p × Sq−1)◦). (4.2.1)

In particular, if one of the Ei, say E2, is the trivial bundle Sp ×Dq , then ∂(E1□E2) is obtained
by surgery on E1 along ϕπ1 . The map

I±p,q|Sp−1×Sq−1 : Sp−1 × Sq−1 → Sq−1 × Sp−1

is orientation-preserving if and only if (p− 1)(q− 1) is even. Hence, the boundary ∂(E1□E2) is
oriented compatibly with with E1 and E2 if and only if (p − 1)(q − 1) is odd, i.e. if both p and q
are even.

We can repeat the process of plumbing by choosing multiple standard embeddings disjoint
from each other. Amanifold obtained by plumbingmultiple disc bundles can then be characterized
by a labeled bipartite graphG = (U, V,E, π, δ), where U and V are the sets of vertices, which are
assumed to be finite, E ⊆ U × V is the set of edges, δ : E → {±1} is a function, and π assigns
to each vertex an oriented linear disc bundle in the following way: For fixed p, q ∈ N we assign
to each u ∈ U an oriented linear disc bundle Dp ↪→ Eu

πu−−→ Bqu and to each v ∈ V an oriented
linear disc bundle Dq ↪→ Ev

πv−→ Bpv with connected and oriented bases, fibers and total spaces
that are all oriented compatibly. We denote the standard embeddings of πu and πv corresponding
to the edge e = (u, v) by ϕ(u,v) and ϕ(v,u), respectively.

Definition 4.2.2. A labeled bipartite graph G = (U, V,E, π, δ) of this form is called a geometric
plumbing graph.

We define MG as the boundary connected sum of the manifolds obtained by plumbing the
bundles πu and πv according to each connected component of the graph G, where each edge e
corresponds to plumbing with sign δ(e). We setMG = ∂MG. To define an orientation, if one of p
and q is odd, we need to specify the set of vertices, i.e. U or V , from which the orientation should
be induced. For that we will always choose V in the following.

Lemma 4.2.3. If every connected component of G is simply-connected, then the manifold MG is
homotopy equivalent to the space ∨

u∈U
Bu

∨
v∈V

Bv.

Proof. First suppose that G is connected. By shrinking the fibers of the disc bundles to their zero-
sections, we obtain a homotopy equivalence fromMG to the space obtained from

⊔
u∈U Bu

⊔
v∈V Bv

by identifying a point in Bu with one in Bv whenever (u, v) ∈ E. Since G is simply-connected,
after picking a root, it is a tree and we homotope all these identification points to a fixed point in
the base manifold of the root. In this way we obtain the space

∨
u∈U Bu

∨
v∈V Bv .

If G is not connected, then the conclusion holds for each boundary component, and hence,
since the boundary connected sum of two manifolds is homotopy equivalent to their one-point-
union, the claim follows.

The manifoldsMG andMG have been studied in the case where p = q and the base manifolds
are spheres, see e.g. [20, Chapter V]. For example, all homotopy spheres that bound parallelizable
manifolds can be constructed in this way, see [121, Proposition 1.5]. In the following we will
consider the case where p and q may differ, but all bundles πv , v ∈ V , are trivial with Bv = Sp.
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4.3. Modifications of Plumbing Graphs

4.3 Modifications of Plumbing Graphs

In this sectionG denotes an arbitrary geometric plumbing graph. Our goal is to simplify the graph
data as much as possibly without changing the diffeomorphism type ofMG.

Proposition 4.3.1 (Sign of a Separating Edge). Suppose G is of the form

G1 G2
e

with subgraphs G1 and G2 of G. Let G′ be the graph obtained fromG by reversing the sign of e and
by reversing all base and fiber orientations of the bundles associated to vertices in G2. Then MG is
diffeomorphic toMG′ .

Proposition 4.3.2 (Vertex of Degree 1). Suppose G is of the form

v u

G1

Gn

...
e0

e1

en

with subgraphs G1, . . . , Gn of G. Let G0 be the graph

v u
e0

with corresponding restrictions of δ and π. If πv is trivial with Bv = Sp, thenMG is diffeomorphic
toMG0#MG1# . . . #MGn , i.e. we can replace G by the disjoint union of the subgraphs G0, . . . , Gn.

Proposition 4.3.3. Let G be the graph

v u
e

where πv is trivial with Bv = Sp and Bu = Sq . ThenMG
∼= Sp+q−1.

Proposition 4.3.4 (Vertex of Degree 2). Suppose G is of the following form:

vu u′
...

...
e e′

e1

en

e′1

e′n

Suppose πv is trivial with Bv = Sp and δ(e) = 1, δ(e′) = −1. Define πû as the fiber connected sum
of πu and πu′ . Then we can replace G by the following graph without changing the diffeomorphism
type ofMG.

û
...

...

e1

en

e′1

e′n
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4. SuRgeRy and Plumbing

Remark 4.3.5. 1. Proposition 4.3.2 generalizes [33, Proposition 2.6] and [99, Satz 5.9 (A)].

2. By Proposition 4.3.1, we can, after possibly reversing base and fiber orientations in the cor-
responding subgraphs, apply Proposition 4.3.4 for any possible signs of e and e′.

Proposition 4.3.1 directly follows from the fact, that, by reversing the orientations as assumed,
the gluing maps for the plumbings do not change. Proposition 4.3.4 follows from [33, Lemma 2.10].
For convenience we give the proof below.

Proof of Proposition 4.3.4, cf. [33, Lemma 2.10]. Denote the graph

vu u′
e e′

by G′. Since Bv = Sp and the bundle πv is trivial, we have

Ev \
(
ϕ(v,u)(D

p × Sq−1)◦ t ϕ(v,u′)(D
p × Sq−1)◦

) ∼= (Sp \ (Dp tDp)◦)× Sq−1

∼= ([0, 1]× Sp−1)× Sq−1

The restrictions of the embeddingsϕ(v,u) andϕ(v,u′) to the boundarySp−1×Sq−1 can be identified
with the inclusions

Sp−1 × Sq−1 ∼= {0} × Sp−1 × Sq−1
ι0×idSp−1×idSq−1

↪−−−−−−−−−−−−→ [0, 1]× Sp−1 × Sq−1

and

Sp−1 × Sq−1 ∼= {1} × Sp−1 × Sq−1
ι1×rSp−1×idSq−1

↪−−−−−−−−−−−→ [0, 1]× Sp−1 × Sq−1,

where ιi : {i} ↪→ [0, 1] are the inclusions.
Hence,

MG′ ∼=Eu \ ϕ(u,v)(D
q × Sp−1)◦ ∪φπu◦I+p,q [0, 1]× S

p−1 × Sq−1

∪(ι1×rSp−1×idSq−1 )◦I−q,p◦φ−1
π
u′
Eu′ \ ϕπ(u′,v)

(Dq × Sp−1)◦

∼=Eu \ ϕ(u,v)(D
q × Sp−1)◦ ∪φπu◦I+p,q◦(rSp−1×idSq−1 )◦I−q,p◦φ−1

π
u′
Eu′ \ ϕπ(u′,v)

(Dq × Sp−1)◦

∼=Eu \ ϕ(u,v)(D
q × Sp−1)◦ ∪φπu◦(rSq−1×idSp−1 )◦φ−1

π
u′
Eu′ \ ϕπ(u′,v)

(Dq × Sp−1)◦,

which is the fiber connected sum of πu and πu′ .

Proof of Proposition 4.3.3. By possibly reversing the orientations on base and fibers of πv , we can
assume that δ(e) = 1. Let T : Sq−1 → SO(p) be the clutching function for πu. Then we have

MG
∼= (Sq−1 ×Dp) ∪T̃ (Dq × Sp−1).

Define the diffeomorphism T̄ : Sq−1 ×Dp → Sq−1 ×Dp by

T̄ (x, y) = (x, Tx(y)),

so T̄ |Sq−1×Sp−1 = T̃ . Hence,

MG
∼= T̄ (Sq−1 ×Dp) ∪T̃ (Dq × Sp−1) = (Sq−1 ×Dp) ∪id (Dq × Sp−1).

Now consider the productDq×Dp, which, after smoothing the corners, is diffeomorphic toDp+q .
We have

∂(Dq ×Dp) = (Sq−1 ×Dp) ∪∂ (Dq × Sp−1)

and ∂Dp+q = Sp+q−1. Hence,

(Sq−1 ×Dp) ∪∂ (Dq × Sp−1) ∼= Sp+q−1.
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4.3. Modifications of Plumbing Graphs

FiguRe 4.1: A trivial embedding ofD3 × S0

D2 ×D1
D3 × S0

For the proof of Proposition 4.3.2 we need the following notion.

Definition 4.3.6. An embedding ϕ : Dq ×Sp−1 ↪→Mp+q−1 into a manifoldM is called trivial, if
there is an embedding ϕ̄ : Dq−1 ×Dp ↪→M so that ϕ|Dq−1×Sp−1 = ϕ̄|Dq−1×Sp−1 .

Here we considerDq−1 ⊆ Dq according to the embedding Rq−1 ∼= Rq−1 × {0} ⊆ Rq .

Lemma 4.3.7. Let M be connected. Then any two trivial embeddings ϕ1, ϕ2 : D
q × Sp−1 ↪→ M ,

that are orientation preserving ifM is orientable, are isotopic.

Proof. First note, that we can assume that both ϕ̄1 and ϕ̄2 are orientation preserving ifM is ori-
entable, since otherwise, we can replace ϕ̄i by the map

(x1, . . . , xq−1, y) 7→ ϕ̄i(x1, . . . , xq−2,−xq−1, y)

and ϕi by the map

(x1, . . . , xq, y) 7→ ϕi(x1, . . . , xq−2,−xq−1,−xq, y),

which is clearly isotopic to ϕi.
By the disc theorem of Palais [89,Theorem 5.5], any two embeddings ofDp intoM are ambient

isotopic, where we require them to be orientation-preserving ifM is orientable and p = dim(M).
It follows, that, after applying an ambient isotopy, we can assume that ϕ̄1|{0}×Dp = ϕ̄2|{0}×Dp .

IfM is non-orientable, we can introduce a local orientation by enlarging the image of one of
ϕ̄i to a ballDp+q−1, so thatϕi, ϕ̄i are all contained in this ball. If one ofϕi is orientation-reversing
with respect to the orientation of Dp+q−1, we can apply an isotopy of this ball that reverses the
orientation, which exists by the disc theorem of Palais. If one of ϕ̄i is orientation-reversing we
modify it as in the beginning of the proof. Hence, we can assume that ϕi, ϕ̄i are all orientation-
preserving.

By the uniqueness of tubular neighborhoods, see e.g. [58, Theorem 4.5.3], after applying an
isotopy to one of ϕ̄i, there is a smooth map φ : Dp → GL+(q), so that ϕ̄1(x, y) = ϕ̄2(φy(x), y).
SinceDp is contractible, there exists a smooth homotopy of φ to the constant map φ ≡ idRq . This
yields an isotopy of ϕ̄2 so that we can assume ϕ̄1 = ϕ̄2. By the isotopy extension theorem, see e.g.
[58, Theorem 8.1.3], this isotopy extends to a diffeotopy of M , in particular we can assume that
after the isotopy the assumption ϕi|Dq−1×Sp−1 = ϕ̄i|Dq−1×Sp−1 still holds.

Again by the uniqueness of tubular neighborhoods, there is φ : Sp−1 → GL+(q) so that, after
applying an isotopy, ϕ1(x, y) = ϕ2(φy(x), y). This isotopy can be chosen so that the condition
ϕ1|Dq−1×Sp−1 = ϕ2|Dq−1×Sp−1 is preserved (cf. [58, Proof of Theorem 4.5.3]), hence φy fixes
Rq−1 ⊆ Rq for all y ∈ Sp−1. Then t 7→ (1 − t)φ + tidRq is a smooth homotopy of φ to the
constant map idRq , so ϕ1 is isotopic to ϕ2.

Lemma 4.3.8. Let ϕ1 : D
q × Sp−1 ↪→ Mp+q−1

1 and ϕ2 : D
p × Sq−1 ↪→ Mp+q−1

2 be embeddings
into connected manifolds and letM be the manifold

M =M1 \ im(ϕ1)
◦ ∪φ1◦I+p,q◦φ−1

2
M2 \ im(ϕ2)

◦.
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Suppose that one of ϕ1, ϕ2 is trivial and that both ϕ1 and ϕ2 are orientation-preserving if bothM1

andM2 are orientable. ThenM is diffeomorphic toM1#M2 if one ofM1 andM2 is non-orientable
and toM1#(−1)pq−p−qM2 otherwise.

Proof. By possibly interchanging the roles of ϕ1 and ϕ2 we can assume that ϕ1 is trivial. We
decompose

M1
∼=M1#Sp+q−1 ∼=M1#((−1)q(Sq−1 ×Dp) ∪∂ (Dq × Sp−1)),

the orientation on Sq−1 × Dp is chosen so that the induced orientations on the boundary of
Sq−1 × Dp and Dq × Sp−1 are opposite to each other, so that after gluing both pieces together
we have a well-defined orientation.

The embedding ϕ : Dq ×Sp−1 ↪→ (Sq−1×Dp)∪∂ (Dq ×Sp−1) of the second factor is trivial:
The map ϕ̄ is given by

Dq−1 ×Dp ∼= (Dq−1 ×Dp) ∪Dq−1×Sp−1 (Dq
+ × Sp−1) ↪→ (Sq−1 ×Dp) ∪∂ (Dq × Sp−1),

whereDq
+ ⊆ Dq denotes the upper half-ball and we embedDq−1 ⊆ Sq−1 as the upper half-sphere

into the first factor.
By Lemma 4.3.7, the embeddings ϕ and ϕ1 are isotopic, hence

M1 \ im(ϕ1)
◦ ∪φ1◦I+p,q◦φ−1

2
M2 \ im(ϕ2)

◦ ∼=M1#((−1)qSq−1 ×Dp) ∪I+p,q◦φ−1
2
M2 \ im(ϕ2)

◦

Themap I+p,q : S
p−1×Sq−1 → Sq−1×Sp−1 is orientation-preserving if and only if (p−1)(q−1)

is even. Hence, if M2 is orientable, and if we equip it with the orientation −(−1)(p−1)(q−1) =
(−1)pq−p−q , we have a well-defined orientation after gluing, so we obtain

M1 \ im(ϕ1)
◦∪φ1◦I+p,q◦φ−1

2
M2 \ im(ϕ2)

◦

∼=M1#((−1)qSq−1 ×Dp ∪I+p,q◦φ−1
2

(−1)pq−p−qM2 \ im(ϕ2)
◦)

∼=M1#(−1)pq−p−qM2.

Proof of Proposition 4.3.2. First note that we can assume that δ(e0) = δ(e1) = · · · = δ(en) = 1 by
Proposition 4.3.1. We then have

MG0
∼=Ev \ ϕ(v,u)(D

p × Sq−1)◦ ∪φ(v,u)◦I+q,p◦φ−1
(u,v)

Eu \ ϕ(v,u)(D
q × Sp−1)◦

∼=Dp × Sq−1 ∪I+q,p◦φ−1
(u,v)

Eu \ ϕ(v,u)(D
q × Sp−1)◦

∼=Dp × Sq−1 ∪I+p,q ([0, 1]× S
q−1 × Sp−1)

∪(ι1×idSq−1×idSp−1 )◦φ−1
(u,v)

Eu \ ϕ(v,u)(D
q × Sp−1)◦. (4.3.1)

Since we can view the mid-part [0, 1]× Sq−1 × Sp−1 as part of the bundle πu, the manifoldMG

is now obtained fromMG0
by cutting out standard embeddings ϕ(u,vi) : D

q × Sp−1 ↪→ (0, 1) ×
Sq−1 × Sp−1, which are of the form ιi × idSp−1 for embeddings ιi : Dq ↪→ (0, 1) × Sq−1, and
gluing in the corresponding parts ofMGi

. We now show that all these embeddings are trivial.

For that we isotope ιi so that ιi|Dq−1 : Dq−1
∼=−→ {ti} ×Dq−1

i for an embedded disc Dq−1
i ⊆

Sq−1. We choose the discs Dq−1
i so that they do not intersect. Then we define embeddings

ϕ̄i : D
q−1 ×Dp ↪→MG0

by identifying

Dq−1 ×Dp ∼= (Dq−1
i ×Dp) ∪Dq−1

i ×Sp−1 ([0, ti]×Dq−1
i × Sp−1)

and mapping it to
Sq−1 ×Dp ∪Sq−1×Sp−1 ([0, 1]× Sq−1 × Sp−1)
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FiguRe 4.2: The embeddings ϕ(u,vi) are trivial

D1 ×D1

D2×S0

[0, ti]× S1 × S0S1 ×D1

via the obvious inclusions on each part, cf. Figure 4.2. Since the discs Dq−1
i do not intersect each

other, the maps ϕ̄i have pairwise disjoint image. Hence, if we equip eachMGi
with the orientation

induced from each Ev , which equals the orientation induced from (−1)pq−p−qEu, it follows from
Lemma 4.3.8, that

MG
∼=MG0#MG1# . . . #MGn .

4.4 Topology of Manifolds Obtained by Plumbing

The goal of this section is to determine the fundamental group and the cohomology ring ofMG,
and its characteristic classes.

Lemma 4.4.1. Suppose p, q > 2 and that every connected component ofG and every Bu and Bv are
simply-connected. ThenMG is simply-connected.

Proof. By (4.1.1) we can assume that G is connected. The manifoldMG is obtained by gluing the
spaces

Eu \

 ⊔
(u,v)∈E

ϕ(u,v)(D
q × Sp−1)◦

 and Ev \

 ⊔
(u,v)∈E

ϕ(v,u)(D
p × Sq−1)◦


according toG. These spaces are fiber bundles with base spacesBu or Bv with a finite number of
discs removed. Since, p, q > 2, it follows from the long exact sequence for fiber bundles (Lemma
B.1.4), that all these spaces are simply-connected.

The graph is simply-connected, hence, after choosing a root, it is a tree. IfMk is the manifold
obtained by gluing according the subgraph ofG consisting of all vertices of distance at most k from
the root, then it follows inductively from van Kampen’s theorem, thatMk is simply-connected. For
k large enough we haveMk =MG, and henceMG is simply-connected.

Remark 4.4.2. If one does not require thatG is simply-connected in Lemma 4.4.1, then, ifG is con-
nected, one can show, by using the groupoid version of van Kampen’s theorem, that
π1(MG) ∼= π1(G).

For the cohomology we fix a ring R and we consider (co-)homology with coefficients in R. If
we assume that for every u ∈ U the Euler class e(πu) vanishes, then, by Proposition B.3.4, see
(B.3.3), there exists an element au ∈ Hp−1(Bu), so that

Hi(Eu) = π∗
u(H

i(Bu))⊕ θau(Hi−p+1(Bu)). (4.4.1)

For a geometric plumbing graph G we make the following assumption:

G is simply-connected and either no vertex v ∈ V is a leaf, or G is of the form v u
e

.
(4.4.2)
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Theorem 4.4.3. LetG be a geometric plumbing graph with p > 1 satisfying (4.4.2), so that e(πu) = 0
and Bu is closed for all u ∈ U , and each bundle πv is trivial with Bv ∼= Sp. Then

Hi(MG) ∼=



(∑
u∈U 1H0(Eu)

)
R ∼= R, i = 0;⊕

u∈U
π∗
uH

p−1(Bu)

⊕

{ ∑
u∈U

λu · au | λu ∈ R,
∑

(u,v)∈E
δ(e)λu = 0 for all v ∈ V

}
, i = p− 1;

⊕
u∈U H

q(Eu)

/⊕
v∈V

( ∑
e=(u,v)∈E

δ(e)π∗
u[Bu]

∗

)
R, i = q;

⊕
u∈U H

p+q−1(Eu)

/{∑
u∈U

λu[Eu]
∗ |
∑
u∈U λu = 0

}
∼= R, i = p+ q − 1;⊕

u∈U
Hi(Eu), else,

if q 6= p− 1, and

Hi(MG) ∼=



(∑
u∈U 1H0(Eu)

)
R ∼= R, i = 0;⊕

u∈U
π∗
uH

p−1(Bu)

/⊕
v∈V

( ∑
e=(u,v)∈E

δ(e)π∗
u[Bu]

∗

)
R

⊕

{ ∑
u∈U

λu · au | λu ∈ R,
∑

(u,v)∈E
δ(e)λu = 0 for all v ∈ V

}
, i = q;

⊕
u∈U H

p+q−1(Eu)

/{∑
u∈U

λu[Eu]
∗ |
∑
u∈U λu = 0

}
∼= R, i = 2q;⊕

u∈U
Hi(Eu), else,

if q = p− 1. The cup product structure is induced from
⊕

u∈U H
∗(Eu).

Remark 4.4.4. If G is any geometric plumbing graph with simply-connected connected compo-
nents, then we can apply Proposition 4.3.2 to split it into a disjoint union of subgraphs that all
either satisfy the assumptions in Theorem 4.4.3, or consist of a single vertex in V . Thus, we can
compute the cohomology ring ofMG by applyingTheorem 4.4.3 to the corresponding components
of G (provided that the assumptions on the bundles as in Theorem 4.4.3 are satisfied).

For the characteristic classes ofMG we have the following result:

Theorem 4.4.5. Let c be a stable characteristic class. LetG be a geometric plumbing graph satisfying
the assumptions of Theorem 4.4.3. If ξu denotes the vector bundle corresponding to the bundle πu, then

c(MG) =
∑
u∈U

π∗
uc(ξu ⊕ TBu),

where we identified H∗(MG) with a quotient of a subring of
⊕

u∈U H
∗(Eu) according to Theorem

4.4.3.

Wewill applyTheorems 4.4.3 and 4.4.5 in dimension 6k with p = 2k+1 and q = 4k. Recall (cf.
Section B.3, or Section 6.1), that the cup product on a closed, oriented 6k-dimensional manifoldM
defines a symmetric trilinear formµM onH2k(M ;Z) and the k-th Pontryagin class pk(M) defines
a linear form onH2k(M ;Z). A further important invariant is the k-th power of the second Stiefel-
Whitney class w2(M)k ∈ H2k(M ;Z/2).

34



4.4. Topology of Manifolds Obtained by Plumbing

Corollary 4.4.6. In the setting of Theorem 4.4.3 let p = 2k + 1, q = 4k, i.e.MG has dimension 6k.
Let every Bu be simply-connected with torsion-free homology. Then the following assertions hold:

• If G is the graph v u
e

, then MG is a simply-connected 6k-dimensional manifold with
torsion-free homology and invariants

(H2k(MG;Z), µMG
, w2(MG)

k, pk(MG)) = (H2k(Bu;Z), 0, (w2(Bu) + w2(πu))
k, 0).

If k = 1, then b3(MG) = 0.

• IfG has no vertex in V that is a leaf, thenMG is a simply-connected 6k-dimensional manifold
with torsion-free homology. Further, define A =

⊕
u∈U H

2k(Eu), µ =
∑
u∈U µEu

and
p =

∑
u∈U pk(Eu) (viewed as a linear form on A). Then H2k(MG;Z) is given by

⊕
u∈U

π∗
uH

2k(Bu;Z)⊕

∑
u∈U

λu · au | λu ∈ Z,
∑

e=(u,v)∈E

δ(e)λu = 0 for all v ∈ V

 ⊆ A,
and we have w2(MG)

k =
∑
u∈U π

∗
u(w2(Bu) + w2(πu))

k and µMG
and pk(MG) are the

restrictions of µ and p to H2k(MG;Z), respectively. If k = 1, then b3(MG) = 0.

The rest of this section consists of the proofs of Theorems 4.4.3 and 4.4.5.

Lemma 4.4.7. Let Snk = Sn \ (
⊔
kD

n)◦ with n ≥ 2. Then the inclusion ι :
⊔
k S

n−1 ↪→ Snk of the
boundary induces an injective map

ι∗ : Hn−1(Snk )→ Hn−1(
⊔
k S

n−1) ∼=
⊕

kH
n−1(Sn−1)

with image generated by the elements aj − ai, where ai is a positively oriented generator of the i-th
copy of Hn−1(Sn−1) with respect to the orientation induced by Snk .

Proof. We use Lefschetz duality to obtain the following commutative diagram with exact rows and
where the vertical arrows are isomorphisms:

Hn−1(Snk ,
⊔
k S

n−1) Hn−1(Snk ) Hn−1(
⊔
k S

n−1) Hn(Snk ,
⊔
k S

n) 0

H1(S
n
k ) H1(S

n
k ,
⊔
k S

n−1) H0(
⊔
k S

n−1) H0(S
n
k ) 0

∼=

ι∗

∼= ∼= ∼=

If n ≥ 3, then Snk is simply-connected. If n = 2, then the map H1(S
2
k) → H1(S

2
k,
⊔
k S

1) is
trivial as any closed loop in S2

k is homologous to the sum of loops in
⊔
k S

1 it encloses. Hence,
the map ι∗ is injective. To compute the image, it suffices to determine the kernel of the map
H0(

⊔
k S

n−1)→ H0(S
n
k ). The claim now follows from the fact that we can join any two boundary

components by a path and that the vertical map Hn−1(
⊔
k S

n−1) → H0(
⊔
k S

n−1) is given by
Poincaré duality.

Define

X =MG \
⋃
u∈U

Int(Eu) =
⋃
v∈V

Ev \ (
⋃

(u,v)∈E

ϕ(v,u)(D
p◦ ×Dq)) ∪

⋃
u∈U

Eu,
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4. SuRgeRy and Plumbing

where we considered the bundles Ev and Eu as subspaces ofMG. Alternatively, the space X is
the result of the following pushout:

⊔
e∈E

Dq × Sp−1
⊔
v∈V

Ev \ (
⋃

(u,v)∈E
ϕ(v,u)(D

p◦ ×Dq))

⊔
u∈U

Eu X

⊔
e=(u,v)∈E

φ(v,u)◦Iδ(e)q,p

⊔
(u,v)∈E

φ(u,v) (4.4.3)

For every v ∈ V , by assumption, themanifoldEv\(
⋃

(u,v)∈E
ϕ(v,u)(D

p◦×Dq)) can be identified

with Spdeg(v) ×D
q .

Lemma 4.4.8. Suppose that G satisfies (4.4.2). Then the inclusion
⊔
u∈U

Eu ↪→ X induces an injective

map Hi(X)→
⊕
u∈U

Hi(Eu) for every i with image given by

•
(∑

u∈U 1H0(Eu)

)
R ∼= R, if i = 0;

•
⊕
u∈U

π∗
uH

p−1(Bu)⊕

{ ∑
u∈U

λu · au |
∑

(u,v)∈E
δ(e)λu = 0 for all v ∈ V

}
, if i = p− 1;

•
⊕
u∈U

Hi(Eu), else.

We will henceforth identify the cohomology ofX with its image in
⊕

u∈U H
∗(Eu).

Proof. The Mayer-Vietoris sequence for the pushout (4.4.3) is given as follows:

· · · −→ Hi(X) −→
⊕
v∈V

Hi(Spdeg(v))
⊕
u∈U

Hi(Eu) −→
⊕
e∈E

Hi(Sp−1) −→ Hi+1(X) −→ · · ·

To simplify notation, we will write u, v or e for a canonical generator of a group Hi(Mn) (e.g.
[M ]∗ if i = n or 1H0(M) if i = 0), whereM is related to u ∈ U , v ∈ V or e ∈ E (e.g. as the fiber,
base or total space of πu or πv).

For i = 0 the middle map of the sequence is given by⊕
v∈V

Rv
⊕
u∈U

Ru −→
⊕
e∈E

Re, v 7→
∑

e=(u,v)∈E

e, u 7→ −
∑

e=(u,v)∈E

e.

This is the linear map associated to the incidence matrix Q(G), when we view G as a directed
graph with edges originating from vertices in V and ending in vertices in U . Since G is simply-
connected, it follows from Lemmas C.1 and C.2 that this map is surjective with kernel generated
by
∑
u∈U u+

∑
v∈V v. In particular, the image ofH0(X) in

⊕
u∈U H

0(Eu) is generated by∑
u∈U

u =
∑
u∈U

1H0(Eu).

For 1 ≤ i < p − 1 or i ≥ p the groups Hi(Spk) and H
i(Sp−1) vanish. By exactness, the map

Hi(X) →
⊕

u∈U H
i(Eu) is an isomorphism for 1 ≤ i < p − 1 and for i > p (for i = 1 this

follows from the surjectivity of the map in degree 0).
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4.4. Topology of Manifolds Obtained by Plumbing

Finally, we have to investigate the following part of the sequence:

0 −→ Hp−1(X) −→
⊕
v∈V

Hp−1(Spdeg(v))
⊕
u∈U

π∗
u(H

p−1(Bu))⊕Rau

−→
⊕
e∈E

Re −→ Hp(X) −→
⊕
u∈U

Hp(Eu) −→ 0.

By Lemma 4.4.7, for every v ∈ V there are generators avu1u2
, u1, u2 ∈ U with (u1, v), (u2, v) ∈ E,

of Hp−1(Spdeg(v)) (note that they are not linearly independent), so that the map⊕
v∈V

Hp−1(Spdeg(v))
⊕
u∈U

π∗
u(H

p−1(Bu))⊕Rau −→
⊕
e∈E

Re,

which we will denote by φ, is then given by

φ(avu1u2
) = δ(u1, v)(u1, v)− δ(u2, v)(u2, v), for v ∈ V,

φ(x) = 0, for x ∈ π∗
u(H

p−1(Bu)), u ∈ U,

φ(au) =
∑

e=(u,v)∈E

e, for u ∈ U.

The last line follows from Lemma B.3.1.
IfG is the graph v u

e

, then Spdeg(v) is contractible, soH
p−1(Spdeg(v)) is trivial and φ(au) = e.

Hence, the map φ is surjective with kernel π∗
u(H

p−1(Bu)).
Now suppose that no vertex in V is a leaf. Then for any edge e = (u, v) ∈ E, that is connected

to a leaf u ∈ U , we have φ(au) = e. Hence, for any edge e′ = (u′, v) ∈ E connected to v, we have

φ(δ(u′, v)avu′u + δ(u, v)au) = e′.

Hence, by induction over the distance to the root, we see that the map φ is surjective.
We have that

⊕
u∈U π

∗
u(H

p−1(Bu)) is contained in the kernel of φ. Further, the image of the
map

⊕
v∈V H

p−1(Spdeg(v)) −→
⊕

e∈E Re is given by∑
e∈E

λee |
∑

e=(u,v)∈E

δ(e)λe = 0 for all v ∈ V

 .

Thus, to determine the kernel of φ, we need to determine all elements
∑
u∈U λuau ∈

⊕
u∈U Rau,

that get mapped into this set via φ. This is precisely the set∑
u∈U

λuau |
∑

e=(u,v)∈E

δ(e)λu = 0 for all v ∈ V

 ,

which is the projection of the kernel of φ to
⊕

u∈U Rau. This finishes the proof.

Lemma 4.4.9. Suppose thatG satisfies (4.4.2). Then the inclusionMG ↪→ X induces a surjective map
Hi(X)→ Hi(MG) with kernel given by

ker(Hi(X)→ Hi(MG)) =



⊕
v∈V

( ∑
e=(u,v)∈E

δ(e)π∗
u[Bu]

∗

)
R, i = q;{ ∑

u∈U
λu[Eu]

∗ |
∑
u∈U λu = 0

}
, i = p+ q − 1;

0, else.
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4. SuRgeRy and Plumbing

Proof. By excision, the cohomology of the pair (X,MG) is isomorphic to the cohomology of the
pair (⊔

v∈V
Dq × Spdeg(v),

⊔
v∈V

Sq−1 × Spdeg(v)

)
.

By the long exact sequence, this pair only has non-vanishing cohomology groups in degrees q and
p+ q. We first consider degree q. The inclusionX ↪→MG then gives the following commutative
square:

Hq(MG,MG) Hq(MG)

Hq(X,MG) Hq(X)

For this commutative diagram we will now prove the following claims:

1. Hq(MG,MG) ∼=
⊕

u∈U Hp(Bu)
⊕

v∈V Rv and H
q(MG) ∼=

⊕
u∈U Ru

⊕
v∈V H

q(Sp).

2. The mapHq(MG,MG)→ Hq(X,MG) restricted to
⊕

v∈V Rv is an isomorphism.

3. The map Hq(MG,MG)→ Hq(MG) restricted to
⊕

v∈V Rv is injective with image gener-
ated by the elements

∑
e=(u,v)∈E δ(e)u for all v ∈ V .

4. The mapHq(MG)→ Hq(X) maps u ∈ U to π∗[Bu]
∗.

Ad (1). By Lefschetz duality we haveHq(MG,MG) ∼= Hp(MG), so both isomorphisms follow
from the fact thatMG is homotopy equivalent to

∨
u∈U Bu

∨
v∈V S

p by Lemma 4.2.3.
Ad (2). We have the following commutative diagram of inclusions:(⊔

v∈V S
p
deg(v) ×D

q,
⊔
v∈V S

p
deg(v) × S

q−1
)

(X,MG)

(MG,MG)

(4.4.4)

and Lefschetz duality gives the following commutative square.

Hq(MG,MG)
⊕

v∈V H
q(Spdeg(v) ×D

q, Spdeg(v) × S
q−1)

Hp(MG)
⊕

v∈V Hp(S
p
deg(v) ×D

q,
⊔

deg(v) S
p−1 ×Dq)

∼= ∼=

The elements v ∈ Hq(MG,MG) in (1) are represented by Bv ∼= Sp ⊆ MG in Hp(MG). Each
class [Bv] also represents a generator of

Hp(S
p
deg(v) ×D

q,
⊔

deg(v)

Sp−1 ×Dq) ∼= Hp(S
p,
⊔

deg(v)

Dp) ∼= Hp(S
p).

Hence, when restricted to
⊕

v∈V Rv, the lower horizontal map is an isomorphism. The claim now
follows from the commutativity of (4.4.4) and that the map(⊔

v∈V
Spdeg(v) ×D

q,
⊔
v∈V

Spdeg(v) × S
q−1

)
↪→ (X,MG)

induces an isomorphism on cohomology by excision.
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4.4. Topology of Manifolds Obtained by Plumbing

Ad (3). By Lefschetz duality we have the following commutative diagram.

Hq(MG,MG) Hq(MG)

Hp(MG) Hp(MG,MG)

∼= ∼=

By (1), for each v ∈ V , the element v ∈ Hq(MG,MG) maps to the homology class which is
represented byBv ∼= Sp ⊆MG. By isotoping the embedding of the zero-sectionBv ⊆ Ev ⊆MG

to the boundary of the disc bundle (which is possible as the bundle πv is trivial), we see that the
class of this embedding in Hp(MG,MG) is represented by the sum of embeddings of fibers of
all Eu for which (u, v) ∈ E, each class multiplied by the sign δ(u, v). Each embedding of a
fiber of Eu represents the dual to the class represented by the embedding of the zero-section
Bu ⊆ Eu. By commutativity of the diagram, it follows that v ∈ Hq(MG,MG) gets mapped to∑
e=(u,v)∈E δ(e)u ∈ Hq(MG).

Ad (4). The diagram of maps

⊔
u∈U Bu MG

⊔
u∈U Eu X

⊔uπu

induces the following commutative diagram, where the lower horizontalmap is injective by Lemma
4.4.8. ⊕

u∈U H
q(Bu) Hq(MG)

⊕
u∈U H

q(Eu) Hq(X)

⊕uπ
∗
u

For each u ∈ U , the element u ∈ Hq(MG) gets mapped to [Bu]
∗ ∈ Hq(Bu), which in turn gets

mapped to π∗
u[Bu]

∗ ∈ Hq(Eu). This proves the claim.

Combining claims (1)–(4) it follows that the mapHq(X,MG) −→ Hq(X) is given by

⊕
v∈V

Rv −→ Hq(X) ⊆
⊕
u∈U

Hq(Eu)

v 7−→
∑

e=(u,v)∈E

δ(e)π∗
u[Bu]

∗.

This map is injective; this is clear ifG is of the form v u
e

. If no vertex is a leaf, then this follows
from Lemma C.3 (where the arguments work in the same way if some of the entries are−1 instead
of 1).

To summarize, we showed for i < p + q − 1 that the map Hi(X) → Hi(MG) is sur-
jective and only has a non-trivial kernel for i = q, which is then generated by the elements∑
e=(u,v)∈E(δ(e)π

∗
u[Bu]

∗) for v ∈ V .

It remains to consider the case i = p+q−1. For eachu ∈ U wehave the following commutative
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diagram of maps of pairs:

(MG, ∅) (X, ∅)

(
MG,MG \

(
Eu \

⊔
(u,v)∈E

ϕ(u,v)(D
q × Sp−1)

))
(Eu, ∅)

(
Eu \

⊔
(u,v)∈E

ϕ(u,v)(D
q × Sp−1)◦,

⊔
(u,v)∈E

ϕ(u,v)(S
q−1 × Sp−1)

) (
Eu,

⊔
(u,v)∈E

ϕ(u,v)(D
q × Sp−1)

)

Themaps not involvingX are all orientation-preservingmaps that induce isomorphisms onHp+q−1

by excision and the long exact sequence. Hence, each [Eu]
∗ ∈ Hp+q−1(X) gets mapped to the

dual of the fundamental class ofMG under the induced map Hp+q−1(X) −→ Hp+q−1(MG). In
particular, the kernel of this map is given by{∑

u∈U
λu[Eu]

∗ |
∑
u∈U

λu = 0

}
.

Further, by the long exact sequence of the pair(⊔
v∈V

Spdeg(v) ×D
q,
⊔
v∈V

Spdeg(v) × S
q−1

)
,

the groupHp+q−1(X,MG) is free of rank |E| − |V |. Since the kernel of the map

Hp+q−1(X) −→ Hp+q−1(MG),

which is the image of the mapHp+q−1(X,MG)→ Hp+q−1(X), has rank |U | − 1, and since in a
tree we have |U |+ |V | = |E|+1, i.e. |E|− |V | = |U |− 1, it follows thatHp+q−1(X,MG) injects
into Hp+q−1(X), showing that the boundary map Hp+q−2(MG) → Hp+q−1(X,MG) is trivial.
This finishes the proof.

We are now ready to prove Theorems 4.4.3 and 4.4.5, and Corollary 4.4.6.

Proof of Theorem 4.4.3. This directly follows from Lemmas 4.4.8 and 4.4.9.

Proof of Theorem 4.4.5. For u ∈ U we have the inclusion Eu ↪→ MG, and, by naturality, the
induced map on cohomology maps c(TMG) to c(TEu). If ξu denotes the vector bundle corre-
sponding to πu, then the tangent bundle of Eu decomposes as

TEu ∼= π∗
u(ξu ⊕ TBu),

cf. Lemma B.3.5. Hence,
c(TEu) = π∗

uc(ξu ⊕ TBu).

SinceMG '
∨
u∈U Bu

∨
v∈V Bv by Lemma 4.2.3 and all bundles πv are trivial, it follows that

c(TMG) =
∑
u∈U

c(TEu) =
∑
u∈U

π∗
uc(ξu ⊕ TBu).

NowMG = ∂MG, and we denote the inclusionMG ↪→MG by ι. Then

ι∗TMG
∼= TMG ⊕ RMG

,

40



4.4. Topology of Manifolds Obtained by Plumbing

the trivial factor corresponding to the normal bundle ofMG inMG. Hence, by the stability of c,
we have

c(TMG) = ι∗

(∑
u∈U

π∗
uc(ξu ⊕ TBu)

)
.

To determine this element inH∗(MG) consider the following commutative diagram:

MG X
⊔
u∈U

Eu

MG

⊔
u∈U

Bu

ι ⊔
u∈U

πu

By Theorem 4.4.3, we need to determine the image of c(TMG) in the cohomology of
⊔
u∈U Eu.

This is given by ∑
u∈U

π∗
uc(ξu ⊕ TBu) ∈

⊕
u∈U

H∗(Eu;R).

Proof of Corollary 4.4.6. In both casesMG is simply-connected by Lemma 4.4.1. Furthermore, since
all Bu are simply-connected 4k-dimensional manifolds, they have torsion-free homology. Hence,
by (4.4.1) and Theorem 4.4.3, alsoMG has torsion-free homology. The remaining claims directly
follow fromTheorems 4.4.3 and 4.4.5.
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Metrics of Positive Ricci Curvature Constructed via Surgery 5

In this chapter we consider surgery on manifolds with a metric of positive Ricci curvature. For
that, we first consider the situation for positive scalar curvature in Section 5.1. In Section 5.2 we
then introduce the work of Perelman and Burdick on the construction of metrics of positive Ricci
curvature on connected sums. Further, in Section 5.3 we consider higher surgeries and state the
generalized surgery theorem (Theorem A) with its applications Theorems B and C, whose proofs
are also given in this section. The generalized surgery theorem will then be proved in Section 5.4.
Finally, in Section 5.5 we compare the generalized surgery theorem to previous results of Sha–Yang
and Wraith.

5.1 Surgery and Positive Scalar Curvature

Recall the surgery theorem of Gromov–Lawson and Schoen–Yau.

Theorem 5.1.1 ([101, Corollary 6], [50, Theorem A], Theorem 3.4.6). Let Mn be a manifold that
admits a complete metric of positive scalar curvature and let ϕ : Sp−1 ×Dq ↪→ M , n = p+ q − 1,
be an embedding. If q ≥ 3, thenMφ also admits a complete metric of positive scalar curvature.

Remark 5.1.2. The condition on the codimension cannot be removed. In fact, surgery of codimen-
sion 1 is dual to surgery of dimension 0, in particular we obtainM1tM2 by surgery of codimension
1 onM1#M2. By Corollary 3.4.13,M#(−M) admits a metric of positive scalar curvature for any
closed, simply-connectedmanifoldMn, n ≥ 5. Since not every closed, simply-connectedmanifold
of dimension at least 5 admits a metric of positive scalar curvature (cf. Example 3.4.2), Theorem
5.1.1 does not hold for q = 1.

For codimension 2, note that the 2-torus is obtained from S2 by surgery of dimension 0, i.e.
codimension 2. Since T 2 does not admit a metric of positive scalar curvature, Theorem 5.1.1 does
not hold for q = 2.

For codimension 0, Theorem 5.1.1 in fact holds: Here surgery consists of deleting a connected
component that is diffeomorphic to Sn. This result, however, is obvious and is not of much interest
for constructions, so this case is not mentioned in Theorem 5.1.1.

Proof idea. By the uniqueness of tubular neighborhoods, see e.g. [58, Theorem 4.5.3], the embed-
ding ϕ is isotopic to an embedding, where each normal disc {x} ×Dq is embedded as the normal
disc of radius r̄ > 0 to ϕ(Sp−1×{0}) at x. Now consider the product (Sp−1×Dq)×R equipped
with the product metric of the metric pulled back by ϕ on Sp−1 ×Dq and the standard metric on
R. Then define the hypersurface

M ′ = {(x, y, t) ∈ Sp−1 ×Dq × R | (r̄‖y‖, t) ∈ im(γ)},
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where ‖y‖ denotes the Euclidean norm onDq ⊆ Rq and γ is a smooth curve in the r− t plane that
starts as a straight line along the positive r-axis containing (r̄, 0) and ends as a line parallel to the
positive t-axis with distance ε > 0. These conditions ensure thatM ′ and M \ im(ϕ)◦, together
with their metrics, can be glued along their common boundary Sp−1 × Sq−1. Further, the metric
on the cylindrical part ofM ′ is a product metric.

One can now show that the scalar curvature ofM ′ is given by

scalM
′
= scalS

p−1×Dq

+O(1) sin2(θ) + (q − 1)(q − 2)
sin2(θ)
r2

− (q − 1)
k

r
sin(θ).

Here θ denotes the angle between the normal vector to γ and the t-axis, and k is the curvature of γ.
The curve γ is then constructed by first making a small bend for which scalS

p−1×Dq

+O(1) sin2(θ)

stays positive and continuing it as a straight line until the term (q − 1)(q − 2) sin
2(θ)
r2 strongly

dominates the expression (here we see why we need q ≥ 3). One can then bend γ to a straight
line parallel to the t-axis.

Hence, by cutting off the unbounded part ofM ′ we have constructed a metric on

M \ im(ϕ)◦ ∪Sp−1×Sq−1 [0, t1]× (Sp−1 × Sq−1)

that coincides with the original metric onM \ im(ϕ)◦ and which is a product metric on [t0, t1]×
(Sp−1×Sq−1) for some t0 ∈ (0, t1). If ε is sufficiently small one can in fact attach another cylinder
so that in a neighborhood of the boundary we have a product metric where the induced metric
on Sp−1 × Sq−1 itself is the product of two round spheres. One can now attachDp × Sq−1 with
a product metric, where Dp is equipped with a metric that is a product near the boundary and
Sq−1 is equipped with a round metric. Since the boundaries are then isometric and the metrics
are products near the boundaries, the metrics glue smoothly to give a metric of positive scalar
curvature onMφ.

We see that the approach in the proof of Theorem 5.1.1 is local, i.e. independently of the metric
and the embedding we can leave the metric onM unchanged outside im(ϕ). Further, the metric
in Theorem 5.1.1 gets deformed to a metric that is a product near the boundary of ϕ(Sp−1 ×Dq

ε)
for some small discDq

ε = εDq ⊆ Dq .
This approach cannot work for positive Ricci curvature. First, the proof of Theorem 5.1.1

sketched above does not carry over to positive Ricci curvature as the Ricci curvature in the tangent
direction of γ is negative for r̄ small whenever γ is curved negatively (with respect to the standard
orientation on R2). Second, we can also show that no other deformation can be successful.

Proposition 5.1.3. LetMp+q−1, q > 1, be a Riemannian manifold and let Np−1 ⊆ M be a closed
embedded submanifold with trivial normal bundle, hence for ε > 0 small the neighborhood Bε(N)
is diffeomorphic toN ×Dq . Assume that [t0, t1]×N × Sq−1 carries a metric g that glues smoothly
with the metric onM \BεN◦ at the boundary component {t0}×N ×Sq−1 and is a product metric
near the boundary component {t1}×N ×Sq−1. Then for ε small, the metric g does not have positive
Ricci curvature.

Proof. If ε is small then the boundaryN×Sq−1 ∼= ∂Bε(N) ⊆ Bε(N) has positive mean curvature,
see e.g. [72, (3.8)]. Hence, the metric g has positive mean curvature at the boundary component
{t0} × N × Sq−1. Since it is a product near the boundary component {t1} × N × Sq−1, it
has vanishing mean curvature at this boundary component. Assume that g has positive Ricci
curvature. Then one can deform it slightly, so that themean curvature on the boundary component
{t1} ×N × Sq−1 is in fact strictly positive, see e.g. [21, Proposition 1.2.11]. By Theorem 3.2.4 the
boundary of [t0, t1]×N × Sq−1 would then be connected, which is a contradiction.

Proposition 5.1.3 shows that there exists no local surgery technique for positive Ricci curvature
that deforms the metric to a product metric near the boundary of ϕ(Sp−1×Dq

ε). However, a local
surgery technique does not necessarily need to have this property; it would be sufficient to deform
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the metric in any (Ricci-positive) way that allows to attachDp × Sq−1 equipped with a metric of
positive Ricci curvature.

Question 5.1.4. Does there exist a local surgery technique for positive Ricci curvature?

If the answer toQuestion 5.1.4 is affirmative for surgery of a fixed dimension or codimension,
it would imply that the existence of metrics of positive Ricci curvature is preserved under any
surgery of this dimension or codimension. We can exclude the following cases:

• Codimension at most 2: Here the local surgery approach already fails for positive scalar
curvature, cf. Remark 5.1.2,

• Dimension 0: For any two points p1, p2 inMn, any sufficiently small neighborhoodsBε(p1),
Bε(p2) of these points have positivemean curvature at their boundaries. Hence, byTheorem
3.2.4, there cannot by a metric of positive Ricci curvature on [t0, t1]×Sn−1 gluing smoothly
with the metric onM \ (Bε(p1)◦tBε(p2)◦). Thus, local surgery cannot work in dimension
0. Further, we have

π1(M1#M2) ∼= π1(M1) ∗ π1(M2)

for n ≥ 3, cf. (4.1.1). Thus, the existence of metrics of positive Ricci curvature cannot be
preserved under 0-surgery on closedmanifolds byTheorem 3.2.1 and Lemma 4.1.3, unless the
embedding of S0 ×Dn for the surgery maps the two copies ofDn into different connected
components and at least one of these connected components is simply-connected.

For all other cases, Question 5.1.4 is open. The existing surgery techniques for positive Ricci cur-
vature, which we will describe in the sections below, are all non-local and take the global structure
of the manifold into account.

5.2 Connected Sums

LetMn
1 ,M

n
2 be manifolds that admit a complete metric of positive Ricci curvature. By Theorem

5.1.1, the connected sumM1#M2 admits a complete metric of positive scalar curvature. As seen
in Section 5.1, M1#M2 cannot admit a metric of positive Ricci curvature if bothM1 andM2 are
not simply-connected. On the other hand, if one ofM1,M2 is simply-connected, we can ask the
following question:

Question 5.2.1. LetM1,M2 be closed manifolds that admit metrics of positive Ricci curvature and
suppose thatM1 is simply-connected. DoesM1#M2 admit a metric of positive Ricci curvature?

The techniques we will study in this section go back to Perelman [90], who constructed met-
rics of positive Ricci curvature on connected sums of copies of ±CP 2. He made the following
observation:

Theorem 5.2.2 ([90], Theorem 3.1.13). LetMn
1 ,M

n
2 be manifolds that admit metrics of positive Ricci

curvature, so that there exists an isometry φ : ∂cM1 → ∂cM2 between compact boundary components
∂cM1 ⊆ ∂M1 and ∂cM2 ⊆ ∂M2. If the second fundamental forms II∂cMi

satisfy

II∂cM1
+ φ∗II∂cM2

≥ 0,

thenM1 ∪ϕ M2 admits a metric of positive Ricci curvature that coincides with the original metrics
onM1 andM2 outside an arbitrarily small neighborhood of the gluing area.

A proof for Theorem 5.2.2 is sketched in [90, Section 4], and detailed proofs were given in [117,
Section 2.3] and [11, Section 2.2].
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Proof idea. Denote the metric onMi by gi. First note, that by a deformation of these metrics as in
[21, Proposition 1.2.11], we can assume that the strict inequality

II∂cM1
+ φ∗II∂cM2

> 0

holds.
A neighborhood of the boundary component ∂cMi is diffeomorphic to [0, ε)× ∂cMi for some

ε > 0 and the metric gi on this neighborhood is of the form dt2 + gi,t, where gi,t is a metric on
∂cMi.

We define a metric g on (−ε, ε)× ∂cM1 by g = dt2 + gt, where, for some t0 ∈ (0, ε),

gt =

{
g1,−t, t < −t0,
φ∗g2,t, t > t0,

and for t ∈ [−t0, t0], gt is the unique polynomial of degree 3 in t with coefficients in

Rg1,t0 ⊕ Rg′1,t0 ⊕ Rφ∗g2,t0 ⊕ Rφ∗g′2,t0 ,

so that themetric g isC1. The condition on the second fundamental form implies that any sectional
curvature involving ∂t can be made arbitrarily large as t0 → 0, while all other sectional curvatures
remain bounded. Hence, for t0 small enough, g has positive Ricci curvature.

The metric g is smooth, except for t = −t0 and t = t0, where it is merely C1. In a similar
way as before we smoothen the metric by a polynomial of degree 5, so that the metric becomesC2.
The second t-derivative of this polynomial essentially interpolates linearly between the second t-
derivatives of the original metrics, which results in an essentially linear interpolation of the Ricci
curvatures. Hence, the new metric, which we denote again by g, has positive Ricci curvature and
is C2.

Finally, we deform g to a smooth metric. This smooth metric can be chosen to be arbitrarily
close to g in the C2-norm. Since the Ricci curvature only depends on the derivatives of g up to
order 2, we can achieve that the new metric has positive Ricci curvature.

A special case ofTheorem 5.2.2 is where both boundary components have non-negative second
fundamental form. This shows that for two manifoldsMn

1 , M
n
2 , so that each Mi \ Dn admits a

metric of positive Ricci curvature and so that the boundary has non-negative second fundamental
form and the boundary components ∂c(M\Dn) ∼= Sn−1 are isometric, the connected sumM1#M2

admits a metric of positive Ricci curvature. However, this technique does not iterate, i.e. in this
way one cannot construct metrics of positive Ricci curvature on connected sums with more than
two summands. For that, Perelman constructed a special metric on Sn \ (

⊔
kD

n) with n = 4,
called ambient space in [90], and it was observed by Burdick [22] that this construction generalizes
to all n ≥ 4. In [22] this space is called docking station.

Lemma 5.2.3 ([90, Section 3] and [22, Proposition 1.3]). For all n ≥ 4, k ≥ 1 and ν > 0 there exists
a metric of positive Ricci curvature on Sn \ (

⊔
kD

n), so that each boundary component is isometric
to the round metric of radius 1 on Sn−1, and so that all principal curvatures are at least −ν.

Motivated by this construction, Burdick [22] introduced the following notion.

Definition 5.2.4. LetMn be a manifold. A metric g onM is a core metric, if it has positive Ricci
curvature and if there is an embedding ϕ : Dn ↪→ Int(M), such that g|φ(Sn−1) is the round metric
of radius 1 and such that the second fundamental form IIφ(Sn−1) is positive semi-definite with
respect to the inward pointing normal vector of Sn−1 ⊆ Dn.

Remark 5.2.5. Our definition differs from Burdick’s definition, as he requires the second funda-
mental form to be positive definite. However, the two definitions are equivalent: a metric with
positive semi-definite second fundamental form can always be deformed into a metric with posi-
tive definite fundamental form while keeping the Ricci curvature positive, e.g. by the deformation
[21, Proposition 1.2.11].
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FiguRe 5.1: The round metric is a core metric

ϕ(Dn)

It is now a consequence of Theorem 5.2.2, Lemma 5.2.3 and the deformation [21, Proposition
1.2.11], that we can take connected sums of manifolds that admit core metrics.

Proposition 5.2.6 ([22, Theorem B]). LetMn
i , 1 ≤ i ≤ k be manifolds that admit core metrics. If

n ≥ 4, then #iMi admits a metric of positive Ricci curvature.

Hence, an approach to answerQuestion 5.2.1 is to determine which manifolds admit core met-
rics. This approach can only work in the simply-connected case, since a closed manifold with a
core metric is simply-connected. This follows from Theorem 3.2.4, or alternatively from Proposi-
tion 5.2.6 above together with Theorem 3.2.1. We note that for non-simply-connected manifolds
Burdick [24] has introduced the notion of socket metrics and showed that the connected sum of
manifolds with core metrics and a manifold with a socket metric admits a metric of positive Ricci
curvature. Further, he showed that socket metrics exist on real projective spaces and on certain
lens spaces.

The easiest example of a manifold with a core metric is the sphere Sn equipped with the round
metric of some radius r > 0. Then the requirements of the embedding Dn ↪→ Sn are satisfied by
the inclusion of any geodesic ball that contains a hemisphere (for a suitable choice of r), cf. Fig-
ure 5.2. The first non-trivial example was given by Perelman [90], who constructed a core metric
on CP 2. This construction was generalized by Burdick [22] to all complex and quaternionic pro-
jective spaces and to the Caley plane. Further, Burdick constructed core metrics on certain sphere
bundles and manifolds obtained by plumbing [23] and on the connected sum of two manifolds
with core metrics [24]. All these examples are summarized in the proposition below.

Proposition 5.2.7 ([21], [22], [23], [24],[90]). The following manifolds admit core metrics:

1. Sn, if n ≥ 2;

2. CPn, HPn and OP 2;

3. Mn
1 #M

n
2 if n ≥ 4 andM1,M2 admit core metrics;

4. Total spaces of linear sphere bundles E → B with fiber and base dimension at least 3 if B is
compact and admits a core metric;

5. ∂W forW obtained by plumbing linear n-disc bundles over n-spheres according to a simply-
connected graph with n ≥ 4, or by plumbing together a p-disc bundle over Sq and a q-disc
bundle over Sp with p ≥ 3, q ≥ 4.

Remark 5.2.8. In [23], item 4 of Proposition 5.2.7 is stated with no restriction on the base dimen-
sion. However, the proof given in [23] does not work if the base is 2-dimensional, since the metric
onM1 in [23, Definition 3] does not have positive Ricci curvature if n = 1. InTheorem C, by using
Theorem B, we fix this by giving an alternative proof provided the base dimension is at least 4.
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5.3 Generalized Surgery

The first technique to construct metrics of positive Ricci curvature via surgery is due to Sha and
Yang [107]. Although their main result (Theorem 3.1.11) concerns connected sums of products of
spheres, the technique itself only applies to higher surgeries (see Section 5.5). This technique was
later generalized and modified by Wraith [122] and the author [97]. In this section we present the
latter, together with its immediate applications. It is the most general version and covers almost
all cases of the previous surgery results. We give a discussion of this in Section 5.5.

Recall that Sp−1(ρ) denotes the round (p− 1)-sphere of radius ρ > 0. By Dq
R(N) we denote

a closed geodesic ball of radius R > 0 in Sq(N). We assume that (Mn, gM ) is a Riemannian
manifold and that there is an isometric embedding ι : Sp−1(ρ) × Dq

R(N) ↪→ M , where n =
p+ q − 1.

Theorem A ([97, Theorem A]). Suppose gM has positive Ricci curvature and suppose p, q ≥ 3. Let
r > 0 and E π−→ Bp be a linear Sq−1-bundle, so that B is compact and admits a core metric gB .
Then there exists a constant κ = κ(p, q, R/N, gB , r) > 0, such that if ρ

N < κ, then the manifold

M̂ = (M \ im(ι)◦) ∪ι◦I±q,p◦φ−1
π

(E \ im(ϕπ)
◦)

admits a metric of positive Ricci curvature. This metric coincides outside a neighborhood of the gluing
area with a submersion metric on E with totally geodesic and round fibers of radius r and with a
scalar multiple of the metric gM onM .

More precisely, the dependence of κ on the metric gB is completely determined by the smallest
eigenvalue of the second fundamental form IIφ(Sp−1).

InTheoremAwe have the assumptions that the embedding ι is isometric and that ρN < κ holds.
While the first assumption can be arranged for an arbitrary embedding Sp−1 ×Dq ↪→ M under
certain conditions, see [123], it is not clear in general when the second assumption can be satisfied.
In particular, this surgery technique is not local: It can be shown that κ→ 0 asR/N → 0. Hence,
for fixed ρ, i.e. a fixed isometric embedding Sp(ρ) ↪→ M , and fixed N , the condition ρ

N < κ is
not satisfied for small values of R. Thus, in order to achieve this assumption, one needs to extend
the embedding Sp(ρ) ↪→M to a sufficiently large tubular neighborhood. In general it is not clear
when this is possible. However, for standard embeddings of linear sphere bundles it is possible to
satisfy these assumptions, which leads to the following application:

Theorem B ([97, Theorem B]). Let G be a simply-connected geometric plumbing graph. Suppose
that p, q ≥ 3. Fix u0 ∈ U and suppose that Bqu, B

p
v are compact and admit core metrics for all other

u ∈ U and all v ∈ V . Then

1. If Bu0
is compact and admits a metric of positive Ricci curvature, thenMG admits a metric of

positive Ricci curvature.

2. If Bu0
is compact and admits a core metric with p ≥ 4, thenMG admits a core metric.

Recall, that, by Proposition 5.2.7, total spaces of linear sphere bundles E → B admit a core
metric if B admits a core metric and fiber and base dimensions are at least 3. By using Theorem B,
we can extend this result.

Theorem C ([97, Theorem C]). Let E → Bq be a linear Sp-bundle and suppose that

• p = 2 and q ≥ 4, or

• q = 2 and p ≥ 4.

If B is closed and admits a core metric, then E admits a core metric.
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The proofs of Theorems B and C follow [97, Section 4]. For the proof of Theorem B we need
the following result by Burdick, which will allow to construct core metrics.

Proposition 5.3.1 ([22, Theorem 2.5]). For q ≥ 3, p ≥ 4, R > 1, and any ν > 0 sufficiently small,
there is a core metric onDq×Sp−1 such that the boundary is isometric toR2ds2q−1+ds

2
p−1 and the

principal curvatures of the boundary are all at least −ν.

Proof of Theorem B. We denote the total space of the sphere bundle of the disc bundles Eu and
Ev by Eu and Ev , respectively. Since all Bu with u 6= u0 and all Bv have core metrics, the
manifold ∂W is obtained by iterated surgeries on the manifold M = Eu0 as in Theorem A (cf.
(4.2.1)). By a deformation result of Gao and Yau [44] for negative Ricci curvature, that can easily
be transferred to positive Ricci curvature (see also [123, Theorem 1.10]) for every x ∈ Bu0

and
any open neighborhood U of xwe can deform the metric onBu0

to agree with the original metric
on Bu0

\ U and to have constant sectional curvature 1 on a neighborhood of x. Hence, for any
k1 ∈ N we can deform the metric on Bu0

such that there are positive constants R1, . . . , Rk1 and
an isometric embedding

Dq
R1

(1) t · · · tDq
Rk1

(1) ↪→ Int(Bu0
).

Now we equip Eu0
with the metric gπu0

(ρ, θ) according to a connection θ that is flat over each
embedded disc as in Lemma B.2.4, so we have an isometric embedding

Sp−1(ρ)×Dq
R1

(1) t · · · t Sp−1(ρ)×Dq
Rk1

(1) ↪→ Eu0
.

By Proposition B.2.5 there is a constant ρ1 > 0, so that gE1(ρ, θ) has positive Ricci curvature
for all ρ < ρ1. By choosing ρ small enough we can satisfy the assumptions of Theorem A. By
possibly choosing ρ even smaller we can freely choose the radii of the fibers of the bundles we
attach. Hence, by choosing sufficiently small radii for the attached bundles, we can satisfy again
the assumptions of Theorem A for the attached bundles.

We repeat this process: Since we glue according to a tree, where we consider u0 as the root,
the manifold MG is obtained by successively gluing the bundles that correspond to vertices of
distance i from the root to the bundles corresponding to vertices of distance i − 1 from the root.
As above we can apply Theorem A for each gluing by possibly decreasing the fiber radii of all the
preceding bundles. This finishes the proof of the first part of Theorem B.

If Bu0 admits a core metric, then we can choose the embeddings on which we perform the
surgeries to be disjoint from the embedded disc ϕ(Dq). We can also assume that the connection
for the bundle πu0

is flat overϕ(Dq). Hence, if we removeϕ(Dq) fromBu0
and the corresponding

part of Eu0
, we obtain a boundary component isometric to ds2q−1 + ρds2p−1 with non-negative

definite second fundamental form. By [21, Proposition 1.2.11] we can assume that the second
fundamental form is positive definite and by possibly choosing ρ smaller and rescaling we can
assume that the boundary is isometric to R2ds2q−1 + ds2p−1 for some R > 1. Hence, by Theorem
5.2.2, we can glue with the metric from Proposition 5.3.1 (where we assume p ≥ 4) and obtain a
core metric on ∂W . This finishes the proof of Theorem B.

For the proof of Theorem C we need the following lemma.

Lemma 5.3.2. Let πu and πv denote the trivial bundles

CP 2 ×Dn−1 πu−−→ CP 2 and Sn−1 ×D4 πv−→ Sn−1,

respectively. LetW be the manifold obtained by plumbing as follows.

u v
+

Then ∂W is diffeomorphic to S2×̃Sn.
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Proof. According to (4.2.1) we have

∂W ∼= (CP 2 \ (D4)◦)× Sn−2 ∪S3×Sn−2 S3 ×Dn−1.

Themanifold CP 2 \ (D4)◦ is diffeomorphic to the disc bundle of the tautological line bundle over
CP 1 ∼= S2. Hence, the manifold (CP 2 \(D4)◦)×Sn−2 has the structure of a fiber bundle over S2

with fiberD2×Sn−2. On the other hand, the manifold S3×Dn−1 also has the structure of a fiber
bundle over S2 obtained by the Hopf fibration S3 → S2, i.e. the fiber of this bundle is S1×Dn−1.
Since the bundle projection ∂(CP 2 \ (D4)◦) ∼= S3 → S2 is also given by the Hopf fibration, we
glue fibers to fibers, so ∂W has the structure of a fiber bundle over S2 with fiber

D2 × Sn−2 ∪S1×Sn−2 S1 ×Dn−1 ∼= Sn.

Both bundles have the structure group of the Hopf fibration, which is contained in SO(2), hence
∂W also has structure group contained in SO(2) ⊆ SO(n + 1), so it is a linear bundle. It is non-
trivial, since under the inclusion (CP 2 \ (D4)◦)× Sn−2 ↪→ ∂W , the class w2(∂W ) gets mapped
to w2((CP 2 \ (D4)◦) × Sn−2), which is non-trivial as it is the pullback of w2(CP 2 × Sn−2)
under the inclusion (CP 2 \ (D4)◦) × Sn−2 ↪→ CP 2 × Sn−2 (which is an isomorphism on H2).
Thus, w2(∂W ) is non-trivial, so ∂W cannot be diffeomorphic to S2 × Sn, hence it is the unique
non-trivial bundle S2×̃Sn (cf. Example B.1.6).

Proof of Theorem C. Let E π−→ Bq be a linear Sp-bundle, where B is a closed manifold that admits

a core metric. First suppose that p = 2 and q ≥ 4. Let E
πv1−−→ B be the disc bundle of π. LetW

be the manifold obtained by plumbing as follows:

v1 u v2
+ +

Here πu and πv2 denote the trivial bundles S3 ×Dq πu−−→ S3 and Sq ×Dq
πv2−−→ Sq , respectively.

By Propositions 4.3.2 and 4.3.3 we have ∂W ∼= E. By applyingTheorem B with u0 = u, we obtain
a core metric on ∂W and thus on E.

Now suppose that q = 2 and p ≥ 4. Then B is a 2-dimensional closed manifold with a core
metric, hence B ∼= S2. There are precisely two isomorphism classes of linear Sp-bundles over S2,
cf. Example B.1.6. If E is the trivial bundle, i.e. E ∼= S2 × Sp, then we can also consider it as a
linear S2-bundle over Sp and apply the first part of Theorem C. If E is the non-trivial bundle then
the claim follows fromTheorem B and Lemma 5.3.2.

5.4 Proof of the Generalized Surgery Theorem

In this section we prove Theorem A. We follow [97, Section 3]. First we decompose the manifold
M̂ as follows:

M̂ ∼= (E \ im(ϕπ)
◦) ∪φπ◦I±p,q (I × S

p−1 × Sq−1) ∪ι−1 (M \ im(ι)◦), (5.4.1)

where I is a closed interval. By possibly reversing the orientations on base and fibers of π, we can
assume that we use the map I+p,q in equation (5.4.1). The strategy now is to define a suitable metric
of positive Ricci curvature on each part and then glue them together using Theorem 5.2.2.

If the metrics in Theorem 5.2.2 are warped product metrics, then, by observing that the metric
we obtain after gluing is again a warped product metric, we obtain the following special case.

Corollary 5.4.1. Let J be an interval and let (M1, g1), . . . , (Mk, gk) be Riemannian manifolds.
Let f1, . . . , fk : J → R>0 be continuous functions which are smooth on J \ {x1, . . . , xl}, where
x1, . . . , xl ∈ J are interior points. If the metric

g = dt2 + f1(t)g1 + · · ·+ fk(t)gk

50



5.4. Proof of the Generalized Surgery Theorem

on J ×M1 × · · · ×Mk has positive Ricci curvature for all t ∈ J \ {x1, . . . , xl} and if

f ′i−(xj) ≥ f ′i+(xj)

for all i, j, then we can smooth the functions f1, . . . , fk on an arbitrarily small neighborhood of each
xj such that the resulting metric has positive Ricci curvature.

We deform the metric on B according to Remark 5.2.5, so that the second fundamental form
on ϕ(Sp−1) is positive definite. We then equip E with the metric gπ(r, θ) constructed in Lemma
B.2.4 with respect to the embedding ϕ : Dp ↪→ B obtained from the core metric gB . Then, if we
choose the standard embedding ϕπ to cover ϕ (as a bundle map), we have

gπ(r, θ)|φπ(Dp×Sq−1) = gB |φ(Dp) + r2 · ds2q−1

and over the boundary ϕ(Sp−1) we have

gπ(r, θ)|φπ(Sp−1×Sq−1) = ds2p−1 + r2 · ds2q−1.

Since the metric is a product over ϕ(Dp), the second fundamental form on ϕπ(Sp−1 × Sq−1) ∼=
Sp−1 × Sq−1 with respect to this product structure is given by

IIπ−1(φπ(Sp−1×Sq−1)) =

(
IIφ(Sp−1) 0

0 0

)
. (5.4.2)

Since IIφ(Sp−1) > 0, the smallest eigenvalue of IIφ(Sp−1), which we denote by λ, is positive. Note
that scaling the metric gE(r, θ) by a factor α > 0 has the effect that λ gets multiplied by α−1, cf.
Remark A.6.

By assumption, the metric on ι(Sp−1 ×Dq) is the product metric

gM |ι(Sp−1×Dq) = ρ2 · ds2p−1 +N2 · ds2q|Dq
R(N)

= ρ2 · ds2p−1 + (dt2|[0,R] +N2 sin2
(
t

N

)
ds2q−1),

cf. Example A.10. Hence, the metric on ι(Sp−1 × Sq−1) ∼= Sp−1 × Sq−1 is the product metric

gM |ι(Sp−1×Sq−1) = ρ2 · ds2p−1 +N2 sin2
(
R

N

)
ds2q−1

and, again by Example A.10, the second fundamental form with respect to this product structure
is given by

IIι(Sp−1×Sq−1) =

(
0 0
0 − 1

N cot
(
R
N

)) . (5.4.3)

In general, the value R
N can be very small, in which case IIι(Sp−1×Sq−1) is negative definite. If it is

non-negative, i.e. if RN ≥
π
2 , we decrease R, so that IIι(Sp−1×Sq−1) becomes negative definite.

We will equip the middle part of (5.4.1) with a metric of positive Ricci curvature such that we
can glue it to the other parts using Theorem 5.2.2. The metric will be a doubly warped product
metric, i.e. it will be given by

gf,h = dt2 + h2(t)ds2p−1 + f2(t)ds2q−1,

where f, h : R≥0 → R>0 are smooth functions. By Corollary A.9, the second fundamental form
of gf,h at a slice t ≥ 0 with respect to ∂t is given by

II{t}×(Sp−1×Sq−1) =

(
h′(t)
h(t) 0

0 f ′(t)
f(t)

)
. (5.4.4)
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Now, in order to glue according to the decomposition (5.4.1) using Theorem 5.2.2, we impose the
following boundary conditions:

h(0) = α f(0) = αr (5.4.5)

h′(0) ≤ λ f ′(0) ≤ 0 (5.4.6)

h(t0) = βρ f(t0) = βN sin (R/N) (5.4.7)

h′(t0) ≥ 0 f ′(t0) ≥ cos (R/N) . (5.4.8)

Here α, β, t0 > 0 can be chosen arbitrarily. Furthermore, in order to useTheorem 5.2.2, the metric
gf,h needs to have positive Ricci curvature. For that, let V ∈ TSp−1,W ∈ TSq−1 be unit length
vectors (with respect to the metric gf,h). Then, by Corollary A.9, the Ricci curvatures are given as
follows:

Ric(∂t, ∂t) = −(p− 1)
h′′

h
− (q − 1)

f ′′

f
, (5.4.9)

Ric(V, V ) = −h
′′

h
+ (p− 2)

1− (h′)2

h2
− (q − 1)

h′f ′

hf
, (5.4.10)

Ric(W,W ) = −f
′′

f
+ (q − 2)

1− (f ′)2

f2
− (p− 1)

h′f ′

hf
, (5.4.11)

Ric(∂t, V ) = Ric(∂t,W ) = Ric(V,W ) = 0.

Figure 5.1 contains a sketch of how the graph of such functions h and f would typically look like.

Lemma 5.4.2. If the functions h and f satisfy (5.4.5)-(5.4.8) and the Ricci curvatures (5.4.9)-(5.4.11)
are positive, then the manifold M̂ has a metric of positive Ricci curvature as claimed in Theorem A.

Proof. We scale the metric gE by α, so

(E \ ϕπ(Dp × Sq−1)◦), α2gE(r, θ)) and (I × Sp−1 × Sq−1, gf,h)

have an isometric boundary component by (5.4.5). Scaling by α has the effect that the second
fundamental form on ϕ(Sp−1) becomes bounded from below by λ

α . Hence, by (5.4.6), (5.4.2) and
(5.4.4) the requirements of Theorem 5.2.2 are satisfied for this boundary component (note that
we need to reverse the signs in (5.4.4) since ∂t is the inward normal vector on this boundary
component). For the other boundary component we proceed similarly, i.e. we rescale the metric
gM by β so we have isometric boundary components by (5.4.7). Then by (5.4.8), (5.4.3) and (5.4.4)
the requirements of Theorem 5.2.2 are satisfied. Now we apply Theorem 5.2.2 to glue according to
the decomposition (5.4.1) and rescale the resulting metric by 1

α .

To construct the functions we need the following existence result for initial value problems.

Lemma 5.4.3 ([113, Lemma 2.3, Theorem 2.13, Theorem 2.14]). Let Φ: R × Rn → Rn be smooth
and let t0 ∈ R and x0 ∈ Rn. Then the initial value problem

f ′(t) = Φ(t, f(t)), f(t0) = x0

has a unique smooth solution on a maximal interval I around t0. Further, if for every T > 0 there
exist constantsM(T ), L(T ), so that

|Φ(t, x)| ≤M(T ) + L(T )|x|

for all (t, x) ∈ [−T, T ]× Rn, then I = R.

We will now construct functions h and f satisfying the assumptions of Lemma 5.4.2.
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t
t0

α

βρ

h

t
t0

αr

βN sin (R/N)
f

FiguRe 5.1: Sketch of the graph of the functions h and f . The dashed lines correspond to the
part on which we have to construct the functions h and f such that they satisfy the boundary
conditions (5.4.5)-(5.4.8) and such that the Ricci curvatures (5.4.9)-(5.4.11) are positive.

Definition 5.4.4. Let h0 : [0,∞)→ R be the unique smooth function satisfying

h′0 = e−
1
2h

2
0 ,

h0(0) =

√
−2 ln

(
min

(
λ,

1

2

))
.

We use the minimum of λ and 1
2 to cover the case λ ≥ 1, in which −2 ln(λ) would be non-

positive. The function h0 is indeed defined on all of R by Lemma 5.4.3: If we set n = 1 and
Φ(t, x) = e−

1
2x

2

, then h′0(t) = Φ(t, h0(t)). The condition on Φ in Lemma 5.4.3 is satisfied for
M(T ) = 1 and L(T ) = 0.

Lemma 5.4.5. We have

1. h′0(0) = min
(
λ, 12

)
≤ λ,

2. h0, h′0 > 0,

3. h′′0 = −h0e−h
2
0 < 0,

4. limt→∞ h0(t) =∞.

Proof. We show that limt→∞ h0(t) = ∞, the remaining statements follow directly from the def-
inition. Since h′0 > 0, the function h0 converges to a limit L ∈ (0,∞]. If L < ∞, then
limt→∞ h′0(t) = 0. By the definition of h0 we have limt→∞ h′0(t) = e−

1
2L

2

> 0, which is a
contradiction. Hence L =∞.

Definition 5.4.6. For C ∈ (0, 1) let fC : [0,∞)→ R be the unique smooth function satisfying

f ′′C = Ce−h
2
0fC ,

fC(0) = 1,

f ′C(0) = 0.

The function fC is indeed defined of all ofR: If we setn = 2 andΦ(t, (x, y)) = (y, Ce−h0(t)
2

x),
then (fC , f ′C)

′(t) = Φ(t, (fC , f
′
C)(t)). The condition onΦ in Lemma 5.4.3 is satisfied forM(T ) =

0 and L(T ) = 1.
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Lemma 5.4.7. We have

1. fC , f ′C , f
′′
C > 0 on (0,∞),

2. limt→∞ fC(t) = limt→∞ f ′C(t) =∞,

3. limt→∞ fC(t)h
′
0(t) = 0,

4. f ′
C

fCh0h′
0
∈ [0, 1].

Proof. Ad(1). By definition we have f ′′C(0) > 0 and hence f ′C(t) > 0 for small t > 0. Now suppose
there is t > 0 such that f ′′C(t) = 0. Let t0 be the smallest such t, which is positive by the initial
conditions. The equation f ′′C(t0) = 0 implies fC(t0) = 0, hence there is t1 ∈ (0, t0) such that
f ′′C(t1) = 0 which is a contradiction. Hence f ′′C > 0 and fC , f ′C > 0 follows from the initial
conditions.

Ad(2). We have limt→∞ fC(t) = ∞ since f ′C , f
′′
C > 0. Now set u = f ′C . A calculation shows

that u satisfies the differential equation

u′′ + 2h0e
− 1

2h
2
0u′ − Ce−h

2
0u = 0.

The function h0 is monotone increasing, hence it has an inverse h−1
0 : [s0,∞)→ [0,∞), where

s0 = h0(0) > 0. We now define v : [s0,∞)→ [0,∞) by

v(s) = u(h−1
0 (s)).

Then v satisfies the differential equation

v′′(s) + sv′(s)− Cv(s) = 0. (5.4.12)

Further, the initial values for v are v(s0) = 0 and v′(s0) = Ce−
1
2 s

2
0 > 0. It follows that v′′(s0) =

−Cs0e−
1
2 s

2
0 < 0.

Suppose there is s > s0 such that v′(s) = 0 and let s1 be the smallest such s. Since v′(s) > 0
for s ∈ [s0, s1) and v(s0) = 0, it follows that v(s1) > 0 and hence v′′(s1) = Cv(s1) > 0. But
v′(s) > 0 for s ∈ [s0, s1) and v′(s1) = 0, so v′′(s1) ≤ 0, which is a contradiction. Hence v′ > 0.

By induction we have

v(k+2)(s) + sv(k+1)(s)− (C − k)v(k)(s) = 0

for all k ∈ N0 and similarly as above we can now show inductively that v(k+1) does not change
sign outside a compact set. Indeed, if v(k+1)(s) = 0, then v(k+2)(s) = (C − k)v(k)(s), so v(k+2)

does not change sign on the zeros of v(k+1) outside a compact set. Hence, the function v(k+1) can
change sign at most once outside this compact set. As a consequence, all v(k) converge to a limit.
Let L = lim

s→∞
v(s) ∈ (0,∞] and suppose L <∞. Then we have

lim
s→∞

v′(s) = lim
s→∞

v′′(s) = 0

and by (5.4.12) it follows that
lim
s→∞

sv′(s) = CL.

In particular, there is s1 > s0, such that sv′(s) > CL
2 for all s > s1. Hence, for s ≥ s1,

v(s) = v(s1) +

∫ s

s1

v′(r)dr >

∫ s

s1

CL

2r
dr =

CL

2
(ln(s)− ln(s1)) −→∞

as s→∞, which is a contradiction. It follows that L =∞ and therefore also lim
s→∞

u(s) =∞.
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Ad(3). We define the function y : [s0,∞)→ R by y(s) = fC(h
−1
0 (s))h′0(h

−1
0 (s)), so

y(s) = e−
1
2 s

2

fC(h
−1
0 (s))

and we need to show that y converges to 0 as s→∞. A calculation shows that y satisfies

y′′(s) = −sy′(s) + (C − 1)y(s)

with y(s0) = e−
1
2 s

2
0 > 0 and y′(s0) = −s0e−

1
2 s

2
0 < 0. By definition of y we have y > 0 and

similarly as before we conclude that y′ < 0 and y and all its derivatives converge. Since y > 0 and
y′ < 0, the limit L of y is finite and non-negative. In particular, both y′ and y′′ converge to 0, and
by a similar argument as above it follows that L = 0.

Ad(4). We set w =
f ′
C

fC
. Then the function w satisfies

w′ = Ce−h
2
0 − w2

with w(0) = 0. We define z : [s0,∞)→ R by

z(s) = w(h−1
0 (s))

e
1
2 s

2

s
,

so that z ◦ h0 =
f ′
C

fCh0h′
0
. We need to show that z ∈ [0, 1]. A calculation shows that z satisfies

z′(s) = −sz(s)2 + s2 − 1

s
z(s) +

C

s

with z(s0) = 0 and hence z′(s0) = C
s0
> 0, i.e. z(s) ∈ (0, 1) for s near s0. If z(s) = 0 for s > s0,

then z′(s) = C
s > 0 and if z(s) = 1, then z′(s) = C−1

s < 0. This shows that z cannot leave the
interval (0, 1).

Definition 5.4.8. For a, b > 0 define ha = a · h0 and fb,C = b · fC .

The boundary conditions (5.4.5)-(5.4.8) can easily be satisfied with h = ha and f = fb,C by
suitable choices of a and b, except perhaps the value of f at t0, but this could for example be
achieved by extending f and h by straight lines provided that the value of f at t0 is less than
βN sin(R/N). This is the reason why the constant κ appears in Theorem A.

Now we consider the Ricci curvatures (5.4.9)-(5.4.11).

Lemma 5.4.9. For a, b, C small enough we have Ric(∂t, ∂t) > 0 and Ric(V, V ) > 0 for all t,
and Ric(W,W ) > 0 for small values of t. Further, let tb > 0 be the smallest value such that
Ric(W,W )(tb) = 0. Then

1. tb →∞ as b→ 0,

2. f ′b,C(tb)→ 1 as b→ 0.

Proof. We calculate

Ric(∂t, ∂t) = ((p− 1)− (q − 1)C)e−h
2
0 ,

which is positive when C < p−1
q−1 . We also have

Ric(V, V ) = e−h
2
0 + (p− 2)

a−2 − e−h2
0

h20
− (q − 1)

f ′Ch
′
0

fCh0
.
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For t = 0 this expression is positive if a−2 > e−h0(0)
2

. Now suppose there is t > 0 such that
Ric(V, V )(t) = 0 and let ta be the minimal such t, which is positive if a−2 > e−h0(0)

2

. At t = ta
we then have

(p− 2)

a2
= −h0(ta)2e−h0(ta)

2

+ (p− 2)e−h0(ta)
2

+ (q − 1)
f ′C

fCh0h′0
(ta)h0(ta)

2e−h0(ta)
2

.

The left-hand side converges to∞ as a → 0, while the right-hand side is uniformly bounded by
Lemma 5.4.7. Hence, by choosing a sufficiently small, we can achieve that Ric(V, V )(t) > 0 for all
t.

Finally, we consider (5.4.11):

Ric(W,W ) = −Ce−h
2
0 + (q − 2)

b−2 − (f ′C)
2

f2C
− (p− 1)

h′0f
′
C

h0fC
.

By choosing C or b small enough, we can achieve that Ric(W,W )(t) > 0 at t = 0. At t = tb we
have

(q − 2)

b2
= fC(tb)

2

(
Ce−h0(tb)

2

+ (q − 2)
f ′C(tb)

2

fC(tb)2
+ (p− 1)

f ′Ch
′
0

fCh0
(tb)

)
= CfC(tb)

2h′0(tb)
2 + (q − 2)f ′C(tb)

2 + (p− 1)
f ′C

fCh0h′0
(tb)f(tb)

2h′0(tb)
2.

By Lemma 5.4.7 both the first and third term are uniformly bounded, so f ′C(tb) → ∞ as b → 0.
Hence, tb →∞ as b→ 0.

Rearranging the terms yields

f ′b,C(tb)
2 = b2f ′C(tb)

2 = 1− b2

(q − 2)
fC(tb)

2h′0(tb)
2

(
C + (p− 1)

f ′C
fCh0h′0

(tb)

)
and the claim now follows from Lemma 5.4.7.

Proof of Theorem A. By Lemma 5.4.2 it remains to show that there are values of a, b, C for which
h = ha and f = fb,C satisfy the boundary conditions (5.4.5)-(5.4.8) and for which the Ricci
curvatures (5.4.9)-(5.4.11) are positive. By Lemma 5.4.9, for a, b, C sufficiently small the Ricci cur-
vatures are positive on [0, tb). By perhaps choosing a and b even smaller, we can achieve that
(5.4.5) and (5.4.6) are satisfied and such that f ′(tb) > cos(R/N). Now choose t1 < tb such that
f ′(t1) > cos(R/N), i.e. the Ricci curvatures on [0, t1] are strictly positive. We now extend the
functions f and h as follows: The function h gets extended by the constant function h(t1) and f
gets extended continuously such that the following holds:

1. f ′−(t1) ≥ f ′+(t1),

2. f is smooth on (t1,∞),

3. f ′(t) ∈ (cos(R/N), 1) for t ≥ t1,

4. f ′′(t) < 0 for t ≥ t1.

Then clearly all Ricci curvatures are positive. We now choose t0 > t1 such that
f(t0) = N sin(R/N)h(t1)ρ , which exists if and only if f(t1) < N sin(R/N)h(t1)ρ . This is the
case if and only if

ρ

N
<
h(t1)

f(t1)
sin
(
R

N

)
.

The values of f and h at t = t1 only depend on a, b, C and cos(R/N), which in turn only depend
on p, q, λ, r and R/N . The value of λ only depends on the metric gB . We define the constant κ as
the expression on the left-hand side. Smoothing the functions f and h at t = t1 using Corollary
5.4.1 finishes the proof.

56



5.5. Comparison to Previous Results

5.5 Comparison to Previous Results

The surgery theorem of Sha and Yang is given as follows. As inTheorem A assume that (Mn, gM )
is a Riemannian manifold and that there is an isometric embedding ι : Sp−1(ρ) ×Dq

R(N) ↪→ M ,
where n = p+ q − 1.

Theorem 5.5.1 ([107, Lemma 1]). Suppose that gM has non-negative Ricci curvature and suppose
p ≥ 2, q ≥ 3. Then there exists a constant κ = κ(p, q, R/N) > 0, such that if ρ

N < κ, then the
manifoldMι admits a metric of positive Ricci curvature.

In order to modify the trivialization of the normal bundle of the embedded sphere Sp(ρ), and
in order to allow to again perform surgery on the part that gets glued in, Wraith proved a modified
version of Theorem 5.5.1, which in turn requires a stricter condition on the dimensions involved.

Theorem 5.5.2 ([122, Theorem 0.3]). Suppose that gM has positive Ricci curvature and suppose
that p ≥ q ≥ 3. Let T : Sp−1 → SO(q) be a smooth map, which induces a diffeomorphism
T̃ : Sp−1 × Dq → Sp−1 × Dq defined by (x, y) 7→ (x, Tx(y)). Then there exists a constant
κ = κ(p, q, R/N,T ) > 0, such that if ρ

N < κ, then the manifold Mι◦T̃ admits a metric of posi-
tive Ricci curvature.

The metric constructed onMι◦T̃ coincides outside a neighborhood of the gluing area with the
restriction of gM toM \ im(ι) and withDp

R1
(N1)×Sq−1(ρ1) onDp×Sq−1. By [122, Proposition

0.4] the quotient ρ1
N1

can be bounded from above by any constant κ′ > 0, which then gives an

additional dependency for κ, while the quotient R1

N1
is constant independently ofM, ι, T and κ′.

Under the assumption B = Sp in Theorem A, the manifold M̂ is precisely Mι◦T̃ , where
T : Sp−1 → SO(q) is the clutching function of the bundle π. Hence, Theorem 5.5.2 follows from
Theorem A. Further, if T ≡ idRq , so T̃ is the identity map, we obtain the statement of Theorem
5.5.1, except if p = 2. Hence Theorems 5.5.1 and 5.5.2 are both covered by Theorem A, except
Theorem 5.5.1 with p = 2.

The proof strategies of Theorems 5.5.1 and 5.5.2 are similar to that of Theorem A with different
choices of warping functions, and with the difference that we used Theorem 5.2.2 to connect each
part, while in the proofs ofTheorems 5.5.1 and 5.5.2 the warping functions are modified to connect
smoothly to the other parts. We will briefly describe the choices of warping functions.

1. The warping functions in the proof ofTheorem 5.5.1. The function f is defined as the unique
solution of the equation

f ′′ =
α

2
f−α−1, f(0) = 1, f ′(0) = 0,

where α = 2(q−2)
p . The function h is defined as

h =
2

α
f ′.

Then h(0) = 0, h′(0) = 1, so gf,h has a singularity in t = 0, so that it descends to a metric
on the space obtained from I × Sp−1 × Sq−1 by collapsing {0} × Sp−1 × {x} for every
x ∈ Sq−1, which is Dp × Sq−1 (see e.g. [94, Proposition 1.4.7]). One can show that

f ′ =
√
1− f−α.

As t→∞ we have
f(t)→∞, f ′(t)→ 1, f ′′(t)→ 0

and that the Ricci curvatures (5.4.9) and (5.4.10) are strictly positive and the Ricci curvature
(5.4.11) vanishes. Once f ′ is sufficiently close to 1, the second derivative f ′′ then gets mod-
ified to become constant 0, so that f becomes a straight line. This bending has the effect
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that all Ricci curvatures are positive, so that after gluing one can apply the Theorem 3.1.14
to deform the metric to have positive Ricci curvature everywhere.

In contrast to the proof of Theorem A, all Ricci curvatures are non-negative for all t, so
rescaling the functions is not necessary. On the other hand, since f ′(t) → 1 (instead of
f ′(t) → ∞ as in the proof of Theorem A), downscaling of f would make it impossible
to satisfy the condition (5.4.8), while downscaling of h would destroy the property of gf,h
defining a smooth metric on the quotient Dp × Sq−1. Thus, we do not have any flexibility
for the values of f and h at t = 0, and hence we cannot prescribe the metric onDp × Sq−1.
On the other hand, this choice of warping functions gives slightly more flexibility for the
dimensions involved.

2. The warping functions in the proof ofTheorem 5.5.2. The starting point are functions f0 and
h0, where f0 is the unique solution of the equation

f ′′0 = f−1
0 , f ′0(0) = 1, f ′0(0) = 0

and the function h0 is defined by

h0 = f ′0.

One can then show that f ′0 =
√
2 ln(f0) and that

f0(t), f
′
0(t)→∞, f ′′0 (t)→ 0

as t→∞. The Ricci curvature (5.4.9) is then given by

Ric(∂t, ∂t) = −(p− 1)
h′′0
h0
− (q − 1)

f ′′0
f0

= ((p− 1)− (q − 1))
1

f20
= (p− q) 1

f20
,

which is only non-negative if p ≥ q. The other conditions are similar as in the proof of The-
orem A: the Ricci curvature (5.4.10) is positive, while the Ricci curvature (5.4.11) is positive
on a bounded interval and becomes negative eventually. The rest of the proof then consists
of a sequence of modifications, such as shifting and scaling in order to satisfy the conditions
(5.4.5)–(5.4.8) while keeping the Ricci curvatures positive.

Note that h0 satisfies h0 =
√
2 ln(h′0

−1), so

h′0 = e−
1
2h

2
0 .

Further, as seen above,
h′′0
h0

= −f
′′
0

f0

and h′′0 = e−h
2
0 , so

f ′′0 = e−h
2
0f0.

Thus, the functionsh0 and f0 satisfy the same differential equations as thewarping functions
h0 and fC withC = 1 in the proof ofTheorem A (although with different initial conditions).
Modifying the factor C then allows to have positive Ricci curvature for all p, q ≥ 3.

The applications of Theorems 5.5.1 and 5.5.2 corresponding to Theorem B, which are proven
entirely similarly, are given as follows:
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Theorem 5.5.3 ([107,Theorem 2] and [121,Theorems 2.2 and 2.3]). LetG be the geometric plumbing
graph

v1 vk

u

· · ·
e1 ek

with compact base manifolds, and

(1) p ≥ 2, q ≥ 3, Bqu a manifold that admits a metric of positive Ricci curvature, and πvi are trivial
bundles with Bvi = Sp and πu is trivial if p = 2, or

(2) p ≥ q ≥ 3, Bqu a manifold that admits a metric of positive Ricci curvature, and Bvi = Sp,

or let G be any simply-connected geometric plumbing graph with compact base manifolds, and

(3) p = q ≥ 3, Bqu0
admits a metric of positive Ricci curvature for one u0 ∈ U and Bu = Bv = Sq

for all other u ∈ U and all v ∈ V .

ThenMG admits a metric of positive Ricci curvature.

Again, note that Theorem B covers all cases in Theorem 5.5.3, except for item (1) with p = 2.
We now discuss applications of item (1), that are stated, but not proven in [107]. For that, let

G be the geometric plumbing graph

v1 vk

u

· · ·
e1 ek

in Theorem 5.5.3 and, as in item (1), assume that all bundles πvi are trivial with Bvi = Sp. Then,
by Proposition 4.3.2, the manifoldMG is diffeomorphic to

MG0#k−1(S
p × Sq−1),

where G0 is the subgraph

v1 u
e1

We get the following applications:

1. IfBu = Sq , then, by Proposition 4.3.3,MG
∼= #k−1(S

p×Sq−1), which proves [107,Theorem
1], that is, Theorem 3.1.11.

2. If πu is trivial, then MG is the manifold Mp,(q−1)
k in [107], so we also established [107,

Theorem 2].

3. Let p = 2, q = 4 and let Bu = CP 2 with πu the trivial bundle. Then, by Lemma 5.3.2, the
manifoldMG0

is diffeomorphic to S2×̃S3, so

MG
∼= (S2×̃S3)#k−1(S

2 × S3) = X∞#k−1M∞

according to (3.5.1). Together with the manifolds in item (1) with p = q = 3 these are
precisely all simply-connected 5-manifolds with torsion-free homology, i.e. we showed [107,
Theorem 5].
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4. It is claimed in [107, (5)] that one can construct the manifold

#k(S2 × S4)#l(S3 × S3)

for all l, k ≥ 0 in this way with πu trivial. While all of the summands admit core metrics by
Proposition 5.2.7 and Theorem C, this technique was not available at the time when [107]
was published.

If p = 3, q = 4, then, by Corollary 4.4.6, MG can only be spin if Bu is spin, and the only
closed, simply-connected spin 4-manifolds that are known to admit a metric of positive Ricci
curvature are #m(S2 × S2) for all m ≥ 0 (cf. Proposition 3.5.1). Then, by Corollary 4.4.6,
together with the classification of Wall, see Theorem 6.1.2 below, MG0

is diffeomorphic to
#2m(S2 × S4), soMG is diffeomorphic to

#2m(S2 × S4)#k−1(S
3 × S3).

If p = 4, q = 3, then Bu = S3, soMG0
is diffeomorphic to S6, soMG is diffeomorphic to

#k−1(S
3 × S3).

If p = 2, q = 5, thenBu is a simply-connected 5-manifold. To construct a spinmanifold with
torsion-free homology, Bu itself needs to be a spin manifold with torsion-free homology by
Theorems 4.4.3 and 4.4.5, so Bu is diffeomorphic to the manifold #m(S2 × S3). Then, again
by Theorems 4.4.3 and 4.4.5, together with the classification of Wall,MG0

is diffeomorphic
to #m(S2 × S4)#m(S3 × S3). Hence,MG is diffeomorphic to

#m(S2 × S4)#m+k−1(S
3 × S3).

Thus, we cannot construct the manifolds #k(S2 × S4)#l(S3 × S3) with k odd and l < k in
this way.

If we set Bu = #lCP 2 and πu is the unique linear S2-bundle over B corresponding to
(0, (1, . . . , 1)) according to Corollary B.3.9, then, by Corollary 4.4.6 and the classification of
Wall,MG0

is diffeomorphic to #l(S2 × S4), soMG is diffeomorphic to

#l(S2 × S4)#k−1(S
3 × S3).

However, in [107] the case where the bundle πu is non-trivial is not considered, and at the
time when [107] was published it was not known whether #lCP 2 for l > 2 admits a metric
of positive Ricci curvature.

Finally, for items (2) and (3) of Theorem 5.5.3, plumbing certain linear D4k-bundles over S4k

according to the E8 graph

yields a generator of the group of (4k−1)-dimensional homotopy spheres that bound parallelizable
manifolds, see [121]. Further, by Proposition 4.3.2, disjoint unions of these graphs can be modified
to a connected graph. In dimension 4k+1, the Kervaire sphere and the standard sphere are the only
homotopy spheres that bound parallelizable manifolds. The Kervaire sphere (which is standard in
certain dimensions) is the boundary of the manifold obtained by plumbing together two copies
of the tangent disc bundle of S2k+1. Hence, by items (2) and (3) of Theorem 5.5.3, all homotopy
spheres that bound parallelizable manifolds admit a metric of positive Ricci curvature, see [121].
These include in particular all homotopy spheres in dimension 7.
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5.5. Comparison to Previous Results

More generally, it was shown later by Crowley and Wraith [33], that by plumbing linear
D2k-bundles over S2k according to a simply-connected graph, one can construct every (2k − 2)-
connected (4k − 1)-manifolds, whose tangent bundle on its (2k − 1)-skeleton is trivial, up to
connected sum with a homotopy sphere. Hence, every such manifold, after possibly taking a con-
nected sum with a homotopy sphere, admits a metric of positive Ricci curvature. These include
all 2-connected 7-manifolds and all 4-connected 11-manifolds. Further, a similar result holds in
dimension 4k + 1, if one requires the homology of the manifolds to be torsion-free.
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Applications to Manifolds in Dimension 6k 6

In this chapter we consider applications ofTheorem B to manifolds in dimension 6k. In Section 6.1
we review the invariants of closed, simply-connected 6k-dimensional manifolds with torsion-free
homology and state the classification results of Wall and Jupp for these manifolds in dimension 6.
In Section 6.2 we introduce the notion of algebraic plumbing graphs and proveTheoremD. Further,
in Section 6.3 we introduce a reduced form for algebraic plumbing graphs and classify these for low
ranks in Section 6.4. We also give an extensive discussion of which closed, simply-connected spin
6-manifolds with torsion-free homology and b2 = 2 can be constructed via an algebraic plumbing
graph and thus admits a core metric. Finally, in Section 6.5 we consider further applications.

6.1 Invariants of Closed, Simply-Connected 6k-Dimensional Manifolds with
Torsion-Free Homology

LetM6k be a closed, simply-connected manifold with torsion-free homology. We choose an ori-
entation onM . Then we have the following:

• The cohomology groupH2k(M), which is free abelian,

• The trilinear form µM : H2k(M)×H2k(M)×H2k(M)→ Z defined by

µM (x, y, z) = 〈x ^ y ^ z, [M ]〉,

which is symmetric by the graded commutativity of the cup product,

• The k-th power of the second Stiefel-Whitney class

w2(M)k ∈ H2k(M ;Z/2) ∼= H2k(M)⊗ Z/2

by the universal coefficient theorem (see e.g. [34, Theorem 2.33]),

• The Pontryagin class pk(M) ∈ H4k(M), which we view as an element of Hom(H2k(M),Z)
via

pk(M)(x) = 〈pk(M)^ x, [M ]〉.
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6. Applications to Manifolds in Dimension 6k

Note that all these invariants are defined onH2k(M). For a finitely generated free abelian group
H , a symmetric trilinear form µ on H , an element w ∈ H ⊗ (Z/2) and a linear form p on H we
call (H,µ,w, p) a system of invariants. Two systems of invariants (H,µ,w, p) and (H ′, µ′, w′, p′)
are equivalent, if there exists an isomorphism φ : H → H ′ such that

φ∗µ′ = µ, φ(w) = w′ and φ∗p′ = p.

A system of invariants (H,µ,w, p) is called admissible in dimension 6k, if it can be realized by a
closed, simply-connected manifoldM6k with torsion-free homology, i.e. the systems of invariants
(H,µ,w, p) and (H2k(M), µM , w

k
2 (M), pk(M)) are equivalent.

Note that the equivalence class of (H2k(M), µM , w
k
2 (M), pk(M)) is in fact independent of the

orientation onM , since −M yields the system of invariants (H2k(M),−µM , wk2 (M),−pk(M)),
which is obtained from the first one via the isomorphism −idH2k(M).

Since a diffeomorphism between two manifolds induces an isomorphism between the coho-
mology groups that preserves the characteristic classes and the cup product, it follows that diffeo-
morphic manifolds have equivalent systems of invariants. The converse does not hold: In general
there are additional degrees in which one can have non-trivial cohomology groups and cup prod-
ucts. Further, even if we require that the cohomology groups in all degrees except in degrees 0,
2k, 4k and 6k are trivial, our systems of invariants are not sufficient to uniquely determine the
diffeomorphism type, as there are exotic spheresΣ6k for some k, see e.g. [68], so that all invariants
vanish. This shows that Σ6k and S6k have the same invariants, but are not diffeomorphic.

However, in dimension 6, systems of invariants are almost sufficient to determine the diffeo-
morphism type. For that, letM6 be a closed, simply-connected and oriented 6-manifoldM with
torsion-free homology. Additionally to its system of invariants (H2(M), µM , w2(M), p1(M))we
also have the third Betti number b3(M) ∈ N0. We now have the following classification result by
Jupp [67].

Theorem 6.1.1 ([67, Theorem 1]). Orientation-preserving diffeomorphism classes of closed oriented
simply-connected 6-manifolds with torsion-free homology are in bijection with equivalence classes of
systems of invariants (H,µ,w, p) together with non-negative integers r ∈ N0, such that

µ(W ) ≡ p(W ) mod 48 (6.1.1)

holds for allW ∈ H that restrict tow. The bijection assigns to a manifoldM the system of invariants
(H2(M), µM , w2(M), p1(M)) and the integer b3(M)/2.

Theorem 6.1.1 shows that a system of invariants is admissible in dimension 6 if and only if it
satisfies (6.1.1).

In the spin case, Theorem 6.1.1 simplifies to the following Theorem by Wall [115].

Theorem 6.1.2 ([115, Theorem 5]). Orientation-preserving diffeomorphism classes of closed oriented
simply-connected spin 6-manifolds with torsion-free homology are in bijectionwith equivalence classes
of systems of invariants (H,µ, 0, p) together with non-negative integers r ∈ N0, such that

4µ(X) ≡ p(X) mod 24 (6.1.2)

holds for all elements X ∈ H . The bijection assigns to a manifold M the system of invariants
(H2(M), µM , 0, p1(M)) and the integer b3(M)/2.
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6.1. Invariants of Closed, Simply-Connected 6k-Dimensional Manifolds with Torsion-Free Homology

Remark 6.1.3. 1. In [115, Theorem 5], Wall adds the additional relation

µ(X,X, Y ) ≡ µ(X,Y, Y ) mod 2

for allX,Y ∈ H . However, this relation already follows from (6.1.2). In fact, we have

3(µ(X,X, Y ) + µ(X,Y, Y )) = µ(X + Y,X + Y,X + Y )− µ(X,X,X)− µ(Y, Y, Y )

≡ 1

4
(p(X + Y )− p(X)− p(Y )) = 0 mod 6,

so µ(X,X, Y ) + µ(X,Y, Y ) ≡ 0 mod 2.

2. Theorem 6.1.1 has been generalized by Zhubr [126] to the class of all closed, simply-connected
6-manifolds.

Theorem 6.1.1 shows that the classification of closed, simply-connected 6-manifoldswith torsion-
free homology is equivalent to the classification of admissible systems of invariants up to equiva-
lence. However, there is no classification known of the latter, except if rk(H) = 1 (this is obvious)
or if rk(H) = 2, in which case there exists a partial classification by Schmitt [100]. It is given as
follows.

For every admissible system of invariants (H,µ,w, p) with rank(H) = 2, so that p is non-
trivial or D(fµ) = 0 (see Appendix D for the definition of D), Schmitt introduces a normal form,
i.e. he shows that there exists precisely one choice of basis for H , on which the other invariants
fall into one of 36 explicitly given families. It follows that invariants with different normal forms
are non-equivalent. Due to the complexity of these families we will focus on the spin case, i.e.
admissible systems of invariants (H,µ,w, p) with rank(H) = 2 and w = 0. If (u, v) is a basis of
H , we call

((µ(u, u, u), µ(u, u, v), µ(u, v, v), µ(v, v, v)), (p(u), p(v)))

the coefficients of the invariants in the basis (u, v). Note that the coefficients uniquely determine
the invariants.

The results of [100, Section 3.4] can be summarized as follows:

Theorem 6.1.4 ([100, Propositions 5–10]). Let (H,µ,w, p) be an admissible system of invariants
with rank(H) = 2, w = 0 and so that p is non-trivial orD(fµ) = 0. If one of µ and p is non-trivial,
then there exists precisely one basis (u, v) of H , so that the coefficients in this basis are contained in
one of the following families, where all constants involved are integers:

P1 = {((r, 0, 0, 0), (4r + 24k, 0)) | 4r + 24k > 0},
Q1 = {((r, 2ρ, 0, 0), (4r + 24k, 0)) | 0 ≤ r < 6ρ, 4r + 24k > 0},
R1 = {((r1, r2, r2 + 2l, 0), (4r1 + 24k, 0)) | r2 ≥ 0, l > 0 or l < −r2; 4r1 + 24k > 0},
R′

1 = {((r1, |r3|, r3, 0), (4r1 + 24k, 0)) | r3 6= 0, 4r1 + 24k > 0},
S1 = {((r1, r3 + 2l, r3, 6ρ4), (4r1 + 24k, 0)) | 0 ≤ r3 < 6ρ4, 4r1 + 24k > 0},
K1 = {((6ρ, 0, 0, 0), (0, 0)) | ρ > 0},
L1 = {((6ρ1, 2ρ2, 0, 0), (0, 0)) | 0 ≤ ρ1 < ρ2}.

Conversely, any tuple in these families are coefficients of an admissible system of invariants.

Coefficients contained in one of these families are called normal forms. Algorithm E.1 brings a
given admissible system of invariants into its normal form.
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6. Applications to Manifolds in Dimension 6k

6.2 Algebraic Plumbing Graphs

In this Sectionwe introduce the notion of algebraic plumbing graphs. LetG = (U, V,E, (α, k+, k−))
be a bipartite graph, which has a labeling (α, k+, k−) : U → Z × N2

0 for vertices in U . We call
such a graph an algebraic plumbing graph.

We will draw vertices u ∈ U as

α(u)

k−(u)

k+(u)

If one of k+(u) and k−(u) vanishes, then we will omit it. Vertices in V will be drawn as dots (as
they do not have any labeling). An example for such a graph is the graph from the introduction:

5
7

2

-1

3

1

42
9

6

For every u ∈ U we introduce the symbols u−k
−(u), . . . , uk

+(u) and define the free abelian group

A =
⊕
u∈U

k+(u)⊕
i=−k−(u)

Zui.

For k ∈ N we define the symmetric trilinear form µk : A3 → Z by defining it for each u ∈ U on⊕k+(u)
i=−k−(u) Zu

i by

µk(u0, u0, u0) =
λk
4
α(u),

µk(u0, u0, ul) = 0,

µk(u0, uj , ul) =

{
sgn(j), j = l,

0, else,

µk(ui, uj , ul) = 0

for i, j, l ∈ {−k−(u), . . . , k+(u)} \ {0}, where λk ∈ N is the constant from Lemma B.3.10 (note
that it is a multiple of 4). Then extend µk to A by setting

µk(uim, u
j
n, u

k
r ) = 0

whenever any two of um, un, ur are not equal.
Next we define a linear form pk : A→ Z by

pk(uj) =

{
λkα(u) +

(
2k+1
k

)
(k+(u)− k−(u)), j = 0,

0, else,

and we define wG ∈ A⊗ Z/2 by

wG =
∑
u∈U,
i ̸=0

ui mod 2.
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6.2. Algebraic Plumbing Graphs

Finally, we set

HG =
⊕
u∈U
i ̸=0

Zui ⊕

∑
u∈U

λu · u0
∣∣∣λu ∈ Z,

∑
e=(u,v)∈E

λu = 0 for all v ∈ V

 ⊆ A
and denote the restrictions of µk and pk to HG by µkG and pkG, respectively (and note, that, by
definition, we have wG ∈ HG ⊗ Z/2). Further, we set µG = µ1

G and pG = p1G.

Definition 6.2.1. We call HG, µkG, wG and pkG the invariants of G and we define the rank of G
by rank(HG). We say that G is spin if k+ = k− ≡ 0. Two algebraic plumbing graphs G
and G′ are k-equivalent, denoted G ∼k G′, if the systems of invariants (HG, µ

k
G, wG, p

k
G) and

(HG′ , µkG′ , wG′ , pkG′) are equivalent.

Remark 6.2.2. In the spin case, if two algebraic plumbing graphs are k-equivalent for one k, then
they are k-equivalent for all k, since then µkG = λk

4 µG and pkG = λk

4 pG (recall that λ1 = 4).
However, in the non-spin case it is not clear if k-equivalence for one k implies k-equivalence for
other, or all, k.

Example 6.2.3. Consider the following graph:

α1

α2 α3

Denote by ui the vertex labeled by αi. Then

A = Zu01 ⊕ Zu02 ⊕ Zu03

and wG = 0. A basis forHG is given by

e1 = u01 − u03, e2 = u02 − u03.

In this basis we have

µkG(e1, e1, e1) =
λk
4
(α1 − α3),

µkG(e1, e1, e2) = −
λk
4
α3,

µkG(e1, e2, e2) = −
λk
4
α3,

µkG(e2, e2, e2) =
λk
4
(α2 − α3),

pkG(e1) = λk(α1 − α3),

pkG(e2) = λk(α2 − α3).

67



6. Applications to Manifolds in Dimension 6k

We will now define a geometric plumbing graph G
k
= (U, V,E, π, δ) with the same set of

vertices and edges as G. For u ∈ U set

Bu = #k+(u)CP 2k#k−(u)(−CP 2k)

(note that the empty connected sum is defined as S4k) and define πu as the disc bundle of the
sphere bundle corresponding to α(u) in Lemma B.3.10. For v ∈ V we define Bv = S2k+1 and πv
as the trivial D4k-bundle over S2k+1, i.e. Ev = S2k+1 × D4k and πv is given by the projection
onto the first factor. Finally, we set δ(e) = 1 for all e ∈ E. We set G = G

1
. The main result of

this chapter is the following:

Theorem D. Let G be an algebraic plumbing graph.

• If k = 1, then the system of invariants (HG, µG, wG, pG) is admissible in dimension 6.

• If every connected component of G is simply-connected, then the system of invariants
(HG, µ

k
G, wG, p

k
G) is admissible in dimension 6k and realized by the manifoldM

G
k . Further,

M
G

k admits a core metric.

• If k = 1 and every connected component of G is simply-connected, then any closed, simply-
connected 6-manifold with torsion-free homology, whose invariants are equivalent to
(HG, µG, wG, pG), admits a core metric.

For the proof we first need the following lemma.

Lemma 6.2.4. Let G = (U, V,E, (α, k+, k−)) be an algebraic plumbing graph for which all con-
nected components are simply-connected and setM =M

G
k . Then

1. M is a closed, simply-connected 6k-dimensional manifold with torsion-free homology and the
systems of invariants (H2k(M), µM , w

k
2 (M), pk(M)) and (HG, µ

k
G, wG, p

k
G) are equivalent.

In particular, the system (HG, µ
k
G, wG, p

k
G) is admissible in dimension 6k.

2. There exists a k-equivalent subgraph G′ of G so that forM ′ = M
G′k the same as in (1) holds

and additionally the odd Betti numbers of M ′ vanish and M = M ′#r(S2k+1 × S4k−1) for
some r ∈ N0.

3. b2k(M ′) = b2k(M) = |U ′| − |V ′|+
∑
u∈U ′ k+(u) + k−(u).

4. M andM ′ are spin if and only if G and G′ are spin.

Proof. We use Proposition 4.3.2 to split G
k
into connected components that either satisfy the hy-

potheses of Theorem 4.4.3 or consist of a single vertex in V as follows: For any u ∈ U that is
connected to a leaf, we remove all edges connected to u except one that connects u to a leaf, this
is precisely the modification in Proposition 4.3.2. The corresponding modification of G does not
change its invariants, since for such u we always have that u0 does not appear as a non-zero sum-

mand for elements of HG. We repeat this process until all connected components of G
k
satisfy

the hypotheses of Theorem 4.4.3 and we denote the graph we obtain fromG in this way after addi-
tionally removing all isolated vertices in V by G′. Then G and G′ have the same invariants, since
isolated vertices in V do not make any contribution, and the manifoldsM andM ′ then only differ
by connected sums of copies of S2k+1 × S4k−1.
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6.2. Algebraic Plumbing Graphs

By Corollary 4.4.6, the cohomology groupH2k(M) is given by

H2k(M) =
⊕
u∈U

π∗
uH

2k(Bu)⊕

∑
u∈U

λu · au | λu ∈ Z,
∑

e=(u,v)∈E′

δ(e)λu = 0 for all v ∈ V ′


and we define the isomorphism φ by mapping a generator of the i-th summand on the left-hand
side of

H2k(Bu) =
⊕
k+(u)

H2k(CP 2k)
⊕
k−(u)

H2k(−CP 2k)

to ui and a generator of the i-th summand on the right-hand side to u−i. Further, we define

φ

(∑
u∈U

λu · au

)
=
∑
u∈U

λuu
0.

It now follows from Theorem 4.4.3 and Corollary B.3.13, that this isomorphism preserves the re-
maining invariants.

For (3) we need to determine the rank of∑
u∈U

λu · u0
∣∣∣ ∑
e=(u,v)∈E′

λu = 0 for all v ∈ V ′

 ⊆ HG′ .

The condition for the coefficients λu is equivalent to (λu)u∈U being an element of the kernel of
B(G′)⊤. By Lemma C.3, the matrix B(G′) has rank |V ′| (as |U ′| ≥ |V ′|), hence its kernel has
rank |U ′| − |V ′|.

Finally, for (4), note that by (1) wG (and wG′ ) vanishes if and only if w2(M)k (and w2(M
′)k)

vanishes, which is the case if and only if w2(M) (and w2(M
′)) vanishes by the cohomology ring

structure of each Eu.

We can now prove Theorem D.

Proof of Theorem D. First consider an arbitrary algebraic plumbing graph G. By construction, the
group HG is a subgroup of A and the invariants µG and pG are the restrictions of the invariants
µ1 and p1. LetG0 be the graph obtained fromG be removing all edges. Then the invariants ofG0

are precisely A, µ1, wG and p1 and the system of invariants (A,µ1, wG, p
1) is realized byMG0 by

(1) of Lemma 6.2.4. It follows that (6.1.1) holds for allW ∈ A, and hence also for allW ∈ HG, that
restrict to wG. Thus, the system (HG, µG, wG, pG) is admissible in dimension 6.

Now assume that every connected component of G is simply-connected. Let M = M
G

k .
We apply Lemma 6.2.4 to obtain an equivalent subgraph G′ of G and a manifold M ′ = M

G′k

with vanishing odd cohomology. Since each connected component ofG′ is simply-connected, we
can apply Theorem B to obtain a core metric on each summand of M ′, hence M ′ also admits a
core metric; If k = 1, then the restrictions on the dimensions in this Theorem require that every
connected component contains a vertex in V . This can always be achieved by introducing a new
vertex according to Proposition 4.3.4. Since M = M ′#r(S2k+1 × S4k−1) for some r ∈ N0, and
S2k+1 × S4k−1 admits a core metric by Proposition 5.2.7,M admits a core metric.

Finally, if k = 1 and N is a simply-connected 6-manifold with torsion-free homology, whose
invariants are equivalent to (HG, µG, wG, pG), then, by Theorem 6.1.1, N is diffeomorphic to
M ′#r(S3 × S3) for some r ∈ N0, so N admits a core metric.

69



6. Applications to Manifolds in Dimension 6k

6.3 Reduced Graphs

A system of invariants (H,µk, w, pk) can potentially be realized bymany different algebraic plumb-
ing graphs. To analyze this, we consider modifications of graphs that do not change the invariants.

Lemma 6.3.1. We can modify graphs in the following ways without changing their k-equivalence
classes.

(1)
α

b

a

G1

Gn

...

0

1

0

1

G1

Gn

...
...a+b∼k

(1′) 0

G1

Gn

...

G1

Gn

...∼k

(2) α

b

a

α′

b′

a′

G1

Gn

G′
1

G′
m

...
... α− α′

b+a′

a+b′

G1

Gn

−G′
1

−G′
m

...
...∼k

(2′) 0

G1

Gn

G′
1

G′
m

...
...

G1

Gn

−G′
1

−G′
m

...
...∼k

(3) G1 G1∼k

(3′) G1 G1∼k0

1

0 if G1 is not spin

(4) G1 G2 −G1 G2∼k

HereGi,G′
i are (pairwise distinct, and possibly empty) subgraphs, and−G denotesGwith α replaced

by −α and (k+, k−) replaced by (k−, k+).
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6.3. Reduced Graphs

Proof. First note, that−Gk is obtained fromG
k
by reversing the orientations of all bases and fibers

(but not of the total spaces). Then the equivalences (3) and (4) are clear and the remaining equiv-
alences follow from Propositions 4.3.1, 4.3.2 and 4.3.4, except (1) and (3′). For (1) we additionally
need to show that

α

b

a

0

1

0

1

...a+b∼k

holds. For that, denote the graph on the left-hand side by G and the graph on the right-hand side
by G′. Denote the single element of U by u and the elements of U ′ by u1, . . . , ua+b. Then, by
definition, we have

HG =

a⊕
i=−b
i ̸=0

Zui and HG′ =

a+b⊕
i=1

Zu1i ,

and an isomorphism HG → HG′ is given by mapping ui to u1i for i > 0 and ui to u1a−i for i < 0.
It is now easily verified that µkG, p

k
G, µ

k
G′ and pkG′ all vanish, and that

wG =
∑
u∈U,
i ̸=0

ui mod 2, wG′ =

a+b∑
i=1

u1i mod 2,

hence this isomorphism preserves all invariants.
For (3′) denote the graph on the left-hand side byG and the one on the right-hand side byG′.

Let x0 ∈ HG1
be a primitive element that restricts to wG1

(which exists since wG1
is non-trivial)

and extend it to a basis (x0, . . . , xn) of HG1
. Let u1 be the additional vertex in G and u2 the

additional vertex in G′. Then

wG = u11 + x0 mod 2, wG′ = x0 mod 2.

Hence, by mapping u11 to u02, x0 to x0 − u02 and xi to xi for i > 0, we obtain an isomorphism
HG → HG′ that maps wG to wG′ . Since the linear and trilinear forms are only non-trivial on
elements ofHG1

, they are also preserved under this isomorphism.

These modifications will be used to bring a given graph into a reduced form.

Definition 6.3.2. Let G = (U, V,E, (α, k+, k−)) be an algebraic plumbing graph. We call G
reduced, if it satisfies the following conditions:

• Every connected component of G is simply-connected.

• The graph 0
1

only appears as a connected component in G if it is the only non-spin
connected component. Every v ∈ V not contained in this connected component has degree
at least 3, and

• Every u ∈ U with α(u) = k+(u) = k−(u) = 0 has degree 0 or at least 3.

On every reduced graph the group (Z/2)m acts, wherem is the number of connected components,
by multiplying the i-th connected component by (−1). The orbit of a reduced graph under this
action is called its reduced class. Two reduced classes are isomorphic, if there are two reduced
graphs, one contained in each reduced classes, that are isomorphic as labeled bipartite graphs.
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Note that, by (4) of Lemma 6.3.1, reduced graphs in the same class are k-equivalent.
The following result is now a direct consequence of Lemmas 6.2.4 and 6.3.1.

Corollary 6.3.3. LetG = (U, V,E, (α, k+, k−)) be an algebraic plumbing graph. If every connected
component ofG is simply-connected, thenG is k-equivalent to a reduced graphG′ = (U ′, V ′, E′, α′).
Further, we have rank(HG) = |U ′| − |V ′|+

∑
u∈U ′ k+(u) + k−(u).

It is now a natural question, how “good” this notion of reduced form is, i.e. if non-isomorphic
reduced classes contain non-equivalent graphs.

Question 6.3.4. LetG1,G2 be reduced graphs that are k-equivalent for some k. Are their reduced
classes isomorphic?

This question is open, but we will answer it affirmatively in some special cases in the next
section.

6.4 Reduced Graphs of Low Rank

In this section we classify reduced graphs of rank at most 3 up to isomorphism of reduced classes.
We also consider the problem of classification up to equivalence and obtain an almost complete
result for ranks at most 2. Clearly the only reduced graph of rank 0 is the empty graph, which
defines S6k .

Proposition 6.4.1. Let G be a reduced graph of rank 1. Then the following assertions hold:

• IfG is spin, then it is of the form α . The manifoldM
G

k is the total space of a linear S2k-bundle

over S4k . Two graphs α1 and α2 are k-equivalent if and only if α1 = ±α2.

• IfG is not spin, then it is given by 0

1

. The graphG has trivial trilinear formµkG and trivial
linear form pkG. If k = 1, then the manifold MG is the unique non-trivial linear S4-bundle
over S2.

Proposition 6.4.2. Let G be a reduced graph of rank 2. Then the following assertions hold:

• If G is spin, then it is of the form

α1 α2 or

α1

α2 α3

with αi 6= 0 in the second case. For every such graph G there is at most one reduced class that
is non-isomorphic, but k-equivalent to that of G.

• If G is not spin, its reduced class contains a graph of the form

0

1

α

or α

1

For every such graph G every reduced class, that is k-equivalent to that of G, is isomorphic to
that of G.
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Proposition 6.4.3. Let G be a reduced graph of rank 3. Then the following assertions hold:

• If G is spin, then it is of one of the following forms:

α1 α2 α3(S1)

α1

α2 α3

α4
(S2)

α1α2

α3 α4

(S3)

α1

α2

α3

α4

α5(S4)

with αi 6= 0 whenever the corresponding vertex has an edge connected to it.

• If G is not spin, then its reduced class contains a graph of one of the following forms:

α1

1

α2
(N1)

α1

α2 α3

0

1

(N2)

α

1

1

(N3)
α

2

(N4)

α1

1

α2 α3

(N5)

The possibilities for the reduced graphs are a simple cobinatorial consequence of the following
lemma.

Lemma 6.4.4. LetG′ be a non-empty connected component of a reduced graph that is not of the form

0

1

. Then
2 · |V ′|+ 1 ≤ |U ′|.
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Proof. If V ′ is empty, then the inequality holds trivially. If V ′ is non-empty, then, since G′ is
simply-connected, we can choose a root v0 ∈ V ′ and consider it as a tree. Then, the inequality
follows from the fact, that, by definition, v0 has at least 3 descending vertices in U ′, while every
other v ∈ V ′ has at least 2.

It follows from Lemma 6.4.4 and Corollary 6.3.3 that for a connected componentG′ of a reduced

graph, that is not of the form 0

1

, we have

rank(HG′) = |U ′| − |V ′|+
∑
u∈U ′

k+(u) + k−(u) ≥ 1 + |V ′|+
∑
u∈U ′

k+(u) + k−(u).

Thus, rank(HG′) = 1 implies that V ′ is empty and k+ = k− ≡ 0. In a similar way, by going
through all possibilities, we obtain all the reduced forms in Propositions 6.4.1–6.4.3. It remains to
prove the statements about k-equivalence in Propositions 6.4.1 and 6.4.2.

Proof of Proposition 6.4.1. If G is not of the form 0

1

, then G is given by α , which, by con-
struction, yields the linear S2k-bundle over S4k corresponding to α.

For such a graph G let u ∈ U be the unique element. ThenHG = Zu0 and

µ(u0, u0, u0) =
λk
4
α = −µ(−u0,−u0,−u0).

Since u0 and −u0 are the only generators of HG, this shows that for different absolute values of
α we obtain non-equivalent trilinear forms.

In the non-spin case the manifold MG is diffeomorphic to the unique non-trivial S4-bundle
over S2 by Lemma 5.3.2.

Proof of Proposition 6.4.2. In the non-spin case the linear form pkG of the first graph is given by
pkG(u

1
1) = 0, pkG(u

0
2) = λkα (where u1 denotes the upper vertex and u2 the lower one), while the

linear form on the second graph is given by pkG(u
0) = λkα+

(
2k+1
k

)
, pkG(u

1) = 0, in particular this
is always non-zero. Since λk >

(
2k+1
k

)
, see Remark B.3.11, this shows that for different (absolute)

values of α we obtain non-equivalent graphs.
In the spin case we first consider the case k = 1. We consider the first graph as a graph of the

second form by setting α3 = 0. Then, by Example 6.2.3, e1 = u01 − u03 and e2 = u02 − u03 form a
basis ofHG and we have

µG(e1, e1, e1) = α1 − α3,

µG(e1, e1, e2) = −α3,

µG(e1, e2, e2) = −α3,

µG(e2, e2, e2) = α2 − α3,

pG(e1) = 4(α1 − α3),

pG(e2) = 4(α2 − α3).

Then the homogeneous polynomials f(x1, x2) = µG(x, x, x) (cf. Appendix D), and p(x1, x2) =
1
4pG(x), x = x1e1 + x2e2, are given by

f(x1, x2) = (α1 − α3)x
3
1 − 3α3x

2
1x2 − 3α3x1x

2
2 + (α2 − α3)x

3
2,

p(x1, x2) = (α1 − α3)x1 + (α2 − α3)x2.

ByTheorem D.6, the algebra of joint invariants for binary cubic and linear forms are generated by
D, R2, I and J (and there holds a relation between those invariants). We will now show, that for
given values of D(f), R(f, p)2, I(f · p) and J(f · p) there exist at most two triples (α1, α2, α3),
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up to permutation and simultaneous multiplication by (−1), whose invariants are given by these
values.

In our case the invariants are given as follows:

D(f) =α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3 − 2α2

1α2α3 − 2α1α
2
2α3 − 2α1α2α

2
3,

R(f, p) =(α1 − α3)(α2 − α3)(α2 − α1)(α1 + α2 + α3),

I(f · p) =α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3 − α2

1α2α3 − α1α
2
2α3 − α1α2α

2
3,

J(f · p) =− α4
1α

2
2 − α2

1α
4
2 − α4

1α
2
3 − α2

1α
4
3 − α4

2α
2
3 − α2

2α
4
3 + 2α4

1α2α3 + 2α1α
4
2α3 + 2α1α2α

4
3

+ α3
1α

2
2α3 + α3

1α2α
2
3 + α2

1α
3
2α3 + α1α

3
2α

2
3 + α2

1α2α
3
3 + α1α

2
2α

3
3 − 6α2

1α
2
2α

2
3.

Note that D(f), R(f, p)2, I(f · p) and J(f · p) are symmetric when viewed as polynomials in
(α1, α2, α3), hence we can express them in terms of the elementary symmetric polynomials

σ1 = α1 + α2 + α3,

σ2 = α1α2 + α1α3 + α2α3,

σ3 = α1α2α3,

and we obtain

D(f) = σ2
2 − 4σ1σ3,

R(f, p)2 = σ2
1(σ

2
1σ

2
2 − 4σ3

2 − 4σ3
1σ3 + 18σ1σ2σ3 − 27σ2

3),

I(f · p) = σ2
2 − 3σ1σ3,

J(f · p) = −σ2
1σ

2
2 + 2σ3

2 + 4σ3
1σ3 − 9σ1σ2σ3.

Hence, the values of σ2
2 , in particular the value of σ2 up to sign, and σ1σ3 are determined byD(f)

and I(f · p). We distinguish two cases.

Case 1. AssumeD(f) 6= 0, or D(f) = 0 and σ2
2 6= 0. From the expression for J(f · p) we obtain

(4σ1σ3 − σ2
2)σ

2
1 + σ2(2σ

2
2 − 9σ1σ3)− J(f · p) = 0.

Hence, if D(f) 6= 0, then for every choice of sign for σ2, we obtain, up to sign, at most one
solution for σ1. If D(f) = 0 and σ2

2 6= 0 (and thus σ1σ3 6= 0), then from the expression for
R(f, p)2 we obtain

(2σ1σ2σ3)σ
2
1 − (27σ2

1σ
2
3 +R(f, p)2) = 0

and as before, every choice of sign for σ2 uniquely determines σ1 up to sign. The values for
α1, α2, α3 are then obtained as the solutions of the equation

y3 − σ1y2 + σ2y − σ3 = 0

and choosing a different sign for σ1 (and thus also for σ3) results in a simultaneous change
of sign for the αi.

Case 2. Assume σ2
2 = σ1σ3 = 0. This implies σ1 = 0 or σ3 = 0. If σ1 = 0, then α3 = −α1 − α2,

so

0 = σ2 = −α2
1 − α1α2 − α2

2 = −1

2
(α2

1 + α2
2 + (α1 + α2)

2),

which implies α1 = α2 = 0 and hence also α3 = 0.

If σ3 = 0, then one αi, say α3, vanishes. Then σ2 = α1α2, hence also one of α1, α2 vanishes.
Conversely, if two of theαi vanish, then we haveD(f) = R(f, p)2 = I(f ·p) = J(f ·p) = 0.
This shows that the invariants vanish if and only if at least two of the αi vanish. Then the
value of the third one can be determined directly from p (or f ).

75



6. Applications to Manifolds in Dimension 6k

Thus, we have shown, that for given values (D,R2, I, J) ∈ Z4 \ {0} there are at most two
triples (α1, α2, α3) (up to permutation and simultaneous multiplication by (−1)), withD(f) = D,
R(f, p)2 = R2, I(f · p) = I and J(f · p) = J , showing that there are at most two reduced classes
of spin graphs of rank two that are 1-equivalent. Since in the spin case (µkG, p

k
G) = λk

4 (µG, pG)
holds, this result carries over to k-equivalence for all k.

Remark 6.4.5. We conjecture that in Proposition 6.4.2 also in the spin case k-equivalent classes
are in fact equal. We have actually seen in the proof that this is the case if two of the αi vanish.
We can show that this holds in a few more cases:

1. Suppose σ1 = α1 + α2 + α3 = 0. Then R(f, p) vanishes, and it follows that p divides f .
The quotient is then given by

f

p
= x21 + x1x2 + x22,

which is a homogeneous polynomial whose automorphism group is given by{
±
(
1 0
0 1

)
,±
(
1 1
0 −1

)
,±
(
0 1
1 0

)
,±
(
0 −1
1 1

)
,±
(

1 1
−1 0

)
,±
(

1 0
−1 −1

)}
.

Applying these automorphisms to f and p results in a permutation and/or simultaneous
multiplication by (−1) of the αi, so the triple (α1, α2, α3) is uniquely determined, up to
permutation and simultaneous multiplication by (−1), among all triples (α′

1, α
′
2, α

′
3) with

α′
1 + α′

2 + α′
3 = 0. We now show that this in fact holds for any triple.

Ifα1+α2+α3 = 0, thenwe have thatσ1σ3 (which is an invariant) andR vanish. Conversely,
this implies that α1 + α2 + α3 = 0 or two of the αi, say α1 and α2 are equal. The latter,
under the assumption σ1σ3 = 0, implies α3 = 0, or α1 = α2 = 0. In the case α3 = 0 we
obtain the same reduced class of graphs for α1 = α2 and α1 = −α2, so we can assume that
we are in the case α1 + α2 + α3 = 0. In the case where at least two αi vanish, we have
σ2
2 = 0 (and note that σ2

2 is an invariant). However, if α1 + α2 + α2 = 0, then σ2
2 can only

vanish if all αi vanish as seen in Case 2.

Hence, the values for the αi are determined uniquely up to permutation and multiplication
by (−1) in this case.

2. Suppose that σ2 = α1α2 + α1α3 + α2α3 = 0. In the proof of Proposition 6.4.2 we saw
that the invariantsD, I,R2 and J determine the value of σ2

2 and each choice of square root
possibly defines a triple (α1, α2, α3). Hence, if σ2

2 = 0, then there exists only one choice
of square root, so the triple (α1, α2, α3) is determined uniquely by its invariants (up to
permutation and simultaneous multiplication by (−1)).

3. Suppose that one of the αi, say α1, vanishes (or, equivalently, σ3 = α1α2α3 vanishes). If
another αi vanishes, we already saw, that its reduced class is already determined by its k-
equivalence class. If α2 and α3 are both non-trivial, then each of the invariantsD, J,R2 and
I takes the same value for (0, α2, α3) and (0,−α2, α3). These triples define k-equivalent
graphs by (1′) and (4) of Lemma 6.3.1. Since these triples are not related to each other via a
permutation or simultaneous multiplication by (−1), and we saw in the proof of Proposition
6.4.2 that for fixed values ofD, J,R2 and I there can be at most two triples with these values
up to permutation and simultaneous multiplication by (−1), it follows that the reduced class
for (0, α2, α3) is uniquely determined by its k-equivalence class.

4. Suppose thatD(f) < 0. Recall that in Case 1 we have that σ1 satisfies

(4σ1σ3 − σ2
2)σ

2
1 + σ2(2σ

2
2 − 9σ1σ3)− J(f · p) = 0.

76



6.4. Reduced Graphs of Low Rank

Choosing the opposite sign for σ2 gives a possible second solution σ′
1 given as the solution

of the equation

(4σ1σ3 − σ2
2)σ

′
1
2
= σ2(2σ

2
2 − 9σ1σ3) + J(f · p)

= −σ2
1σ

2
2 + 4σ3

2 + 4σ3
1σ3 − 18σ1σ2σ3

= −R(f, p)
2 + 27σ2

3

σ2
1

< 0.

Since 4σ1σ3−σ2
2 = −D(f) > 0, there exists no solution for σ′

1, so the triple (α1, α2, α3) is,
up to sign and simultaneous multiplication by (−1), uniquely determined by its invariants.

5. Suppose that α1, α2 ≡ 1 mod 3 and α3 ≡ 2 mod 3. Then σ1 ≡ 1 mod 3 and σ2, σ3 ≡ 2
mod 3. If we multiply the equation in case 1 by σ2

3 , we obtain the following equation for σ2
3 :

(σ2(2σ
2
2 − 9σ1σ3)− J(f · p))σ2

3 + (4σ1σ3 − σ2
2)σ

2
1σ

2
3 = 0.

Similarly as before the possible second solution σ′
3 satisfies

(−σ2
1σ

2
2 + 4σ3

2 + 4σ3
1σ3 − 18σ1σ2σ3)σ

′
3
2
= −(4σ1σ3 − σ2

2)σ
2
1σ

2
3 .

In particular, (4σ1σ3−σ2
2)σ

2
1σ

2
3 is divisible by−σ2

1σ
2
2 +4σ3

2 +4σ3
1σ3−18σ1σ2σ3. We have

−σ2
1σ

2
2 + 4σ3

2 + 4σ3
1σ3 − 18σ1σ2σ3 ≡ 0 mod 3,

hence this term is divisible by 3. However,

(4σ1σ3 − σ2
2)σ

2
1σ

2
3 ≡ 1 mod 3,

so σ′
3 cannot be an integer. Thus, the triple (α1, α2, α3) is, up to sign and simultaneous

multiplication by (−1), uniquely determined by its invariants.

6. Suppose α2 = α3 = −1. Then we have D(f) = 1 + 4α1 and J(f · p) = −2(α1 + 1)3. The
second possible solution for σ2

1 in case 1 is then given by

σ2
1 =

27α2
1

4α1 + 1
.

The prime divisors of 27α2
1 are those of α1 and 3. Thus, since α1 and 4α1 + 1 are coprime,

the only possibilities for α1 are α1 = 0 or α1 = −1. The first case is covered by item (3),
while the second case is covered by item (4). Hence, the triple (α1,−1,−1) is, up to sign
and simultaneous multiplication by (−1), uniquely determined by its invariants.

7. It also holds for triples (α1, α2, α3) with α1, α2, α3 ∈ [−1000, 1000] as we will see below.

On the other hand, there are triples (α1, α2, α3) and (α′
1, α

′
2, α

′
3), which are not related via a

permutation or simultaneous multiplication by (−1), but whose invariants D, R, I and J are all
the same. Below we list all primitive pairs of such triples, where at least one triple is contained in
[−1000, 1000]3, together with their invariants and normal forms. These are obtained by applying
Algorithm E.2 for every triple (α1, α2, α3) contained in [−1000, 1000]3 and checking whether
there exists a second solution.

77



6. Applications to Manifolds in Dimension 6k

(α1, α2, α3)

(α′
1, α

′
2, α

′
3)

(D,R, I, J) (same for both triples)

normal form for (α1, α2, α3)

normal form for (α′
1, α

′
2, α

′
3)

(4, 15, 30)

(−6,−5, 60)

(44100, 210210, 132300,−105884100)
((82201, 112410, 153720, 210210), (4, 0))

((1, 60, 3570, 210210),(4,0))

(84, 70, 15)

(−21, 20, 210)

(7452900,−8978970, 22358700,−212862276900)
((7174441, 7731570, 8331960, 8978970), (4, 0))

((1, 210, 43680, 8978970), (4, 0))

(35, 24,−420)
(21, 60, 280)

(63680400, 802221420, 191041200,−8298893408400)
((308871721, 424570860, 583609320, 802221420), (4, 0))

((37139281, 103431720, 288054060, 802221420), (4, 0))

(660, 231, 70)

(−110,−84, 1155)

(5127992100,−39161432310, 15383976300,−4735808392184100)
((253801, 13612830, 730135560, 39161432310), (4, 0))

((60212161, 521685780, 4519951590, 39161432310), (4, 0))

(760, 184, 70)

(−80,−65, 1456)

(2699673600,−45942474240, 12625516800,−3707889653145600)
((181103046, 191075080, 201596200, 212696640), (24, 0))

((109239387, 272815920, 681334160, 1701573120), (12, 0))

In particular, for every such pair the normal forms are different, hence the corresponding systems
of invariants are not equivalent. Thus, they do not provide counterexamples toQuestion 6.3.4.

Remark 6.4.6. The proof of Proposition 6.4.2 in fact provides an algorithm to decide whether a
given closed, simply-connected spin 6-manifold M with torsion-free homology and b2(M) = 2
can be constructed via an algebraic plumbing graph, see Algorithm E.2. For that, by fixing a basis
forH2(M), recall that the trilinear form µM defines a homogeneous polynomial

fµM
= a0x

3
1 + 3a1x

2
1x2 + 3a2x1x

2
2 + a3x

3
2

and a linear form
pM = 4b0x1 + 4b1x2.

Theproof of Proposition 6.4.2 then provides at most two algebraic plumbing graphs whose trilinear
and linear form have the same invariants. Then we apply Algorithm E.1 to decide whether the
systems of invariants are equivalent. This method only works if either pM1

6= 0, or pM1
= 0

and D(fµM1
) = 0. For invariants of graphs G as in the first part of Proposition 6.4.2 we have

pG = 0 if and only if α1 = α2 = α3, and in this case D(f) = −3α4
1, hence D(f) = 0 if

and only if α1 = α2 = α3 = 0. Thus, the assumptions in [100, Section 3.4] are not satisfied if
α1 = α2 = α3 6= 0. In this case we need a different method.

For that, observe that in this case fµG
is given by

fµG
= −3α3x1x2(x1 + x2).

Hence, fµG
is divisible by −α3. For 1

−α3
fµG

= 3x1x2(x1 + x2) we calculate the Hessian
C( 1

−α3
fµG

), see [100, Section 3.3]. It is a binary quadratic form assigned to a binary cubic form
with the property that C(A · f) = A · C(f) (a so-called covariant). In our case it is given by

C

(
1

−α3
fµG

)
= 2x21 + 2x1x2 + 2x22.
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The discriminant of 1
2C(

1
−α3

fµG
) equals −3. For binary quadratic forms with discriminant −3

there exists precisely one reduced form, given by x21+x1x2+x
2
2, to which all such forms are equiv-

alent (see e.g. [30, B.1]). Then [30, Algorithm 5.4.2] provides an algorithm to bring an arbitrary
binary quadratic form with discriminant −3 into this reduced form. Further, the automorphism
group of this form has 6 elements (cf. Remark 6.4.5).

Hence, for given ((a0, a1, a2, a3), (b0, b1)) with b0 = b1 = 0 let g = gcd(a0, a1, a2, a3) and
compute C( 1gfµM

). If the Hessian is divisible by 2 and the quotient has discriminant −3, there
exist 6 automorphisms of Z2 that bring the Hessian into reduced form. Then we apply these
automorphisms to fµM

and compare the results to fG with α1 = α2 = α3 = −g.

6.5 Manifolds Obtained from Algebraic Plumbing Graphs

In this section we give examples of manifolds that can or cannot be obtained from an algebraic
plumbing graph.

Given p, q ∈ N and a set Bq containing oriented diffeomorphism classes of manifolds of di-
mension q, we define Tp+q−1(Bq) as the set containing all diffeomorphism classes of manifolds
MG, where G = (U, V,E, π, δ) is a geometric plumbing graph with simply-connected connected
components, so that Bv ∼= Sp and πv is trivial for all v ∈ V , and Bu ∈ Bq for all u ∈ U .

Wewill consider the case where p = 3 and q = 4, and whereB4 consists of all known examples
of 4-manifolds that admit a core metric, i.e.

B4 = {#ki=1εiCP 2 | k ∈ N0, εi ∈ {±1}}.

Then T6(B4) consists of all manifolds on which we can construct a core metric using Theorem B
with all known examples of 4-manifolds that admit a core metric. By construction we haveMG ∈
T6(B4) for any algebraic plumbing graph G with simply-connected connected components. We
will now show that also the converse holds.

Proposition 6.5.1. LetM ∈ T6(B4). Then there is an algebraic plumbing graphG so thatM ∼=MG.

For the proof we need the following lemma.

Lemma 6.5.2. For α ∈ Z let G be the reduced graph below.

α

−1 −1

ThenMG is diffeomorphic to the total space of the linear S2-bundle over CP 2 corresponding to (α, 1)
in Corollary B.3.9.

Proof. By Example 6.2.3 the groupHG is generated by the elements e1 = u01−u02 and e2 = u03−u02,
where we denote by u1 the vertex labeled by α. Then

µG(e1, e1, e1) = α+ 1,

µG(e1, e1, e2) = 1,

µG(e1, e2, e2) = 1,

µG(e2, e2, e2) = 0,

pG(e1) = 4(α+ 1),

pG(e2) = 0.

Now the claim follows from Corollary B.3.12 and Theorem 6.1.2, where we identify e1 with a and
e2 with b.
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Proof of Proposition 6.5.1. LetG′ be a geometric plumbing graph so thatM =MG′ . First we apply
Proposition 4.3.4 and modify G′ so that all Bu are given by S4 or ±CP 2. Further, by applying
Proposition 4.3.1, we can achieve that δ(e) = 1 for all e ∈ E. Now we turn G′ into an algebraic
plumbing graphG by reversing the construction in Section 6.2, except for vertices u for which πu
is an S2-bundle over ±CP 2 with spin total space. Every such vertex u gets replaced by a piece of
the form as in Lemma 6.5.2, multiplied by±1, where all edges connected to u get connected to the
vertex labeled by α. By using Corollary 4.4.6 we now obtain thatMG has the same invariants as
M , hence they are diffeomorphic.

Remark 6.5.3. The bundles in Lemma 6.5.2, together with connected sums of S2-bundles over
S4, are the only known infinite families of closed, simply-connected spin 6-manifolds M with
b2(M) = 2 that admit a metric of positive Ricci curvature, see Section 3.5. Hence, Proposition
6.4.2 and item (6) of Remark 6.4.5 yield an infinite number of new examples of such manifolds
and therefore an infinite number of new examples of 6-manifolds with a metric of positive Ricci
curvature and b2 = 2. To the best of our knowledge, the corresponding manifolds in dimension
6k, which are (2k − 1)-connected, are also new examples of manifolds with a metric of positive
Ricci curvature.

Next, we consider how large the class of 6-manifolds we obtain from algebraic plumbing graphs
is within the class of all closed, simply-connected 6-manifolds with torsion-free homology.

For manifolds b2(M) = 1, by Proposition 6.4.1, we obtain only one non-spin manifold. In the
spin case it follows from Theorem 6.1.2 that for an admissible system of invariants (H,µ,w, p)
with rank(H) = 1 and w = 0 there exist unique α,m ∈ Z and a generator x ∈ H so that

µ(x, x, x) = α, p(x) = 4α+ 24m

with 4α + 24m ≥ 0. By Proposition 6.4.1 the systems of invariants obtained from algebraic
plumbing graphs of rank one are precisely those withm = 0.

For graphs of rank 2 we use Theorem 6.1.4.

Proposition 6.5.4. The families P1, Q1, R1, R
′
1, S1,K1, L1 in Theorem 6.1.4 are covered as below by

coefficients of invariants obtained from simply-connected algebraic plumbing graphs.

Family Subfamily obtained from algebraic plumbing graphs

P1 All elements with k = 0

Q1 empty

R1/R
′
1 Every given values of 4r1+24k and a2 = r2+2l (R1) or a2 = r3 (R

′
1) can be realized

if a2 = 3νpν11 . . . pνmm with ν ∈ {0, 1}, pi ≡ 1 mod 6, and ν = 1 if r1 + 6k is not
divisible by 3. Once fixed there are only finitely many possibilities. Additionally all
elements with k = 0 for R′

1.

S1 Every value of ρ4 and 4r1 + 24k can be realized, once fixed there only remain finitely
many possibilities.

K1 empty

L1 empty

Remark 6.5.5. The classification in Theorem 6.1.4 has an extension to the non-spin case in [100,
Section 3.4], with 36 families in total. By Proposition 6.5.4 we partially cover 4 of the 7 families in
the spin case. By considering the non-spin graphs in Proposition 6.4.2, one can show that here we
only partially cover 2 of the families in the non-spin case. These are the family P1 with k = 0 and
the family R2 with ρ2 = 0, r3 = 1 and k = 0.
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For the proof of Proposition 6.5.4 we need the lemma below. This result is well-known. For
completeness we also provide a proof.

Lemma 6.5.6. For a given integer n there exist coprime (a, b) ∈ Z2 with n = a2 − ab + b2 if and
only if n is of the form

n = 3νpν11 . . . pνmm

with ν ∈ {0, 1} and pi ≡ 1 mod 6 and there are only finitely many such solutions.

Proof. Letω denote a primitive third root of unity. Then consider the ringZ[ω] of Eisenstein integers.
The map N : Z[ω]→ N0,

N(a+ bω) = (a+ bω)(a+ bω) = a2 − ab+ b2,

is a norm and turns Z[ω] into a Euclidean domain. The set of units is given by {±1,±ω,±ω2} and
every prime element in this ring is associated to an element in one of the following 3 categories,
see e.g. [32, Proposition 4.7]:

• 1− ω (and we have N(1− ω) = 3),

• Elements z, so that N(z) ≡ 1 mod 6 and N(z) is prime in Z,

• Elements p ∈ Z, so that p ≡ 5 mod 6 and p is prime in Z.

Now given
n = 3νpν11 . . . pνmm

with ν ∈ {0, 1} and pi ≡ 1 mod 6, for every pi there exists a prime ai + biω ∈ Z[ω] with
N(ai + biω) = pi. Then define

a+ bω = (1− ω)ν(a1 + b1ω)
ν1 . . . (am + bmω)

νm

and by the multiplicativity of the norm we have

a2 − ab+ b2 = N(a+ bω) = n.

Suppose there exists a prime p ∈ Z dividing a and b. Then p2 divides N(a + bω) = n, so p = pi
for some i. It follows that p = (ai + biω)(ai + biω) and both factors divide a + bω, which is not
possible by construction of a+ bω.

Conversely, let (a, b) ∈ Z2 be coprime and let p ∈ Z be a prime dividing N(a+ bω). If p ≡ 5
mod 6, then p is prime in Z[ω], so p divides either a+ bω or a+ bω = a− b− bω. In both cases
it follows that p divides a and b, which is a contradiction. If p = 3 and p2 divides N(a + bω),
then either (1− ω)(1− ω) = 3, or (1− ω)(1− ω) = −3ω and thus 3 divides a+ bω, which is a
contradiction.

Finally, since the Eisenstein integers form a lattice inC, there are only finitely many with norm
bounded by n, hence there exist only finitely many solutions of N(a+ bω) = n.

Proof of Proposition 6.5.4. Let α1, α2, α3 ∈ Z and consider the graph G given by

α1

α2 α3
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Let ui denote the vertex labeled by αi. By Example 6.2.3 a basis for HG is given by e1 = u01 − u03
and e2 = u02 − u03 and we have

µG(e1, e1, e1) = α1 − α3,

µG(e1, e1, e2) = −α3,

µG(e1, e2, e2) = −α3,

µG(e2, e2, e2) = α2 − α3,

pG(e1) = 4(α1 − α3),

pG(e2) = 4(α2 − α3).

We assume that the αi are not all equal, so that pG is non-trivial and we can apply Theorem 6.1.4.
Set g = gcd(α1−α3, α2−α3). Let µ1, µ2 ∈ Z so that µ1(α1−α3) + µ2(α2−α3) = g. Then for

(λ1, λ2) =
1

g
(α3 − α2, α1 − α3)

we define a new basis (e′1, e
′
2) of HG by

e′1 = µ1e1 + µ2e2, e′2 = λ1e1 + λ2e2.

Then we have

µG(e
′
1, e

′
1, e

′
1) = µ3

1α1 + µ3
2α2 − (µ1 + µ2)

3α3,

µG(e
′
1, e

′
1, e

′
2) =

1

g
(µ2

1α2(α3 − α1) + 2µ1µ2α3(α2 − α1) + µ2
2α1(α2 − α3)),

µG(e
′
1, e

′
2, e

′
2) =

1

g2
(µ1(α1 − α3)(α

2
2 − α1α3) + µ2(α2 − α3)(α

2
1 − α2α3)),

µG(e
′
2, e

′
2, e

′
2) =

1

g3
(α1 − α3)(α2 − α3)(α1 − α2)(α1 + α2 + α3),

pG(e
′
1) = 4g,

pG(e
′
2) = 0.

Let ((a0, a1, a2, a3), (b0, b1)) be the coefficients of (µG, pG) in this basis. Then, by Theorem 6.1.4,
there exists precisely one choice of µ1, µ2, so that ((a0, a1, a2, a3), (b0, b1)) is an element of one
of the families P1, Q1, R1, R

′
1, S1. We distinguish several cases:

Case 1: a3 6= 0. If a3 6= 0, then we are in case S1. For arbitrary integers g and α3 set α1 = 2g+α3

and α2 = g + α3. Then
α1 − α3 = 2g, α2 − α3 = g,

showing that then in fact g = gcd(α1 − α3, α2 − α3). The value for a3 is then given by

a3 = 6(g + α3).

Hence, any value for ρ4 and 4r1 + 24k in family S1 can be realized in this way.

On the other hand, if we fix values for g and a3, then there are only finitelymany possibilities
for α1, α2, α3 to realize these values as they are uniquely determined from the values of
α1 − α3, α2 − α3 and α1 + α2 + α3.

Summarizing, any value of ρ4 and 4r1+24k in family S1 can be realized. Once these values
are fixed, there are only finitely many possibilities.

Case 2: a3 = 0 and a2 6= 0. In this case we have either that two of the αi coincide, or that
α1 + α2 + α3 = 0. In the first case, for symmetry reasons we can assume α2 = α3. Then
g = α1 − α3 and, if we choose µ1 = 1, µ2 = 0 the values for the ai and bi are given by

((α1 − α3,−α3,−α3, 0), (4(α1 − α3), 0)).
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Since by assumption a2 6= 0, so α3 6= 0 and by possibly replacing e′2 by−e′2, i.e. by replacing
a1 by −a1, we obtain precisely all elements of R′

1 with k = 0.

Now assume that α1 + α2 + α3 = 0. Then the values for the ai and bi are given by

a0 = g(µ2
1 + µ1µ2 + µ2

2),

a1 = α1µ2 − α2µ1,

a2 =
1

g
(α2

1 + α1α2 + α2
2),

a3 = 0,

b0 = 4g,

b1 = 0.

If we set x = α1−α3

g , y = α2−α3

g , then we have

a2 =
g

3
(x2 − xy + y2).

Note that, since α1+α2+α3 = 0we have g(x+y) = −3α3, showing that either g or x+y,
and thus (x + y)2 − 3xy = x2 − xy + y2, is divisible by 3. In particular, x + y is divisible
by 3 if and only if x2 − xy + y2 is divisible by 3.

For a given integer n, by Lemma 6.5.6, there exist coprime (x, y) ∈ Z2 with n = x2−xy+y2
if and only if n is of the form

n = 3νpν11 . . . pνmm

with ν ∈ {0, 1} and pi ≡ 1 mod 6 and there are only finitely many such solutions. Thus,
we have seen that for given values of 4r1 + 24k, and a2 = r2 + 2l or a2 = r3 in R1 or R′

1,
respectively, if r1 + 6k is divisible by 3, we can realize the value for a2 if and only if it is
of the form 3νpν11 . . . pνmm with ν ∈ {0, 1} and pi ≡ 1 mod 6. If r1 + 6k is not divisible
by 3, we can realize the value for a2 if and only if it is of the form 3pν11 . . . pνmm with pi ≡ 1
mod 6. In both cases there are only finitely many possibilities.

Case 3: a2 = a3 = 0. Here, as in case 2, either two of the αi, say α2 and α3 are equal, or α1 +
α2 + α3 = 0. Since a2 = 0 we have in the first case that α3 = 0, implying a1 = 0. In
the second case, since α2

1 + α1α2 + α2
2 = 0 if and only if α1 = α2 = α3 = 0, we have

a0 = a1 = b0 = 0, which contradicts the assumption that pG is non-trivial. Thus, we can
assume that α2 = α3 = 0, so the values for the ai and bi are given by

((α1, 0, 0, 0), (4α1, 0)).

Hence, we obtain precisely all elements of P1 with k = 0.

For higher rank we have no analogue of Theorem 6.1.4. However, we can show that the fol-
lowing class of manifolds cannot be constructed via algebraic plumbing graphs.

Proposition 6.5.7. Let E π−→ S2k × S2k be a linear S2k-bundle. Then there exists no algebraic
plumbing graph G with simply-connected connected components so that E ∼=M

G
k .

Proof. We have H2k(S2k × S2k) = H2k(S2k) ⊕ H2k(S2k) and we denote a positively oriented
generator of the i-th summand by bi. Let ξ be the vector bundle corresponding to π and let βi ∈
{0, 1} so that w2k(ξ) = β1b1 + β2b2 mod 2. Since ξ has rank 2k+ 1 and all cohomology groups
of S2k × S2k in degrees 1 ≤ 2k + 1 except degree 2k vanish, we have wi(ξ) = 0 for all i 6= 0, 2k.
By the Wu formulas, see e.g. [114, Theorem C], it follows that

pk(ξ) ≡ w2k(ξ)
2 = 2β1β2b1b2 mod 4.
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Hence, there exists α ∈ Z so that pk(ξ) = (4α+ 2β1β2)b1b2. We setW = β1b1 + β2b2.
By Corollary B.3.6 there is a ∈ H2k(E) so that, if we set e1 = π∗b1, e2 = π∗b2, e3 = a, then

(e1, e2, e3) is a basis ofH2k(E) with

µE(e1, e2, e3) = 1,

µE(e1, e3, e3) = β2,

µE(e2, e3, e3) = β1,

µE(e3, e3, e3) = α+ 2β1β2,

µE(e1, e1, e2) = µE(e1, e2, e2) = µE(e1, e1, e3) = µE(e2, e2, e3) = 0,

pk(E)(e1) = pk(E)(e2) = 0,

pk(E)(e3) = 4α+ 2β1β2,

w2k(E) = β1e1 + β2e2 mod 2.

Thecorresponding homogeneous polynomials fµE
(x1, x2, x3) = µE(x, x, x) and pE(x1, x2, x3) =

pk(E)(x), x = x1e1 + x2e2 + x3e3, are then given by

fµE
(x1, x2, x3) = 6x1x2x3 + 3β1x2x

2
3 + 3β2x1x

2
3 + (α+ 2β1β2)x

3
3,

pE(x1, x2, x3) = (4α+ 2β1β2)x3.

The ring of invariants for homogeneous polynomials in 3 variables of degree 3 is generated by the
two invariants S and T by Theorem D.7. A calculation shows that their values for fµE

are given
by

S(fµE
) = 1, T (fµE

) = −8.
An invariant for linear forms is the divisibility d, which is the greatest common divisor of the
coefficients. For pE we obtain

d(pE) = 4α+ 2β1β2.

Note that pE divides fµE
over Q and we have

fµE

1
d(pE)pE

= 6x1x2 + 3β1x2x3 + 3β2x1x3 + (α+ 2β1β2)x
2
3.

We will now go through all the possibilities in Proposition 6.4.3 and show that the invariants
are not equivalent to those of E.

The spin case. We start with the spin case. Then, by applying (1′) of Lemma 6.3.1, we see that
every graph in Proposition 6.4.3, that is spin, is equivalent to a graph G of the form

α1

α2

α3

α4

α5

where some of the αi may vanish. Denote by ui the vertex labeled by αi. Then a basis of HG is
given by e1 = u01 − u02, e2 = u03 − u04 and e3 = u01 + u03 − u05. The corresponding homogeneous
polynomials are given by

4

λk
fµk

G
= (α1−α2)x

3
1+(α3−α4)x

3
2+(α1+α3−α5)x

3
3+3α1x

2
1x3+3α1x1x

2
3+3α3x

2
2x3+3α3x2x

2
3

and
4

λk
pkG = 4(α1 − α2)x1 + 4(α3 − α4)x2 + 4(α1 + α3 − α5)x3.
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Calculating the invariants S yields S(fkµG
) =

λ4
k

44 α1α2α3α4. Hence, if S(fµk
G
) = 1, then λk = 4,

i.e. k = 1 and |α1| = |α2| = |α3| = |α4| = 1. Then, by calculating the invariant T (fµG
) for all

remaining possibilities for α1, α2, α3, α4, we obtain that S(fµG
) = 1 and T (fµG

) = −8 if and
only if α1 = α2 = 1 and α3 = α4 = −1, or α1 = α2 = −1 and α3 = α4 = 1. For symmetry
reasons we can assume that the first case holds.

Then we have
fµG

= −α5x
3
3 + 3x21x3 + 3x1x

2
3 − 3x22x3 − 3x2x

2
3

Now E is spin if and only if β1 = β2 = 0, in which case we have

fµE
= 6x1x2x3,

which implies that, for any change of basis, the coefficients of fµE
are divisible by 6. This is not

the case for fµG
, hence fµG

and fµE
cannot be equivalent.

In the non-spin case, note that E can only be non-spin for k = 1, since otherwiseH2(E) = 0.
Hence, we can assume that k = 1.

Case (N1). Let ui be the vertex labeled by αi. Then a basis for HG is given by e1 = u01, e2 = u11
and e3 = u02. Then

fµG
= α1x

3
1 + α2x

3
3 + 3x1x

2
2

and S(fµG
) = 0, hence fµG

and fµE
cannot be equivalent.

Case (N2). Let ui, 1 ≤ i ≤ 3, be the vertex labeled by αi and let u4 be the vertex labeled by 0.
Then a basis forHG is given by e1 = u01 − u03, e2 = u02 − u03, and e3 = u14. Then

fµG
= (α1 − α3)x

3
1 + (α2 − α3)x

3
2 − 3α3x

2
1x2 − 3α3x1x

2
2

and S(fµG
) = 0, hence fµG

and fµE
cannot be equivalent.

Case (N3). Let u be the vertex labeled by α. Then a basis forHG is given by e1 = u0, e2 = u1 and
e3 = u−1. Then

fµG
= αx31 + 3x1x

2
2 − 3x1x

2
3, pG = αx1.

We have S(fµG
) = 1, T (fµG

) = −8 and

fµG

1
d(pG)pG

= αx21 + 3x22 − 3x23.

For any change of basis yi = aix1 + bix2 + cix3, we have that the coefficient of y1y2 is given by

2a1b1α+ 6a2b2 − 6a3b3,

which is even, in particular not equal to 3. Similarly, the coefficient of y2y3 does not equal 3. Hence,
we obtain for E that β1 = β2 = 0. But then E is spin, while G is not spin.

Case (N4). Let u be the vertex labeled by α. Then a basis forHG is given by e1 = u0, e2 = u1 and
e3 = u2. Then

fµG
= αx31 + 3x1x

2
2 + 3x1x

2
3

and T (fµG
) = 8, hence fµG

and fµE
cannot be equivalent.

Case (N5). Let ui be the vertex labeled by αi. Then a basis for HG is given by e1 = u01 − u02,
e2 = u03 − u02 and e3 = u11. Then

pG = (4(α1 − α2) + 3)x1 + 4(α3 − α2)x2,

so d(pG) is odd. For pE we have d(pE) ≡ 0 or 2 mod 4, hence pG and pE cannot be equivalent.
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Remark 6.5.8. ThemanifoldE admits a Riemannianmetric of positive Ricci curvature byTheorem
3.1.7 and a core metric if k ≥ 2 by Proposition 5.2.7. However, by Proposition 6.5.7, it remains
open if E admits a core metric if k = 1.

Next we consider homotopy CP 3’s. A closed manifold is a homotopy CP 3, if it is homotopy
equivalent to CP 3. In terms of invariants, a closed manifoldM is a homotopy CP 3 if and only if

• M is a simply-connected 6-manifold with torsion-free homology,

• b3(M) = 0 and b2(M) = 1,

• µM (x, x, x) = 1 for a generator x of H2(M), and

• w2(M) = 0.

This follows for example from [88, Example 2] and is based on the homotopy classification for
simply-connected 6-manifolds by Zhubr [126]. We also note that the homotopy classification given
by Wall [115] and Jupp [67] is erroneous, cf. [126, 5.14] or [88, Remark 2].

From Theorem 6.1.2 it follows that there is an infinite family of homotopy CP 3s whose dif-
feomorphism types are distinguished by p1, which can take any value congruent 4 mod 24 on
the generator x. By Proposition 6.4.1, the only homotopy CP 3, that can be constructed via an
algebraic plumbing graph, is the standard CP 3. However, we have the following result:

Proposition 6.5.9. There is an infinite family Mi, i ∈ N0, of pairwise non-diffeomorphic homo-
topy CP 3’s, such that for each i ∈ N0 there is a closed, simply-connected 6-manifold Ni so that
Mi#Ni ∈ T6(B4). In particular,Mi#Ni admits a core metric.

Proof. Let G be the graph

α1

α2 α3

with

α1 = (2i+ 1)(i+ 1), α2 = (2i+ 1)i, α3 =
i(i+ 1)

2
.

Denote the vertices labeled by αi by ui. Then a basis for HG is given by e1 = u01 + u02 − 2u03,
e2 = iu01 + (i+ 1)u02 − (2i+ 1)u03, and we have

µG(x1, x1, x1) = 1,

µG(x1, x1, x2) = 0,

µG(x1, x2, x2) = 0,

µG(x2, x2, x2) =
i(i+ 1)(2i+ 1)

2
,

pG(x1) = 4 + 24
i(i+ 1)

2
,

pG(x2) = 4
i(i+ 1)(2i+ 1)

2
+ 24

i(i+ 1)(2i+ 1)

6
.

Hence, MG is diffeomorphic to Mi#Ni if we define Mi and Ni as the unique closed, oriented
simply-connected spin 6-manifolds with
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• b3(Mi) = b3(Ni) = 0,

• b2(Mi) = b2(Ni) = 1,

• µMi
(x, x, x) = 1 for a generator x of H2(Mi),

• p1(Mi)(x) = 4 + 24 i(i+1)
2 ,

• µNi
(y, y, y) = i(i+1)(2i+1)

2 for generator y of H2(Ni), and

• p1(Ni)(y) = 4 i(i+1)(2i+1)
2 + 24 i(i+1)(2i+1)

6 .

The manifoldMi is a homotopy CP 3, and for different values of i we obtain different values for
the divisibility of the first Pontryagin class, hence allMi are pairwise non-diffeomorphic.

Finally, we consider the question, if a given manifoldM can be decomposed into a connected
sumM = M1#M2, whereM1,M2 6∼= Σ6k for any homotopy sphere Σ6k . To analyze this on the
level of cohomology let H be a finitely generated free abelian group with a symmetric trilinear
form µ : H×H×H → Z. Given a subspace Y ⊆ H , we say that Y is a direct summand in (H,µ),
if there is another subspace Z ⊆ H such thatH = Y ⊕ Z and

µ(y1, z1, z2) = µ(z1, y1, y2) = 0

for all y1, y2 ∈ Y , z1, z2 ∈ Z .

Lemma 6.5.10. Letm be the rank of Y and let (y1, . . . , ym) be a basis of Y . If Y is a direct summand
in (H,µ), then for any basis (x1, . . . , xn) of H the matrixµ(x1, x1, y1) · · · µ(x1, xn, y1) · · · · · · µ(x1, x1, ym) · · · µ(x1, xn, ym)

...
. . .

... · · · · · ·
...

. . .
...

µ(xn, x1, y1) · · · µ(xn, xn, y1) · · · · · · µ(xn, x1, ym) · · · µ(xn, xn, ym)


has rank at mostm.

Proof. For each yi we have a symmetric bilinear form µ(·, ·, yi). Let Ai denote its matrix in the
basis (x1, . . . , xn), i.e. the matrix we consider is given by

A =
(
A1| . . . |Am

)
.

Since Y is a direct summand, there exists a subspace Z ⊆ H so that H = Y ⊕ Z and products
between elements of Y and Z vanish. Let (z1, . . . , zn−m) be a basis of Z . Then a basis for H is
given by (y1, . . . , ym, z1, . . . , zn−m). Let S denote the change of basis matrix from this matrix to
(x1, . . . , xn). Then define

A′ = S⊤ (A1| . . . |Am
)S 0

. . .
0 S

 =
(
A′

1| . . . |A′
m

)
,

where A′
i is the matrix of µ(·, ·, yi) in the basis (y1, . . . , ym, z1, . . . , zn−m). The matrix A′ has

rank at most m, since it has (n − m) lines that vanish. Since A′ and A are obtained from each
other via invertible matrices, also A has rank at mostm.
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Proposition 6.5.11. Let G be the graph

G1 Gl
. . .

where each Gi is one of

αi

1

αi

1

αi

−1 −1

αi

1 1
, , or

and the edge is connected to the vertex labeled by αi. If l ≥ 2, then M
G

k 6∼= M1#M2 for all 6k-
dimensional manifoldsM1,M2 that are not a homotopy sphere.

Proof. SetM = M
G

k and letM1,M2 be 6k-dimensional manifolds so thatM1#M2
∼= M . Then

both H2k(M1) and H2k(M2) are direct summands in (H2k(M), µM ) by Lemma 4.1.4. By choos-
ing the subspace of smaller rank, we obtain a direct summand Y in (H2k(M), µM ) ∼= (HG, µ

k
G)

of rankm ≤ bb2k(M)/2c = b(2l − 1)/2c = l − 1.

Fix Gi and let u1 be the vertex labeled by αi. If Gi consists of more than one vertex, denote
them by u2 and u3. Then either xi = u01, x

′
i = u±1

1 , or xi = u01 − u02, x′i = u03 − u02 is a basis
of HGi

. We define γi = µkGi
(xi, x

′
i, x

′
i) and βi = µkGi

(xi, xi, x
′
i)/γi, i.e. we have the following

possibilities:

αi

1

αi

1

αi

−1 −1

αi

1 1

βi = 0

γi = 1

βi = 0

γi = −1
βi = 1

γi =
λk

4

βi = 1

γi = −λk

4

A basis for HG is now given by (x1 − xl, . . . , xl−1 − xl, x′1, . . . , x′l). Let (y1, . . . , ym) be a
basis of Y . Then there exist λi,j and µi,j , so that

yi =

l−1∑
j=1

λi,j(xj − xl) +
l∑

j=1

µi,jx
′
j .
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Let λi,l = −
∑l−1
j=1 λi,j . Then the matrix Ai in Lemma 6.5.10 is given as follows:

∗ ∗ γ1(µi,1+λi,1β1) 0 0 −γl(µi,l+βiλi,l)

0

0

∗ ∗ 0 0 γl−1(µi,l−1+λi,l−1βl−1) −γl(µi,l+βiλi,l)

γ1(µi,1+λi,1β1) 0 0 γ1λi,1 0 0

0 0

0

0 0 γl−1(µi,l−1+λi,l−1βl−1) 0

−γl(µi,l+βiλi,l) −γl(µi,l+βiλi,l) 0 0 γlλi,l




By Lemma 6.5.10, the rank of A is at most m ≤ l − 1. Let Aji denote the j-th column of Ai. By
considering Ali, . . . , A

2l−1
i , it follows that either all λi,j vanish, or there is j0 ∈ {l, . . . , 2l− 1}, so

that Aj0i = 0 for all i. We first show that the second case implies the first one.
By symmetry reasons we can assume that j0 = 2l−1, i.e. λi,l = µi,l = 0 for all i. In particular,∑l−1
j=1 λi,j = 0. Now consider the matrix(

Al1| . . . |A2l−2
1 | . . . |Alm| . . . |A2l−2

m

)
which then also has rank at most m. By elementary row and column operations we bring it into
the following form:

A′ =

µ1,1 0 0 µ2,1 0 0 µm,1 0 0

0 0 0

0 0 0

0 0 µ1,l−1 0 0 µ2,l−1 0 0 µm,l−1

λ1,1 0 0 λ2,1 0 0 λm,1 0 0

0 0 0

0 0 0

λ1,l−1 λ2,l−1 λm,l−1

0 0 0 0 0 0




Then the vectors

wi =



µi,1
...

µi,l−1

λi,1
...

λi,l−1

0


lie in the space generated by the columns of A′. Since µi,l = λi,l = 0, and since (y1, . . . , ym)
is a basis of Y , it follows that (w1, . . . , wm) is linearly independent. Hence, since A′ has rank at
mostm, (w1, . . . , wm) is a basis (overQ) of the space generated by the columns ofA′. Thus, since∑l−1
j=1 λi,j = 0, every v = (v1, . . . , v2l−1) in the space generated by the columns of A′ satisfies

2l−2∑
i=l

vi = 0.

89



6. Applications to Manifolds in Dimension 6k

In particular, λi,j = 0 for all i, j.
Hence we can assume that all λi,j vanish. Then define

w′
i =

l−1∑
j=1

1

γj
Aji =



∗
...
∗
µi,1
...

µi,l−1

−(l − 1)µi,l


.

Since (y1, . . . , ym) is a basis of Y , the elements w′
1, . . . , w

′
m are linearly independent and hence a

basis overQ of the space generated by the columns ofA. But they are also linearly independent to
the elements wi (which also lie in the space generated by the columns of A since λi,j = 0), which
is a contradiction unlessm = 0.

Thus, one of theMi, sayM1, has vanishing cohomology in degree 2k, soH2k(M) = H2k(M2).
By Corollary B.3.13 andTheorem 4.4.3 anyx ∈ H2(M) is non-trivial if any only ifxk ∈ H2k(M) is
non-trivial and all other elements inH∗(M) are obtained from powers of elements inH2(M) and
multiplication by a ∈ H2k(M). Thus, H∗(M2) = H∗(M) and M1 has non-trivial cohomology
groups only in degrees 0 and 6k. Hence,M1 is a homology sphere and since it is simply-connected
it is therefore a homotopy sphere.

Remark 6.5.12. Since there do not exist exotic spheres in dimensions 6 and 12, we actually obtain
for k = 1, 2 thatM

G
k does not split as a connected sumM1#M2 for anyM1,M2 which are not

standard spheres.

We obtain the following result:

Theorem E. For every k ∈ N and for every odd l ∈ N sufficiently large there exists an infinite family
M6k
j of pairwise non-diffeomorphic closed 6k-dimensional manifolds with torsion-free homology with

the following properties:

• Mj is (2k − 1)-connected with b2k(Mj) = l,

• Mj does not split non-trivially as a connected sum,

• Mj is not diffeomorphic to the total space of a linear sphere bundle, a homogeneous space, a
biquotient, a cohomogeneity one manifold or a Fano variety,

• Mj admits a core metric.

Further, if k = 1 or k is even, then we can replace the conclusion thatMj is (2k − 1)-connected by
Mi being simply-connected and non-spin.

Proof. Let M = M
G

k with G as in Proposition 6.5.11, where we choose each subgraph Gi to
be spin, i.e. one of the third or fourth option. Then, by Proposition 6.5.11, M does not split non-
trivially as a connected sum and we have thatM is (2k − 1)-connected with b2k(M) = 2l − 1.
Further,M admits a coremetric byTheoremD and for l sufficiently large it is not diffeomorphic to a
homogeneous space, a biquotient, a cohomogeneity onemanifold or a Fano variety by Propositions
3.2.6 and 3.2.7.

To show that it is not diffeomorphic to the total space of a linear sphere bundle, note that, for
every λ1, λ2 ∈ Z we have λ1x1 +λ2x2− (λ1 +λ2)x3 ∈ HG (where we use the notation xi, x′i as
in the proof of Proposition 6.5.11). Hence, there exist λ1, λ2 ∈ Z, with one of λi 6= 0, so that

pkG(λ1x1 + λ2x2 − (λ1 + λ2)x3) = 0.
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Then, for i with λi 6= 0, we have

µkG(λ1x1 + λ2x2 − (λ1 + λ2)x3, x
′
i, x

′
i) = λiγi 6= 0.

Hence, if pkG 6= 0, then M is not diffeomorphic to the total space of a linear sphere bundle by
Lemma B.3.7.

To obtain a non-spin manifold, we can alternatively choose some of the Gi, saym, to be non-
spin, i.e. one of the first and second options. ThenM is merely simply-connected, otherwise the
same conclusions hold as in the spin case, except that the fact that µkG is non-trivial on ker pkG does
not necessarily imply, thatM is not diffeomorphic to the total space of a linear sphere bundles, as
in this case this follows only for linear Sp−1-bundles with p ≥ 2k + 1. Hence, suppose thatM
is diffeomorphic to the total space E of a linear Sp−1-bundle with 1 < p ≤ 2k. We consider the
Euler characteristic, which, by Corollary B.3.6 and Theorem 4.4.3 is given by

χ(M) = 2 + 2m(k − 1) + (l − 1 +m)(k + 1).

Since χ(M) > 0, we have that p is odd by Lemma B.3.7. If k = 1, this is a contradiction. If k is
even, then χ(M) is odd form ≡ l mod 2, which is a contradiction by Lemma B.3.7.

Finally, we need to determine when pkG vanishes. We have

pkG(xi − xl) = λk(αi − αl) +
(
2k + 1

k

)
((1− βi)γi − (1− βl)γl) + 4(βiγi − βlγl)

≡
(
2k + 1

k

)
(γi(1− βi)− γl(1− βl)) mod λk

and pkG(x
′
i) = 0. Hence, pkG ≡ 0 mod λk if and only if βi = 0 and γi = γl for all i, or βi = 1 for

all i (note that 2
(
2k+1
k

)
< λk for k ≥ 3 and λ1 = 4 and 12 | λ2 by Remark B.3.11). It follows that

pkG = 0 if and only if βi = 0, γi = γl and αi = αl for all i, or βi = 1 and αi + γi = αl + γl for all
i.

Thus, we can, for example, set αi = 0 for all i > 1 and α1 = j to define the manifoldMj for
all j > 1.
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Background in Riemannian Geometry A

In this section we review basic notions in Riemannian geometry. We refer to [94] for details and
we use the notation introduced therein.

Let (Mn, g) be a Riemannian manifold. By∇we denote the Levi-Civita connection of g. Then
the Riemann curvature tensor R is the (1, 3)-tensor onM defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for vector fields X,Y, Z on M . From the Riemann curvature tensor we can derive the sectional
curvature, the Ricci curvature and the scalar curvature.

Definition A.1. Let p ∈ M and u, v ∈ TpM be linearly independent. The sectional curvature of
(u, v), denoted by sec(u, v), is defined by

sec(u, v) =
g(R(u, v)v, u)

g(u, u)g(v, v)− g(u, v)2
.

The value sec(u, v) only depends on the 2-plane spanned by u and v. We say that g has positive
sectional curvature, if sec(u, v) > 0 for all p ∈M and all linearly independent u, v ∈ TpM .

Definition A.2. Let p ∈M and u, v ∈ TpM . The Ricci curvature of (u, v), denoted by Ric(u, v), is
the trace of R(·, u)v, i.e. for an orthonormal basis e1, . . . , en of TpM we have

Ric(u, v) =
n∑
i=1

g(R(ei, u)v, ei).

The Ricci curvature is a symmetric (0, 2)-tensor onM . For a non-zero vector v ∈ TpM we can
extend v

∥v∥ to an orthonormal basis ( v
∥v∥ , e2, . . . , en) of TpM . Then we obtain the Ricci curvature

from the sectional curvature by

Ric(v, v) = ‖v‖2
n∑
i=2

sec(v, ei).

We say that g has positive Ricci curvature, if Ric(v, v) > 0 for all non-zero v ∈ TM .

Definition A.3. Let p ∈ M . The scalar curvature, denoted by scal, is the trace of the Ricci tensor,
i.e. for an orthonormal basis e1, . . . , en of TpM we have

scal =
n∑
i=1

Ric(ei, ei).

93



A. BacKgRound in Riemannian GeometRy

The scalar curvature is a real function on M . We say that g has positive scalar curvature, if
scal > 0.

Remark A.4. Let (Mn
1 , g1), (M

n
2 , g2) be Riemannian manifolds. Then we can calculate the curva-

tures of the product (M1 ×M2, ) with g = g1 + g2 from the curvatures of each factor. In fact, we
have

∇g = ∇g1 +∇g2 ,

hence, for u, v, w ∈ Tp1M1 ∪ Tp2M2,

g(Rg(u, v)v, w) =

{
gi(R

gi(u, v)v, w), u, v, w ∈ TpiMi,

0, else.

Hence, we obtain for u1, v1 ∈ Tp1M1 \ {0} and u2, v2 ∈ Tp2M2 \ {0}:

secg(ui, vj) = secgi(ui, vj)δij ,

Ricg = Ricg1 + Ricg2 ,

scalg = scalg1 + scalg2 .

An important tool to calculate curvature is the second fundamental form.

Definition A.5. Let (Mn, g) be a Riemannian manifold and let Y n−1 ⊆ Mn be an embedded
submanifold. Suppose the normal bundle T⊥Y of Y is trivial and let N : Y → T⊥Y be a section
of unit length vectors. The shape operator S is the (1, 1)-tensor on Y defined by

S(v) = ∇vN

for v ∈ TY . Then the second fundamental form II is the (0, 2)-tensor on Y defined by

II(u, v) = g(S(u), v) = g(∇uN, v)

for u, v ∈ TpS, p ∈ S. The mean curvature of Y , denoted byH , is the trace of II.

Since the normal bundle T⊥Y has rank 1, there are precisely two possible choices for N . If
Y = ∂cM ⊆M is a boundary component ofM , then, if not stated otherwise, we will consider S
and II with N being the outward pointing normal vector field on ∂cM .

Remark A.6. It will be important to know how the notions we introduced behave under scaling
of the metric. For that let C > 0 and define gC = C2g.

1. For the Levi-Civita connection we have ∇gC = ∇g , since ∇g is a compatible and torsion-
free connection for gC , and therefore it is the Levi-Civita connection of gC . Thus, for the
Riemann curvature operator we obtain Rg = RgC .

2. For the sectional curvature we have secgC = 1
C2 secg by (1).

3. If (e1, . . . , en) is an orthonormal basis of TpM with respect to g, then ( 1
C e1, . . . ,

1
C en) is

an orthonormal basis of TpM with respect to gC . Hence, it follows that RicgC = Ricg and
scalgC = 1

C2 scal
g .

4. IfN is a normal vector field with respect to g, then 1
CN is a normal vector field with respect

to gC . Therefore SgC = 1
CS

g and IIgC = 1
C II

g .

The shape operator is self-adjoint and hence the second fundamental form is symmetric. Thus,
for each p ∈ Y , the second fundamental form on TpY is diagonalizable and we call its eigenvalues
the principal curvatures.

Let gY denote the metric induced from g on Y and letRY denote the Riemann curvature tensor
of gY . Then one can calculate R from RY and II.
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Proposition A.7 ([94, Theorems 3.2.2, 3.2.4 and 3.2.5]). Let p ∈ N and u, v, w, z ∈ TpY . Then the
following equations hold:

1. Tangential curvature equation:

g(R(u, v)w, z) = gY (R
Y (u, v)w, z)− II(u, z)II(v, w) + II(u,w)II(v, z),

2. Normal curvature equation:

g(R(u, v)w,N) = −(∇uII)(v, w) + (∇vII)(u,w),

3. Radial curvature equation:

R(u,N)N = −S2(u)− (∇NS)(u).

We will be interested in manifolds of the formM = I × Y for a manifold Y , where I is an
interval, with metric g = dt2 + gt for metrics gt on Y . Then, for each t ∈ I , we can consider the
submanifold {t}× Y , whose induced metric is given by gt and for whichN = ∂t is a unit normal
vector field. We denote by g′t and g

′′
t the (0, 2)-tensors on Y defined by g′t(u, v) =

∂
∂tgt(u, v) and

g′′t (u, v) =
∂2

∂t2 gt(u, v), respectively. Further, we write R
t for the Riemann curvature operator of

gt and sect, Rict and scal
t, for the sectional, Ricci and scalar curvature of gt, respectively.

Proposition A.8. For the submanifold {t} × Y ofM with unit normal field N = ∂t we have for all
p ∈ Y and u, v ∈ TpY \ {0}, where {ei} is an orthonormal basis of TpY with respect to gt:

1. Second fundamental form and mean curvature:

II(u, v) =
1

2
g′t(u, v) andH =

1

2
trgtg

′
t,

2. Sectional curvature:

sec(v, ∂t) = −
1

2

g′′t (v, v)

gt(v, v)
+

1

4gt(v, v)

∑
i

g′t(v, ei)
2,

sec(u, v) = sect(u, v)− 1

4

g′t(u, u)g
′
t(v, v)− g′t(u, v)2

gt(u, u)gt(v, v)− gt(u, v)2
,

3. Ricci curvature:

Ric(∂t, ∂t) = −
1

2
trgtg

′′
t +

1

4
‖g′t‖2gt ,

Ric(v, ∂t) = 0,

Ric(u, v) = Rict(u, v)− 1

2
g′′(u, v) +

1

2

∑
i

g′t(u, ei)g
′
t(v, ei)−

1

4
g′t(u, v)trgtg

′
t,

4. Scalar curvature:

scal = scalt +
3

4
‖g′t‖2gt −

1

4
(trgtg

′
t)

2 − trgtg
′′
t .
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Proof. We extend u and v to local vector fields U and V on Y around p. Then

[U,N ] = [V,N ] = 0 (A.1)

by the product structure ofM . Hence,

II(U, V ) =
1

2
(II(U, V ) + II(V, U))

=
1

2
(gt(∇UN,V ) + gt(U,∇VN))

=
1

2
(gt(∇NU, V ) + gt(U,∇NV ))

=
1

2
(
∂

∂t
gt(U, V )− gt(U,∇NV ) + gt(U,∇NV ))

=
1

2
g′t(U, V )

and

H = trgt II =
1

2
trgtg

′
t.

Now we apply the equations in Proposition A.7. The tangential curvature equation yields (where
w ∈ TYM )

g(R(u, v)v, w) = gt(R
t(u, v)v, w)− 1

4
(g′(u,w)g′(v, v)− g′(u, v)g′(w, v)). (A.2)

For the normal curvature equation first note, that, by (A.1) and since the metric gt is torsion-free,
we have

∇ug′t =
∂

∂t
(∇ugt) = 0

and similarly for∇vg′t. Hence, by the normal curvature equation it follows that

g(R(u, v)v,N) = −(∇uII)(v, v) + (∇vII)(u, v) = 0. (A.3)

Finally, by the radial curvature equation, we have

g(R(u,N)N, v) = −gt(S2(u), v)− gt((∇NS)(u), v)
= −gt(S2(u), v)− gt(∇N (S(U)), v) + gt(S(∇NU), v)

= −gt(S2(u), v)− ∂

∂t
gt(S(u), v) + gt(S(u),∇NU) + gt(S(∇uN), v)

= − ∂

∂t
II(u, v) + gt(S(u), S(v))

= −1

2
g′′t (u, v) + gt(

∑
i

gt(S(u), ei)ei,
∑
j

gt(S(v), vj)vj)

= −1

2
g′′t (u, v) +

1

4

∑
i

g′t(u, ei)g
′
t(v, ei). (A.4)

Further, we have
g(R(u,N)N,N) = 0 (A.5)

by the skew symmetry property of the Riemann curvature tensor.
The formulas for sec, Ric and scal now directly follow from (A.2)–(A.5).

In case g is a multiply warped product metric, we obtain more explicit expressions.
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Corollary A.9. Suppose Y = Y1 × · · · × Yk and suppose

gt = f1(t)
2h1 + · · ·+ fk(t)

2hk

for smooth functions fi : I → (0,∞) and metrics hi on Yi. Then we have for all pi ∈ Yi and
ui, vi ∈ TpiYi:

1. Second fundamental form and mean curvature:

II(ui, vj) = f ′ifihi(ui, vi)δij andH =

k∑
i=1

dim(Yi)
f ′i
fi
,

2. Sectional curvature:

sec(vi, ∂t) = −
f ′′i
fi
,

sec(ui, vj) =


sechi (ui,vi)−f ′

i
2

f2
i

, i = j,

− f
′
if

′
j

fifj
, i 6= j,

,

3. Ricci curvature:

Ric(∂t, ∂t) = −
k∑
l=1

dim(Yl)
f ′′l
fl
,

Ric(vi, ∂t) = 0,

Ric(ui, vj) =


Richi(ui, vi)− hi(ui, vi)(fif ′′i + f ′i

2
(dim(Yi)− 1)

+fif
′
i

∑
l ̸=i

f ′
l

fl
dim(Yl)), i = j,

0, i 6= j,

4. Scalar curvature:

scal =
∑
l

1

h2l
scalhl +

∑
l

dim(Yl)
f ′l

2

f2l
−

(∑
l

dim(Yl)
f ′l
fl

)2

− 2
∑
l

dim(Yl)
f ′′l
fl
.

Proof. We have

g′t = 2(f1f
′
1h1 + · · ·+ fkf

′
khk),

g′′t = 2((f ′1
2
+ f1f

′′
1 )h1 + · · ·+ (f ′k

2
+ fkf

′′
k )hk).

Let (el1, . . . , e
l
dim(Yl)

) be an orthonormal basis of TplYl with respect to hl so that e
i
1 = 1

∥vi∥vi. Then(
1

fl
elm

)
l,m

is an orthonormal basis of TpY with respect to gt. We then have

trgtg
′
t =

∑
l,m

g′t

(
1

fl
elm,

1

fl
elm

)
=
∑
l,m

2flf
′
lhl

(
1

fl
elm,

1

fl
elm

)
= 2

∑
l

dim(Yl)
f ′l
fl
,

trgtg
′′
t = 2

∑
l

dim(Yl)

(
f ′l

2

f2l
+
f ′′l
fl

)
,

‖g′t‖2gt =
∑

l1,l2,m1,m2

g′t

(
1

fl1
el1m1

,
1

fl2
el2m2

)2

= 2
∑

l1,l2,m1,m2

f ′l1f
′
l2

fl1fl2
gt
(
el1m1

, el2m2

)2
= 2

∑
l

dim(Yl)
f ′l

2

f2l
,
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and ∑
l,m

g′t

(
vi,

1

fl
elm

)2

= 2f ′i
2
hi(vi, vi),

∑
l,m

g′t

(
ui,

1

fl
elm

)
g′t

(
vi,

1

fl
elm

)
= 4f ′i

2
∑
m

hi(ui, e
i
m)hi(vi, e

i
m) = 4f ′i

2
hi(ui, vi).

The formulas for the curvatures are now direct consequences of these equations, Proposition A.8
and Remarks A.4 and A.6.

Example A.10. Let R > 0. Consider the warped product metric

g = dt2 + f2(t)ds2n−1

with

f(t) = R sin
(
t

R

)
on the space obtained from [0, Rπ] × Sn−1 by collapsing {0} × Sn−1 and {Rπ} × Sn−1 each
to a point, which is diffeomorphic to Sn. Let p ∈ Sn−1 and u, v ∈ TpSn−1 be orthogonal unit
tangent vectors with respect to ds2n−1. Then 1

f(t)u and 1
f(t)v are orthogonal unit tangent vectors

with respect to g. Hence, by Corollary A.9, we obtain

II
(

1

f(t)
u,

1

f(t)
v

)
= 0,

II
(

1

f(t)
u,

1

f(t)
u

)
=
f ′(t)

f(t)
=

cos
(
t
R

)
R sin

(
t
R

) =
1

R
cot
(
t

R

)
,

sec(u, ∂t) =
−f ′′(t)
f(t)

=
1

R2
,

sec(u, v) =
secds

2
n−1(u, v)− f ′(t)2

f(t)2
=

1− cos2
(
t
R

)
R2 sin2

(
t
R

) =
1

R2
.

In particular, g has constant curvature 1
R2 and hence g is isometric toR2ds2n, see e.g. [76, Corollary

12.5]. Of course this could also be verified directly by defining an isometric embedding of g into
Rn+1 whose image is R2 · Sn.
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In this chapter we give an introduction to fiber bundles and analyze geometric and topological
properties of linear sphere bundles.

B.1 Fiber Bundles and Principal Bundles

In this section we introduce basic concepts of fiber bundles. For further details we refer to [108].

Definition B.1.1. Let F be a manifold with an effective left-action of a Lie groupG. A fiber bundle
with fiber F and structure group G is a smooth map E π−→ B together with a maximal set of local
trivializations {(Uα, ϕα)}α∈A, where A is some index set, that is,

1. {Uα}α∈A is an open covering of B,

2. ϕα : π−1(Uα)→ Uα × F is a diffeomorphism for all α ∈ A,

3. For every α ∈ A the diagram

Uα × F π−1(Uα)

Uα

φ

pr1
π

commutes,

4. For every α, β ∈ A there are maps gαβ : Uα ∩ Uβ → G, called the transition functions, so
that ϕ−1

β ◦ ϕα(p, x) = (p, gαβ(p)x) for all (p, x) ∈ (Uα ∩ Uβ)× F , and

5. For every pair (U,ϕ) for which {(Uα, ϕα)}α∈A ∪ {(U,ϕ)} satisfies (1)–(4), there is α ∈ A,
so that (U,ϕ) = (Uα, ϕα).

For every x ∈ B, the space π−1(x) is called the fiber over x and is denoted by Ex.
A principal G-bundle is a fiber bundle with fiber G and structure group G, where the action is

given by left-multiplication.
By dropping any assumptions on smoothness (the spaces then do not need to be manifolds)

and merely require all maps to be continuous, we obtain the definition of a topological fiber bundle
with fiber F and structure group G and of a topological principal G-bundle.
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We will often consider a fiber bundle just as a mapE π−→ B without explicitly stating the local
trivialization, but it will always be assumed that there is a fixed maximal set of local trivializations.

If P π−→ B is a principal G-bundle, then we have a right action of G on P defined by right
multiplication on G in local trivializations. This action is well-defined, i.e. it does not depend on
the choice of local trivialization, since left and right multiplication on G commute. By definition,
the action of G on P is free and transitive.

Definition B.1.2. A bundle map between fiber bundles E π−→ B, E′ π′

−→ B′ with fiber F and
structure group G is a map f : E → E′, so that

1. For each x ∈ B there is x′ ∈ B′, so that f maps Ex to Ex′ and f |Ex : Ex → Ex′ is a
diffeomorphism, hence f descends to a map f̌ : B → B′, and

2. For all α ∈ A, α′ ∈ A′ and all x ∈ Uα ∩ f̌−1(Uα′) the map

ϕ−1
α′ ◦ f ◦ ϕα|{x}×F : {x} × F → {x′} × F

is given by the action of an element gαβ(x) ∈ G, so that the map g : Uα ∩ f̌−1(Uα′) → G
is smooth.

An invertible bundle map is called a bundle isomorphism and two fiber bundles, for which there
exists a bundle isomorphism between them, are called isomorphic.

Given a fiber bundle E π−→ B with fiber F and structure group G and a map f : B′ → B,
define

E′ = {(x, e) ∈ B′ × E | f(x) = π(e)}.

Then π′ : E′ → B′, (x, e) 7→ x is a fiber bundle with fiber F and structure group G, whose local
trivializations are given by (f−1(Uα), ϕ

′
α) with ϕ

′
α(x, y) 7→ (x, ϕα(y)), and E′ → E, (x, e) 7→ e

is a bundle map between π′ and π. The bundle f∗π= π′ is called the pull-back of π along f .
Given a fiber bundleE π−→ B with fiber F and structure groupG, we can construct a principal

G-bundle by setting

P =
⊔
α Uα ×G /∼ ,

where (pα, xα) ∈ Uα × G and (pβ , xβ) ∈ Uβ × G are defined to be equivalent if pα = pβ and
xβ = gαβ(pα)xα. The bundle projection P → B is then induced from the projection onto the first
factor on Uα ×G. This bundle is called the principal bundle associated to π, cf. [108, Chapter 8].

Conversely, if P π−→ B is a principal G-bundle, we define a fiber bundle with fiber F and
structure group G by setting

E = P ×G F = (P × F ) /G,

where we consider the diagonal right-action g(p, x) = (pg, g−1x) of G on P × F . This bundle is
called the fiber bundle with fiber F associated to π.

Any fiber bundle E π−→ B with fiber F and structure group G is isomorphic to the associated
bundle P ×G F → B, where P → B is the principal bundle associated to π, see e.g. [64, Theorem
5.3.2]. Hence, every fiber bundle can be recovered from its associated principal bundle.

Given a subgroup H ⊆ G we say that the structure group of E π−→ B reduces to H , if there
is a subset A′ ⊆ A, so that (1)–(4) in Definition B.1.1 holds for {(Uα, ϕα)}α∈A′ and so that for
all α, β ∈ A′ the transition function gαβ takes values in H . We then obtain a fiber bundle with
fiber F and structure group H by adding all β ∈ A to A′ for which gαβ takes values in H for all
α ∈ A′.
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Example B.1.3.

1. Let K = R or C and let G = GL(p,K) act linearly on Kp. Then Definition B.1.1 turns into
the definition of a vector bundle.

By using a partition of unity on the base B, we can construct a Riemannian metric on a
vector bundleE π−→ B. For any α ∈ A we can pull the metric on π−1(Uα) back along ϕα to
Uα ×Kp, so that ϕα is an isometry of vector bundles. Applying the Gram-Schmidt process
to the standard basis on Kp for every x ∈ Uα yields a map A : Uα → GL(p,K), so that
Uα ×Kp → π−1(Uα),

(x, v) 7→ ϕα(x,Ax(v))

is a local trivialization, and transition functions between all these local trivializations take
values in O(p), if K = R, and U(p), if K = C. This shows that we can reduce the structure
group from GL(p,K) to O(p), if K = R, and to U(p), if K = C.

2. The orthogonal group O(p) acts linearly on Dp and on Sp−1. A fiber bundle E π−→ B with
fiber Dp, or Sp−1, and structure group O(p) is called a linear disc bundle, or linear sphere
bundle, respectively. In this case, the bundle π is the unit disc bundle, or unit sphere bundle
of the vector bundle constructed as the associated bundle P ×O(p) Rp → B, where P → B
is the principal O(p)-bundle associated to π.

3. If G is a Lie group and H ⊆ G a closed subgroup, then the projection G π−→ G/H is a
principal H-bundle, where the action is given by left-multiplication, see e.g. [108, 7.4 and
7.5].

An important example is the homogeneous space SO(n + 1)/SO(n), where we consider
SO(n) as a subgroup of SO(n+ 1) via

A 7→
(
A 0
0 1

)
.

The quotient SO(n+ 1)/SO(n) is then diffeomorphic to Sn via the map

A =

 a1,1 · · · a1,n+1

...
. . .

...
an+1,1 · · · an+1,n+1

 7→
 an+1,1

...
an+1,n+1

 .

Hence, the projection SO(n+ 1)→ Sn has the structure of a principal SO(n)-bundle.

The homotopy groups of total space, base and fiber of a fiber bundle are related via a long exact
sequence.

Lemma B.1.4 ([55, Theorem 4.41 and Proposition 4.48]). Let E π−→ B be a fiber bundle with fiber F
and structure group G, such that B is path-connected. Let b0 ∈ B, x0 ∈ F and let i : F ↪→ E be the
map given by identifying F with Eb0 via a local trivialization followed by the inclusion map. Then
there is a long exact sequence

· · · −→ πi(F, x0)
i∗−→ (E, i(x0))

π∗−→ πi(B, b0) −→ πi−1(F, x0) −→ · · · −→ π0(E, i(x0)) −→ 0.

The following result is used to classify principal bundles.

Proposition B.1.5 ([108, 19.3]). For every Lie group G there is a topological principal G-bundle
EG

πG−−→ BG, called the universal principalG-bundle, with EG contractible, so that for any principal
G-bundle P π−→ B there exists a map f : B → BG, unique up to homotopy, such that π is isomorphic
to the pull-back of πG along f .
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The space BG is called the classifying space ofG and the map f is called the classifying map of
the bundle π.

Note that, since EG is contractible, it follows from the long exact sequence in Lemma B.1.4,
that πi(BG) ∼= πi−1(G) for all i.

Example B.1.6. 1. By Proposition B.1.5, isomorphism classes of principal O(q)-bundles over
Sp are in bijection with elements of [Sp,BO(q)] = πp(BO(q)) ∼= πp−1(O(q)). This fact can
also be established directly: For every linear Sq−1-bundle E π−→ Sp there exists a smooth
map T : Sp−1 → O(q), called clutching function, so that π is isomorphic to the bundle

(Dp × Sq−1) ∪T̃ (Dp × Sq−1)→ Dp ∪∂ Dp ∼= Sp, (x, y) 7→ x,

where T̃ : Sp−1 × Sq−1 → Sp−1 × Sq−1 is the diffeomorphism defined by T̃ (x, y) =
(x, Tx(y)). Further, any two bundles are isomorphic if and only if their clutching functions
are homotopic, see e.g. [64, Section 10.7]

2. We have
π0(O(q)) ∼= Z/2

and

π1(O(q)) ∼=


1, q = 1,

Z, q = 2,

Z/2, q ≥ 3.

Hence, there exists a unique non-trivial vector bundle of rank q over S1 and if q ≥ 3 there
exists a unique non-trivial vector bundle of rank q over S2. The total spaces of the corre-
sponding linear sphere bundles will be denoted by S1×̃Sq−1 and S2×̃Sq−1, respectively.

The (co-)homology of BG is harder to determine and is used to characterize bundles in the
following sense:

Definition B.1.7. let R be a ring and let c ∈ Hi(BG;R). Then c is called a characteristic class. For
any fiber bundle E π−→ B with fiber F and structure group G let f : B → BG be the classifying
map of its associated principal bundle. We then set c(π) = f∗c. For a manifoldMn andG = O(n)
we set c(M) = c(TM).

Examples for characteristic classes are the Stiefel-Whitney classes wi ∈ Hi(BO(p);Z/2), the
Chern classes ci ∈ H2i(BU(p);Z) and the Pontryagin classes pi ∈ H4i(BO(p),Z) (see e.g. [82]
for their definitions).

For a map f : B′ → B and a fiber bundle E π−→ B with fiber F and structure group G the
classifying map for f∗π is given by the composition of f with the classifying map of π. Therefore,
c(f∗π) = f∗c(π).

We have inclusions ι : O(p−1) ↪→ O(p). For a system of characteristic classes c ∈ Hi(O(p);R)
defined for all p ≥ 0 (and all denoted by c), we say that c is stable, if it is preserved under ι∗. In
this case, for any vector bundle ξ : E → B, we have c(ξ ⊕ RB) = c(ξ), where RB denotes the
trivial line bundle overB. For example, the Stiefel-Whitney classes and the Pontryagin classes are
stable.

A fiber bundleE π−→ B with fiber F and structure groupG is fiber orientable, if F is orientable
and the action ofG is orientation-preserving. A fiber orientation is then a choice of orientation on
the manifold F .

Given an orientation on B, we have the product orientation on Uα × F for every local trivial-
ization (Uα, ϕα), which defines an orientation on π−1(Uα) via ϕα. Since the action of G on F is
orientation-preserving, this defines a global orientation on E. If we orient E in this way, we say
that fiber, base and total space of π are oriented compatibly.
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Example B.1.8. If E π−→ B is a vector bundle, a linear disc bundle, or a linear sphere bundle, then
π is fiber orientable if and only if the structure group O(p) of π reduces to SO(p). This is the case
if and only if the first Stiefel-Whitney class w1(π) ∈ H1(B;Z/2) vanishes, see e.g. [73, Theorem
II.1.2].

The group SO(p) satisfies π1(SO(p)) ∼= Z/2 for p ≥ 3, cf. Example B.1.6, and its universal
cover is called the Spin group and denoted by Spin(n). Similarly as defining a reduction of the
structure group, we can define lifts of structure groups, and π is said to admit a spin structure, if its
structure groups lifts from SO(n) to Spin(n). This is the case if and only if both w1(π) and w2(π)
vanish, see e.g. [73, Theorem II.1.7]. A manifold, whose tangent bundle admits a spin structure, is
called a spin manifold.

If F has non-empty boundary, then also ∂E has non-empty boundary (provided B is non-
empty) and we have the following result.

Lemma B.1.9. Let E π−→ Bq be a fiber bundle with fiber F and structure group G. If B has empty
boundary, then for the boundary ∂E we have the following:

1. ∂E
π|∂E−−−→ B is a fiber bundle with fiber ∂F and structure group G.

2. If π is fiber oriented, then the induced orientation on ∂F defines a fiber orientation on π|∂E .

3. If B and E are oriented, so that fiber, base and total space of π are oriented compatibly, then
fiber, base and total space of π|∂E are oriented compatibly with respect to the orientations B
and (−1)q∂E.

Proof. The map π|∂E obtains the structure of a fiber bundle with fiber ∂F and structure group G
by restricting the local trivializations (Uα, ϕα) to (Uα, ϕα|Uα×∂F ). Further, if π is fiber oriented,
i.e. the action of G on F is orientation-preserving, then the induced action of G on ∂F is also
orientation-preserving, hence π|∂E is fiber-oriented.

Finally, the last claim follows from the fact that the product orientation on Uα × ∂F and the
induced orientation Uα × ∂F ⊆ ∂(Uα × F ) ⊆ Uα × F differ by the factor (−1)q .

B.2 Riemannian Submersions

Let E π−→ B be a linear sphere bundle. We will equip the total space E with a Riemannian metric
so that π is a Riemannian submersion.

Definition B.2.1. A map f : (M1, g1) → (M2, g2) between Riemannian manifolds (M1, g1) and
(M2, g2) is a Riemannian submersion, if the differential Dpf : TpM1 → Tf(p)M2 is surjective for
all p ∈M , and the restrictionDf : ker(Df)⊥ → TN is an isometry.

For a Riemannian submersion f : (M1, g1) → (M2, g2) we set V = ker(Df) and H = V⊥.
Then TM1 = V ⊕H. The subbundles V andH are called the vertical and horizontal distribution,
respectively.

Definition B.2.2. A principal connection on a principal G-bundle P → B is a one-form θ on P
with values in the Lie algebra g, so that

• Adg(R∗
gθ) = θ for all g ∈ G, where Rg : P → P denotes the diffeomorphism induced by

the action of g (i.e. θ is G-equivariant), and

• For all V ∈ g, if V̄ denotes the vector field onP defined by V̄p = D1Ap(V )withAp(g) = pg,
then θ(V̄ ) = V .
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For example, on the trivial principal G-bundle P = B × G → B we can define the trivial
principal connection as follows: We have TP = TB ⊕ TG = TB × (G× g) and we set

θ(V ) = prg(V )

for V ∈ TP .
Now let P → B be a principal bundle with a principal connection θ and let

E = P ×G F
π−→ B

be a fiber bundle with fiber F associated to P → B. We define a distribution Hθ ⊆ TE comple-
mentary to V = ker(Dπ) as the image of ker(θ)× TF under the projection P × F → P ×G F .

Proposition B.2.3 ([8, Theorem 9.59]). Let E π−→ B be a fiber bundle with fiber F and structure
group G. Suppose we have the following:

• A metric gB on B,

• A principal connection θ on the associated principal bundle P → B,

• A G-invariant metric ĝ on F .

Then there exists precisely one metric g on E so that (E, g)→ (B, gB) is a Riemannian submersion
with totally geodesic fibers isometric to (F, ĝ) and horizontal distribution given byHθ .

For example, if P → B is trivial and θ is the trivial principal bundle, then ker(θ) = TB, where
we identified TE = TB × (G× g). Then the product metric gB + ĝ is a metric with the required
properties, hence, by uniqueness, we obtain this metric in Proposition B.2.3.

In case E π−→ B is a linear sphere bundle, i.e. a fiber bundle with fiber F = Sp−1 and structure
groupG = O(p), the round metric of radius r > 0 on Sp−1 is invariant under the action ofG. For
a principal connected θ we denote the metric we obtain in Proposition B.2.3 by gπ(r, θ).

As a consequence, we obtain the following Lemma, which will be useful for gluing construc-
tions.

Lemma B.2.4. Let E π−→ Bq be a linear sphere bundle, i.e. a fiber bundle with fiber F = Sp−1 and
structure group G = O(p), and let Dq

i ⊆ B be a finite number of pairwise disjoint embedded discs.
Then for any r > 0 and any metric gB on B there is a principal connection θ, so that for g = gπ(r, θ)
the restriction g|π−1(Dq

i )
on π−1(Dq

i )
∼= Dq

i × Sq−1 is the product metric

g|π−1(Dq
i )

= gB |Dq
i
+ r2ds2p−1.

Proof. We apply Proposition B.2.3 toE, where we equipF = Sp−1 with the roundmetric of radius
r, which is invariant under the action of G = O(p). For the principal connection we start with
an arbitrary principal connection θ0. Over eachD

q
i we have the trivial principal connection θi on

π−1(Ui) ∼= Ui ×G, where Ui is a contractible open neighborhood of Dq
i . By using a partition of

unity, we can now take convex combinations of the connection θ0 and the connections θi to obtain
a principal connection θ on P that is trivial over each Dq

i . Hence the metric gπ(r, θ) is a product
metric over eachDq

i .

The Ricci curvatures of the metric gπ(r, θ) are given in [8, Theorem 9.70]. From the formulas
given there one sees that the Ricci curvatures are close to those of B and the fiber Sp−1 if the
radius r of the fibers is small. Hence, we obtain the following.

Proposition B.2.5 ([8, Theorem 9.70]). Let E π−→ B be a linear sphere bundle over a Riemannian
manifold (B, gB) with a connection θ on the corresponding principal O(p)-bundle. If B is compact
and the metric gB has positive Ricci curvature, then there is a constant r0 > 0 such that the metric
gπ(r, θ) has positive Ricci curvature for all r ∈ (0, r0).
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B.3 Topology of Linear Sphere Bundles

In this section we consider topological properties of the total space of a linear sphere bundle
E

π−→ B. The main tool will be the Gysin sequence. By R we will denote an arbitrary commu-
tative ring.

Lemma B.3.1. Let E π−→ Bq be an oriented linear sphere bundle with fiber Sp−1. Then there is an
element eR(π) ∈ Hp(B;R), called the Euler class of π, and a homomorphism

ψ : H∗(B;R)→ H∗−p+1(B;R),

so that the following sequence, called the Gysin sequence, is exact:

· · · ·⌣eR(π)−−−−−→ Hi(B;R)
π∗

−→ Hi(E;R)
ψ−→ Hi−p+1(B;R)

·⌣eR(π)−−−−−→ Hi+1(B;R)
π∗

−→ · · · (B.3.1)

The map ψ has the following properties:

1. Let ι : Sp−1 ↪→ E denote the (orientation-preserving) inclusion of a fiber. Then, for any element
x ∈ Hp−1(E;R) with ψ(x) = 1 ∈ H0(B;R), we have ι∗(x) = [Sp−1;R]∗.

2. If base, fibers and total space are oriented compatibly, then ψ([E;R]∗) = (−1)q[B;R]∗.

3. For x ∈ Hi(B;R) and y ∈ Hj(E;R) we have

ψ(π∗(x)^ y) = (−1)ix ^ ψ(y).

We will also write e(π) for eZ(π).

Proof. Let E π−→ B be the corresponding disc bundle. The inclusion B ↪→ E of B as the zero-
section is a homotopy equivalence, so we will identify H∗(B;R) and H∗(E;R) via the induced
map of this inclusion in the following. By the Thom isomorphism theorem, see e.g. [82, Theorem
10.4], there exists a class uR ∈ Hp(E,E;R), so that

Φ: Hi(E;R)→ Hi+p(E,E;R), Φ(x) = x ^ uR

is an isomorphism for all i. We define eR(π) ∈ Hp(B;R) as the image of uR under the induced
map of the inclusion (B, ∅) ↪→ (E,E).

Now consider the following commutative diagram, where unlabeled arrows denote maps in-
duced by the obvious inclusions.

· · · Hi(B,R) Hi(E;R) Hi−p+1(B;R) Hi+1(B;R) · · ·

· · · Hi(E;R) Hi(E;R) Hi+1(E,E;R) Hi+1(E;R) · · ·

0 Hi(Sp−1;R) Hi+1(Dp, Sp−1;R) 0

·⌣eR(π)

=

π∗ ψ

= Φ

·⌣eR(π)

=

π∗

ι∗

δ

ι∗

δ

Thesecond and third line are exact by the long exact sequences for the pairs (E,E) and (Dp, Sp−1),
and ψ is defined as the unique map so that the diagram commutes, i.e. ψ(x) = Φ−1(δ(x)). By
exactness of the second line, the first line then also is exact.

The first property follows from the fact, that ι∗Φ(1) = ι∗uR = [Dp, Sp−1;R]∗.
For the second property we apply the Thom isomorphism to both sides, i.e.

Φ(ψ([E;R]∗)) = δ([E;R]∗) = (−1)q[E,E;R]∗
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by Lemma B.1.9, and
Φ([B;R]∗) = [B;R]∗ ^ uR.

Note that, since the Thom class is the unique class restricting to an oriented generator on each
fiber, the class uR is the image of theThom class uZ under the change of coefficients along Z→ R,
z 7→ z ·1R. SinceΦ is an isomorphism, we have [B]∗ ^ uZ = ε[E,E]∗ with ε = ±1. By changing
the coefficients from Z to R = R, it follows from [10, Proposition 6.24], that ε = 1, and hence, by
changing coefficients from Z to arbitrary R, we have [B;R]∗ ^ uR = [E,E;R]∗.

The third property of ψ follows from the corresponding properties of the coboundary map δ,
see e.g. [79, Lemma 1].

Remark B.3.2. The Euler class is a characteristic class. This can be seen by defining

eR = eR(πSO(p)) ∈ Hp(BSO(p);R)

and then using that the Euler class is natural, which follows from the naturality of the Thom class.
Indeed, if E π−→ B is a fiber bundle with fiber F and structure group SO(p) with classifying map
f : B → BSO(p), we have

eR(π) = eR(f
∗πSO(p)) = f∗eR(πSO(p)).

However, the class eR is not stable. In fact, the Euler class vanishes for every vector bundle that
has a trivial factor, see e.g. [82, Property 9.7].

Recall that for graded-commutative R-algebras A and B the tensor product A ⊗R B is the
graded-commutative R-algebra with grading

(A⊗B)k =
⊕
i+j=k

(Ai ⊗Aj)

and multiplication
(a⊗ b)(c⊗ d) = (−1)deg(b) deg(c)(ac⊗ bd).

We denote by ρR : H∗(−) → H∗(−;R) the map induced by the ring homomorphism Z → R,
z 7→ z · 1R.

Lemma B.3.3. LetE π−→ B be a vector bundle of rank 2k+1 and assume thatB is simply-connected.
Then, for anyW ∈ H2k(B) so that ρZ/2W = w2k(π) we have

ρZ/4W
2 = ρZ/4pk(π).

Proof. TheWu formula for the bundle π is given by

P2(w2k(π)) = ρZ/4pk(π) + θ2

w1(π)Sq2k−1w2k(π) +

k−1∑
j=0

w2j(π)w4k−2j(π)

 ,

see e.g. [114, Theorem C]. Here θ2 : H∗(−;Z/2) → H∗(−;Z/4) denotes the map induced by
the module homomorphism Z/2 → Z/4, 1 7→ 2, Sq2k−1 : H2k(B;Z/2) → H4k−1(B;Z/2) is
the Steenrod square operation and P2 : H

2k(B;Z/2) → H4k(B;Z/4) is the Pontryagin square
operation. For the Pontryagin square we have

P2(w2k(π)) = P2(ρZ/2W ) = ρZ/4W
2.

Since wi(π) = 0 for all i ≥ 2k + 2 and w1(π) = 0 since B is simply-connected, it follows that

ρZ/4W
2 = P2(w2k(π)) = ρZ/4pk(π).
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Proposition B.3.4. Let E π−→ B be an oriented linear sphere bundle with fiber Sp−1, whose Euler
class eR(π) ∈ Hp(B;R) vanishes and suppose thatH2p−2(B) has no element of order 2. If p is odd,
letW ∈ Hp−1(B) so that ρZ/2W = wp−1(π) and define (using Lemma B.3.3) P = 1

4 (pi(π)−W
2)

for i = 2p−2
4 . Then there is an element a ∈ Hp−1(E;R), so that

H∗(E;R) ∼=

{
H∗(B;R)⊗R R[a]

/
〈1⊗ a2 − ρRW ⊗ a− ρRP ⊗ 1〉 , p odd,

H∗(B;R)⊗R ΛR[a], p even.

The isomorphism is given by x⊗ ai 7→ π∗(x)^ ai.

Proof. Since, the Euler class vanishes, the Gysin sequence (B.3.1) splits into short exact sequences
of the form

0 −→ Hi(B;R)
π∗

−→ Hi(E;R)
ψ−→ Hi−p+1(B;R) −→ 0. (B.3.2)

Following [79, Section 8], let a ∈ Hp−1(E;R), so that ψ(a) = 1 ∈ H0(B;R). Define
θa : H

∗(B;R)→ H∗+p−1(E;R) by

θa(x) = (−1)ipa ^ π∗(x)

for x ∈ Hi(B;R). Then, by (3) of Lemma B.3.1, the map θa defines a splitting of (B.3.2), hence

Hi(E;R) = π∗(Hi(B;R))⊕ θa(Hi−p+1(B;R)). (B.3.3)

Hence, every y ∈ Hi(E;R) can be written as y = π∗(x1) + π∗(x2) ^ a for unique ele-
ments x1 ∈ Hi(B;R), x2 ∈ Hi−p+1(B;R). In particular, there are α ∈ H2p−2(B;R) and
β ∈ Hp−1(B;R) so that

a ^ a = π∗(α) + π∗(β)^ a.

Thus,H∗(E;R) is isomorphic to

H∗(B;R)⊗R R[a]
/
〈1⊗ a2 − β ⊗ a− α⊗ 1〉 .

For the values of α and β first consider the case R = Z. If p is even, then

a ^ a = (−1)(p−1)2a ^ a = −a ^ a

and since H2p−2(B) has no element of order 2, we have a ^ a = 0, which shows that

H∗(E) ∼= H∗(B;R)⊗R R[a]
/
〈1⊗ a2〉 ∼= H∗(B;R)⊗R ΛR[a].

If p is odd, then, by [79, Theorem III], we can choose a so that β = W . Further, by [79, Theorem
IV], we have

pi(π) = 4α+ β2.

SinceH2p−2(B) has no element of order 2, this equation determines α uniquely, and we can write

α =
1

4
(pi(π)− β2) =

1

4
(pi(π)−W 2) = P.

For an arbitrary commutative ring R first note that ψ ◦ ρR = ρR ◦ ψ. This follows from the
fact that ρRuZ = uR, cf. [82, Remark on p. 111]. Thus, for any a ∈ Hp−1(E) with ψ(a) = 1, we
have ψ(ρRa) = ρRψ(a) = 1 and we denote ρRa ∈ Hp−1(E;R) again by a. Hence, if p is even,
then a ^ a = ρR0 = 0, and if p is odd, then α = ρRP and β = ρRW .

Lemma B.3.5. Let E π−→ B be a linear sphere bundle and let c ∈ Hi(BO(p);R) be a stable charac-
teristic class. Denote the vector bundle corresponding to π by ξ. Then

c(E) = π∗c(TB ⊕ ξ).
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Proof. Denote by E the total space of the disc bundle corresponding to E and let ι : E ↪→ E
be the inclusion. Then ι∗TE ∼= TE ⊕ RE , the trivial factor corresponds to the normal bundle
of E = ∂E. Further, TE ∼= π∗TB ⊕ π∗ξ, which can be verified by turning the bundle into a
Riemannian submersion, since then the horizontal distribution is isomorphic to π∗TB and the
vertical distribution is isomorphic to π∗ξ.

It follows that

c(E) = c(TE ⊕ RE) = c(ι∗TE) = ι∗c(π∗(TB ⊕ ξ)) = ι∗π∗c(TB ⊕ ξ) = π∗c(TB ⊕ ξ).

LetM6k be a closed, oriented manifold. Then the cup product onM defines a trilinear form
µM : H2k(M)×H2k(M)×H2k(M)→ Z via

µM (x1, x2, x3) = 〈x1 ^ x2 ^ x3, [M ]〉.

By the graded-commutativity of the cup product, the trilinear form µM is symmetric. Further, we
have the k-th Pontryagin class pk(M) ∈ H4k(M), which can be seen as a linear form onH2k(M)
via

p1(M)(x) = 〈p1(M)^ x, [M ]〉

for x ∈ H2k(M). These invariants are important invariants forM , see Section 6.1. IfM has the
structure of a linear S2k-bundle over a 4k-dimensional manifold, then it is 6k-dimensional and we
can calculate its invariants.

Corollary B.3.6. Let E π−→ B4k be an oriented linear S2k-bundle, where B is closed, connected and
oriented and π is oriented compatibly.

• If e(π) 6= 0, thenH2k(E) = π∗H2k(B) and µE and pk(E) vanish.

• If e(π) = 0, then for anyW ∈ H2k(B) with ρZ/2W = w2k(π) there exists a ∈ H2k(E) so
that

H2k(E) = π∗(H2k(B))⊕ Za

and for x1, x2, x3 ∈ H2k(B) we have

µE(π
∗x1, π

∗x2, π
∗x3) = 0,

µE(π
∗x1, π

∗x2, a) = 〈x1 ^ x2, [B]〉,
µE(π

∗x1, a, a) = 〈x1 ^W, [B]〉,

µE(a, a, a) =
1

4
〈3W 2 + pk(π), [B]〉.

Further, for x ∈ H2k(B) we have

pk(E)(π∗x) = 0,

pk(E)(a) = 〈pk(TB ⊕ ξ), [B]〉.

In particular we have in both cases that if pk(E) 6= 0, then µE is trivial on ker(pk(E)).

Proof. First suppose that e(π) is non-trivial. Then the Gysin sequence in degree 2k is given by

0 −→ H2k(B)
π∗

−→ H2k(E)
ψ−→ H0(B)

·⌣e(π)−−−−→ H2k+1(B) −→ · · · .

Since e(π) is non-trivial, the map ·^ e(π) : H0(B)→ H2k+1(B) is invective, hence the map π∗

is an isomorphism and for x1, x2, x3 ∈ H2k(B) we have

π∗x1 ^ π∗x2 ^ π∗x3 = π∗(x1 ^ x2 ^ x3) = 0.
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Further, by Lemma B.3.5, pk(E) = π∗pk(TB ⊕ ξ), so

pk(E)^ π∗x1 = π∗(pk(TB ⊕ ξ)^ x1) = 0.

Now suppose that e(π) vanishes. Then, by Proposition B.3.4, we have

H2k(E) = π∗H2k(B)⊕ Za

and

a ^ a = π∗W ^ a+ π∗P.

Further, we have

ψ(a ^ π∗[B]∗) = ψ(θa([B]∗)) = [B]∗,

hence, by Lemma B.3.1, a ^ π∗[B]∗ = [E]∗, so

[B]∗ _ (a _ [E]) = [E]∗ _ [E] = 1.

It follows that a _ [E] = [B] and hence

〈π∗y ^ a, [E]〉 = 〈y, [B]〉

for all y ∈ H4k(B). Hence, we can calculate

µE(π
∗x1, π

∗x2, π
∗x3) = 〈π∗(x1 ^ x2 ^ x3), [E]〉 = 0,

µE(π
∗x1, π

∗x2, a) = 〈π∗(x1 ^ x2)^ a, [E]〉 = 〈x1 ^ x2, [B]〉,
µE(π

∗x1, a, a) = 〈π∗(x1 ^W )^ a+ π∗(x1 ^ P ), [E]〉 = 〈x1 ^W, [B]〉,
µE(a, a, a) = 〈π∗W ^ a ^ a+ π∗P ^ a, [E]〉

= 〈π∗W ^ (π∗W ^ a+ π∗P ) + π∗P ^ a, [E]〉
= 〈π∗W 2 ^ a+ π∗P ^ a, [E]〉

=
1

4
〈3W 2 + pk(π), [B]〉.

Finally, the expression for pk(E) follows from Lemma B.3.5.

The following lemma is a consequence of Lemma B.3.1 and Corollary B.3.6 and provides topo-
logical obstructions for the existence of sphere bundle structures on a given topological space.

Lemma B.3.7. Let E π−→ Bq be a linear Sp−1-bundle with B closed, oriented and connected.

1. For the Euler characteristic we have χ(E) = χ(B)χ(Sp−1). In particular, χ(E) vanishes if p
is even and χ(E) is even if p is odd.

2. If all cohomology groups of E in odd degrees vanish, then bj(E) is even for j = p+q−1
2 .

3. If p+ q − 1 = 6k and pk(E) 6= 0 and

• 2k + 1 ≤ p ≤ 6k, or

• 1 < p ≤ 2k and E is (2k − 1)-connected,

then µE is trivial on ker(pk(E)).
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Proof. The first claim is well-known and holds more generally for fiber bundles [106]. For linear
sphere bundles it follows from the Gysin sequence (Lemma B.3.1) that

0 =

p+q−1∑
i=0

(−1)i(bi(B)− bi(E) + bi−p+1(B))

=

q∑
i=0

(−1)ibi(B)−
p+q−1∑
i=0

(−1)ibi(E) +

p+q−1∑
i=p−1

(−1)ibi(B)

= χ(B)− χ(E) + (−1)p−1χ(B)

= χ(Sp−1)χ(B)− χ(E).

For the second claim, first note, that, since E only has cohomology in even degrees, its Euler
characteristic is positive. Hence, by item (1), we have that p is odd, so χ(E) is even. Then it follows
by Poincaré duality, that

χ(E) = 2

j−1∑
i=0

bi(E) + bj(E),

and hence bj(E) is even.
Finally, suppose that p + q − 1 = 6k and pk(E) 6= 0. If p = 2k + 1, then, by Corollary

B.3.13, the trilinear form is trivial on ker(pk(E)). Further, if q < 4k, then, by Lemma B.3.5, we
have that pk(E) ∈ H4k(E) vanishes. Hence, we can assume that 4k < q < 6k and that E is
(2k − 1)-connected. Then for 0 < i+ p < 2k, by the Gysin sequence (Lemma B.3.1), we have an
isomorphism

Hi(B)
·⌣e(π)−−−−→ Hi+p(B).

Hence, we have for 0 < i < 2k

Hi(B) ∼=

{
Z, p | i,
0, else.

Again from the Gysin sequence we obtain the following exact sequence.

H2k(B)
π∗

−→ H2k(E)
ψ−→ H2k−p+1(B).

We have H2k−p+1(B) ∼= Z or 0. Let y ∈ H4k(B) so that π∗y = pk(E) (which exists by Lemma
B.3.5). Then for every x ∈ H2k(B) we have

π∗(x)^ pk(E) = π∗(x ^ y) = 0.

Hence, if pk(E) 6= 0, we have H2k−p+1(B) ∼= Z and ψ is non-trivial, otherwise pk(E) would be
trivial on H2k(E), which would imply pk(E) = 0 by Poincaré duality. Hence, if a ∈ H2k(E) is
a preimage of a generator of imψ, every y ∈ H2k(E) can be written as y = π∗x + λa, where
x ∈ H2k(B). Since pk(E) is trivial on π∗H2k(B), it follows that ker(pk(E)) = π∗H2k(B), on
which µE is trivial.

For the existence of bundles as in Corollary B.3.6 we first consider the case k = 1.

Lemma B.3.8. Let B be a closed, simply-connected 4-manifold. Then isomorphism classes of linear
S2-bundles over B are in bijection with pairs (x, Y ) ∈ H2(B;Z/2)×H4(B) such that

ρZ/4X
2 = ρZ/4Y

for some X ∈ H2(B) with ρZ/2X = x. The bijection is given by assigning the pair (w2(π), p1(π))

to a linear S2-bundle E π−→ B. The Euler class of all such bundles vanishes.
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B.3. Topology of Linear Sphere Bundles

Proof. This is precisely the classification of Dold and Whitney [39], except that the condition on
(x, Y ) is given by

P2(x) ≡ Y mod 4,

where P2 : H
2(B;Z/2) → H4(B;Z/4) is the Pontryagin square operation. Since H2(B) is free

abelian, every class x ∈ H2(B;Z/2) has a preimageX ∈ H2(B). Hence,

P2(x) = P2(ρZ/2X) = ρZ/4X
2,

which shows that the condition P2(x) = ρZ/4Y is equivalent to ρZ/4X2 = ρZ/4Y for one, and
thus for allX ∈ H2(B) with ρZ/4X = x.

Finally, the Euler class vanishes, since B is simply-connected, hence orientable, and we have
0 = H1(M) ∼= H3(M).

LetB = B4k
γ = #mi=1γiCP 2k for γ = (γ1, . . . , γm) ∈ {±1}m. We denote by bi ∈ H2(γiCP 2k)

a generator of the cohomology ring of the i-th summand of B. Then b2ki = γi[B]∗. For the case
where k = 1 we then obtain from Lemma B.3.8 the following corollary.

Corollary B.3.9. Isomorphism classes of linear S2-bundles over B = B4
γ are in bijection with ele-

ments (α, β) ∈ Z× {0, 1}m. The bijection assigns to α and β = (β1, . . . , βm) the linear S2-bundle
E

π−→ B with p1(π) = (4α+
∑
i γiβi)[B]∗ and w2(π) =

∑
i βiρZ/2bi.

In higher dimension we have the following result:

Lemma B.3.10. For all k ∈ N there is λk ∈ N, so that for everyα ∈ Z there exists a linearS2k-bundle
E

π−→ B4k
γ with

wi(π) =

{
1, i = 0,

0, else,

pi(π) =


1, i = 0,

αλk[B
4k
γ ]∗, i = k,

0, else,

e(π) = 0.

Proof. First we consider vector bundles of rank 4k over S4k . These bundles are classified by ele-
ments in π4k(BSO(4k)) ∼= π4k−1(SO(4k)), cf. Proposition B.1.5. To determine this group consider
the principal SO(4k)-bundle SO(4k + 1) → S4k from Example B.1.3. The long exact sequence of
homotopy groups (Lemma B.1.4) yields

· · · −→ π4k(S
4k) −→ π4k−1(SO(4k)) −→ π4k−1(SO(4k + 1)) −→ π4k−1(S

4k) −→ · · · .

We have π4k(S4k) ∼= Z and that π4k−1(S
4k) is trivial. Further, by Bott periodicity, we have

π4k−1(SO(4k + 1)) ∼= Z. It follows that π4k(BSO(4k)) ∼= π4k−1(SO(4k)) is either isomorphic to
Z or to Z⊕ Z and the map π4k(BSO(4k))→ π4k(BSO(4k + 1)) is surjective.

Define a homomorphism

φ : π4k(BSO(4k))→ Z⊕ Z, [α] 7→ (e _ H[α], pk _ H[α]),

whereH : π4k(BSO(4k))→ H4k(BSO(4k)) is the Hurewicz homomorphism.
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The tangent bundle of S4k defines an element [α] ∈ π4k(BSO(4k)) with φ([α]) = (2, 0). Fur-
ther, there is a vector bundle of rank (4k+1) over S4k with non-vanishing k-th Pontryagin class,
see [77, Theorem 3.8]. Since the map π4k(BSO(4k)) → π4k(BSO(4k + 1)) is surjective, there is
a class [β] ∈ π4k(BSO(4k)) with φ([β]) = (x, y) with y 6= 0. Hence, the image of φ has rank at
least two, which shows that π4k(BSO(4k)) ∼= Z⊕ Z and the map φ is injective.

Now we consider vector bundles of rank 2k + 1 over S4k . For that, consider again the long
exact sequence

· · · −→ π4k(S
i) −→ π4k−1(SO(i)) −→ π4k−1(SO(i+ 1)) −→ π4k−1(S

i) −→ · · · .

By Serre’s finiteness theorem [106], the groups πj(Si) with j > i are finite unless j = 4m− 1
and i = 2m for some m ∈ N. Hence, the map π4k−1SO(i) → π4k−1SO(i + 1) is rationally an
isomorphism for 2k + 1 ≤ i < 4k − 2 and injective for i = 4k − 1. Hence,

π4k(BSO(2k + 1)) ∼= π4k−1(SO(2k + 1)) ∼= Z⊕ Fk

for a finite group Fk . Moreover, the map π4k(BSO(2k + 1)) → π4k(BSO(4k)) maps a primitive
element [α] of infinite order to a non-zero element [β] of π4k(BSO(4k)) ∼= Z⊕Z. Since the bundle
defined by [β] has a trivial factor, we have φ([β]) = (0, λk) for some λk ∈ Z. Since φ is injective
and [β] non-trivial, it follows that λk 6= 0. By possibly multiplying with (−1) we can assume that
λk ∈ N.

Let π0 be the linear sphere bundle defined by [α]. Then pk(π0) = λk[S
4k]∗. Since the bundle

defined by [β] has vanishing Euler class, its 4k-th Stiefel-Whitney class also vanishes, see e.g. [82,
Property 9.5]. Thus, w4k(π0) = 0. Further, wi(π0) for 0 < i < 4k, pi(π0) for 0 < i < k and e(π0)
vanish as the corresponding cohomology groups of S4k vanish.

Now for givenα ∈ Z let fα : S4k → S4k be a map of degreeα, i.e. f∗α : H
4k(S4k)→ H4k(S4k)

is multiplication by α. Further, let h : B → S4k be an orientation-preserving collapse map, i.e. for
an orientation-preserving embedding D4k ↪→ B, h : B → S4k ∼= D4k/∂D4k is the identity on
D4k◦, and maps all the other points to ∂D4k . Then h∗ : H4k(S4k)→ H4k(B) is an isomorphism
that maps [S4k]∗ to [B]∗. We define

π = h∗f∗απ0.

The claim now follows from the naturality properties of wi, pi and e.

Remark B.3.11. It follows from Corollary B.3.9, that λ1 = 4 and we obtain precisely those bundles
in Lemma B.3.10, that correspond to (α, (0, . . . , 0)) in Corollary B.3.9. In general, λk is a multiple

of 3−(−1)k

2 (2k − 1)!, see [77, Theorem 3.8] and for k > 4 we have in fact equality by [4, Theorem
1∗].

Further, by Lemma B.3.3, since the Stiefel-Whitney classes of every bundle π in Lemma B.3.10
vanish, it follows that pk(π), and thus λk is divisible by 4. We have already seen this for λ1 = 4
and it also holds for λk if k ≥ 3, since then (2k − 1)! is divisible by 4. However, for k = 2, we
have (2k − 1)! = 6, showing that λ2 is divisible by 12.

Note that for k ≥ 3 we have(
2k + 1

k

)
=

(2k + 1)!

k!(k + 1)!
= (2k − 1)!

2k(2k + 1)

k!(k + 1)!

and
2k(2k + 1)

k!(k + 1)!
≤ 2k(2k + 2)

k!(k + 1)!
=

4

(k − 1)!k!
< 1,

showing that
(
2k+1
k

)
< (2k − 1)! ≤ λk . Since λ1 = 4 and λ2 ≥ 12, the inequality

(
2k+1
k

)
< λk

holds for all k ∈ N. This fact is useful in Chapter 6.
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For the manifold B = B4k
γ we have

H∗(B;R) ∼= R[b1, . . . , bm]
/
〈bibj , γib2ki − γjb2kj , b

2k+1
i | i 6= j〉

cf. Lemma 4.1.4. If E π−→ B is a linear sphere bundle we will denote the images π∗bi in H∗(E;R)
again by bi.

Further,

wj(B) =

{(
2k+1
j/2

)∑
i ρZ/2b

j/2
i , j even,

0, else,

and

pj(B) =

(
2k + 1

j

)∑
i

b2ji ,

see [82, Corollary 11.15 and Example 15.6]. For k = 1 we obtain

w2(B) =
∑
i

ρZ/2bi

and
p1(B) = 3

∑
i

b2i = 3
∑
i

γi[B]∗.

Thus, combining Proposition B.3.4 Lemma B.3.5 and Corollary B.3.6 with the existence results in
Lemmas B.3.8 and B.3.10 and Corollary B.3.9 yields the following corollaries.

Corollary B.3.12. Let E π−→ B4
γ be an oriented linear S2-bundle that corresponds to the tuple

(α, β) ∈ Z× {0, 1}m in Corollary B.3.9. Then

H∗(E;R) ∼= R[a, b1, . . . , bm]
/
〈bibj , γib2i − γjb2j , b3i , a2 − a

∑
i βibi − αγ1b21 | i 6= j〉 ,

where a, b1, . . . , am have degree 2. Further,

w2(E) =
∑
i

(1− βi)bi,

p1(E) = (4α+
∑
i

(3 + βi)γi)γ1b
2
1.

In particular, we have
H2(E) =

⊕
i

Zbi ⊕ Za

and

µE(bi ^ bj ^ bm) = 0,

µE(bi ^ bj ^ a) = δijγi,

µE(bi ^ a ^ a) = βiγi,

µE(a ^ a ^ a) = α+
∑
i

βiγi,

p1(E)(bi) = 0,

p1(E)(a) = 4α+
∑
i

(3 + βi)γi.
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Corollary B.3.13. LetE π−→ B4k
γ be an oriented linear S2k-bundle corresponding toα ∈ Z in Lemma

B.3.10. Then

H∗(E;R) ∼= R[a, b1, . . . , bm]
/
〈bibj , γib2ki − γjb2kj , b

2k+1
i , a2 − 1

4αλkγ1b
2k
1 | i 6= j〉 ,

where a has degree 2k and b1, . . . , bm have degree 2. Further,

wj(E) =

{(
2k+1
j/2

)∑
i b
j/2
i , j even,

0, else,

pj(E) =

{((
2k+1
k

)∑
i γi + αλk

)
γ1b

2k
1 , j = k,(

2k+1
j

)∑
i b

2j
i , else.

In particular, we have
H2k(E) =

⊕
i

Zbki ⊕ Za

and

µE(b
k
i ^ bkj ^ bkm) = 0,

µE(b
k
i ^ bkj ^ a) = δijγi,

µE(b
k
i ^ a ^ a) = 0,

µE(a ^ a ^ a) =
λk
4
α,

w2(E)k =
∑
i

bki ,

pk(E)(bi) = 0,

pk(E)(a) =

(
2k + 1

k

)∑
i

γi + λkα.

114



Incidence and Adjacency Matrix of a Directed Graph C

In this chapter we recall some well-known facts about the adjacency and incidence matrices of a
directed graph. For convenience we also include self-contained proofs.

LetR be a commutative ring and letG = (V,E) be a directed graph, where V = {v1, . . . , vn}
is the set of vertices and E = {e1, . . . , em} ⊆ V × V is the set of edges. The incidence matrix of
G, denoted by Q(G), is the n×m-matrix with entries in R defined by

Q(G)ij =


1, if there is k so that ej = (vi, vk),

−1, if there is k so that ej = (vk, vi),

0, else.

Lemma C.1. Suppose G is connected. Then the matrix Q(G)⊤ has kernel generated by (1, . . . , 1)⊤.
In particular, Q(G) has rank n− 1.

Proof. Let x ∈ Rn such that x⊤Q(G) = 0. Then, for every e = (vi, vj) ∈ E, we have xi−xj = 0,
i.e. xi = xj . SinceG is connected, for any vi, vj ∈ V there is a path between vi and vj , so xi = xj
for all 1 ≤ i, j ≤ n.

Lemma C.2. Suppose the underlying undirected graph of G is simply-connected, i.e. a tree. Then the
matrix Q(G)⊤, when considered as a linear map Rn → Rm, is surjective.

Proof. Let ei ∈ E. Since G is simply-connected, the edge ei divides G into two subtrees. Let G′

be the subtree from which ei originates with root the vertex connected to ei. Then define x ∈ Rn
by xj = 1 whenever vj is contained in G′ and xj = 0 otherwise. Then it follows that Q(G)⊤x is
the i-th standard basis vector of Rm and hence Q(G)⊤ is surjective.

Now let G = (U, V,E), be a bipartite graph, where U = {u1, . . . , ur} and V = {v1, . . . , vs}
are the sets of vertices and E ⊆ U × V is the set of edges. The biadjacency matrix of G, denoted
by B(G), is the r × s-matrix with entries in R defined by

B(G)ij =

{
1, (ui, vj) ∈ E,
0, else.

Lemma C.3. Suppose G is a tree so that no v ∈ V is a leaf. Then B(G) has full rank.

Proof. We show that B(G), when considered as a linear map Rs → Rr , is injective. Let x ∈ Rs
with B(G)x = 0 and let ui ∈ U be a leaf. Then there is a unique vj ∈ V so that (ui, vj) ∈ E,
hence xj = 0.
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C. Incidence and Adjacency MatRix of a DiRected GRaph

Now we remove all the leaves, which are vertices in U , and all v ∈ V that turn into leaves by
this procedure and get a subgraph G′ that is again a tree and has no vertex in V as a leaf. For all
those vj ∈ V that get removed we already have xj = 0. Hence, by removing these entries from x,
we obtain a vector x′ with B(G′)x′ = 0.

Hence, by induction, it follows that x = 0.
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Invariant Theory of SL(n,C) D

In this chapter we introduce the basic notions and result of the invariant theory of GL(n,C). We
refer to [26] and [111] for further details.

A polynomial f ∈ C[x1, . . . , xn] in n variables is homogeneous of degree d, if all non-zero
terms of f have degree d. Thus, f can be written as

f =
∑

i1,...,in∈N0
i1+···+in=d

ai1,...,inx
i1
1 . . . x

in
n

with ai1,...,in ∈ C. If (e1, . . . , en) denotes the standard basis of Cn, then the assignment

f 7→
∑

i1,...,in

ai1,...,ine
i1
1 . . . e

in
n = f(e1, . . . , en)

defines an isomorphism between the space of homogeneous polynomials of degree d and the d-
th symmetric power Sd(Cn). The standard action of the group GL(n,C) induces an action on
Sd(Cn). The corresponding action on homogeneous polynomials is then given by

(A · f)(x1, . . . , xn) = f(A⊤(x1, . . . , xn)).

This action in turn induces an action on the polynomial ring C[Sd(Cn)]. For every subgroup
Γ ⊆ GL(n,C) we obtain an induced action.

Definition D.1. An element I ∈ C[Sd(Cn)] is called an invariant for Γ, if it is invariant under
the action of Γ. If d1, . . . , dk ∈ N, then an element I ∈ C[Sd1(Cn) ⊕ · · · ⊕ Sdk(Cn)] is a joint
invariant for Γ, if it is invariant under the direct sum action of Γ.

If we consider the coefficients ai1,...,in as indeterminates, then an invariant can be viewed as
a polynomial in the variables ai1,...,in . The set of invariants forms a C-algebra.

From the definition we obtain, that for two homogeneous polynomials f1, f2 of degree d, if
there exists A ∈ Γ so that A · f1 = f2, then I(f1) = I(f2) for all invariants I . The converse does
not hold in general, for example, there exists the notion of nullforms, which are homogeneous
polynomials on which all invariants vanish.

Given an integral n-ary form of degree d, that is, a symmetric multilinear map

µ : Zn × d· · · × Zn → Z,
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D. InvaRiant TheoRy of SL(n,C)

we extend µ linearly to a C-multilinear map on (Cn)d and define a homogeneous polynomial fµ
of degree d in n variables via the equation

fµ(v) = µ(v, . . . , v)

for all v ∈ Cn. Two integral n-ary forms µ1, µ2 of degree d are equivalent, if there exists A ∈
GL(n,Z) so that µ1 = A∗µ2. This is the case if and only if fµ1

= A⊤ · fµ2
. Thus, if µ1 and µ2 are

equivalent, then all invariants forΓ on fµ1
and fµ2

coincide if GL(n,Z) ⊆ Γ. Since det(A) ∈ {±1}
for all A ∈ GL(n,Z), we will consider the group

Γ = S̃L(n,C) = {A ∈ GL(n,C) | det(A) = ±1}.

Theorem D.2 (Hilbert’s finiteness theorem, [26, Section 3.1]). For n and d fixed and Γ = SL(n,C)
or S̃L(n,C), the algebra of (joint) invariants for Γ is finitely generated.

In fact, this result holds for a much larger class of groups, for example for any algebraic group
that is linearly reductive (see e.g. [80, Chapter 19] for the definition). Here we use that S̃L(n,C)◦ =
SL(n,C) and that an algebraic group G is linearly reductive if and only if G◦ is reductive, see e.g.
[80, Corollary 22.43].

To obtain invariants for S̃L(n,C) from those for SL(n,C) we need the following observation.

Lemma D.3. Let I be a (joint) invariant for SL(n,C). Set a′i1,...,in = (−1)i1ai1,...,in . If

I((ai1,...,in)i1,...,in) = I((a′i1,...,in)i1,...,in),

then I is a (joint) invariant for S̃L(n,C).

Proof. This follows from the fact that S̃L(n,C) is generated by SL(n,C) and the matrix
−1

1
. . .

1


and this matrix transforms (ai1,...,in) into (a′i1,...,in).

An important invariant for binary forms is the discriminant D. For a binary form of degree it
is defined as follows: Let

f =

n∑
i=0

ai,n−ix
i
1x
n−i
2

be a homogeneous polynomial of degree n in two variables. To simplify notation we set ai =
ai,n−i. By setting x2 = 1 we obtain a polynomial f(x1, 1) in one variable of degree d. Since C is
algebraically closed, there exist α1, . . . , αd ∈ C (which are the roots of f(x1, 1)), so that

f(x1, 1) = an(x1 − α1) . . . (x1 − αd).

Then define
D(f) = a2d−2

n

∏
i<j

(αi − αj)2.

The discriminant is an invariant for SL(n,C). By Lemma D.3 it is also an invariant for S̃L(n,C),
since the transformation ai 7→ a′i has the effect that αi gets replaced by −αi, which does not
change the value ofD(f).

In particular, in degree 2 the discriminant is given by

D(f) = a21 − 4a2a0
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and in degree 3 it is given by

D(f) = a22a
2
1 − 4a3a

3
1 − 4a32a0 − 27a23a

2
0 + 18a3a2a1a0.

In fact, for these degrees the discriminant generates the whole ring of invariants.

Theorem D.4 ([57, XVI, XVII]). Let n = 2 and Γ = SL(n,C) or Γ = S̃L(n,C). Then for d = 2 and
for d = 3 the algebra of invariants for Γ is generated byD.

In degree 4 we have two further invariants I and J defined by

I(f) = a0a4 − 4a1a3 + 3a22

and
J(f) = a0a2a4 − a0a23 − a21a4 + 2a1a2a3 − a32.

Theorem D.5 ([57, XVIII]). Let n = 2 and Γ = SL(n,C) or Γ = S̃L(n,C). Then for d = 4 the
algebra of invariants for Γ is generated by I and J .

As before, the case Γ = S̃L(n,C) is obtained from the case Γ = SL(n,C) by Lemma D.3 by
observing that the transformation in Lemma D.3 transforms ai into (−1)iai.

For the applications in Chapter 6 we consider joint invariants for n = 2, d1 = 3 and d2 = 1.
For a binary cubic polynomial f =

∑3
i=0 aix

i
1x
n−i
2 and a binary linear form p = b1x1 + b0x2 we

define the joint invariant R, called the resultant, by

R(f, p) = a3b
3
0 + a2b

2
0b1 + a1b0b

2
1 + a0b

3
1.

Further, we consider the invariantsD, I and J as joint invariants viaD(f), I(f · p) and J(f · p).

Theorem D.6 ([100, Theorem 4 and Corollary 1]). Let n = 2, d1 = 3 and d2 = 1. Then

• For Γ = SL(n,C) the algebra of joint invariants is generated byD, R, I and J .

• For Γ = S̃L(n,C) the algebra of joint invariants is generated byD, R2, I and J .

Further, the relation

27J2 =
1

256
DR2 + I3

holds.

Finally, we consider ternary cubic polynomials, that is, n = d = 3 and f is of the form

f =a300x
3
1 + 3a210x

2
1x2 + 3a201x

2
1x3 + 3a120x1x

2
2 + 6a111x1x2x3 + 3a102x1x

2
3

+ a030x
3
2 + 3a021x

2
2x3 + 3a012x2x

2
3 + a003x

3
3.

Here we have two invariants S and T defined by

S(f) =a300a120a021a003 − a300a120a2012 − a300a111a030a003 + a300a111a021a012 + a300a102a030a012

− a300a102a2021 − a2210a021a003 + a2210a
2
012 + a210a201a030a003 − a210a201a021a012

+ a210a120a111a003 − a210a120a102a012 − 2a210a
2
111a012 + 3a210a111a102a021 − a210a2102a030

− a2201a030a012 + a2201a
2
021 − a201a2120a003 + 3a201a120a111a012 − a201a120a102a021

− 2a201a
2
111a021 + a201a111a102a030 + a2120a

2
102 − 2a120a

2
111a102 + a4111
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and

T (f) =a2300a
2
030a

2
003 − 6a2300a030a021a012a003 + 4a2300a030a

3
012 + 4a2300a

3
021a003 − 3a2300a

2
021a

2
012

− 6a300a210a120a030a
2
003 + 18a300a210a120a021a012a003 − 12a300a210a120a

3
012

+ 12a300a210a111a030a012a003 − 24a300a210a111a
2
021a003 + 12a300a210a111a021a

2
012

+ 6a300a210a102a030a021a003 − 12a300a210a102a030a
2
012 + 6a300a210a102a

2
021a012

+ 6a300a201a120a030a012a003 − 12a300a201a120a
2
021a003 + 6a300a201a120a021a

2
012

+ 12a300a201a111a030a021a003 − 24a300a201a111a030a
2
012 + 12a300a201a111a

2
021a012

− 6a300a201a102a
2
030a003 + 18a300a201a102a030a021a012 − 12a300a201a102a

3
021

+ 4a300a
3
120a

2
003 − 24a300a

2
120a111a012a003 − 12a300a

2
120a102a021a003

+ 24a300a
2
120a102a

2
012 + 36a300a120a

2
111a021a003 + 12a300a120a

2
111a

2
012

+ 12a300a120a111a102a030a003 − 60a300a120a111a102a021a012 − 12a300a120a
2
102a030a012

+ 24a300a120a
2
102a

2
021 − 20a300a

3
111a030a003 − 12a300a

3
111a021a012

+ 36a300a
2
111a102a030a012 + 12a300a

2
111a102a

2
021 − 24a300a111a

2
102a030a021

+ 4a300a
3
102a

2
030 + 4a3210a030a

2
003 − 12a3210a021a012a003 + 8a3210a

3
012

− 12a2210a201a030a012a003 + 24a2210a201a
2
021a003 − 12a2210a201a021a

2
012

− 3a2210a
2
120a

2
003 + 12a2210a120a111a012a003 − 24a2120a

2
111a

2
102 + 24a120a

4
111a102

+ 6a2210a120a102a021a003 − 12a2210a120a102a
2
012 + 12a2210a

2
111a021a003 − 24a2210a

2
111a

2
012

− 24a2210a111a102a030a003 − 27a2210a
2
102a

2
021 + 36a2210a111a102a021a012

+ 24a2210a
2
102a030a012 − 12a210a

2
201a030a021a003 + 24a210a

2
201a030a

2
012

− 12a210a
2
201a

2
021a012 + 6a210a201a

2
120a012a003 − 60a210a201a120a111a021a003

+ 36a210a201a120a111a
2
012 + 18a210a201a120a102a030a003 − 6a210a201a120a102a021a012

+ 36a210a201a
2
111a030a003 − 12a210a201a

2
111a021a012 − 60a210a201a111a102a030a012

+ 36a210a201a111a102a
2
021 + 6a210a201a

2
102a030a021 + 12a210a

2
120a111a102a003

− 12a210a
2
120a

2
102a012 − 12a210a120a

3
111a003 − 12a210a120a

2
111a102a012

+ 36a210a120a111a
2
102a021 − 12a210a120a

3
102a030 + 24a210a

4
111a012

− 36a210a
3
111a102a021 + 12a210a

2
111a

2
102a030 + 4a3201a

2
030a003 − 12a3201a030a021a012

+ 8a3201a
3
021 + 24a2201a

2
120a021a003 − 27a2201a

2
120a

2
012

− 24a2201a120a111a030a003 + 36a2201a120a111a021a012 + 6a2201a120a102a030a012

− 12a2201a120a102a
2
021 + 12a2201a

2
111a030a012 − 24a2201a

2
111a

2
021

+ 12a2201a111a102a030a021 − 3a2201a
2
102a

2
030 − 12a201a

3
120a102a003 + 12a201a

2
120a

2
111a003

+ 36a201a
2
120a111a102a012 − 12a201a

2
120a

2
102a021 − 36a201a120a

3
111a012

− 12a201a120a
2
111a102a021 + 12a201a120a111a

2
102a030 + 24a201a

4
111a021

− 12a201a
3
111a102a030 + 8a3120a

3
102 − 8a6111.

Theorem D.7 ([111, Theorem 4.4.6]). Let n = 3 and Γ = SL(n,C) or Γ = S̃L(n,C). Then for d = 3
the algebra of invariants for Γ is generated by S and T .
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Algorithms for Systems of Invariants E

This appendix provides explicit algorithms involving systems of invariants.
Algorithm E.1 computes the normal form of an admissible system of invariants (H,µ,w, p)

with rank(H) = 2 and w = 0 according to the classification of Schmitt [100], see Theorem 6.1.4.
For that, the algorithm first determines the kernel of the linear form p. A generator of this kernel
is then extended to a basis of H . This extension is then modified, so that the coefficients in this
basis are in normal form.

Algorithm E.2 determines, whether a given system of invariants can be realized by an algebraic
plumbing graph of the form

α1

α2 α3

For that, the algorithm follows the steps in the proof of Proposition 4.3.4, i.e. it reconstructs possible
values for α1, α2, α3 from the invariants D,R2, I, J , cf. Theorem D.6. See Remark 6.4.6 for a
detailed description.
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Algorithm E.1: Algorithm that computes for an admissible system of invariants
(H,µ,w, p) with rank(H) = 2 and w = 0 its normal form

Data: a0, a1, a2, a3, b0, b1 ∈ Z coefficients of an admissible system of invariants
Result: r0, r1, r2, r3, s0, s1 ∈ Z defining a normal form for ((a0, a1, a2, a3), (b0, b1))

1 if b1 6= 0 or b2 6= 0 then
2 (µ0, µ1)← integers, so that µ0b0 + µ1b1 = gcd(b0, b1) ; /* Can be computed with

Euclidean algorithm */
3 (λ0, λ1)← 1

gcd(b0,b1)
(b1,−b0); /* Coefficients for a generator of ker(p),

(u′, v′) = (µ0u+ µ1v, λ0u+ λ1v) is a basis */
4 (r0, r1, r2, r3, s0, s1)← coefficients in the basis (u′, v′);
5 if r3 = 0 then
6 if r2 = 0 then
7 if r1 = 0 then
8 return (r0, r1, r2, r3, s0, s1); /* Case P1 */
9 else
10 r0 ← r0 mod 3r1; /* Change of basis of the form

(u′, v′) 7→ (u′ +mv′, v′) */
11 return (r0, r1, r2, r3, s0, s1); /* Case Q1 */

12 else
13 m←integer, so that r1 + 2mr2 ∈ (−|r2|, |r2|];
14 r0 ← r1 + 3mr1 + 3m2r2;
15 r1 ← |r1 + 2mr2|; /* Change of basis of the form

(u′, v′) 7→ (u′ +mv′,±v′) */
16 return (r0, r1, r2, r3, s0, s1); /* Cases R1 and R′

1 */

17 else
18 if r3 < 0 then
19 (r1, r3)← −(r1, r3); /* Change of basis of the form (u′, v′) 7→ (u′,−v′) */

20 m←integer, so that r2 +mr3 ∈ [0, r3);
21 r0 ← r0 + 3mr1 + 3m2r2 +m3r3;
22 r1 ← r1 + 2mr2 +m2r3;
23 r2 ← r2 +mr3; /* Change of basis of the form (u′, v′) 7→ (u′ +mv′, v′) */
24 return (r0, r1, r2, r3, s0, s1); /* Case S1 */

25 else
26 D ← a23a

2
2 − 4a4a

3
2 − 4a33a1 − 27a24a

2
1 + 18a4a3a2a1;

27 if D = 0 then
28 (µ0, µ1)←coprime integers, so that µ0

µ1
is a root of multiplicity at least 2 of

a0y
3 + 3a1y

2 + 3a2y + a3; /* Exists by assumption on D, cf. [100,
Proposition 3] */

29 (λ0, λ1)←integers, so that λ1µ0 − λ0µ1 = 1; /* Can be computed with Euclidean
algorithm */

30 (r0, r1, r2, r3, s0, s1)← coefficients in the basis (u′, v′);
31 if r1 = 0 then
32 return (|r0|, r1, r2, r3, s0, s1); /* Case K1 */
33 else
34 r0 ← r0 mod 3r1; /* Change of basis of the form (u′, v′) 7→ (u′ +mv′, v′)

*/
35 return (r0, r1, r2, r3, s0, s1); /* Case L1 */
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Algorithm E.2: An algorithm that computes forM with b2(M) = 2 a simply-connected
algebraic plumbing graph G withM ∼=MG if it exists

Data: a0, a1, a2, a3, b0, b1 ∈ Z coefficients of the invariants µM and p1(M) in a fixed
basis

Result: α1, α2, α3 ∈ Z defining a simply-connected algebraic plumbing graph G with
M ∼=MG if it exists

1 Compute D,R, I, J ;
2 σ2

2 ← 4I − 3D ; /* Candidate for σ2
2 */

3 σ1σ3 ← I −D ; /* Candidate for σ1σ3 */
4 if σ2

2 > 0 then
5 σ2,1 ←

√
σ2
2 ;

6 σ2,2 ← −
√
σ2
2 ; /* Two candidates for σ2 */

7 if D 6= 0 or σ2
2 > 0 then

8 for i← 1 to 2 do
9 if D 6= 0 then
10 σ2

1,i ←
σ2,i(2σ

2
2−9σ1σ3)−J
D ;

11 else
12 σ2

1,i ←
27(σ1σ3)

2+R2

2σ1σ3·σ2,i
; /* Two candidates for σ2

1 */

13 if σ2
1,i ≥ 0 then

14 σ1,i ←
√
σ2
1,i;

15 σ3,i ← σ1σ3

σ1,i
;

16 (α1, α2, α3)← zeroes of y3 − σ1,iy2 + σ2,iy − σ3,i = 0; /* Roots are
possibly complex */

17 if α1, α2, α3 ∈ Z and not α1 = α2 = α3 then
18 if the normal forms of

(α1 − α3,−3α3,−3α3, α2 − α3, 4(α1 − α3), 4(α2 − α3)) and
(a0, a1, a2, a3, b0, b1) via Algorithm E.1 are equal then

19 return (α1, α2, α3) ; /* Success */

20 if α1, α2, α3 ∈ Z and α1 = α2 = α3 then
21 g ← gcd(a0, a1, a2, a3);
22 Compute Hessian C = C( 1gfµM

);
23 if C is divisible by 2 andD( 12C) = −3 then
24 Bring 1

2C into normal form via [30, Algorithm 5.4.2], which yields 6
possible bases (ui, vi), 1 ≤ i ≤ 6, of Z2;

25 Compute coefficients ((a0,i, a1,i, a2,i, a3,i), (0, 0)) for fµM
w.r.t each

(ui, vi);
26 if ((a0,i, a1,i, a2,i, a3,i), (0, 0)) = ((0,−α3,−α3, 0), (0, 0)) for one i

then
27 return (α1, α2, α3) ; /* Success */

28 else if σ2
2 = D = 0 then

29 if D=R=I=J=0 and the normal forms of ( gcd(b0,b1)4 , 0, 0, 0, gcd(b0, b1), 0) and
(a0, a1, a2, a3, b0, b1) via Algorithm E.1 are equal then

30 return ( gcd(b0,b1)4 , 0, 0) ; /* Success */
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algebraic plumbing graph, 66
associated fiber bundle, 100
associated principal bundle, 100

Betti number, 8
biadjacency matrix, 115
biquotient, 10
boundary connected sum, 24
Brieskorn manifold, 10
bundle isomorphism, 100
bundle map, 100

characteristic class, 102
Chern classes, 102
classifying map, 102
classifying space, 102
clutching function, 102
coefficients of invariants, 65
cohomogeneity one manifold, 10
compatible orientation, 102
connected sum, 23
core metric, 46

discriminant, 118
dual surgery, 23

equivalence of graphs, 67
equivalence of systems of invariants, 64
Euler characteristic, 8
Euler class, 105

fiber bundle, 99
fiber connected sum, 27
fiber orientable, 102
fiber orientation, 102

geometric plumbing graph, 28
Gysin sequence, 105

homogeneous polynomial, 117
horizontal distribution, 103

incidence matrix, 115

invariant, 117

joint invariant, 117

Kervaire sphere, 10

Lefschetz duality, 8
linear disc bundle, 101
linear sphere bundle, 101
local surgery, 44

manifold, 7
mean curvature, 94

normal form, 65

plumbing, 27
Pontryagin classes, 102
principal bundle, 99
principal connection, 103
principal curvatures, 94
pull-back of a fiber bundle, 100

rank of a graph, 67
reduced class, 71
reduced graph, 71
reduction of structure group, 100
resultant, 119
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Riemann curvature tensor, 93
Riemannian submersion, 103
round metric, 9
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second fundamental form, 94
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spherical space form, 9
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spin manifold, 103
stable characteristic class, 102
standard embedding, 26
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Symbols

B(G) biadjacency matrix of G. 115
B(a0, . . . , an) Brieskorn manifold. 10
BG classifying space of G. 101
B4k
γ #ki=1γiCP 2k . 111

bi(M) i-th Betti number. 8

ci i-th Chern class. 102

D discriminant. 118
Dn closed n-dimensional disc. 7
Dq
R(N) geodesic ball of radius R in Sq(N). 48

ds2n round metric on Sn. 9

E1□E2 plumbing of E1 and E2. 27
EG total space of universal principal G-bundle. 101
e(π) eZ(π). 105
eR universal Euler class. 106
eR(π) Euler class of π. 105
Ex fiber over x. 99

f∗π pull-back of π along f . 100

G//H biquotient. 10

G
k

geometric plumbing graph corresponding toG. 68
gπ(r, θ) submersion metric with totally geodesic and round

fibers of radius r and principal connection θ. 104

H mean curvature. 94
H horizontal distribution. 103

I invariant for binary quartic forms. 119
II second fundamental form. 94
I±p,q diffeomorphism between Dp × Dq and Dq × Dp

used for plumbing. 27

J invariant for binary quartic forms. 119

M1#M2 connected sum. 23
M1\M2 boundary connected sum. 24
MG manifold obtained by plumbing along G. 28
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MG boundary ofMG. 28
[M,∂M ;R] fundamental class of (M,∂M) with coefficients in

R. 8
[M,∂M ;R]∗ Lefschetz dual of 1 ∈ H0(M ;R). 8
Mφ manifold obtained fromM by surgery along ϕ. 23
−M the manifoldM with reversed orientation. 7
µM trilinear form obtained from cup product on M .

108

pi i-th Pontryagin class. 102
P ×G F total space of associated fiber bundle associated.

100
ϕπ standard embedding ofDq×F into the total space

of π. 26
ϕ(u,v) standard embedding of πu corresponding to the

edge (u, v). 28
ϕ(v,u) standard embedding of πv corresponding to the

edge (u, v). 28
πG universal principal G-bundle. 101
ψ homomorphism in the Gysin sequence. 105

Q(G) incidence matrix of G. 115

R Riemann curvature tensor. 93
R resultant. 119
RB trivial linear bundle over B. 102
ρR map H∗(−) → H∗(−;R) induced by the ring ho-

momorphism Z→ R, z 7→ z · 1R. 106
Ric(u, v) Ricci curvature. 93
rSq−1 orientation-reversing diffeomorphism on Sq−1. 27

S shape operator. 94
S invariant for ternary cubic polynomials. 119
S1×̃Sq−1 unique non-trivial linear Sq−1-bundle over S1.

102
S2×̃Sq−1 unique non-trivial linear Sq−1-bundle over S2.

102
scal scalar curvature. 93
sec(u, v) sectional curvature. 93
S̃L(n,C) elements of GL(n,C) with determinant ±1. 118
Sn n-dimensional sphere. 7
Sn(r) (Sn, r2 · ds2n). 9

T invariant for ternary cubic polynomials. 119
θa splitting in the Gysin sequence. 107

V vertical distribution. 103

wi i-th Stiefel-Whitney class. 102

χ(M) Euler characteristic. 8
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