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Abstract

The surgery theorem of Wraith states that the existence of metrics of positive Ricci curvature is pre-
served under surgery if certain metric and dimensional conditions are satisfied. We generalize this
theorem by relaxing the conditions on the dimensions involved and by generalizing the surgery
construction itself. As applications we construct metrics of positive Ricci curvature on manifolds
obtained by plumbing. Specifically, this construction provides an extension of a result of Burdick
on the existence of metrics of positive Ricci curvature on connected sums of linear sphere bundles,
and, moreover, it yields infinite families of new examples of manifolds with a metric of positive
Ricci curvature in all dimensions divisible by 6.
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Introduction 1

Riemannian geometry studies connections between curvature and the shape of objects. In this
context, the Ricci curvature appears naturally in many settings. For example, it is part of equations
with far reaching geometric and topological consequences, like the Bochner formula for the Hodge
Laplacian and the second variation formula of energy along hypersurfaces. Furthermore, the Ricci
curvature is part of the Ricci flow equation, which, by the work of Hamilton and Perelman, has
made substantial contributions to 3-dimensional geometry and topology. In physics, the Ricci
curvature is of interest in general relativity as, for example, it is contained in the Einstein field
equations.

Lower bounds on the Ricci curvature directly affect geometric quantities, like distance and vol-
ume, as well as topological quantities, like Betti numbers and the fundamental group. Therefore,
the question, which manifolds admit a complete Riemannian metric with a given lower Ricci cur-
vature bound, is of great interest. In this thesis, we are interested in the condition of positive Ricci
curvature.

In dimension 2, where Ricci curvature coincides with the classical notion of Gaussian curva-
ture, it follows from the Gauss-Bonnet formula that the only closed surfaces with positive Ricci
curvature are the 2-dimensional sphere and the real projective plane. A similar result holds in
dimension 3, where, as a consequence of the aforementioned Ricci flow techniques, a closed mani-
fold with a Riemannian metric of positive Ricci curvature is finitely covered by the 3-dimensional
sphere.

In higher dimensions, however, the situation is much less clear. Here the condition of pos-
itive Ricci curvature lies between the rather flexible and comparably well-understood condition
of positive scalar curvature and the very restrictive condition of positive sectional curvature. By
the theorem of Bonnet-Myers, a closed manifold that admits a metric of positive Ricci curvature
has finite fundamental group. This result, together with obstructions to the existence of metrics
of positive scalar curvature, is the only known topological obstruction for a manifold to admit a
Riemannian metric of positive Ricci curvature. Thus, Riemannian metrics of positive Ricci cur-
vature could potentially exist on a wide range of manifolds. However, when compared with the
case of positive scalar curvature, examples of manifolds with a Riemannian metric of positive Ricci
curvature are rare.

The majority of known methods to construct Riemannian metrics of positive Ricci curvature
rely on the existence of certain additional structures, such as bundles structures, group actions,
complex structures or Sasakian structures. An overview of these constructions is given in Section
3.1. While these methods produce many interesting examples of manifolds with a Riemannian
metric of positive Ricci curvature, the necessity of the existence of these additional structures
heavily restricts the range of applications.



1. INTRODUCTION

Another approach to construct Riemannian metrics of positive Ricci curvature is surgery.
Surgery, which will be introduced in Section 4.1, is a procedure to modify manifolds by cutting
out and gluing in certain predefined parts. There exist different types of surgery, which are distin-
guished by a natural number, called the codimension of the surgery. Applying surgery to questions
about curvature has been proven to be very successful in the case of positive scalar curvature, since
it was shown independently by Gromov-Lawson [50] and Schoen-Yau [101], that the existence
of Riemannian metrics of positive scalar curvature is preserved under any surgery of codimension
at least 3. Since this result does not impose any assumptions on the Riemannian metric involved
(except of having positive scalar curvature), it has far reaching consequences and establishes the
existence of Riemannian metrics of positive scalar curvature on a wide range of manifolds, includ-
ing all closed, simply-connected manifolds in dimensions 5, 6 and 7, see Section 3.4.

For positive Ricci curvature it is open whether a surgery theorem in the same generality holds.
However, if one imposes additional assumptions on the Riemannian metrics involved, there exist
surgery results for positive Ricci curvature, which can be divided into two categories: results
on connected sums, which is surgery in codimension n (where n denotes the dimension of the
manifold), by Perelman [90] and Burdick [21, 22, 23, 24], and results on higher surgeries by Sha-
Yang [107] and Wraith [121, 122].

In the first case, to construct Riemannian metrics of positive Ricci curvature, Burdick intro-
duced the notion of core metrics. These are Riemannian metrics of positive Ricci curvature, which,
roughly speaking, contain a large round disc, see Section 5.2. Based on Perelman’s work he then
showed the following result.

Theorem 1.1 ([22, Theorem B], Proposition 5.2.6). Let M{*,..., M}’ be manifolds that admit core
metrics. If n > 4, then the connected sum Mi# . . . # M}, admits a Riemannian metric of positive Ricci
curvature.

Thus, the question for which manifolds their connected sum admits a Riemannian metric of
positive Ricci curvature reduces to the question of which manifolds admit a core metric. Examples
of manifolds with core metrics are the standard sphere, complex projective spaces and total spaces
of certain linear sphere bundles, see Proposition 5.2.7.

For higher surgeries, Sha and Yang proved a surgery theorem for positive Ricci curvature,
which was later extended by Wraith. For that, suppose we have the following:

(S1) A Riemannian manifold (MP*971, g5/) of positive Ricci curvature.

(52) An isometric embedding ¢: SP~!(p) x D%L(N) < M, where SP~!(p) denotes the round
(p — 1)-sphere of radius p > 0 and D% (N) denotes the ball of radius R > 0 in S9(N).

(S53) A smooth map T': SP~! — SO(q), which induces a diffeomorphism 7': SP~* x S7~1 —
SP~1 x §971 defined by (x,y) — (x, T (y)).

Theorem 1.2 ([122, Theorem 0.3], Theorem 5.5.2). Under assumptions (51)-(S3) letp > q > 3. Then
there is a constant k = k(p,q, R/N,T) > 0, such that if £ < k, then the manifold

M = M \ im()° Uz (DP x S971)
admits a metric of positive Ricci curvature.

The condition £ < & can be interpreted as requiring the disc D to be large compared to the
sphere SP~1. Asa consequence, since it is not clear in a general setting whether for a given embed-
ded sphere there exists a neighborhood of this form, one cannot apply this theorem without having
some knowledge on the global structure of the manifold. The assumptions are for example satis-
fied for total spaces of linear sphere bundles, or, more generally, manifolds obtained by plumbing,
which is a procedure that glues disc bundles to each other in a certain way, see Section 4.2.



Theorem 1.3 ([121, Theorems 2.2 and 2.3], Theorem 5.5.3). Let W be the manifold obtained by
plumbing linear n-disc bundles over n-spheres according to a simply-connected graph or by plumbing
together two disc bundles over spheres (where fiber and base dimension may differ). If the fiber and
base dimensions are at least 3, then OW admits a metric of positive Ricci curvature.

The class of manifolds obtained as boundaries of plumbings as in this theorem contains many in-
teresting examples, including all homotopy spheres that bound parallelizable manifolds and many
highly-connected manifolds, see Theorem 3.1.12.

We generalize these theorems as follows:

Theorem A ([97, Theorem A]). Under the assumptions (S1) and (S2) let BP be a manifold with a core
metric gp, let E =5 B be a linear ST~ '-bundle, and letr > 0. Ifp,q > 3, then there is a constant
k= k(p,q, R/N,gp,r) > 0, such that if & < k, then the manifold

M = M \ im(1)° Uy 7~ Y(B\ DF°)

admits a metric of positive Ricci curvature. This metric coincides outside a neighborhood of the gluing
area with a submersion metric on E with totally geodesic and round fibers of radius r and with a
scalar multiple of the metric gpr on M.

Note that under the assumptions B = SP and p > ¢ we precisely obtain Theorem 1.2 from
Theorem A, with T being the clutching function for the bundle 7. Thus, the generalization is two-
fold: We relax the condition on the dimensions involved and we allow a wider range of manifolds
to be glued in.

Similarly as in Theorem 1.3, we obtain the following consequence:

Theorem B ([97, Theorem B]). Let W be the manifold obtained by plumbing according to a simply-
connected graph with compact base manifolds. Suppose that the dimensions of base manifolds and
fibers are all at least 3. Let B be one of the base manifolds and suppose that all other base manifolds
admit core metrics. Then

1. If B admits a Riemannian metric of positive Ricci curvature, then OW admits a Riemannian
metric of positive Ricci curvature.

2. If B admits a core metric and the fiber over B has dimension at least 4, then OW admits a core
metric.

Burdick [23] has shown that the total space of a linear SP-bundle over a compact manifold
B? admits a core metric if p,q > 3 and B admits a core metric!, see Proposition 5.2.7. As a
consequence of Theorem B, we can extend this result.

Theorem C ([97, Theorem C] ). Let E — BY be a linear SP-bundle and suppose that
ep=2andq>4,or
e q=2andp > 4.

If B is closed and admits a core metric, then E admits a core metric.

Finally, we consider applications in dimension 6k. As mentioned above, every closed, simply-
connected 6-manifold admits a Riemannian metric of positive scalar curvature. For positive Ricci
curvature, however, all known examples either have small Betti numbers, or have a simple coho-
mology ring structure, see Section 3.5. The only known examples of 6-manifolds with a core metric
are S, CP3, S3 x S3 and connected sums of copies of these manifolds.

n [23] it is claimed that this result holds if p > 3 and ¢ > 2. However, if ¢ = 2 then, the proof given in [23] is not
valid, see Remark 5.2.8.



1. INTRODUCTION

We will apply Theorem B to extend the class of known examples. To identify the manifolds,
we will use classification results that only hold in dimension 6. However, results, for which these
classification results are not required, will also hold in any dimension 6k.

To state our result, given a closed, simply-connected and oriented 6k-dimensional manifold M
with torsion-free homology, we have a trilinear form jupr: H2*(M) x H**(M) x H*(M) — Z
defined by

pnr (2, y, 2) = (x — y — z, [M]).

Further invariants we will consider are the k-th power of the second Stiefel-Whitney class
wy(M)* € H**(M;7./2) = H*(M) ® Z/2
and the k-th Pontryagin class
pe(M) € H* (M) = Hom(H**(M),Z).

In particular, these invariants are all defined on the cohomology group H2*(M). For k = 1,
by the classification of Jupp [67], see also Theorem 6.1.1, these invariants already determine the
diffeomorphism type of M up to connected sums with copies of S3 x S3. Given a finitely generated
free abelian group H, a symmetric trilinear form 1 on H, an element w € H ® Z/2 and a linear
form p on H, we call the system (H, p1, w, p) admissible in dimension 6k, if it can be realized as the
invariants of a closed, simply-connected 6k-dimensional manifold with torsion-free homology.

In Section 6.2 we introduce the notion of algebraic plumbing graphs. These are bipartite graphs
G = (U, V,E,(a, k", k™)), where U and V are the sets of vertices and £ C U x V is the set of
edges. Further, we have a labeling (o, k*,k~): U — Z x N2 for vertices in U. We draw vertices
u € U as follows:

K+ (u)

k™ (u)

If one of k™ (u) and k™ (u) vanishes, then we will omit it. Vertices in V will simply be drawn as
dots. An example for such a graph is given as follows:

An algebraic plumbing graph G defines for every k a 6k-dimensional manifold, denoted by M.

Important invariants, such as the cohomology group H?2* (Mzr), the trilinear form M and

characteristic classes can be computed directly from the data provided by the algebraic plumbing
graph if it is simply-connected. For example, if no vertex in v is a leaf, then H?* (Mék) has rank
|U|—|V]and Mx is spin if and only if k~ = k™ = 0. The fact, that the invariants can be obtained
from the graph data if G is simply-connected, motivates defining invariants (Hg, uf,, we, pl) in

a similar way for any algebraic plumbing graph G. We set ue = u, and pg = pg.



Theorem D. Let G be an algebraic plumbing graph.
o Ifk = 1, then the system of invariants (Hg, pc, we, pa) is admissible in dimension 6.

e If every connected component of G is simply-connected, then the system of invariants
(Hg, ks, we, pk) is admissible in dimension 6k and realized by the manifold M. Further,
Mg admits a core metric.

e If k = 1 and every connected component of G is simply-connected, then any closed, simply-
connected 6-manifold with torsion-free homology, whose invariants are equivalent to
(Ha, e, wa, pe), admits a core metric.

Since different algebraic plumbing graphs can have equivalent systems of invariants, it is not
clear a priori, how large the class of manifolds is that we obtain in this way. To analyze this further,
we introduce a reduced form in Section 6.3 and conjecture that systems of invariants obtained from
different reduced forms are indeed not equivalent, see Question 6.3.4. The difficulty lies in the
problem that in general it is hard to determine whether two given trilinear forms are equivalent
or not. In Section 6.4 we prove the conjecture for graphs G with rank(Hg) < 2, except for the
case where rank(H¢) = 2 and we = 0. Here the reduced graphs are of the form

) @ @

with «; # 0 in the second case. By using invariant theory of SL(2, C) we can show that for any
graph of this form there exists at most one other graph of this form with an equivalent system of
invariants, see Proposition 4.3.4. This fact, however, is sufficient to show that we obtain infinitely
many diffeomorphism types in this way, so that infinitely many of these graphs define new ex-
amples of 6-manifolds with a Riemannian metric of positive Ricci curvature and of 6-manifolds
with core metrics, see Remark 6.5.3. Further, by using the classification of Schmitt [100], we can
analyze how large the class of 6-manifolds constructed in this way is within the class of all closed,
simply-connected spin 6-manifolds M with torsion-free homology and bo(M) = 2, see Propo-
sition 6.5.4. An interesting subfamily of these graphs is given by certain graphs for which the
corresponding 6-manifolds split as a connected sum, where one of the summands is a homotopy
CP3, see Proposition 6.5.9.
For larger Betti numbers, using Theorem D, we have the following results.

Theorem E. Foreveryk € N and for every odd ! € N sufficiently large there exists an infinite family
M3" of pairwise non-diffeomorphic closed 6k-dimensional manifolds with torsion-free homology with
the following properties:

e M; is (2k — 1)-connected with ba,(M;) =1,
e M; does not split non-trivially as a connected sum,

e Mj is not diffeomorphic to the total space of a linear sphere bundle, a homogeneous space, a
biquotient, a cohomogeneity one manifold or a Fano variety,

e M; admits a core metric.

Further, if k = 1 or k is even, then we can replace the conclusion that M; is (2k — 1)-connected by
M; being simply-connected and non-spin.



1. INTRODUCTION

It follows that the manifolds M; are new examples of manifolds with a metric of positive Ricci
curvature.

We also consider limitations of this technique. In fact, the total space of any linear S2*-bundle
over S%F x S2k which is known to admit a core metric for £ > 2 and a Riemannian metric of
positive Ricci curvature for k& = 1, cannot be constructed via an algebraic plumbing graph as in
Theorem D, see Proposition 6.5.7.

This thesis is organized as follows: Chapter 2 summarizes the notation used. In Chapter 3 we
give an overview over known constructions and obstructions for Riemannian metrics of positive
Ricci curvature. We also briefly survey the situation for positive scalar and sectional curvature and
explicitly consider the known examples of manifolds with a Riemannian metric of positive Ricci
curvature in dimensions up to 6. In Chapter 4 we introduce surgery and the plumbing construction
and analyze topological properties of manifolds obtained by plumbing. In Chapter 5 we consider
surgery on manifolds with a Riemannian metric of positive Ricci curvature and prove Theorems
A, B and C. Finally, we consider applications to 6k-dimensional manifolds in Chapter 6 and give
the proof of Theorems D and E. The appendices provide basic properties of Riemannian manifolds,
fiber bundles, graph theory and invariant theory.
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By N we denote the set of natural numbers and we use the convention that 0 ¢ N. We set Ny =
NU{0}. As usual, Z denotes the ring of integers and Q, R and C denote the fields of rational, real
and complex numbers, respectively.

Manifolds

For the definitions and basic properties of manifolds, vector bundles, Lie groups and Riemannian
metrics we refer to [75], [76] and [94]. Basics of Riemannian geometry and of fiber bundles are
introduced in Appendices A and B, respectively. Here, the term manifold denotes a smooth man-
ifold, possibly with boundary. The boundary of a manifold M is denoted by OM. For x € M
we denote by T, M the tangents space at = and by T'M the tangent bundle of M. By Int(M) we
denote the interior of M. If X C M, we denote by X ° the interior of X as a subspace of M. Note,
that if X is a submanifold, these two notions of the interior do not necessarily coincide.

All maps between manifolds will be assumed to be smooth. For a manifold M we will write
M™ to indicate that M has dimension n. By D" we denote the closed n-dimensional disc and
by S™ = D" the n-dimensional sphere. Real, complex and quaternionic projective spaces are
denoted by RP", CP™ and HP", respectively.

If M7 and M5 are two manifolds, such that there exists a diffeomorphism ¢: 0. Ms — 0.M;
between boundary components 0. M; C OM;, we denote by

M1 U¢ Mg

the space obtained from M; LI M5 by gluing along ¢. The smooth structures of M; and Ms carry
over to this space and turn it into a manifold in a natural way, see e.g. [58, Theorem 8.2.1]. If the
identification ¢ is clear, then we also write

My Ug, p, Ma,
and if 0. M; = OM;, we simply write
My Uy Ms.

(Co-)Homology

If not stated otherwise, we use homology and cohomology with coeflicients in Z. For basic notions
of (co-)homology we refer to [55]. If M is oriented, then —M denotes M with the reversed orien-
tation. If a compact manifold M™ is oriented with respect to a commutative ring R, we denote by

7
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[M,0M; R|le H,(M,0M; R) its fundamental class. We will leave out OM or R in this notation
if OM = () or R = Z, respectively. Note that an orientation of M in the classical sense, which
corresponds to an orientation with respect to Z, induces an orientation with respect to any ring
R, since in this case, we have

H,(M,0M;R) = H,(M,0M)® R~ R.

An important tool will be Lefschetz duality: If A,B C OM are submanifolds such that
0A = 0B = AN B, then cap product with [M, OM; R] defines an isomorphism

-N[M,0M;R]: H(M,A;R) — H,_;(M, B; R),

see e.g. [55, Theorem 3.43].
The Lefschetz dual of 1 € Hy(M; R) = Rin H"(M,0M; R) is denoted by

[M,dM; R* € H"(M,M; R).
In particular, we have ((M,0M; R]*,[M,0M;R]) =1 € R.

By ‘
bi(M) = rank(H"(M)) = rank(H;(M))

we denote the i-th Betti number of M. Finally,

denotes the Euler characteristic of M.
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In this chapter we give an introduction to positive Ricci curvature. We will first survey the known
methods to construct metrics of positive Ricci curvature in Section 3.1 and topological obstructions
to the existence of such metrics in Section 3.2. We then illustrate its connections to the related
conditions of positive sectional and positive scalar curvature in Sections 3.3 and 3.4. Finally, in
Section 3.5, we list all known examples of closed, simply-connected manifolds with a metric of
positive Ricci curvature in dimensions up to 6.

3.1 Constructions of Metrics of Positive Ricci Curvature

Recall (cf. Appendix A), that for a Riemannian manifold (M™, g) the Ricci curvature is a symmetric
(0,2)-tensor on M defined by

Ric(u, ’U) = trg(g(R(" u)v, ))

forallp € M, u,v € T,M, and (M, g) is said to have positive Ricci curvature, if Ric(v, v) > 0 for
allv e TM.

In the following we will only consider results for compact manifolds, since this is our main
focus.

The most basic example of a manifold with a metric of positive Ricci curvature is the sphere
S™. Indeed, the round metric of radius » > 0, denoted by r2. ds%, is the metric induced from the
standard metric on R" ™! when we identify S™ with

{veR™ [ v] =r}.

We will also write S™(r) for (S™, 72 - ds2). If n > 2, then r?ds? has positive Ricci curvature. In
fact, the Ricci tensor is given by

n—1
2
2 ds;,,

Ric =

(3.1.1)

see e.g. [94, 4.2.1]. Further, for any finite group I' C O(n) that acts freely on S™, the quotient
S™ /T with the induced metric of ds? is locally isometric to S™(1), hence it also has positive Ricci
curvature. These spaces are called spherical space forms.

That the round metric has positive Ricci curvature is also a special case of the following result
by Nash.
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Theorem 3.1.1 ([86, Proposition 3.4]). Let G be a compact Lie group and let H C G be a closed
subgroup. Then the homogeneous space G/ H admits a metric of positive Ricci curvature if and only
if m(G/H) is finite. In fact, if m(G/H) is finite, then every biinvariant metric on G induces a
metric of positive Ricci curvature on G/ H.

The sphere S™ is the homogeneous space SO(n+1)/SO(n) (cf. Example B.1.3), hence Theorem
3.1.1 applies. Further applications are the projective spaces

RP™ =0(n+1)/(0(n) x O(1)),
CP" =U(n+1)/(U(n) x U(1)),
HP™ = Sp(n +1)/(Sp(n) x Sp(1)),
QP? = F,/Spin(9).

A generalization of homogeneous spaces are biquotients. For a Lie group G and a closed sub-

group H C G x G consider the action of H on G defined by
(h1,hs) - g = highy !

for g € G and (h1, he) € H. If the action is free, then the quotient, denoted by G/ H, is a smooth
manifold. A special case is where H = H; x Hj for closed subgroups Hy, Hy C G. Then we also
write H1\G/Hj. For H; the trivial group we then recover the definition of a homogeneous space.
Theorem 3.1.1 was extended to biquotients by Schwachhéfer and Tuschmann.

Theorem 3.1.2 ([104, Theorem A]). Let G' be a compact Lie group and let H C G x G be a closed
subgroup so that G| H is a biquotient. Then G ) H admits a metric of positive Ricci curvature if and
only if 71 (G J H) is finite. In fact, if m (G J H) is finite, then every biinvariant metric on G induces
a metric of positive Ricci curvature on G J/H.

If we decrease the degree of symmetry, we arrive at the notion of cohomogeneity one manifolds.
Let G be a compact Lie group. Then a cohomogeneity one manifold for G is a manifold M with
an action of G, so that the orbit space M /G is a 1-dimensional manifold (possibly with boundary).
Grove and Ziller showed, that for cohomogeneity one manifolds a result similar to Theorem 3.1.1
holds.

Theorem 3.1.3 ([53, Theorem A]). Let G be a compact Lie group and let M be a closed cohomogeneity
one manifold for G. Then M admits a G-invariant metric of positive Ricci curvature if and only if

m1(M) is finite.
This theorem was extended by Schwachhoéfer and Tuschmann to quotients by subgroups of G.

Theorem 3.1.4 ([104, Theorem B]). Let G be a compact Lie group and let M be a closed cohomo-
geneity one manifold for G. Let L C G be a subgroup that acts freely on M. Then M /L admits a
Normg (L)-invariant metric of positive Ricci curvature if and only if w1 (M /L) is finite.

Here Normg (L) = {g € G | gLg~! = L} is the normalizer of L.
Applications of Theorem 3.1.3 include Brieskorn manifolds. For ag, . .., a, € N the Brieskorn
manifold B(ag, ..., a,) is the intersection of the zero set of the polynomial

a n
ZOU+...+ZZL

in C"*! with the unit sphere in C" . The space B(ao, . . ., a, ) has the structure of a smooth man-
ifold of dimension 2n — 1, see [19]. The Brieskorn manifolds B(d, 2, . .., 2) are of cohomogeneity
one for the group O(n) x S*, hence Theorem 3.1.3 applies. This class contains the class of Kervaire
spheres, which are certain odd-dimensional homotopy spheres that are exotic if they are of dimen-
sion 2n — 1 and n + 1 is not a power of 2. By taking finite quotients of Kervaire spheres, one can
construct manifolds that are homotopy equivalent, but not diffeomorphic to RP*+1 which then
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also admit actions of cohomogeneity one and hence a metric of positive Ricci curvature, see [104,
Section 7]. Note that this result has also been obtained in the context of Sasakian geometry, see
Theorem 3.1.10 below and subsequent remarks.

It had already been shown previously by Cheeger [28, Example 4], by using the same descrip-
tion as a cohomogeneity one manifold, that all Kervaire spheres admit metrics of positive Ricci
curvature. A further construction of metrics of positive Ricci curvature on Brieskorn manifolds
was achieved by Hernandez [56], who considered the metric on B(ao, ..., a,) induced from the
standard metric on C"*!. His main result is given as follows:

Theorem 3.1.5 ([56, Theorem II1.4]). Let ag,...,a,, > 2. Then there exists an integer N =
N(ao, ..., am), such that, if we set a; = 2 for i > m, the Brieskorn manifold B(ao, ..., Gm+p)
admits a metric of positive Ricci curvature for allp > N.

For example, in this way one obtains metrics of positive Ricci curvature on many exotic spheres
that bound parallelizable manifolds, see [56, Theorem IV.1]

If the action is of higher cohomogeneity, i.e. the quotient M™€/G, where M™8 denotes the
union of the principal orbits, has dimension at least 2, there is no classification as in Theorems
3.1.1 and 3.1.3 known. The following result by Searle and Wilhelm gives a partial answer.

Theorem 3.1.6 ([105, Theorem A)). Let G be a compact and connected Lie group and let (M, g) be a
Riemannian manifold on which G acts isometrically and effectively. If the fundamental group of the
principal orbits is finite and the induced metric on M ™€ /G has Ricci curvature > 1, then M admits
a G-invariant metric of positive Ricci curvature.

This theorem is motivated by a result of Lawson and Yau, see Theorem 3.4.14 below, which
asserts that any closed manifold, on which a non-abelian Lie group acts effectively, admits a metric
of positive scalar curvature.

We now consider metrics of positive Ricci curvature on fiber bundles. It is not hard to see
that the product of two manifolds with metrics of positive Ricci curvature again has positive Ricci
curvature, see Remark A.4. For fiber bundles in general there exist results going back to Poor [96]
and Nash [86], which are consequences of the following more general result:

Theorem 3.1.7 ([47, Theorem 2.7.3], see also [27, Theorem 1.6]). Let w: E — B be a fiber bundle
with fiber F' and structure group G. If F' and B are compact and admit metrics of positive Ricci
curvature, so that the action of G on F is isometric, then E' admits a metric of positive Ricci curvature.

Theorem 3.1.7 provides numerous ways to construct manifolds with metrics of positive Ricci
curvature. Indeed, one can apply it to fiber bundles with fiber F' and structure group G, where
F' is a homogeneous space or a cohomogeneity one manifold for G for which Theorem 3.1.1 or
3.1.3 applies. Of particular interest are linear sphere bundles, which are discussed in more detail
in Section B.2.

In the special case of a principal bundle, all bundles admitting an invariant metric of positive
Ricci curvature were determined by Gilkey, Park and Tuschmann [45], provided that the base
manifold admits a metric of positive Ricci curvature.

Theorem 3.1.8 ([45, Theorem 0.1]). Let G be a compact and connected Lie group and letw: P — B
be a principal bundle, so that B admits a metric of positive Ricci curvature. Then P admits a metric
of positive Ricci curvature if and only if w1 (P) is finite.

Note that the fiber G does not necessarily need to admit a metric of positive Ricci curvature,
e.g. if G is a torus. By considering total spaces of principal torus bundles over simply-connected 4-
manifolds, Corro and Galaz-Garcia [31] constructed metrics of positive Ricci curvature on certain
connected sums of sphere bundles.

Complex geometry can also be used to construct metrics of positive Ricci curvature. As a result
of Yau’s proof of the Calabi conjecture [125], we have the following theorem.

11
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Theorem 3.1.9 ([125]). Let M be a compact Kihler manifold. Then any closed, real (1, 1)-form on
M, whose cohomology class is the first Chern class of M, is the Ricci curvature of a Kdhler metric on
M. In particular, if the first Chern class can be represented by a closed, real (1, 1) form that is positive
definite, then M admits a Kihler metric of positive Ricci curvature.

Applications of Theorem 3.1.9 are given by so-called Fano varieties, which we will consider in
Section 3.5.

Theorem 3.1.9 only applies to manifolds whose real dimension is even. In odd dimensions one
can consider Sasakian geometry, which is a subfield of contact geometry, see e.g. [13]. For Sasakian
manifolds, there exists a notion of positivity, and the analogue of Theorem 3.1.9, proven by Boyer,
Galicki and Nakamaye [17], is given as follows.

Theorem 3.1.10 ([17]). Let M be a compact manifold that admits a positive Sasakian structure. Then
M admits a metric of positive Ricci curvature.

Theorem 3.1.10 has turned out to provide many examples of manifolds with a metric of pos-
itive Ricci curvature, including rational homology spheres in dimension 5 [12, 14], all homotopy
spheres that bound parallelizable manifolds, including all homotopy spheres in dimensions 7 and
11, and homotopy real projective spaces [18], and many odd-dimensional highly-connected man-
ifolds which are homotopy equivalent to a connected sum of products of spheres [15]. Note that
some of these results have independently been obtained via surgery techniques by Wraith [121]
and Crowley-Wraith [33], see Theorem 3.1.12 below.

We also mention the techniques involving surgery, which are the main topic of this thesis. The
process of surgery will be introduced in Section 4.1 and surgery in the context of positive Ricci
curvature will be discussed in Chapter 5.

The surgery techniques for positive Ricci curvature were first introduced by Sha and Yang
[107]. As a result of their surgery theorem they obtained the following manifolds with metrics of
positive Ricci curvature.

Theorem 3.1.11 ([107, Theorem 1]). Letp,q > 2. Then, for any k € N, the manifold #;,(S? x S9)
admits a metric of positive Ricci curvature.

The family of manifolds in Theorem 3.1.11 were the first example of an infinite family of mani-
folds with a metric of positive Ricci curvature in a fixed dimension with arbitrarily large total Betti
number. In particular, this shows that almost all of these manifolds cannot admit a metric of non-
negative sectional curvature by Theorem 3.3.2 below. Theorem 3.1.11 got subsequently extended
by Wraith [124] to connected sums of products of spheres, where the summands may differ from
each other.

A modification of the surgery theorem of Sha and Yang is Theorem 1.2 and was developed by
Wraith [122]. It led to the following applications.

Theorem 3.1.12 ([33],[121]). The following manifolds admit metrics of positive Ricci curvature:
1. Every homotopy sphere that bounds a parallelizable manifold,

2. Up to connected sum with a homotopy sphere every highly connected manifold in dimension
4k — 1, k > 2, which is (2k — 1)-parallelizable if k = 1 mod 4, including all 2-connected
7-manifolds,

3. Up to connected sum with a homotopy sphere every highly connected manifold in dimension
4k + 1, k > 1, that is 2k-parallelizable and has torsion-free homology.

For connected sums, which is a special case of surgery, Perelman [90] constructed a metric of
positive Ricci curvature on any finite connected sum of copies of +C P2. For that he introduced a
gluing technique for metrics of positive Ricci curvature.

12
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Theorem 3.1.13 ([90]). Let M7, M3 be manifolds that admit metrics of positive Ricci curvature.
Assume that there exists an isometry ¢: 0, My — 0.My between compact boundary components
0.M1 C OMy and 0. Mo C OMs. If the second fundamental forms 1, as, satisfy

Io,nr, + ¢ Mo 01, > 0,

then My Uy Mo admits a metric of positive Ricci curvature that coincides with the original metrics
on My and My outside an arbitrarily small neighborhood of the gluing area.

Perelman’s ideas were later adapted by Burdick [21, 22, 23, 24], who introduced the notion
of core metrics and showed that the connected sum of a finite number of manifolds with core
metrics admits a metric with positive Ricci curvature, cf. Theorem 1.1. This approach, which we
will discuss in detail in Section 5.2, combined with the surgery techniques, provides the most
promising approach so far to construct metrics of positive Ricci curvature, since the manifolds
constructed in this way do not need to have any additional structure, like admitting a certain
group action, bundle structure or Kéhler/Sasakian structure.

Finally, we mention two deformation results that allows to deform a metric of non-negative
Ricci or sectional curvature to a metric of positive Ricci curvature. The first one, which is due to
Ehrlich, uses so-called local convex deformations. For a given point these deformations decrease
the Ricci curvatures at this point while increasing the Ricci curvatures on an annulus around
this point. By a repeated application of this deformation, if the manifold has non-negative Ricci
curvature and positive Ricci curvature at one point, one can spread the positivity of the Ricci
curvatures to the whole manifold.

Theorem 3.1.14 ([41]). Let M be a manifold that admits a complete metric of non-negative Ricci
curvature. If there is a point in M at which all Ricci curvatures are positive, then M admits a complete
metric of positive Ricci curvature.

The second result, which is due to Bohm and Wilking, uses the Ricci flow. In fact, it shows
that a metric of non-negative sectional curvature on a closed manifold evolves to a metric with
positive Ricci curvature under the Ricci flow unless the original metric has a flat factor, which can
only be the case if the manifold has an infinite fundamental group.

Theorem 3.1.15 ([9]). Let M be a closed manifold that admits a metric of non-negative sectional
curvature. If 11 (M) is finite, then M admits a metric of positive Ricci curvature.

3.2 Topological Obstructions to Positive Ricci Curvature

The main obstruction to the existence of metrics of positive Ricci curvature is the classical theorem
of Bonnet-Myers.

Theorem 3.2.1 ([85], or [94, Theorem 6.3.3]). A closed manifold that admits a metric of positive Ricci
curvature has finite fundamental group.

This shows that the existence of a metric of positive Ricci curvature has strong implications on
the global structure of the manifold. For example, for any closed manifold M, the product M x S*
does not admit a metric of positive Ricci curvature.

Further, if M has finite, but non-trivial fundamental group, we have the following obstruction
by Chen and Wu [29].

Theorem 3.2.2 ([29, Theorem A]). There exists a constant p(n) > 0 such that for any closed manifold
M™ that admits a metric of positive Ricci curvature, we have

by (M, Z/p) <n—1
for all primes p > p(n).

13
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Any finitely presented group can be realized as the fundamental group of a closed 4-manifold,
in fact one can always find such a manifold that admits a metric satisfying the weaker condition of
positive scalar curvature, see e.g. [25, Corollary 2]. Thus, Theorem 3.2.2 provides numerous mani-
folds that cannot admit a metric of positive Ricci curvature, such as manifolds whose fundamental
group is the product (Z/mZ)™ or the symmetric group .S, for m sufficiently large.

If M is simply-connected, then, besides the known obstructions for metrics with scalar curva-
ture (see Section 3.4), there are no obstructions known. Hence, we can ask the following question.

Question 3.2.3. Let M be a closed, simply-connected manifold that admits a metric of positive
scalar curvature. Does M admit a metric of positive Ricci curvature?

While the answer to Question 3.2.3 is affirmative in dimensions 2 and 3 (the only closed, simply-
connected manifolds in these dimensions are spheres), it is expected to be negative in general. A
counterexample would be given by a proof of the Stolz conjecture: Given a closed string mani-
fold M**, Stolz [110] conjectured, that the so-called Witten genus of M vanishes. Provided the
conjecture holds, Stolz showed that there are counterexamples to Question 3.2.3 in all dimensions
4k = 24 or 4k > 32.

For manifolds with boundary there exist topological obstructions if one additionally imposes
conditions on the boundary. The first such result was proven by Lawson [71] and involves the
mean curvature at the boundary.

Theorem 3.2.4 ([71, Theorem 1]). Let M be a compact connected manifold with non-empty boundary
that admits a metric of positive Ricci curvature. If the mean curvature at the boundary is positive,
then OM is connected and the map w1 (OM) — 71 (M) induced by the inclusion is surjective.

In particular, if a compact manifold M™ admits a metric of positive Ricci curvature and convex
boundary, i.e. the second fundamental form on the boundary is positive definite, then there is
only one boundary component. Further, Wang [118] showed, that the “degree of convexity “of
the boundary affects the topology of the interior. For that, let A be the smallest eigenvalue of the
second fundamental form of M over all points in M. Then define

1
1[(OM)\ 1

A(M™) = X <V° ( )) ,
Wn—1

where w,, 1 is the volume of S”~1(1). The constant A(M™) can be interpreted as a measure of the

convexity of the boundary, which is constructed so that it is invariant under scaling of the metric.

Theorem 3.2.5 ([118, Theorem 1']). Let (M™,g), n > 4, be a compact, connected manifold. Then
there exists a constant 6,, € (0, 1), so that if

1. Ric? > 0,

2. A(M™) >1—6,, and

3 (;;:c_f?;)? (vol(aM))ﬁ >1-4,,

Wn —1
then M is contractible.

For example, if OM is isometric to S™"~!(r) for some r > 0, then the left-hand side of item
(3) in Theorem 3.2.5 equals 1, hence the inequality holds. Then the theorem asserts, that if the
boundary is sufficiently convex, then M must be contractible.

Finally, although these are not obstructions to the existence of metrics of positive Ricci cur-
vature in general, we also discuss limitations of some of the techniques presented in Section 3.1.
First we consider group actions.
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Proposition 3.2.6. There exists a constant C'(n) so that if M is a compact homogeneous space, biquo-
tient or cohomogeneity one manifold of dimension n, then for any field K, we have

S b(M:K) < C(n).

=0

Proof. Since every homogeneous space, and more general, every biquotient admits a metric of non-
negative sectional curvature (cf. [104, Section 2]), the claim follows directly from Theorem 3.3.2
below in this case.

A compact cohomogeneity one manifold M for a compact Lie group G can only be of one of
the following forms, see e.g. [61]:

« M /G = S' and M has the structure of a fiber bundle over S* with fiber G/H for a closed
subgroup H C G, or

« M/G = [-1,1] and M is the union of tubular neighborhoods of the non-principal orbits
G/Ky over £1.

In the first case, M can alternatively be described as the mapping torus

Ty = [0,1] x (G/H)/(O,x) ~ (1, f(z))

of a diffeomorphism f: G/H — G/H. We consider G/H C Ty via G/H = {0} x G/H C T}.

Then we have for ¢ > 0, where we consider cohomology with coefficients in K,
H'(Ty,G/H) = H'(Ty/(G/H)) = H'(G/H x ') /(G/H)) = H'(G/H x S',G/H)
and ' 4
HY(G/H x S',G/H) = H"Y(G/H)
by the long exact sequence of the pair (G/H x S',G/H). Hence, the long exact sequence of the
pair (T, G/H) is given by

- — HY(Ty,G/H) — H'(Ty) — H(G/H) — ...,

zn: bi(Ty) gzn: bi(Ty, G/H) + b(G/H) = Y b;_1(G/H) + b,(G/H) < 2C(n — 1)
=0 =0

=0

for the constant C'(n) in Theorem 3.3.2.
In the second case, there exists a long exact sequence

LHT-"YG/K.) — HY(M) — H'(G/Ky) — H™'-(G/K_) — ...,

where /1 denotes the dimension of K /H and H C G is the isotropy subgroup of the principal
orbits, see e.g. [63]. Hence,

n

S0 < Y bt A(GIK) +hi(G/K.) < 20(n - 1)

=0

Alternatively, Schwachhofer and Tuschmann showed that any closed cohomogeneity one man-
ifold admits a metric of almost non-negative sectional curvature, see [103, Theorem A]. By Theorem
3.3.2 below, which also applies to metrics of almost non-negative sectional curvature, the claim
follows. O
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For applications of Theorem 3.1.9 we have the following limitation.

Proposition 3.2.7 ([35, Theorem 2.1]). In every dimension n there exist only finitely many diffeo-
morphism types of Fano varieties.

For positive Sasakian structures an analogous result does not hold as we will see in Section
3.5. However, besides the fact that Sasakian structures only exist in odd dimensions, there exist
additional obstructions:

Proposition 3.2.8. Let M*"*! be a Sasakian manifold. Then
« The top Stiefel-Whitney class way, 11 (M) vanishes, and
e If M is compact and simply-connected and the Sasakian structure is positive, then M is spin.

Proof. By definition, M admits a unit length vector field, see e.g. [13, Definition-Theorem 6]. By
[82, Proposition 4.4] this implies that wa,,1(M) = 0, showing the first claim. For the second
claim we refer to [17, Proposition 2.6]. O

3.3 Positive Sectional Curvature

In this section we briefly summarize the known results concerning the existence of metrics of
positive sectional curvature on closed manifolds. We refer to [127] for a survey.

Recall (cf. Appendix A), that for a Riemannian manifold (M, ¢) and linearly independent vec-
tors v, w € T, M, p € M, the sectional curvature sec(u, v) is defined by

g(R(u, v)v, u)
9(u, u)g(v,v) = g(u, v)?

sec(u,v) =

and that positivity of sec implies positivity of Ric.

There are strict topological obstructions to the existence of metrics of positive sectional curva-
ture. First, the theorem of Bonnet-Myers (Theorem 3.2.1) can also be applied to metrics of positive
sectional curvature, showing that closed manifolds with a metric of positive sectional curvature
have finite fundamental group. Further obstructions are given as follows:

Theorem 3.3.1 (Synge [112],0r [94, Theorem 6.3.6]). Let M™ be a manifold that admits a metric of
positive sectional c