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Abstract

In the last two decades, many phase-field models for solid-state sintering have
been published. Two groups of models have emerged, with and without the
contribution of rigid body motion. This paper first describes the previously
published phase-field model with an advection term driven by rigid body
motion. The model is then used to investigate the differences between models
with and without rigid body motion in new benchmark geometries exhibiting
markedly different behavior. Sensitivity studies concerning the parameters of
the rigid-body motion model are conducted and their effects on equilibrium
and kinetic properties explored. In particular, it is shown by simulations
that a shrinkage rate independent of system size requires the inclusion of
an advection term. Finally, the reason behind this behavior is explored and
implications for diffusion-only models are drawn.
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1. Introduction

The sintering process has been actively used by humans for millenia to
manufacture products ranging from the humble coffee cup over spark plug
insulators to complex printed electronics. At the same time, it is also a natu-
rally occurring process responsible for, among other things, snow compaction
on mountains and glaciers[1]. Thus a fundamental understanding of the pro-
cess is essential in order to advance both manufacturing as well as predict the
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effect of climate change on glaciers. The sintering process is based on the re-
duction of interface energies, either surfaces or grain boundaries, and is thus
a spontaneous process occurring via diffusive mass transport. Commonly
six different pathways are identified: Volume diffusion from the surface to
the grain boundary, volume diffusion from the bulk to the grain boundary,
diffusion within the grain boundary, diffusion along the surface, vapor trans-
port as well as plastic flow. These transport pathways build the basis for
geometric models of sintering such as the two-particle model[2]. While these
are analytically solvable, they cannot be easily applied to real green bodies[3]
and thus more complex simulation methods need to be employed.

One such method is the phase-field method, which has been recently ap-
plied to the simulation of solid-state sintering in many different contexts.
Within each of these contexts, two approaches in modelling the solid-state
sintering process have been established: On the one hand there is a purely
diffusive approach in which the phase-field model of choice is enhanced by in-
corporating diffusive pathways [4–6]. On the other hand there is an approach
which, in addition to diffusive pathways, incorporates a kind of rigid body
motion (RBM) by including an advective term in the evolution equations [7–
16]. Some investigations [10, 15] include a comparison of simulations with and
without RBM, with the observed difference being a less pronounced shrink-
age if no RBM is included. However, this does not readily imply that RBM
is a necessary ingredient for representing sintering, since a higher shrinkage
at the same time could simply be achieved by an increase in the diffusion
coefficients. This paper proposes a new kind of benchmark geometry, a linear
chain of grains, in which there is a marked difference between diffusion-only
and coupled diffusion-RBM models which cannot be fixed by a simple change
of parameters. First, the classical RBM phase-field model of Wang [8] will
be introduced and a brief overview of the literature based on this model is
presented. Next, the benchmark geometry is detailed and simulations are
conducted, with the parameter of interest being the shrinkage and how it is
affected by the number of particles in the chain as well as the RBM model
parameters. Based on the simulation results conclusions in regards to the ap-
plicability of diffusion-only models and the correct parametrization of RBM
model are drawn.
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2. Model

For simplicity, the phase-field model described by Wang[8] is employed,
as it is often used as a base model for incorporating RBM.

The free energy functional F is written as

F =

∫
f(ρ, ~η) + 0.5

∑
α

βη|∇ηα|2 + 0.5βρ|∇ρ|2dV (1)

f(ρ, ~η) = Aρ2(1− ρ)2

+B
[
ρ2 + 6(1− ρ)

∑
α

(η2
α)− 4(2− ρ)

∑
α

(η3
α) + 3(

∑
α

η2
α)2

]
(2)

with f(ρ, ~η) accounting for the bulk energy of the individual phases and
the remaining terms for the gradient energy associated with interfaces. The
phase-field vector ~η = (ηα, ηβ, . . . , ηN) identifies individual grains and the
density ρ differentiates between the dense grains and the surrounding vac-
uum. The bulk energy f has minima corresponding to the N grains as well
as the surrounding vacuum. A α grain phase is described by the state {ηα =
1, ηβ 6=α = 0, ρ = 1}, and the vacuum phase by the state {ηα = 0∀α, ρ = 0}.
The mass density ρ might be thought of as a relative measure of number
density of atoms and thus 1 − ρ could be considered a relative measure of
vacancy density: Low within the grains and high within the surrounding
vacuum. The bulk energy is a well type of potential and thus the phase-field
profile has infinite extent, however with most of the gradients contained in a
thin region. The dynamics of the system follow based on the gradient flow
of the nonconserved order parameter ~η and the conserved order parameter ρ
with an additional advection term:

η̇α = −L δF
δηα
−∇ · (ηα ~vα) (3)

ρ̇ = ∇ · (D(~η, ρ)∇δF
δρ
− ρ~v) (4)

The gradient flow construction of non-conservative ηα and conservative ρ
ensures that the coupled system of equations minimizes the free energy F by
following the variational derivative δF

δq
= ∂F

∂q
−∇ · ∂F

∂∇q with q describing the
spatial function to be minimized. Note that the advection term is not part
of the free energy minimization and thus in effect plays the role of an outside
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force which could work against the free energy minimization. The factor L
is a mobility controlling how quickly the non-conserved order parameters ηα
relax to equilibrium. The mass diffusivity D is formulated as

D(~η, ρ) = Dvolφ(ρ) +Dvap(1− φ(ρ)) (5)

+Dsurfρ(1− ρ) +Dgb

∑
α

∑
β 6=α

ηαηβ

φ(ρ) = ρ3(10− 15ρ+ 6ρ2) (6)

following Wang in his original description. This incorporates the effects of
diffusion within both the solid and the surrounding vacuum as well as the
enhanced diffusion on the surface and grain boundaries. While Wang gave
no motivation for the choice of interpolation functions, let us consider these
briefly: The volume diffusion is interpolated with φ(ρ) which has the proper-
ties φ(0) = 0 and φ(1) = 1. This ensures that vapor diffusion only occurs in
the vapor (ρ = 0) and volume diffusion only within the grains (ρ = 1). The
same applies for the formulations for surface and grain boundary diffusion,
as these vanish on reaching their respective bulk regions as well.

Following Wang, an effective force density acting on the grain boundary
of a grain α

~dFα = κ
∑
β 6=α

(ρ− ρgb)g(α, β)(∇ηα −∇ηβ) (7)

is postulated. This formulation is motivated by the fact that grain bound-
aries exhibit a lower mass density (ρgb) than the accompanying bulk material
(ρeq = 1) and thus should exert a force on neighboring grains in order to
achieve this density. The difference of phase-field gradients ensures conser-
vation of momentum for a constant ρgb since for a grain boundary αβ, the
grain α will be affected by an equal but opposite force density as its neigh-
boring grain β. The parameter κ is a stiffness relating the force magnitude
to the density deviation within the grain boundary. The filtering function g
constrains the force density to the grain boundary itself:

g(α, β) =

{
1, ηαηβ ≥ c

0, else
(8)

since only in grain boundaries the product ηαηβ can be larger than a c > 0.
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The force density is integrated for each grain in order to determine a resultant
force per grain:

~Fα =

∫
V

~dFαdV (9)

If the force density is asymmetric with respect to the grain boundary center,
there would also be a resultant torque. This torque is not considered in this
paper for two reasons: First, the geometries considered within are always
symmetric with respect to the grain boundary center and hence any resultant
torque can only originate from numerical errors. Second, this resultant torque
does not contribute to densification following Shi et al. [15]; since this paper
is concerned with densification, dropping the torque is reasonable as well.

The resultant force is now assumed to cause an instantaneous movement
of the entire grain as a rigid body with its velocity described by

~vηα =
mt

Vα
~Fα (10)

Vα =

∫
V

ηαdV (11)

and hence the grains are moved towards or away from their grain boundary,
depending on the orientation of ~Fα. The parameter mt is a translational mo-
bility and the volume Vα incorporates the particle size, with larger particles
being moved more slowly than smaller ones at equivalent force.

This velocity is locally interpolated with the phase-field ηα in order to
determine the local velocity for the individual phase-fields, with the sum of
velocities describing the velocity of the mass density field ρ:

~vα(~x) = ~vηαηα(~x) (12)

~v(~x) =
∑
α

~vα(~x) (13)

The interpolation with ηα ensures a smooth transition between grains of
different velocity.

The parameters appearing in all equations are the same as in Wang’s
original paper [8] unless mentioned otherwise. Following the analysis by
Ahmed et al.[17], the free energy parameter set {A = 16, B = 1, βη = 1, βρ =

10} corresponds to values of the surface energy γs = 23
√

3
18

, the grain boundary
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energy γgb = 2
√

3
3

and the interface width W = 2
√

3
3

. The equilibrium dihedral
angle given by ψ = 2 arccos(

γgb
2γs

) is about 150°. The diffusion coefficients are
assumed to be Dsurf = 4, Dgb = 0.4, Dvol = 0.01 and Dvap = 0.001 and
the mobility L = 10. The parameters mt = 500 and κ = 100 control the
relationship between the density deviation within the grain boundary and
the resulting velocity of each grain. The evolution equations for the phase-
fields and the density are evaluated using a standard forward-time-central-
space (FTCS) scheme. Since no details on the discretization parameters were
provided by Wang, a spatial discretization of ∆x = 0.33 was chosen, which
led to a stable timestep size of ∆t = 2.9648025 · 10−5. As in the original
paper, the parameters do not correspond to a specific material system or
thermodynamic conditions. The results are thus generic for material systems
exhibiting similar surface energy and diffusion ratios as the ones employed
here.

A brief review of the similarities and differences in papers concerning
rigid-body motion in sintering is given in the following: In the first paper
on the solid-state sintering problem of Biswas et al. [11] the rigid-body mo-
tion terms are adapted verbatim from Wang’s original paper, as is done in
the present work. In the second paper [12] the approach slightly changed,
specifically the local velocity vα from eq. (12) is no longer interpolated with
the order parameter ηα. Abdeljawad et al. [9] simplified the model by com-
bining the parameters κ and mt as these only appear as products in the
final evolution equation. Additionally the rotational velocity was assumed
to vanish. Dzepina et al. [13] were the first to deviate significantly from

Wang’s original formulation: A pairwise force Fij = ~N(c(t0) − c(t)) is de-

fined, with ~N being the connecting vector between the center of mass of a
particle i and the center of the contact point, and c(t) being the density at
the center of the contact area between grains i and j at the time t. It is
assumed that at time t0 the density or equivalently vacancy concentration
is in equilibrium, such that the force acts as a spring keeping the particles
connected. The force is then connected to the velocity via vi = mt

Vi

∑
j!=i Fij.

Furthermore, the influence of an external pressure is included in the evolution
of the order parameters. Termuhlen et al. [10] adapted the formulation of
Wang verbatim, but improved the implementation such that an order param-
eter reassigning scheme works correctly with the RBM terms. This allowed
them to simulate up to 3000 particles with only 34 different order parame-
ters. In a smaller simulation with 332 particles, they also conducted a set
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of simulation with and without rigid body motion and could show that the
incorporation of rigid-body motion increased the densification rate. Wang
et al. [14] considered the laser sintering process in which not only solid-
state sintering takes place but also local melting and re-solidification. The
solid-liquid phase transformation is included by a temperature dependence of
the free energy density. The advection velocity for the density field includes
both the rigid-body motion as well as the melt flow. The RBM terms are
again taken verbatim from Wang’s original paper. Shi et al. [15] employed
the RBM model verbatim from Wang in a three-dimensional three particle
setup, creating a pore between the three particles whose evolution is related
to densification. In contrast to earlier works, the free energy in terms of
the phase-field was modified to be rather similar to the model proposed by
Steinbach et al. [18], with a modified gradient energy and an obstacle type
potential. Furthermore, the evolution equation of the phase-field is based on
the idea of interface fields, also suggested by Steinbach et al. [18]. Similar
to the present study, Shi et al. investigated the effect RBM has on densifica-
tion. They could show that without RBM densification happens at a slower
rate. Furthermore, they showed that the torque has no effect on densification
and that the parameter κ, once above a certain threshold, has little effect
on densification rate. However, they did not investigate the influence of the
parameter ρgb. Ivannikov et al. [16] deviated significantly from Wang’s orig-
inal formulation. Their formulation is based on the free energy change due
to particle motion, which should achieve a minimum in equilibrium. Enforc-
ing this constraint leads to a displacement ∆s towards the grain boundary
∆s = 2

∫
(ρgbw − c)wdAgb/(

∫
∇η2 − ∇η1)wdAgb for a two-particle system,

with a weighting function w = η1η2 and the differential area of the grain
boundary dAgb. This is translated into an advection velocity via v = ∆s

∆t
with

the timestep ∆t. Note that this formulation does not require specification
of the stiffness κ and mobility mt which were still free parameters within
Wang’s original formulation.

For the behavior of the model in comparison to the classical two-particle
system and its accompanying power laws, the reader is referred to the existing
literature [8, 11, 12].

3. Benchmark geometry and analysis methods

A finite, linear chain of equally-sized grains is generally considered in this
paper. For circular grains Fig. 1 shows a geometric sketch along with the

7



relevant parameters of the number of grains n and the radius r. During
sintering vacancies are annihilated at the grain boundary, which yields both
neck growth and densification. Assuming that each grain boundary acts
independently and absorbs the same amount of vacancies, one would expect
that the densification rate at a certain time is independent of the number
of grain boundaries in the chain. Based on this reasoning, the densification
is taken to be the main parameter of interest in this study, as it should
stay invariant with the number of particles n, i.e. the densification-time
curves should form a single master curve regardless of n. As a measure of
densification the strain ε(t) is used, computed by comparing the distance of
barycenters of the leftmost (x1) and rightmost (xn) particle (cf. Fig. 1)

L(t) = xn(t)− x1(t) (14)

ε(t) =
L(t)− L(0)

L(0)
(15)

=
∆L

L(0)
(16)

with the x-coordinate being the linear direction of the particle chain. The
strain is positive if the chain lengthens and negative if the chain shrinks.
For the simulations with RBM, the individual displacements ui = vi∆t only
due to RBM were also tracked and integrated over time. The length change
calculated purely by these advection steps did not differ much from the length
change calculated based on the barycenter movement. Their time evolution
was highly similar, with the barycenter distance method showing a slightly
larger length change due to including the effects of diffusive transport.

The case of an infinite linear chain has previously been investigated via
geometric models by several authors [19–21]. If one simply applies periodic
boundary conditions to a two-particle geometry with the grains being cut
by the periodic boundary, then the net velocity as calculated by the model
above will always vanish. Thus a direct comparison with these is not possible.
However, a common point in these analyses is whether the geometry can be
considered densifying or not, which leads to different equilibrium shapes.
Specifically, Kellet and Lange[19] showed for an infinite chain of cylinders
that their equilibrium shape could be described with three variables, viz. the
equilibrium dihedral angle ψ, the grain boundary length h and the radius r
of the truncated sphere connecting two grain boundaries. In the densifying
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. . .

r

L(0) = 2(n− 1)r
y

x

x1(t)

xn(t)

L(t)

Figure 1: Finite, linear chain of n particles of radius r. The coordinate xi describes the
barycenter of the ith particle along the chain axis. The length of the chain is represented
by the center-to-center distance of the first and last particle.

case, the non-dimensional equilibrium radius R = r/ri is given by Rd
eq =

( π
π−ψ+sin(ψ)

)1/2 whereas in the non-densifying case it is given by Rnd
eq = 1

cos(ψ/2)
,

with the initial radius ri. In both cases, the non-dimensional grain boundary

length H = h/ri, or twice the neck radius X, is given by H =
π
R

+R(ψ−π+sin(ψ))

(2 cos(ψ/2))
.

Based on the resulting geometry, the shrinkage strain in equilibrium can be
computed via ε = 1−R cos(ψ/2), which yields 0.5466 for ψ = 150°.

Plotting the grain boundary length over the dihedral angle yields Fig. 2,
in which it is easy to see that densifying geometries generally yield longer
grain boundaries than non-densifying ones. Specifically for a dihedral angle of
150° the non-densifying grain boundary length should be about 1.39ri and the
densifying one 3.38ri. It seems reasonable that this result transfers to finite
chains, with some error induced by the end particles taking on a different
shape. Thus if a system is densifying, one would expect much longer grain
boundaries than in a non-densifying system, which allows the classification of
phase-field models according to whether they describe a densifying geometry
or not. In order to calculate the grain boundary length h the grain boundary
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area A is divided by the interface width W . The neck length then follows
as X = h/2. The grain boundary area between the grains described by
order parameters ηα and ηβ can be computed based on the phase field by
A =

∫
4ηαηβdV .

0 20 40 60 80 100 120 140 160
dihedral angle / °

0

1

2

3

4

 h
/r i

 / 
-

densifying
non-densifying

Figure 2: Equilibrium grain boundary length h normalized by the initial grain radius ri
over the equilibrium dihedral angle ψ. For increasing dihedral angle the grain boundary
gets longer, with the densifying geometry generally exhibiting longer grain boundaries
than the non-densifying geometry.

4. Results

4.1. Chain length and densification

The initial radius for the circular particles is chosen to be r = 40 cells,
with at least 20 cells left empty between the particles and the grain bound-
ary. Chain lengths of 2, 4, 6 and 8 particles are considered, with and with-
out RBM. For this study, the RBM parameter set {ρgb, κ} is kept fixed at
{ρgb = 0.9816, κ = 100} as in the original paper by Wang. On the boundary
gradient-zero conditions for all phase-fields ηα and the density ρ are employed.
In order to avoid pairing of particles due to the natural boundary effect of
the first and last particle, the first 104 time steps of 4 · 105 are calculated
without RBM. After the first 4 ·105 steps, corresponding to a simulation time
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of 11.8592, the simulations were analyzed and continued for another 32 · 105

steps in order to start investigating the long-time behavior. The time evolu-
tion of a 4 particle chain which is continued with RBM is shown in Fig. 3.
Both neck growth and shrinkage are observed, with an apparent unshrinkage
being observed from (c) to (d) in the long-term simulation.

(a) initial sharp interface configuration (b) shortly before RBM activation

(c) state at normal end of simulation,
t = 4 · 105∆t

(d) state at long end of simulation,
t = 3.6 · 106∆t

Figure 3: Time evolution of the sum of grain phases
∑
ηα in a 4 particle chain with rigid

body motion activated after t = 104∆t. The ηα = 0.5 contour lines of individual grains
are drawn as red lines. From the start (a) to the activation of RBM (b) no significant
densification is observed, but a neck is formed. At the regular end of the simulation
(c), a significant densification is observed relative to the initial configuration (a). If this
simulation is continued then material apparently flows towards the boundary (d) instead
of the center of the chain.

The length change ∆L of the sample and the absolute value of the strain
|ε(t)| are plotted in Fig. 4. For the purely diffusive simulations the length
change ∆L at any particular time is almost independent of chain length and
thus a variable strain is observed. Incorporating RBM yields increased length
changes with increasing chain size, leading to almost the same strain being
observed at any particular time for more than two particles. This suggests
that the the strain rate, or equivalently densification rate, does not depend
on system size if RBM is included. Note that even with the inclusion of RBM
there is a slight decrease of strain with chain length.
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(b) strain

Figure 4: Length change and absolute value of the strain for particles chains of vari-
ous lengths with and without RBM. Lines with markers indicate simulations with RBM,
whereas only markers indicate simulations without RBM. The label describes how many
particles were in the chain as well as whether RBM was active. The black vertical line
indicates the time at which RBM was activated. The strain is plotted on a semilogarith-
mic scale for better visibility of the differences without RBM. Simulations without RBM
show a length change independent of chain length, whereas simulations with RBM have
an almost linear increase in length change with increasing chain length. Thus the strain
is variable for simulations without RBM and almost constant for those with RBM.

These results suggest that RBM is indeed a necessary ingredient for a
physically sensible phase-field model of sintering, as the kinetic pathway
taken should obviously not depend on the system size. However, the manner
in which the rigid body velocity of each particle is calculated is also of great
import. This is revealed by looking at the long-term simulations, in which
eventually a kind of unshrinkage occurs, shown in Fig. 5, which is accompa-
nied by an increase in free energy. This is due to the phase-specific velocities
vηα no longer being oriented towards the total center of mass, but rather away
from it. Once the velocity points outwards it will transport mass towards
the boundary and unshrinkage can occur. The instantaneous velocity of the

12



leftmost particle for the 4 simulations with RBM is shown in Fig. 6, with a
positive velocity pointing towards the total center of mass and a negative one
away from it. The view is restricted to the dimensionless velocity range of
[−0.1, 0.1] in order to emphasize the occurrence of long periods with negative
velocities; these are the cause behind the observed unshrinkage. The jumps
of the instantaneous velocity are caused by the filtering function g, since new
cells with large force densities are added to the resultant force in an abrupt
manner. Note that this particle velocity is used for the spatial interpolation
(eq. (12)) and hence does not need to be continuous.
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(a) length change
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(b) change of free energy after t = 2000∆t

Figure 5: Long time behavior of simulations with and without RBM. Simulations with
RBM eventually show unphysical unshrinkage. This also causes the free energy to increase
which is inconsistent with the minimization of free energy.

Before proceeding to investigate the reason for the sign change in the
velocity, the influence of particle size is considered shortly. Two additional
particle sizes, 50 and 60 cells, were simulated for chains of length 2, 4, 6
and 8 thus yielding another 8 simulations. Their length changes and strains
are depicted in Fig. 7. The length change is barely affected by the change in
particle size, which in turn causes the densification to decrease as the particle
size is increased. The larger particles tend to experience less unshrinkage in
total. In order to determine whether particle size influences when unshrink-
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Figure 6: The rigid-body velocity of the leftmost particle over time. A positive velocity
point towards the total center of mass and thus causes densification. While it is initially
positive and thus densifying, the velocity becomes negative for extended periods of time
during later stages, thus causing the observed unshrinkage. Since the velocity is calculated
instantaneously based on the resulting force it has discontinuous jumps due to the filtering
function g.

age starts the relative neck radius X/ri, i.e. the neck radius divided by the
initial particle radius, is evaluated at the onset of unshrinkage. The onset
of unshrinkage is assumed to be the global minimum of the length change
curve. Fig. 8 shows the dependence on the particle size as well as the number
of particles in the chain. The relative neck radius at the start of unshrinkage
tends to decrease as the particle size is increased. Furthermore, more parti-
cles in the chain seem to also incentivize unshrinkage, but not in a strictly
monotonic way as the particle size.

In the following section the reason for the sign change in the velocity will
be determined with theoretical considerations as well as sensitivity studies
on the RBM parameters.
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Figure 7: Length change and absolute value of the strain for particles chains of various
lengths and particle sizes with RBM. The length change is barely affected by the particle
size, but this induces a large variation in observed strain.
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Figure 8: The geometrical state, described by the relative neck radius X/ri, at the onset of
unshrinkage for the conducted simulations. Unshrinkage is observed at relatively smaller
necks as particle size is increased, or when the number of particles in the chain is increased.
However, the latter influence is not observed to be monotonic.
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4.2. Shrinkage in equilibrium

The analysis is started by considering the simplest possible case, i.e. a
one-dimensional system with two grains occupying the intervals (−∞, 0] and
[0,∞). The equilibrium phase-fields (vanishing δF

δηα
) are given by

η1(x) = 0.5(1 + tanh(
x

W
)) (17)

η2(x) = 1− η1(x) (18)

with a uniquely determined interface width W and the grain boundary at
position x = 0. The grains are characterized by a constant density of 1
and evaluating the chemical potential µ = δF

δρ
yields zero everywhere. These

results only consider the energy functional itself, without any influence from
RBM. If RBM is now introduced, there will be a net force and hence net
velocity acting on the grains. For the left grain η2, the force density is
described by dF2 = κ(ρ−ρgb)g(η2, η1)(∇η2−∇η1). Since ρ is 1 everywhere in
equilibrium the density difference ρ−ρgb is of positive sign. Thus the direction
of the force is initially given by (∇η2 −∇η1) which points towards the bulk
of η2, i.e. in the negative x direction and away from the grain boundary.
By Newton’s third law, the same but opposite force acts on the grain η1

and hence both grains repel each other. This leads to the negative velocities
observed in Fig. 6 which finally lead to the observed unshrinkage. This
conclusion can also be reached by considering that the force density will only
vanish once ρ = ρgb is achieved within the grain boundary, which necessitates
transporting mass away from the grain boundary. The implication of both
arguments is also that generally the thermodynamic equilibrium state based
on the functional is not the same as the equilibrium state in which the RBM
term vanishes. Hence nontrivial equilibrium states of this kind of model are
generally dynamic with a spatially variable density and chemical potential
field. Only for the case ρgb = 1 the equilibrium state in 1D for both models
overlap and hence a static equilibrium can be reached.

This obviously raises the question of why there is enhanced densification
with RBM in the simulations above, when the simplest case already shows
unshrinkage. The values of the density ρ on the grain boundary are of key
importance and hence the value range is explored in the following: The two
driving forces for a change in ρ are the RBM flux, in equilibrium for a density
of ρgb, as well as the diffusion flux, equilibriated at ρeq = 1 + f(κ) due to
the Gibbs-Thomson effect slightly changing the equilibrium density. Hence
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the density should lie within the interval [ρgb, ρeq] as long as the considered
point is within the grain boundary. The grain boundary itself is attached to
two triple points in the benchmark geometry and the density has to drop to
0 once the triple point is left behind and the pure vacuum is entered. Thus
regions within the triple point can have density values of ρ < ρgb. The triple
point regions need to be considered since the filtering function

g(α, β) =

{
1, ηαηβ ≥ c

0, else
(19)

can include them, and in fact does for the literature value of c = 0.14.
Hence the interval is expanded to [ρc, ρeq], with ρc being the density at which
ηαηβ = c holds. An example of such a profile is plotted in Fig. 9 for the two-
particle simulation with RBM at t = 11.562, which still showed shrinkage.
Only the region between the intersection of the orange curve and the solid
black line contributes to the total force, since values outside of it are filtered
away by g(α, β). This is visualized with the green line which corresponds to
the local force density dF except for the phase-field gradient. The dashed
black line indicates ρgb = 0.9816 and thus we can see that ρc < ρgb; this will
generally hold unless one chooses c very close to 0.25 which is the maximum
of ηαηβ. The parts of the profile above the dashed black line will cause re-
pulsion of the particles, whereas those below it will cause attraction. Thus
if the middle region, the grain boundary, grows long enough the simulation
will have net forces acting in a repelling manner. This causes unshrinkage
if the absolute value of the advection flux induced by these is larger than
the diffusive flux, since the latter always acts in a densifying manner. The
volume of the particles enters the problem here, as the force is translated
into a velocity with ~vηα = mt

Vα
~Fα and thus larger particles are less likely to

show unshrinkage. In total determining the state when unshrinkage starts is
not analytically tractable, as it depends on both time-and-space-dependent
density and phase-field profiles as well as the global state via the particle
volume. If one only considers the velocity magnitude to be the determin-
ing factor for the influence of unshrinkage, one would conclude that larger
particles would enter unshrinkage at later simulations stages. This is due to
the velocity magnitude being directly antiproportional to the particle size.
However, a larger particle size also implies reduced diffusional fluxes which
always act densifying and hence would counteract unshrinkage. As shown
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in the earlier study on particle size, the relative neck radius at the onset of
unshrinkage in fact decreases as particle size increases. This is likely due
to the diffusional fluxes decreasing more than the advective fluxes when the
particle size is increased.
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Figure 9: Density and grain boundary profile along the grain boundary for a two-particle
simulation at t = 11.562. The grain boundary ηgb is defined as 4ηαηβ in order to scale it in
the range of [0, 1]. The horizontal dashed black line indicates the chosen ρgb = 0.9816 and
the horizontal solid black line the threshold value c = 0.14 multiplied by 4, accounting for
the scaling. The force density dF is non-zero only between the intersections of the solid
black line and ηgb, as indicated by the dot-dashed line. Note that the region where ηgb ∼ 1
exhibits only negative force densities.

In order to exclude the possibility of unshrinkage, the force and thus ve-
locity need to be kept attractive. The direction of the force is affected by
the choice of gradient vectors, the regions considered to be a grain boundary
via g(α, β) and the difference ρ − ρgb. Inverting the direction of the gradi-
ent vectors fails directly, as any initial contact between particles will force
them apart and no shrinkage at all is possible. Augmenting this by choosing
the grain boundary region such that ρ > ρgb is guaranteed might fix this
approach, but it requires a precise calibration of the filtering parameter c in
eq. (19) such that ρc ≥ ρgb is true. A much easier calibration is available
for the difference ρ − ρgb: Since the the upper limit of ρ within the grain
boundary is known to large precision via ρeq = 1 + f(κ), the difference can
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Table 1: Measured and theoretical equilibrium values for densifying simulations.

property no RBM ρgb = 0.99 ρgb = 1.00 ρgb = 1.01 theoretical

shrinkage |ε| / - 0.377 0.267 0.368 0.411 0.546
GB length h / ri 2.38 1.92 2.33 2.55 3.38

estimated h′ / ri (ψ = 150°) 3.00 3.42 3.01 2.95 3.38
dihedral angle ψ / ° 159 145 157 160 150

estimated h′ / ri (ψ measured) 3.42 3.23 3.38 3.44 3.38

be forced to be largely of negative sign which will lead to attractive forces.
This reduces the problem to finding the average curvature during the simu-
lation or estimating it prior to the simulation if it is expected not to change
appreciably. More generally, as long as ρgb ≥ ρeq holds the grain boundary
will tend to attract the adjacent grains. Note that ρgb is thus unrelated to
the physical density of the grain boundary, but rather simply a parameter
for ensuring attractive grain boundaries.

In order to verify this procedure without needing to find f(κ) for the given
energy functional, several two particle-simulations with different values of ρgb
are carried out for up to 300 million time steps, corresponding to a simulation
time of roughly 9000. This value was sufficient to reach equilibrium for the
simulations showing monotonic densification behavior. In general, the effect
of the Gibbs-Thomson effect on the bulk density is small. Hence grain bound-
ary density values ρgb ∈ {0.96, 0.97, 0.9816, 0.99, 1.00, 1.01} were chosen for
this test. Furthermore, one simulation without RBM was carried out to long
times as well in order to compare the equilibrium grain boundary lengths
and hence determine which model more closely approximates the densifying
geometry from Kellet and Lange[19]. The results of this simulation study are
shown in Fig. 10. For values of ρgb ≥ 0.99 monotonic behavior in the strain
is observed, suggesting that for ρgb ≥ 0.99 shrinkage is ensured.

In the following, the influence of ρgb on the shrinkage as well as its relation
to the theoretical equilibrium shrinkage is discussed, with the results being
collected in Table 1 to give a concise overview. As can be seen in Fig. 10
different values of ρgb lead to different equilibrium shrinkages, when it should
be a universal value. This difference is due to the proportionality of the force
density to ρ−ρgb and hence different values of ρgb will directly change the equi-
librium state. Shrinkage values, corresponding to −ε, of 0.267, 0.368, 0.411
are observed for RBM simulations with ρgb = 0.99, 1.00, 1.01 respectively, i.e.
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Figure 10: Strain of a two-particle system without RBM and with RBM for various grain
boundary densities ρgb. A positive strain corresponds to a lengthening (unshrinkage) and
a negative strain to a shortening (shrinkage). For ρgb ≥ 0.99 a monotonic behavior is
observed as would be expected, but for values below 0.99 unshrinkage is observed. The
equilibrium strain is observed to depend on ρgb.

a higher ρgb leads to larger shrinkage in equilibrium. The simulation without
RBM achieved a shrinkage value of 0.377, comparable to that of ρgb = 1.00.
However, none of these values come close to expected infinite chain shrinkage
at 0.546, very likely due to the finite length of the chain. The same behavior
and discrepancy is observed for the grain boundary length, which is plotted
in Fig. 11. Since shrinkage and grain boundary length are coupled via mass
conservation, one may assume that these differences are correlated. Hence an
equivalent equilibrium grain boundary length h′, if the infinite chain could
be simulated, can be estimated via h′ = h

εinfinite
εfinite

. For the simulations with

ρgb = {0.99, 1.00, 1.01} the grain boundary lengths {3.42, 3.01, 2.95}ri are
calculated and for the simulation without RBM a length of 3.00ri is calcu-
lated. Thus the simulation which comes closest to the theoretical value of
3.38ri is that for ρgb = 0.99. While it would be an interesting validation to
derive an expression for the equilibrium grain boundary length and shrinkage
for finite chains and compare them with the present results, it is out of the
scope of this paper. However, additional information can be gained from
evaluating the dihedral angle in the simulations, as it enters the theoretical
problem as a key value. The results over time are shown in Fig. 12. There
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Figure 11: Grain boundary length h normalized by the initial grain radius ri over time for
various simulations. Like with the length change, increasing values of ρgb exhibit longer
grain boundaries, as both are correlated via mass conservation. Note that the simulation
without RBM reaches an equilibrium length comparable to that of ρgb = 1 and thus is
still densifying.

is a deviation from the theoretical value even in equilibrium, but of similar
magnitude as others’ results[6] for a dihedral angle of 150°. It can be ob-
served that as ρgb is decreased, the dihedral angle is reduced. Employing
the earlier estimation of h′ with the observed dihedral angle yields the values
h′ = {3.23, 3.38, 3.44}ri for RBM simulations with ρgb = {0.99, 1.00, 1.01}
respectively and h′ = 3.42ri for no RBM. In this case the simulation with
ρgb = 1 matches the infinite chain result rather well. Hence some of the
earlier discrepancy is likely due to a different dihedral angle obtained in the
simulation compared to theory. The remaining difference in the shrinkage
should thus mainly be due to the finite chain length.

In any case, all of the simulations with monotonic shrinkage behavior,
including the one without RBM, show grain boundary lengths somewhat
comparable to the theoretical result for the densifying geometry. Thus both
models approximate the densifying geometry, with the RBM model only
doing so if ρgb ≥ 0.99 holds for the present setup.
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Figure 12: Dihedral angle of all densifying simulations as well as the theoretical value.
There is a discrepancy for all simulations, with the grain boundary density influencing the
dihedral angle. Note that this measurement is done on the field-resolved data and hence
has less points than the previous plots which were calculated during the simulations.

5. Discussion

The previously shown simulation results and analytical considerations
clearly show that some kind of advection term is necessary in order for
phase-field models to exhibit sensible shrinkage behavior with more than
two particles. The physical background of this necessity is explored in the
following: Consider an atom or a vacancy located within an inner particle of
the chain and its driving forces for migration. The closer the atom is to a
particular neck, the more likely it is to migrate towards it, with an atom per-
fectly between two necks not having any preferential direction. This implies
a symmetry of the mass flux towards both grain boundaries of an inner par-
ticle and thus no net movement of the particle center. For the outer particles
of the chain there is no such symmetry and thus they account for most of the
motion observed in diffusion-only models. In practice the motion of the outer
particles causes a slight asymmetry for the inner particles, but as the simula-
tion results have shown, this is negligible on diffusive timescales. Adding an
advection term whose velocity points on average to the total center of mass
will induce a preferential direction for the mass flux towards the total center
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of mass of the system. If the magnitude of this mass flux now depends on how
many grain boundaries are crossed, then a velocity profile leading to a con-
stant shrinkage independent of chain length can be established. In effect the
velocity field removes vacancies from the grain boundaries and neck regions
and adds them on the opposing free surfaces, thereby annihilating vacan-
cies within the grain boundaries and generating them again on the surface.
While this effect might be mimicked by a local source term, this would not
lead to a preferential direction for the mass flux and thus is unlikely to show
shrinkage independent of chain length. Note that the advection term does
not have to be based on a rigid-body motion model, it could also originate
from solving a momentum transport equation. Hence it would be interesting
to verify whether phase-field models for liquid-phase and viscous sintering
[23, 24] naturally include the proper scaling with chain length. These mod-
els do not introduce additional parameters such as ρgb or include external
forces, but rather can be derived thermodynamically consistently as done by
[24] which ensures that the free energy is indeed minimized.

The second part of this paper elucidated the reasons behind the observed
unshrinkage in simulations if they are continued long enough. It was found
that ρgb is a parameter of key importance, as it controls whether grain bound-
aries act to repulse or attract the grains they are attached to. Specifically,
any value below ρeq will force the grain boundaries to repulse the grains,
but this may be balanced by the attractive force of the triple points. This
balancing is very likely the reason why the unshrinkage phenomenon has not
been observed previously in phase-field simulations, as the state at which
the balance tips towards repulsion occurs only late into the sintering process.
Based on the study on variation of ρgb, choosing ρgb = ρeq is likely to yield
the results closest to analytical theories of shrinkage. In general ρeq is a func-
tion of simulation state via the Gibbs-Thomson effect and hence should be
estimated during the simulation run if the curvature is expected to change
appreciably.

Finally, do all phase-field simulations of sintering, regardless of stage, re-
quire the inclusion of an advection term? Certainly those that start from
green bodies do, as the majority of densification still needs to occur without
any kind of size dependence. However, in the final stage only isolated pores
remain and often these include gases which exert a pressure on the surround-
ing grain structure. Assuming that these pores have reached an equilibrium
pressure-size state, then the generation of vacancies on their surface would
disturb the equilibrium and hence be energetically unfavorable. Hence if
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the simulation is only concerned with pressurized, isolated pores, such as in
[25, 26], then including an advection term is unnecessary.

6. Summary and conclusion

In this work the necessity of including an advection term in phase-field
models of sintering was shown by simulation. Specifically a shrinkage rate
independent of system size was only observed for models with an advection
term. Hence, in order to reproduce the correct kinetic scaling of sintering an
advection term needs to be included. Furthermore, a sensitivity study on the
grain boundary density ρgb showed that its choice is critical: If ρgb is chosen
below the equilibrium grain density ρeq, then unshrinkage can occur. The
most practical choice of ρgb is ρeq, as then the equilibrium states of the energy
functional and the RBM model are very close and ρeq can be calculated based
on the energy functional. In the study it could also be shown that regardless
of whether RBM is included, simulations will approximate the equilibrium
densifying geometries of analytical models[19].

Future investigations into calculating velocity fields for solid-state sinter-
ing should verify the following points:

� the thermodynamic equilibrium state is unmodified by the addition of
the velocity field

� shrinkage is independent of system size

Given the present paper’s investigation, the latter point is likely fulfilled
by any model including RBM driven by grain boundary density difference.
However, these models are also plagued by the first point in that the state
in which the RBM vanishes does not in general correspond to the thermo-
dynamic equilibrium state. It could also be shown that this difference in
equilibrium states changes the dihedral angle, which now depends on ρgb .
Models for liquid-phase and viscous sintering such as [23, 24], which are based
on continuity equations, should not suffer from the first point, but whether
they display constant shrinkage rates independent of system size needs to be
investigated. These models would need to be extended to incorporate the
effect of vacancy generation and annihilation at grain boundaries. A further
point of interest would be including the effect of the grain boundary directly
in the energy functional as done in [6]. This could independently solve the
problem of unshrinkage since the thermodynamic equilibrium state is moved
closer to that of the RBM model.
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