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Abstract

Augmented Reality-based Assistance and
Automated Planning for Neurosurgical Interventions

Neurosurgical interventions are very challenging due to the delicate structures of the hu-
man brain. The complete brain is composed of tissue which must be damaged as little as
possible. Unfortunately, this is not always possible, as many surgeries require penetration
of tissue to reach a target area. Examples include biopsies, the ventricular puncture, deep
brain stimulation and tumour ablation. It is especially important to prevent high-risk areas
from being injured, as this can lead directly to major neurological impairments, e.g. loss
of speech. Optimized surgical planning can prevent high-risk areas from being injured in
order to prevent neurological damage.

In this work, novel methods are presented that support the complete surgical workflow by
performing fully automated surgical planning and subsequent scene registration to provide
intraoperative assistance to the surgeon based on augmented reality (AR).

In a first step, the patient’s image data is segmented to create patient models that accu-
rately represent the anatomy. A segmentation accuracy of 98% (F1-score) is reached. The
system uses statistical shape models in a consecutive stage to determine the catheter place-
ment trajectories for the left and right ventricles completely autonomously. The Kocher’s
point is found in 98.4% of cases. The correct target point inside the ventricular system is
obtained in 95.4%. This leads to an overall rate of correctly planned trajectories of 93.9%.
This planning is enhanced by a patient specific risk map-based entry point adjustment to
find the optimal risk-reduced path to a target.

Furthermore, methods are presented that enable robust and accurate tracking of the patient
during a surgical procedure. Possible markers for robust patient tracking were investi-
gated. As a result, Vuforia markers have been selected as they best meet the requirements.
In addition, infrared marker tracking was implemented on the AR-glasses (HoloLens) to
address the shortcomings of the relatively large and not freely usable two-dimensional
Vuforia markers. The surgical requirements for sterilisability and high tracking accuracy
are met by the infrared markers.

A marker system is presented that supports the transition from the non-sterile to the ster-
ile surgical phase. The remounting accuracy is 0.18 ± 0.06 mm. Vuforia and infrared
markers were attached to the marker system. Four registration methods are presented to
register the marker system to the patient. Three of the methods support a user in manual
registration to match the patient models as closely as possible to the real patient. A game
controller, a pointer or gestures can be used to do so. The last method uses a multi-level
surface matching approach to perform the registration automatically. The registration
method using the game controller achieves the highest accuracy with a value of 2.71 ±
1.18 mm.
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The generated patient models and the determined puncture trajectories are used to assist
the surgeon intraoperatively by visualizing these hidden structures. The proposed methods
increase the puncture accuracy of linear trajectories in relation to the optimal entry and
target points. This can lead to a lower penetration rate of high-risk areas inside the brain
and to a better outcome for the patient.

First, experiments after the standard of care were conducted. A mean error of 6.6 ± 3.1
mm and a success rate of 72.7% was achieved. This corresponds to the values commu-
nicated in the state of the art. In the first stage an AR guidance is provided to the user
to assist during neurosurgical interventions. The mean error was determined to be 4.8 ±
2.5 mm and a 9 percent better success rate of 81.7% could be achieved. In a follow-up
stage, the challenge of a well-chosen initial puncture angle was addressed by introducing
a catheter navigation aid in combination with the AR system. The mean error was im-
proved to 3.1 ± 1.8 mm and a success rate of 98% was reached. Still the challenge of a
manual manipulation remained. To provide a more stable manipulation in space, the nav-
igation aid was mounted on a robot that was telemanipulated with a game controller. The
controller was used to set the correct angle. A mean error of 1.9 ± 1.2 mm was reached.
All catheters could be placed correctly. In the successive stages, a higher accuracy and
precision were achieved in each case.
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Zusammenfassung

Augmented Reality-based Assistance and
Automated Planning for Neurosurgical Interventions

Neurochirurgische Eingriffe sind aufgrund der empfindlichen Strukturen des menschli-
chen Gehirns eine große Herausforderung. Das gesamte Gehirn besteht aus sensiblem
Gewebe, das so wenig wie möglich beeinträchtigt werden sollte. Dennoch ist dies nicht
immer möglich, da es bei vielen Operation nötig ist, durch Gewebe hindurch zum Ziel-
gebiet zu gelangen. Beispiele sind Biopsien, die Ventrikelpunktion, tiefe Hirnstimulation
und Tumorentfernungen. Dabei muss speziell verhindert werden, dass Hochrisikobereiche
verletzt werden, da dies zu erheblichen neurologischen Beeinträchtigungen führen kann,
z.B. dem Verlust der Sprachfähigkeit. Eine optimierte Planung der Operation kann hier-
bei verhindern, dass Hochrisikobereiche verletzt werden, um so neurologische Schäden
zu verhindern.

In dieser Arbeit wird ein neuartiges System vorgestellt, das den kompletten chirurgischen
Arbeitsablauf abdeckt, indem eine vollautomatische Operationsplanung und anschließen-
de Szenenregistrierung ausgeführt wird, um dem Chirurgen eine intraoperative Assistenz
auf Basis von Augmented Reality (AR) zu ermöglichen.

In einem ersten Schritt werden die Bilddaten des Patienten segmentiert, um Patientenmo-
delle zu erstellen, die die Anatomie des zu Operierenden möglichst exakt darstellen. Die
vorgestellten Methoden erreichen eine Segmentierungsgenauigkeit von 98% (F1-Score).
In einem weiteren Schritt verwendet das System Statistical Shape Models, um die Punk-
tionstrajektorie für den linken und rechten Ventrikel automatisiert zu bestimmen. Der Ko-
cher Punkt wird in 98,4% der Fälle gefunden. Der korrekte Zielpunkt innerhalb des Ven-
trikelsystems wird in 95,4% bestimmt. Dies führt insgesamt zu 93,9% korrekt geplanten
Trajektorien. Diese Planung wird durch eine patientenspezifische, Risikokarten-basierte
Eintrittspunktbestimmung erweitert, um den optimalen risikoreduzierten Pfad für einen
Patienten zu finden.

In dieser Arbeit werden Methoden vorgestellt, die ein robustes und akkurates Tracking des
Patienten während eines chirurgischen Eingriffs ermöglichen. Verschiedene Marker für
eine robuste Patientenverfolgung wurden untersucht. Als Ergebnis sind Vuforia Marker
ausgewählt worden, da diese die Anforderungen am besten abdecken.

Zusätzlich wurde ein Infrarot-Marker Tracking auf der zur Unterstützung verwendeten
AR-Brille (HoloLens) implementiert, um die Unzulänglichkeiten der relativ großen und
nicht frei nutzbaren zwei-dimensionalen Vuforia Marker zu adressieren. Die chirurgi-
schen Anforderungen an Sterilisierbarkeit und eine hohe Trackinggenauigkeit werden
durch die Infrarot Marker erfüllt. Es wird ein Markersystem vorgestellt, das den Prozess-
wechsel von der unsterilen zur sterilen Operationsphase unterstützt. Die Wiederholgenau-
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igkeit bei erneuter Montage beträgt 0,18 ± 0,06 mm. Das Markersystem kann Vuforia-
und Infrarotmarker aufnehmen.

Es werden vier Registrierungsmethoden vorgestellt, um das Markersystem auf den Pati-
enten zu registrieren. Drei der Verfahren unterstützen einen Benutzer bei der manuellen
Registrierung, um die Patientenmodelle möglichst exakt mit dem realen Patienten in Ein-
klang zu bringen. Verwendet werden kann ein Spielecontroller, ein Pointer oder Gesten.
Das letzte Verfahren verwendet einen mehrstufigen surface matching Ansatz, um die Re-
gistrierung automatisiert auszuführen. Die Registrierungsmethode mithilfe des Spielecon-
trollers erreicht die höchste Genauigkeit mit einem Wert von 2,71 ± 1,18 mm.

Die erstellten Patientenmodelle und die ermittelten Punktionstrajektorien werden verwen-
det, um den Chirurgen intraoperativ durch Visualisierung dieser verborgenen Strukturen
zu unterstützen. Die vorgestellten Methoden erhöhen die Punktionsgenauigkeit von linea-
ren Trajektorien in Bezug auf die optimalen Eintritts- und Zielpunkte. Dies kann zu einer
geringeren Penetrationsrate von Hochrisikobereichen im Gehirn und zu einem besseren
Ergebnis für den Patienten führen.

Zunächst wurden Experimente nach dem Behandlungsstandard durchgeführt. Dabei wur-
de ein mittlerer Fehler von 6,6 ± 3,1 mm und eine Erfolgsrate von 72,7% festgestellt.
Diese Werte liegen im Bereich, der im Stand der Forschung kommuniziert wird. In der
ersten Stufe wird dem Anwender eine virtuelle Führung zur Unterstützung bei neurochir-
urgischen Eingriffen zur Verfügung gestellt. Dabei wurde ein mittlerer Fehler von 4,8
± 2,5 mm und eine um neun Prozent bessere Erfolgsrate von 81,7% ermittelt. In einer
aufbauenden Stufe wurde die Herausforderung eines gut gewählten initialen Punktions-
winkels durch die Einführung einer Katheternavigationshilfe in Kombination mit dem
AR-System adressiert. Der mittlere Fehler konnte auf 3,1 ± 1,8 mm gesenkt werden und
eine Erfolgsrate von 98% wurde erreicht. Dennoch blieb die Herausforderung einer manu-
ellen Manipulation bestehen. Um eine stabilere Manipulation im Raum zu ermöglichen,
wurde die Navigationshilfe an einen Roboter montiert, der mit einem Spielecontroller te-
lemanipuliert werden kann. Der Controller wurde verwendet, um den korrekten Winkel
einzustellen. Es wurde ein mittlerer Fehler von 1,9 ± 1,2 mm erreicht. Alle Katheter konn-
ten korrekt platziert werden. In den darauffolgenden Schritten wurde jeweils eine höhere
Genauigkeit und Präzision erreicht.
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1. Introduction

Supporting a surgeon during a neurosurgical procedure using augmented reality (AR) de-
mands various high requirements from the assistance system, particularly on the accuracy
of the registration and execution of the procedure, which is often in the millimeter range.
In addition, there is the problem that the physician often cannot see inside the patient’s
head during certain procedures like biopsies, ventricular punctures and deep brain stimu-
lation, which makes these types of interventions particularly challenging. Therefore, one
of the most important factors is an accurate registration of the patient to the AR system,
so that holograms can be displayed at the correct position. It is desirable to automate
the operation planning so that a surgeon can focus on the execution of the procedure and
patient counseling. In a first step anatomical structures of interest are determined that
can then be used for automated determination of a valid path through the brain. At the
moment these are mainly linear paths, due to a lack of flexible instruments that can per-
form non-linear paths. After the operation planning and an accurate scene registration,
intraoperative assistance can support a surgeon during demanding procedures.

1.1. Research Questions

In this work an automated operation planning for neurosurgical interventions is presented,
as well as accurate patient registration and tracking methods to enable an intraoperative
assistance to support a surgeon using augmented reality on the example of the ventricular
puncture.

The structure of this thesis is depicted in Figure 1.1.

Figure 1.1.: The three pillars of this work to enable AR supported interventions.
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1. Introduction

The following research questions arise:

• How can suitable medical knowledge be automatically retrieved and effec-
tively applied to plan linear paths for neurosurgical interventions like ventricu-
lostomies and biopsies?
Planning a neurosurgical intervention can be time-consuming and prone to errors
if done manually. This time could be used for a neurosurgeon to prepare for the
operation or take care of the patient. Annotation of image data, e.g. a CT scan of
a patient is very time consuming. Automated methods can be used to extract the
important structures from patient image data with a higher level of robustness. Es-
pecially in emergency situations, this is time critical. Therefore, the time needed to
execute all necessary methods must be minimized. The automated determination of
puncture trajectories could help to find the optimal paths to a target with minimal
risk.

A first goal of this thesis is to automatically derive the patient models and the op-
timal puncture trajectory for ventriculostomies based on medical knowledge. For
biopsies, a risk-based trajectory planner is investigated that can help a neurosurgeon
to derive the optimal path to perform a tumor biopsy. Methods are being investi-
gated to automate these tasks to minimize the effort required of manually performed
tasks.

• Which algorithmic methods should be applied to perform an accurate neuro-
surgical scene registration?
Augmented reality could support a surgeon during demanding neurosurgical inter-
ventions. The most important aspect hereby is the correct alignment of the virtual
holograms of the augmented reality scene with the real world. The scene is thereby
constantly changing, as the wearer of the augmented reality device or head mounted
display is normally constantly moving, in the mm- to m-range. The objects or per-
sons in the scene can also change their positions. This could be the patient, operat-
ing room staff or neurosurgical instruments. All entities that are processed within
the augmented reality scene need to be constantly tracked as well. It is thereby espe-
cially challenging to track the patient in the operating room because in the standard
of care the patient is fully covered with sterile drape to minimize the risk of an
infection. Only the operation situs remains not covered.

In this thesis, it will be investigated, which methods are needed to perform a robust
and accurate scene registration for neurosurgical applications of AR. All possible
error sources need to be identified and minimized.

• How can these methods and the results of the automated operation planning
be used to implement an augmented reality-based intraoperative assistance?

The presentation of the holographic visualization in neurosurgical interventions has
presumably a high influence on the performance of the system. The system consists
of hard- and software components that need to be perfectly integrated to enable a
usable augmented reality system. A drawback when using AR guidance to puncture
the ventricular system or perform a biopsy is that it needs to be performed manually,
which could be the largest error source of the system. An additional important
aspect is the acceptance of the system from neurosurgeons who are the target group

2



1.2. Contributions

to use such a system. It is therefore important to be in constant exchange with
medical experts to meet their clinical requirements and match the surgical workflow.

It will be investigated how a virtual scene needs to be designed to reach a good
acceptance of the system and a better outcome for the patient. Further it will be
examined how the system can be advanced to overcome errors from the manual
placement of the catheter.

From these three research questions, a key question can be derived:
Can augmented reality help to increase the accuracy of ventriculostomies and biop-
sies?

1.2. Contributions

This work addresses the above described research questions and presents novel and ro-
bust methods to automate tasks for operation planning and scene registration to enable
intraoperative assistance for neurosurgical interventions.

The main contributions of this work are listed below and are further examined in this
thesis:

• Automated Operation Planning: Automated segmentation of the ventricular
system, the skin and the skull.
To perform an automated operation planning, vital structures of the human head
need to be segmented in a first step as reference marks for further algorithms. For
the ventriculostomy these are the skin, the skull and the ventricular system. In this
work methods are presented for automated segmentation of these structures [113].

• Automated Operation Planning: Automated determination of the puncture
path on the example of the ventriculostomy.
For safe execution of the ventriculostomy a path must be determined based on land-
marks as in the standard of care. Therefore, two points on every side must be de-
termined: the Kocher’s point and the target point inside the ventricular system. The
insertion path is defined between these two points. This work presents an approach
to plan the path for the ventricular puncture based on medical knowledge [119].

• Automated Operation Planning: Risk-based path planning.
In the standard of care no patient-specific inner structures of the human brain are
considered. The Kocher’s point is chosen in a way that as little damage as possible
is done to vital structures of the human brain, it is based on experience values.
However, the best way would be a patient specific approach by using a personalized
risk structure map representing high-risk values of the brain. We present methods
to use extracted risk maps from different image modalities to provide a puncture
path with minimized risk [118] [117].

• Scene Registration: Implementation of an infrared marker tracking on the
HoloLens.
With the release of the research mode of the HoloLens (Microsoft, USA) it was
made possible to access all sensor streams and to implement a tracking of infrared
marker targets. Two dimensional markers have several disadvantages. For example
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they are not sterilizable and are often large because of their quadratic form. In this
work we present a tracking algorithm that is able to track infrared spheres directly
with the HoloLens, even when moving [116]

• Scene Registration: Development of a marker system.
During neurosurgical procedures the patient is normally fully covered with sterile
sheets. Only the OP situs is visible through a recess in the sheet. This makes it hard
to track a patient directly, e.g. through facial landmarks. To address this problem a
custom build marker system is developed that is mounted on the patient’s forehead
[114]. It can be mounted non-invasively by using a formable mass that hardens out
and an elastic band to hold it in place. Different markers and their attachments have
been evaluated in regard to tracking accuracy and performance. The marker system
can be customized to hold Vuforia, infrared or Aruco markers. The marker tracking
methods Aruco and AprilTags were evaluated in regard to their tracking accuracy
[112].

• Scene Registration: Marker to patient registration.
To enable a high-quality hologram visualization for intraoperative assistance an ac-
curate and precise marker to patient registration needs to be performed. We present
four approaches to perform manual and automated registration. The manual regis-
tration can be done using a game controller, a pointer or hand and head gestures.
The automated registration is done via surface matching.

• Intraoperative Assistance: Augmented reality-guided ventricular puncture.
In the basic variant of the augmented reality support, the holograms are offered
as a visual assistance to the surgeon to help them puncture the ventricular system
with higher accuracy and precision [190]. A surgeon can choose from different
visualization templates to superimpose the ventricular system, the skin and the skull
over the real patient anatomy. The automatically derived optimal puncture path is
also visualized to the surgeon for the best possible catheter placement [119].

• Intraoperative Assistance: Navigated ventricular puncture.
In the second stage of the assistance a handheld catheter navigation aid is used to
enable enhanced augmented reality support to the surgeon by visualizing the correct
insertion angle.

• Intraoperative Assistance: Robot-guided intervention.
The final stage utilizes a robot to control the catheter navigation aid to provide a
more stable angle visualization.

1.3. Outline

The following thesis is structured in eight chapters. These chapters include the following:

• Chapter 2 gives an overview of the medical fundamentals important for this work.
Imaging modalities as well as relevant surgical procedures are presented.

• Chapter 3 gives an overview of the related work regarding augmented reality in
medicine and systems that are comparable to the proposed system of this work.
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• Chapter 4 describes methods to enable automated operation planning. Algorithms
for automated segmentation of vital structures are presented that are used for visu-
alization and to perform a automatic path determination on the basis of statistical
shape models. As an extension to this, a path determination based on high-risk
structures of the human brain is presented.

• Chapter 5 investigates methods for scene registration to properly track the patient.
The marker system is registered to the patient to superimpose the holograms at the
correct position.

• Chapter 6 describes the three assistive stages of the AR guidance.

• Chapter 7 discusses the presented methods and the research questions.

• Chapter 8 gives a summary of the presented work and provides an outlook of future
work and challenges.
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2. Medical Fundamentals

2.1. Imaging Modalities

The diagnostic imaging of choice regarding the brain is Magnetic Resonance Imaging
(MRI), which offers better contrast between gray and white matter than computed tomog-
raphy (CT). CT scans provide, with the help of contrast agents, a clear visual differentia-
tion of the surface of the brain, ventricles, tumors and blood vessels [78].

A voxel describes a cuboid image region, defined by the height, width, and depth. The
resulting image of a MRI or a CT consists of a multitude of voxels arranged in layers. The
voxel domain is defined by Equation 2.1, wherein x, y and z are the position of a voxel
pj .

pj = {(x, y, z)⊺ ∈ [0,width]× [0, height]× [0, depth] ⊂ R3 (2.1)

2.1.1. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) makes use of the concept of nuclear magnetic reso-
nance (NRM). It allows physicians to image the insides of the body without, in contrast
to CT, using ionizing radiation. An example of a modern MRI scanner of the university
hospital in Guenzburg is shown in Figure 2.1. Hydrogen nuclei are spinning, which makes
them magnetic around their axis of rotation. Within tissue, the spinning axes of hydrogen
nuclei are randomly aligned. Upon application of a strong magnetic field, the spin axes
have the tendency to align, oscillating around the direction of the field. This oscillation
emits radio frequency (RF) waves but decreases as the spin axis aligns closer to the direc-
tion of the field. To force the spin axis out of its stable position (excitation), an RF pulse
is applied. After the pulse, the spin axis slowly returns to its previous alignment with the
magnetic field (relaxation). During this process, the nuclei emit RF waves. From this
signal, MRI images are generated. The speed of the relaxation is tissue dependent and is
slower for large molecules or dense tissue. This results in contrasts between tissues in the
resulting MR images [144].

The sequence of RF pulses can be varied to create different types of images. Most com-
monly T1-weighted and T2-weighted sequences are recorded. Cerebrospinal fluid (CSF)
appears dark on T1 and bright on T2-weighted images. They are sometimes used with
the contrast agent Gadolinium [144]. FLAIR (Fluid Attenuated Inversion Recovery) se-
quence highlights abnormalities, normal CSF and white matter remain dark [187]. SWI
(Susceptibility Weighted Imaging) is a sensitive method to show the amount of iron in the
brain and can help to discover multiple sclerosis, stroke, trauma, vascular malformations
and tumors [80]. A brain mask highlights all brain tissue regions. This can either be done
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by a medical expert or by a machine learning algorithm that evaluates MRI images [107].
Functional Magnetic Resonance Imaging (fMRI) is suited to visualize neuronal activity
in the brain [144]. Diffusion Tensor imaging (DTI) provides a good visualization of nerve
fiber bundles [125].

Figure 2.1.: Magnetic resonance imaging scanner (Magnetoma Vida 3 Tesla, Siemens
Healthineers, Erlangen) in the university hospital Guenzburg

2.1.2. Computed Tomography

X-ray computed tomography (CT) was the first of the modern slice-imaging modalities,
introduced in 1972 by Sir Godfrey Newbold Hounsfield and Allan McLeod Cormack,
who received the Nobel prize in medicine in 1979 for their invention. Since then, the
technology has been improved, especially with the introduction of spiral scanning, which
provides true volume imaging instead of slice-by-slice imaging. The invention of array
detector technology in the 1990s allows imaging of the whole body in 5 to 20s while
providing sub-millimeter isotropic resolution. CT is the standard for fast 3D diagnostics
of trauma patients, where it cannot be clarified before the measurement, whether a MRI
may be performed at all [95, 29]. An example of a modern CT scanner located at the
university hospital in Guenzburg is shown in Figure 2.2.

The values of all voxels pj of a CT scan describe the mean attenuation of the scanned
tissue. The Hounsfield scale maps corresponding tissue types onto a scale representing
Hounsfield units (HU). Example tissue values are visualized in Table 2.1.

2.2. Relevant Types of Neurosurgical Interventions

In the following the relevant types of neurosurgical interventions are presented that are
used as clinical scenarios in this work.
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Figure 2.2.: Computed tomography scanner (Revolution CT, GE Healthcare, Great
Britain) in the university hospital Guenzburg.

Table 2.1.: Hounsfield unit scale with mapped tissue types.
Tissue HU

Air -1000
Lung -600 to -400
Fat -100 to -60

Water 0-14
CSF 0-14

Muscle 10 to 40
White matter 20 to 30

Blood 30 to 45
Grey matter 37 to 45
Soft tissue 40 to 80

Bone 400 to 3000

2.2.1. Ventriculostomy

The ventricular puncture or ventriculostomy is a standard procedure in neurosurgery. In
Germany 25’000 ventriculostomies are performed each year as a standalone operation
or as part of a more complex intervention. The ventricular system consists of multiple
ventricles, the two large lateral ventricles, the third and fourth ventricle, which are all
interconnected. The ventricular system is also connected to the spinal cord and the sub-
arachnoid space. A schematic drawing is visualized in Figure 2.3 a. It lies approximately
4-5 cm deep in the center of the brain and has an elongated shape. The shape of the
ventricles can vary substantially, but normally they are 1-2 cm wide and symmetric. Due
to pathologies, this can differ. The ventricular puncture is done when there is an over-
pressure inside (Figure 2.3 b) the ventricular system or for the diagnosis of cerebrospinal
fluid.
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(a) (b)

(c)

Figure 2.3.: a) Non pathological ventricular system. b) Hydrocephalus, overpressure in
the ventricular system. The ventricles are widened. c) Ventriculostomy.

The ventricular puncture is often indicated in emergency situations, e.g. after an accident
and if a person suffers from a traumatic brain injury or intracranial hemorrhage. The
procedure can also become necessary after a stroke. When a patient is delivered to the
hospital a mandatory head CT scan is made, if an injury to the brain is suspected. When
widened ventricles are detected, a ventriculostomy is performed as fast as possible. The
longer the pressure is induced to the brain, the more damage is dealt to it. High pressure
leads to severe damage to the brain and can lead to death.

The goal is to place a neurosurgical catheter inside the ventricular system to release the
overpressure from the ventricle (Figure 2.3 c). Ventricular puncture is often performed
using freehand technique. The neurosurgeon orients according to anatomical landmarks,
like the ears and the nose, because the patient is fully covered for sterility. The alternative
is to use a stereotactic frame or with the help of a navigation system, e.g. Brainlab. Using
an additional navigation software is very time-consuming, because the intervention needs
to be planned. In emergency situations the manual placement is preferred.

During ventriculostomy, first an incision is made at the Kocher’s point on the left or right
hemisphere, then the skull is opened through a burr hole trepanation. Then the dura mater,
the meninges, is opened and the puncture is done by aiming with a catheter towards the
ventricular system. The optimal target point inside the ventricle is the foramen of monro
- the connection to the third ventricle. The Kocher’s point is chosen in a way that no high
risk areas of the brain are penetrated, such as the motor or speech cortex.

An illustration of the catheter placement is depicted in Figure 2.4 a.
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Figure 2.4.: Construction of the insertion vector and optimal Kocher area.

There are different definitions of the Kocher’s point in literature. In this work, a Kocher’s
area is assumed, as depicted in Figure 2.4 b. The optimal point lies within an area of 1 -
3.5 cm in front of the coronal suture and 2.5 to 5.5 cm left and right to the midline.

The placement of the catheter has to be performed as accurately as possible to prevent
any unnecessary damage to the delicate brain structures. A wrongfully placed catheter
may result in the loss of brain function or death. The first puncture attempt for catheter
placement in ventriculostomy is only successful in 40-77% [224, 209, 128, 94, 88, 86,
172, 66]. A placement is rated as successful if cerebrospinal fluid is released out of the
catheter. If the catheter placement was not successful at the first trial the brain is punctured
again until the placement is successful, resulting in extended damage to brain tissue.

In the following work the ventricular puncture is used as the clinical scenario in Sections
4.1 and 4.2. The three stages of intraoperative assistance presented in chapter 6 is also
carried out using the ventriculostomy.

2.2.2. Biopsies of Brain Tumors

A biopsy describes the extraction of a tissue sample for subsequent characterization of the
tissue type. The removed tissue can be examined under a microscope and often chemical
analyses are performed. The pathologist can draw conclusions about pathological changes
in the fine-tissue structure. A biopsy is often used to clarify whether tumors are malignant
or benign [19, 130, 225, 135, 226, 73, 218].

In the following work the example of tumor biopsies on the brain is examined in Section
4.3.
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3. Theoretic Background and
Related Work

3.1. AR Concepts and Technologies

There are different definitions of augmented reality (AR). In the literature, the definition
of Azuma [14] is the most commonly used. According to Azuma, an AR system has three
basic properties:

• A combination of real and virtual worlds.

• Registration of real and virtual objects in 3D.

• Interactivity in real time.

In order to fulfill these characteristics, various components are required to work in unison.
These components may include displays, tracking systems, cameras, projectors, graphics
computers, and other specialized devices. Following the first two features of Azuma’s
definition, this section first describes various types of displays used to combine real and
virtual worlds, followed by tracking systems that track the pose of the user and other
real-world objects to correctly overlay the virtual objects.

3.1.1. Displays to Enable Augmented Reality

In order to overlay reality with virtual elements, various types of displays can be used.
They can be categorized according to their positioning in 3D space into head-mounted dis-
plays, hand-mounted displays and spatial displays. A distinction can also be made in the
visual representation of AR. These include video-transparent displays, optical-transparent
displays, projectors, and holograms [205].

3.1.1.1. Head-mounted Displays

Head-mounted displays are special glasses that allow graphics to be visualized in the
user’s field of vision, so that both hands can be used for the actual task. There are basically
two different types of head-mounted displays: video see-through displays and optical see-
through displays [33].

Video see-through displays are the most inexpensive and straightforward to implement.
They do not offer a direct view of the real world. A camera is used instead to capture
an image of the outside world. This image is placed on the projection screen and virtual
objects are superimposed. Both, the real world and the virtual world are fully digitized
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and merged into one view. This makes it easier to synchronize the two and visual delays
can be avoided. It is also possible to adjust the brightness and contrast of virtual objects to
match the environment. However, there are also disadvantages, like the reduced resolution
of reality, the limited field of view and the lack of orientation [216].

Optical see-through displays enable the user to see the real world directly through a trans-
parent projection surface. In addition, virtual objects are displayed within this projection
surface using a semi-transparent mirror placed at an angle in front of the user’s eyes.
These displays have two major advantages over video see-through displays: first, the user
can perceive the environment without experiencing reduced resolution, time delay, or lim-
itations due to lens distortion or eye shift. Second, the user does not go blind if the device
is disconnected from the power supply [24, 216].

3.1.1.2. Hand-mounted Displays

Hand-mounted displays are devices that are held in the user’s hand and provide the pro-
jection surface. Examples of such devices include smartphones and tablets. AR with
handheld devices is an attractive option for many companies, as many people already own
one of these devices. This way, no special hardware is needed and only the software has
to be developed. This makes it a perfect fit for the entertainment industry, where a wide
audience needs to be reached. However, in other fields such as medicine and military,
handheld displays are impractical, because the user does not have both hands free. In ad-
dition, the size of smartphones is not optimal for many use cases, and devices with larger
displays quickly become uncomfortable to carry [33].

3.1.1.3. Spatial Displays

Spatial AR separates user and technology by using projectors or holograms to directly
overlay the real environment with virtual content. The advantage of this is that the user
does not have to wear or carry a device. In addition, not only a single person but a group
of users can experience the same AR projection at the same time. A major disadvantage,
however, is that it is limited to non-mobile applications. Thus, spatial AR is mainly used
in museums, laboratories and medicine [33].

3.1.2. Tracking Techniques

An AR system must ensure that the virtual content is positioned accurately in the real
world so that it appears as being part of the physical environment. The challenge here
is to ensure that the virtual objects remain aligned with the position and orientation of
the real objects as the user moves or changes their viewpoint. There are several tracking
techniques that help meet this requirement. A distinction can be made between sensor-
based tracking and vision-based tracking.

3.1.2.1. Vision-based Tracking

Vision-based tracking utilizes a camera and computer vision algorithms. These algo-
rithms can compute the position of the camera relative to the objects based on the images
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provided. To detect virtual objects, artificial markers can be placed in the scene. These
markers are easily recognized, because they are simple geometric shapes such as squares
or circles. For reliable object detection, however, the markers must have the appropriate
brightness and a clear view. A detailed state of the art is provided in Section 5.2.1.

3.1.2.2. Sensor-based Tracking

Sensor-based tracking methods use active sensors including magnetic, acoustic, inertial or
mechanical sensors to track the user’s position. In magnetic tracking systems, a magnetic
field is generated. The relative position between the source of the magnetic field and a
receiver can be measured. This is a low-cost solution, but does not provide the required
accuracy for use in AR.
Acoustic tracking methods utilize an ultrasonic transmitter attached to the tracked object
and acoustic sensors placed in the environment. It measures the time between sending
and receiving the ultrasound and uses it to calculate the relative positions. Since the speed
of sound is relatively slow, these systems have slower response than other sensor-based
methods.
Inertial tracking methods use an accelerometer and a mechanical gyroscope to measure
the acceleration and rotation of an object. Since this does not require an external refer-
ence point, it can be easily applied in a variety of environments. However, small errors
can accumulate over time.
Mechanical tracking methods require the tracked object to be connected to a reference
point using a robotic arm that consists of mechanical links. By measuring the angle be-
tween these links, the position of the tracked object can be determined. This allows for
very accurate measurements, but requires a robotic arm. Since all of these methods use
active sensors, special hardware is always required, making them often difficult to use in
practical AR applications [173].

3.2. Augmented Reality in Medicine

Augmented reality has been used in multiple works and fields. Since the focus of this
work is on neurosurgery, a general overview of the state of the art with respect to AR in
the field of neurosurgery is given. Additionally, other fields are investigated.

3.2.1. AR in Neurosurgery

One of the most successful areas in medicine where AR has been applied is neurosurgery.
This is based on the fact that the skull serves as a rigid structure and fixed point between
taking several patient scans during surgery. Additionally, the displacement and deforma-
tion of the brain is limited. These observations facilitate the implementation of robust
tracking in real time. On the other hand, the surgical field is small, and even minor errors
can lead to lasting consequences. Therefore, surgeons need to develop the ability to visu-
alize the structures under the skin. In this process, AR can help the surgeon by making
these structures visible. This is especially important in the field of minimally invasive
neurosurgery, where the field of view is even more limited [147].
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The field of neurosurgery is also where the first AR-assisted procedure took place [22].
In 1989, Roberts et al. [178] developed an AR system that integrates CT images with
the surgical microscope. Spatial registration of the head and microscope is required to
correctly position the CT image. To do this, the relative position of the head with respect
to the microscope is first measured by manually focusing the microscope on three points
of the patient’s head. The absolute position of the microscope is determined using an
ultrasound range finder. A number of reports followed, in which various AR systems for
neurosurgical procedures were presented.

King et al. [102] presented another early surgical navigation system using AR in 1999.
This system also uses the surgical microscope. The surgeon’s view is enhanced by 3D
structural information. Since the surgical microscope magnifies the view, precise align-
ment and tracking is even more important. They use bone-implanted fiducials and a dental
attachment for tracking. During a clinical study, their evaluation showed an error of 0.5-
1.5 mm, which increases to 2-4 mm when brain deformation occurs.

In 2002, Kawamata et al. [101] described a system that adds AR to images of an endo-
scope. 3D images of the tumor and adjacent structures are superimposed on the endo-
scopic images in real time. The color of the tumor image changes based on the distance
between the tip of the endoscope and the tumor. Optical tracking was performed using
two sets of infrared LEDs and a goggle frame with reference markers. One set of infrared
LEDs is attached to the patient’s head, the other to the endoscope. Clinical tests during
12 tumor surgeries showed that their AR navigation system is a promising tool for tumor
surgeries.

Seven years later, in 2009, DEX-Ray, an AR neuronavigation system, was developed by
Kockro et al. [109]. It includes a handheld pointer with a lipstick-sized camera mounted
on top of the pointer. The video stream from the camera is overlaid with multimodal 3D
graphics and landmarks. These are obtained during neurosurgical planning and displayed
on a separate screen. The hand-held probe serves as both navigation and interaction device
for the 3D graphics. They evaluated the registration accuracy of the system in 12 surgeries
of tumor and vascular cases. The mean registration error was 1.2 mm. According to
their overall assessment, especially in the macroscopic phase of surgery, the display of
3D information of internal structures improves the navigation experience. In deep and
narrow corridors, lighting conditions and camera resolution limit this experience.

In 2013, Inoue et al. [90] developed an AR neuronavigation system that uses webcams
for tracking. Their solution is cheaper than others that require more specialized hardware.
In addition to imaging tumors and vessels, the system can also perform tractography, a
technique for visualizing neural pathways, that were generated using the open-source 3D
Slicer software [41], [62]. The system was tested on three patients and the results showed
its usefulness in brain surgery.

Deng et al. [53] presented a hand-mounted solution for neurosurgery. In 2014, they intro-
duced an AR system that relies on a tablet as a handheld display. They use two different
tracking systems for patient and device localization, both based on artificial markers. They
performed a preclinical study and a clinical study that demonstrated the feasibility of the
system. Similarly, Watanabe et al. [223] also used a tablet PC in 2016 to overlay a 3D
brain model on a patient’s head. The brain model was obtained from magnetic resonance
imaging and computer tomography. Tracking was performed using a Vicon (Vicon Mo-
tion Systems, UK) system with six cameras. The system has been evaluated during six
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tumor resection surgeries and the researchers concluded that the system is accurate to
within 1 mm and can help surgeons plan skin incisions and locate superficial tumors.

In 2015, Tabrizi and Mahvash [206] introduced an AR system that superimposes regions
of interest onto the skull and brain of the patient using a projector. They used images of
segmented brain tumors to define regions of interest. Five fiducial markers were placed
on the patient’s head around the tumor region to perform the registration. Before surgery,
magnetic resonance images were taken with the attached markers. Using the magnetic
resonance images, a 3D model was reconstructed, in which the fiducial markers were
visible as well. The fiducial markers of the virtual model could now be overlaid onto the
physical markers. The projector was then fixed to this position. With the help of this AR
system, five surgeries were successfully performed leading to a mean projection error of
1.2 ± 0.54 mm. Tabrizi and Mahvash concluded that the system is accurate enough for the
use in neurosurgery.

Cutolo et al. [48] developed a head-mounted, see-through AR system in 2017 to improve
surgery for complex neurological lesions. A patient-specific head mannequin containing
an anatomically realistic brain phantom with tumors was used to test the system. They
concluded that the novel system is user-friendly and can be successfully used for making
skin incisions, conducting craniotomies, and for lesion targeting.

AR systems that have been used in the neurosurgical context are often expensive and cus-
tomized. This is due to the lack of research on the use of low-cost commercial AR systems
in the operating room [110]. Different research groups tested commercial available low-
cost devices in 2018 and 2019.

In 2018, Maruyama et al. [146] were the first to use a surgical navigation system with
available smart glasses (Moverio BT-200, Seiko Epson Corporation, Suwa, Japan) in clin-
ical practice. Patient models were created from preoperative magnetic resonance images
and superimposed on the see-through glasses. These were models of the scalp, brain tu-
mors, and vessels of the brain surface [203]. Attaching optical markers to the glasses
and the patient’s head provided accurate navigation. Tracking was enabled by the use
of two motion capture cameras. The technology was used in two brain tumor surgeries.
The results show that hands-free neuronavigation in the surgical field was possible. The
targeting error in two surgeries ranged from 0.6 to 4.9 mm.

In 2019, van Doormaal et al. [214] used smart glasses (HoloLens, Microsoft, Redmond,
Washington) in a neuronavigation system. During surgery of three patients the registra-
tion errors with holographic neuronavigation and with conventional neuronavigation were
measured. The error with holographic neuronavigation was 4.4±2.5 mm compared to an
error of 3.6±0.5 mm with conventional neuronavigation. Their conclusion was that holo-
graphic neuronavigation can be used in the operating room in the future, but that some
improvements need to be made before this can be used as a routine in clinical practice.

HoloLens was also used by Kubben and Sinlae [110]. The surgeons can perform special
hand gestures to interact with the system without touching it. All available hand gestures
were tested under two different lighting conditions (general theater light and theater light
with surgical light). Also, different types of surgical gloves were used in testing the
device. Speech recognition was also evaluated against background noise in the form of
two nurses talking to each other. The results showed that all gestures were recognized
under both lighting conditions and regardless of the gloves worn. Speech recognition
and visibility of the holographic images were both good. However, the brightness of
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the display had to be properly adjusted for the images to be visible. Overall, the results
showed that the system is stable and works reliably in surgical environments with sterile
garments.

In 2018, Gibby et al. [76] evaluated Microsoft HoloLens for guiding pedicle screw place-
ment. During preoperative planning, virtual trajectories were created for ideal access into
the pedicle. CT images and the planned trajectories were displayed using HoloLens in
combination with the Novarad [43] OpenSight application. This specialized application
for AR in surgery offers automatic image registration, advanced image processing, and
automatic review and logging. Following the projected trajectories, the surgeon inserted
spinal needles until they made contact with the bone. Another CT was then performed to
compare the actual needle trajectory with the planned one. A phantom evaluation showed
that the deviation was approximately circular with an average radius of 2.5 mm. Clinical
studies have not been performed to date.

3.2.2. Medical Education and Training

As a surgeon, a thorough knowledge of human anatomy is essential. Traditionally, stu-
dents use textbooks with visualizations to gain this knowledge. However, this can be
challenging because 2D images are fixed to one viewpoint, making it difficult to under-
stand the spatial context. The use of AR has been proposed to solve these problems and
increase the effectiveness of the learning process [141]. There are indications that AR can
improve students’ motivation to learn [195].

The magic mirror developed by Ma et al. [141] is an example of such an educational
AR system. The user faces an RGB-D camera that records his or her movements. The
video stream is displayed on a computer screen and superimposed with a 3D model of
his anatomy. A specific organ can be selected to get additional medical images and text
information. In this way, the user can interactively explore the human anatomy.

Using a mobile device to display a 3D model of an anatomical structure is another com-
mon approach to medical education. To identify which model to display, the mobile
device recognizes a specific marker. These markers can also be included in textbooks.
The user can view the objects from all sides and even take a look inside. Examples of
these systems have been proposed by Jamali et al. [91], Wang et al. [222] and Kurniawan
et al. [120].

Learning in a medical context refers not only to theoretical knowledge, but also to prac-
tical experience. Complex skills must be acquired to successfully perform medical pro-
cedures. These skills include navigating complex physiological systems, developing ex-
pertise, and collaborative skills necessary for multidisciplinary medical practice. Medical
training in a real workplace environment, however, is often not possible due to safety,
time, and cost constraints. In addition, trainees may be discouraged by the complexity of
the workplace environment. AR provides an opportunity to create a safe, appropriate, and
cost-effective training environment where the trainee is allowed to make mistakes without
fear of consequences [96]. Several AR training systems are described below.

ProMIS is an AR simulator [168] that can be used to train skills for laparoscopic surgery.
The simulator consists of a torso-shaped mannequin with three camera tracking systems
to identify instruments inside the mannequin. To do this, the instruments must be marked
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with colored tape. To train a procedure, a special tray must be inserted into the mannequin.
This tray can contain physical components that give real haptic feedback when using the
instruments. In addition, virtual objects can be overlaid to enrich the simulation. In order
to process the data collected during the procedure, the simulator is connected to a portable
computer. The data includes time, path length, and uniformity of motion during each task.
Upon completion of a training module, the statistics are shown on the computer display
and a full video of the procedure is saved. The tasks that can be trained with the simulator
include navigation, object positioning, sewing, knot tying, and sharp dissection [168].
Botden et al. [26] evaluated the system by analyzing questionnaires from 55 participants
who completed basic tasks as well as suturing and knot-tying tasks. The questionnaires
included questions about realism, haptics, and didactic value of the simulator. The results
showed that ProMIS is a useful training system for laparoscopy.

Lahanas et al. [122] created another AR simulator for training basic laparoscopic tasks.
The novel system includes a box trainer, a camera, and a set of laparoscopic tools. Custom-
built sensors were attached to the tools to allow interaction with virtual objects. For
training basic skills such as hand-eye coordination and depth perception, instrument nav-
igation, peg transfer, and clipping tasks were developed. To evaluate the system, they
divided subjects into novices and experts according to their experience in laparoscopic
surgery. Execution time, tool path length, and two task-specific errors were recorded.
Their results show that there is a large difference between the two groups in terms of
smoothness and economy of motion. Therefore, the proposed system has the potential
to recognize users with different experience in laparoscopic surgery. Unlike ProMIS, the
new AR-based system allows users to interact with rigid and deformable virtual models
in real time.

Endotracheal intubation is a common procedure in which a tube is inserted through the
patient’s mouth into the trachea. This is often a life-saving procedure, but it is difficult to
perform. Traditionally, mannequins such as the Human Patient Simulator (CAE Health-
care, Inc., USA) have been used to train this procedure. Hamza-Lup et al. [81] uses AR
to enhance the Human Patient Simulator. The trainee wears an optical, see-through head-
mounted display that superimposes a 3D model of the underlying anatomy. An optical
tracking system is used to track the trainee’s head, the human patient simulator, and the
inserted tube. Their conclusion was that the system can accurately superimpose the 3D
model, but further studies are needed to fully evaluate the system.

Shenai et al. [198] are taking a different approach to medical education with their de-
veloped system called VIPAR (virtual interactive presence and augmented reality). The
VIPAR system enables an experienced surgeon to remotely assist the operating surgeon.
Two stations are set up for this purpose. The local station is set up above the surgical field
in the operating room. The remote station is set up above a blue screen. They both consist
of two cameras and a high-resolution display. The blue screen in the remote operating
room allows easy segmentation of the remote surgeon’s hands and instruments. A video
stream of these elements is then displayed in the local surgeon’s view in real time. Corre-
spondingly, the video stream recorded at the local station is shown to the remote surgeon.
Additionally, preoperatively recorded MRI images were added to the virtual fields of the
two surgeons. The system was tested on a fixed-formalin cadaver head and neck. The
remote surgeon was able to observe the procedure and provide instructions to the local
surgeon. In addition, the enhanced MRI images provided spatial guidance. Since this
system is already used in surgeries, it is not only for medical education but can also be
considered as a surgical AR system.
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3.2.3. Other Fields

In the following other medical fields where augmented reality is used are summarized
below.

3.2.3.1. Orthopedic Surgery

Orthopedic surgery is a common target area of AR in medicine, as it addresses organs
in the human body that have little ability to move and deform. AR enables the direct
visualization of reconstructions on the patient’s body. This makes it easier for the sur-
geon to focus, as he or she does not have to look at a distant display to see the planned
reconstruction.

A mobile C-arm produces diagnostic images using X-ray during minimal invasive surgery.
In 2010, Navab et al. [157] mounted a camera and a double mirror system on a C-arm,
making it possible to fuse images obtained by the camera with X-ray images. Von der
Heide [220] tested the system in a clinical trial. Their results show that the new system
can reduce X-ray pulses by 48%. Abe et al. [5] designed a head-mounted AR guidance
system called VIPAR (virtual protractor with augmented reality) in 2013, which visualizes
a needle trajectory to the surgeon during percutaneous vertebroplasty. Wu et al. [227] pro-
posed another AR system for vertebroplasty one year later called ARCASS (augmented
reality computer-assisted spine surgery). They used skin markers for tracking and overlay
a preoperatively created 3D model on the patient’s body with the help of a camera and a
projector. The system significantly reduced the time for finding a suitable entry point and
reduced the radiation exposure.

Ogawa et al. [162] described the new system AR-HIP in a pilot study in 2018. It assists the
surgeon during total hip arthroplasty for acetabular cup placement. The physician can see
an image of the acetabular cup superimposed in the surgical field as well as its placement
angle through a smartphone. The AR-HIP system delivers more accurate results than
the goniometer. Tsukada et al. [211] adopted the system for total knee arthroplasty in
2019, superimposing the tibial axis, the aiming varus angle and posterior slope angle. The
achieved results were similar to Ogawa et al. [162]. In 2018, Liu et al. [129] proposed an
AR system for hip surfacing, an alternative for total hip replacement. Instead of markers
they used a depth camera for registration. The preoperative data is shown by a commercial
AR headset to assist the surgeon in hole drilling. They found a similar error as in other
commercial computer-assisted orthopedic systems.

Müller et al. [153] were the first to use 3D intraoperative fluoroscopy in combination
with a head-mounted AR system. Fiducial markers were used for registration during
pedicle screw navigation. Ma et al. [140] proposed another system for pedicle screw
navigation. They used ultrasound for registration and an integral video overlay device
and a half-silvered mirror to superimpose 3D graphics of the planning path and the spine.
Their results showed a sufficient targeting accuracy of the system and a reduced radiation
exposure.

3.2.3.2. Abdominal Surgery

One of the first AR experiments in the abdominal field was performed as early as 1992
by Bajura et al. [16]. They used an electromagnetic tracking system. Real world images
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of a camera were superimposed with ultrasound images. Due to the limited computer
power the superimposed images lagged behind and their resolution was too low. Onda
et al. [165] developed an AR system for hepatobiliary and pancreatic open surgery (la-
parotomy). Infrared emitting diode markers were positioned at anatomical landmarks of
visceral organs and tracked by an optical location sensor. The reconstructed 3D graphics
were superimposed onto the real-time images of the rigid scope. The system provided an
improvement in terms of safety, accuracy and efficiency during surgeries.

Kang et al. [97] developed a real-time stereoscopic AR system that can be used for la-
paroscopic surgery in 2013, consisting of a stereoscopic vision system and a laparoscopic
ultrasound system. They use an optical tracking system and overlay live ultrasound im-
ages on a stereoscopic video in real-time. Müller et al. [154] developed an AR system
to simplify the creation of a percutaneous renal access to treat kidney stones in 2013.
Non-invasive fiducial markers are used for tracking and the preoperative CT image of the
kidney is superimposed onto the video stream of the tablet computer positioned above the
patient. The accuracy of the system is measured to be 2.5 mm.

In 2016, Mahmoud et al. [143] displayed preoperative anatomical models on the patient’s
body with a tablet PC using a visual simultaneous localization and mapping (SLAM) ap-
proach. For the registration no markers are used, but 4-6 anchor points need to be selected
manually. They concluded that the system only requires minimal interaction and is easier
to set up compared to marker-based systems. Lau et al. [124] developed an AR system that
integrates ultrasound images and laparoscopic images in 2019. The overlaid images are
shown to the surgeon on a screen. They use an electromagnetic tracking system. Their re-
sults show that their system allows the surgeon to correct depth and direction of resection
without needing to look away from the laparoscopic screen.

3.3. Challenges and Limitations

Despite the great benefits AR offers, there are challenges and limitations that still need to
be addressed for AR to become a standard in medical procedures. Difficulties identified
in several studies include system latency that does not meet the AR criterion of real-
time capability, inaccurate image registration, and insufficient depth perception [147].
Concerns regarding cost-effectiveness, the increasing amount of data generated by AR,
and the increasing technical complexity of using an AR system are also discussed in the
scientific community.

Deng et al. [53] and Watanabe et al. [223] mentioned in their studies that they struggled
with system lags. When they moved their tablet from one location to another, they noticed
a delay in updating the projected image on the tablet screen. Watanabe et al. stated that
this delay was 400 ms and needs to be resolved in the future. Deng et al. observed that this
delay causes an alignment error that increases with the speed of the tablet’s movement.
Kang et al. [97] also noted a time delay when using their AR system for laparoscopic
surgery. This delay, however, was measured to be 144 ± 19 ms, which is small enough
to allow surgeons to perform laparoscopic procedures smoothly. The problem of system
latency is highlighted in previous publications. It is constantly being addressed through
advancements in processing algorithms and parallel computing on CPU and GPU in con-
junction with continuous hardware improvements [22].
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The registration error is defined as the difference between the physical object and the
superimposed image. It is important that this error is minimal so that the surgeon can rely
on this information to make surgical decisions. Therefore, accurate registration is essential
for a usable AR system and is still one of the biggest challenges in AR [129]. Especially in
procedures involving complicated deformities and soft tissues, problems with registration
frequently arise [5]. For example, in the study by Ma et al. [140] potentially occurring
large registration errors are reported as a system limitation. They pointed to the low
resolution of the ultrasound images they used for registration as a reason for this. Tabrizi
and Mahvash [206] also referred to registration problems, mentioning that registration
was not possible after a brain shift and that further developments of their system should
allow automatic registration.

Moreover, there are difficulties in generating correct 3D and depth perception [129]. In
AR-based surgery, the most common approach is to overlay a 2D image of the real scene
with the 2D augmentation. This approach removes all depth perception cues such as oc-
clusions and motion parallax [22]. This partially negates the advantage of AR in providing
information to the surgeon in an intuitive manner. To circumvent this problem, several vi-
sualization processing techniques have been tested. One example is the use of specific
color coding, where the color of the object changes depending on the distance from the
camera. Similarly, the transparency of the colors can be changed the deeper the struc-
tures are located. When choosing a visualization technique to improve depth perception,
it should be noted that crowding of the surgical image must be avoided [147].

With AR, it is possible to visualize a wide range of medical data at the same time. But this
can also lead to a crowded view and be more distracting and misleading than helpful [40].
Therefore, the amount of data displayed to the surgeon must be balanced to avoid ob-
structing the surgical view. The information displayed should be useful and minimalistic.
In addition, the surgeon should be able to decide whether to show or hide the displayed in-
formation. Switching between different sets of displayed information could also be useful
[217].

Liu et al. [129] found that AR systems increase technical complexity compared to tra-
ditional systems. Different AR technologies such as headsets, tablets, complex tracking
systems, voice commands, and gaze control are new potential failure points. Interruptions
such as misunderstood commands or hardware failures can disrupt the surgical workflow.
Surgeons run the risk of relying too much on the system and being unable to perform the
surgery without it.

Cost is another factor addressed in several studies. The majority of AR systems devel-
oped for surgery are custom prototypes built with inexpensive equipment. These systems,
however, are not suitable for widespread use [110] [147] [40]. Producing a well-tested,
market-ready system would be costly. Consideration should be given to whether these
costs are justified by the potential benefits of such a system. Chytas et al. [40] state that
close collaboration between scientists, clinicians, and industry is needed to prove that
cost-effective AR systems are possible.

3.4. Assisted Ventricular Punctures

Lollis and Roberts [132] use a robot to perform the ventricular puncture (VP). The VP
is automated, but the planning of the trajectory is not. They claim that the operation
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is successful on every attempt. Thomale et al. [208] suggests guidance assistance by
smartphones or mini-tablets. The results have not yet been evaluated in a large number of
patients. For patients with common sizes of ventricular systems, the assistance is valid.
For extremely narrow ventricular systems, they recommend navigated positioning. It also
takes trained surgeons to use the software, as the learning rate of the surgeon increases
with multiple surgeries. The trajectory is also planned in advance. A further study with a
similar approach is given by Sarrafzadeh et al. [186].

Azeem and Origitano [12] and Gil et al. [77] introduce frameless neuronavigational sys-
tems. Since the trajectory can be planned in advance but also be adjusted during surgery,
these systems show very good results. The disadvantage of such devices is that they are
very expensive. This method can be suitable for infants with very small VS.

Strowitzki et al. [204] demonstrated ultrasound-guided catheter placement. It results in a
higher accuracy of catheter tip placement, but does not lead to fewer placement attempts.
Gautschi et al. [72] compared three different methods: a non-guided version versus a
neuro-navigated and XperCT-guided (Philips Medical Systems, Germany) method. Their
results show that the guided methods improve the accuracy of the VP. The challenge is
still the time required to plan the trajectory and process the images.

The use of additional navigation aids is acceptable for neurosurgeons if the normal surgi-
cal workflow is not extended more than 10 minutes [166].

3.5. Systems Comparable to the Proposed System

Van Gestel and Frantz et. al. [215] showed a similar approach to support a neurosurgeon
during ventriculostomies with augmented reality. Frantz et.al. [68] presented a detailed
evaluation of the possibilities of Vuforia marker tracking in neurosurgery. They show a
system that tracks the patient with an infrared marker target and superimposes the patient
models over the patient. No automated operation planning is performed and no customiz-
able marker system is presented. In addition, no navigation aid or robot was used.

Li et.al. [127] presented AR-guided ventriculostomies utilizing a Microsoft HoloLens.
No active patient tracking was used and no automated planning was performed.

Azimi et al. [13] proposed a system for ventriculostomies and tracking the patient with
Vuforia markers. The marker to patient registration is done by attaching fiducials to the
patients skull prior to the CT and registering them afterwards to the marker. No automated
planning is performed and the system was not evaluated in a clinical environment.
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This chapter presents methods for automated operation planning on the example of the
ventricular puncture and tumor biopsies as depicted in Figure 4.1.

Figure 4.1.: Overview of chapter 4.

In Section 4.1 we introduce an approach to segment vital structures that are needed to au-
tomatically determine the puncture path. In Section 4.2 the segmentation results are used
to automatically derive the path for the ventricular puncture. In Section 4.3 this approach
is expanded by taking several risk structures inside the human brain into consideration.

4.1. Volumetric Segmentation of CT Head Images

Accurate and detailed information about the size, shape, and position of the region to be
punctured is required to provide a detailed visualization to the surgeon. To perform the
automated planning of the procedure and to determine the puncture paths, the ventricular
system, the skin and the skull are used. These structures are automatically derived from
preoperative CT images. Results of existing solutions did not yield the needed quality and
puncture accuracy. Often large parts of additional structures around the ventricular system
were also derived from the scans. Segmenting the ventricular system is not an easy task,
because the boundaries are hard to determine in the CT scans, even for a medical expert.
The question arises where the ventricular system ends and where the boundary and other
structures of the brain begin. In addition, there is a wide variety of pathologies that also
need to be considered. The challenge of segmenting CT scans is directly correlated to their
low dynamic range and an unfavorable signal-to-noise ratio. CTs are scans of a real patient
in discrete space and it is obvious that with a slice thickness of approximately 1 mm a lot
of information from continuous space is not digitized. The solution and challenges are
discussed in detail in the following chapter. The extraction of the ventricular system,
the skin and the skull should be automated in a stream-lined process that requires as few
manual steps as possible.
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4.1.1. Related Work

The patient models must be segmented out of CT data, because this is very often the only
image modality available, especially in emergency situations. This process is still con-
sidered to be challenging because the anatomy can greatly differ from patient to patient.
Additionally, CT data has an unfavorable signal to noise ratio.

Point-based segmentation conducts a pointwise classification of each pixel. For each
pixel, its intensity is compared with thresholds to determine if the pixel belongs to a
segment or not. Multiple thresholds are used to divide the image into multiple segments.
Selecting thresholds can be done manually or automatically. The multilevel Otsu method
[167] can be used to automatically select the thresholds. The method determines the
optimal thresholds for classifying each pixel in an image-based on a specific discrimina-
tion criterion, such as threshold variance between and within segments. Contour-based
segmentation classifies pixels using an initial user-defined approximation that is automat-
ically optimised. Kass et al. [99] interpreted a contour as an energy minimization problem
of a curve on an image. The internal energy addresses the rigidity of the curve, commonly
defined as a function of the derivative of the curve. The external energy uses image in-
formation to lead the curve to the wanted energetic minimum, often defined as an edge
filter like the sobel operator. For examples of different possible definitions see [99]. Xu
and Prince [228] minimize the chance of convergence to a local minimum by defining
additional control forces or using alternative contour optimising techniques such as the
gradient vector flow method.

Model-based segmentation performs the classification of pixels by using prior knowledge,
like active shape models as described by Cootes et al. [42]. Annotated training data is used
to create a geometric median shape, on which possible deformations are later performed.
Using the median shape and performing its deformation using knowledge obtained by
a principle component analysis [58], an object extraction in the image is achieved. This
analysis is performed on the variance matrix of the shape that is created with the annotated
training data. This method can be fully automated and produces excellent extractions for
many cases. It performs well with low quality data and produces smooth results. The
main limitation with this method is the amount of annotated data that is needed to train
the model.

Qian et al.[171] used k-means clustering and selects the largest cluster that represents the
ventricular system. A similar approach improves the segmentation using morphological
operators [189].

Further, Chen et al. [36] have shown an extension to low-level segmentation techniques
using template matching . Lundervold and Lundervold [137] also discuss the application
of machine learning to perform the segmentation of medical datasets.

An early example of the use of gradient length is from a 1988 paper by Levoy [126]. In
this paper, a simple function is used to assign opacity values to voxels depending on their
intensity values and gradient lengths. Kniss et al. [108] also present transfer functions
which are based on intensity values and gradient lengths. The user can use graphical user
interface widgets on the two-dimensional histogram, which determine the visualization
of the data. Lan et al. [123], on the other hand, deal with the improvement of such two-
dimensional transfer functions based on scalar values and gradients (SG-TF for short).
More precisely, it is a matter of eliminating the overlapping of different areas, which al-
ways occurs in such transfer functions. There also exist more complex one-dimensional
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transfer functions, such as the procedure presented by Drebin et al. [57]. In this approach,
the voxels are classified by probabilities based on their intensity values. Depending on
this classification, color values are assigned to the voxels. The method is well suited to
detect relatively large structures, but it is unclear whether the relatively narrow ventricular
system would be detected. Another idea to segment structures based on spatial informa-
tion is to use region growing. For example, Huang and Ma [87] present such a region
growing method. The user can choose a point of interest in the volume, called the seed.
All 26 neighbors of the seed are visited and a cost function comparing the corresponding
value of the visited voxel and the seed voxel is used to decide whether they belong to
the region or not. If they are part of the structure, their neighbors are also visited and all
matching voxels are added to the region. This process repeats until all voxels are found or
some other internal termination criterion is met. In comparison, Chen et al. [35] not only
use a seed-based procedure, but also add a sketch-based procedure in front of it. First, the
user selects a set of intensity values in the histogram that are of interest to them. Then
they can draw and mark a region of interest directly in the volume. The program then
cuts away all parts of the volume that lie outside the selected region. Now the user can
set their seed as in the previously presented procedure. This makes it easier for the user,
as they can get to their point of interest faster without having to iterate through various
cross-section images first. Furthermore, it saves time for the user if not exactly familiar
with the dataset and the region to be visualized. Correa and Ma [44], on the other hand,
show in their work an approach based on the relative size of the features to be visualized.
For this purpose, they use the so-called scale-space, which is calculated for the volume,
in order to subsequently apply a transfer function based on size. This assigns color and
occlusion to the corresponding sizes of the features of the volume.

In another publication, Correa and Ma [45] describe a method based on the occlusion
of the voxels. For this purpose, they consider the environment of individual voxels and
calculate the occlusion depending on this. The results are stored in a two-dimensional
histogram in combination with the intensity values of the voxels. Another work by Correa
and Ma [46] deals with transfer functions depending on the visibility of individual voxels.
The visibility of each voxel is calculated depending on the viewpoint on the volume by
accumulating the opacity from the camera viewpoint to the voxel. A histogram is then
created over the visibility values. On this, a transfer function can be created to determine
the optical visualization. These histograms were improved again by Correa and Ma [47]
in an extended work. They introduced multidimensional visibility histograms that, for ex-
ample, also take gradient length into account. Furthermore, they present two methods for
computing viewpoint independent visibility histograms. One is an omni-directional visi-
bility histogram, where the visibility of all possible viewpoints is calculated. Furthermore,
a radial visibility histogram is calculated, where radial rays are used.

Tzeng et al. [212] use machine learning to represent structures of interest to the user. A
neural network and a support vector machine are used. Volumes with highlighted regions
serve as input for the method. The program then takes the intensity values, length of the
gradients and intensity values of the neighbors of all highlighted voxels as input to find a
meaningful segmentation. Soundararajan and Schultz [200] also present a method where
the user can mark directly in the volume which areas are of interest. The work deals with
the comparison of five different supervised classification techniques that have to classify
the volume data based on the markings. Gaussian Naive Bayes, k Nearest Neighbor,
Support Vector Machines, Random Forests and Neural Networks were compared, with
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the result that Random Forests is best suited for the task. The researchers found that it
was fast, robust, easy to use, and produced sufficiently good results.

Sereda et al. [193] build their work on the low-high (LH) histograms presented by Serlie
et al. [196] and show how they can be used to classify objects. For visualization, Sereda et
al. use a three-dimensional transfer function that uses the two LH values and the gradient
length. The researchers then use region growing to identify structures even more clearly.
Here, the cost function is based on the LH histogram. They describe this as significantly
better than cost functions based on the intensity value and the gradient length, since edges
can be detected better despite overlaps.

In a later work Sereda et al. [194] present a hierarchical clustering method. Here, in a set
of clusters, the two that are most similar in the selected comparison procedure are always
merged. A combination of two such comparison methods is presented. First, the spatial
proximity is considered, where the direct neighbors of two clusters are counted. Second,
proximity in LH space is examined. The boxes of the LH histogram serve as starting
clusters.

Nguyen et al. [159] also present a clustering-based method. First, the gradients of the
volume are calculated in a preprocessing step. Hong’s method [85] was used for this
purpose. The LH values are determined using Heun’s method, a modified Euler method.
Here, a weighting is calculated depending on the distance traveled during interpolation
for the low and high values, respectively. A LH histogram is then generated from the LH
values and their weights. The user can then choose between a two-step and a three-step
clustering procedure. The result of the first two steps are clusters where all voxels have
similar LH values and are also spatially close to each other. In the optional third and final
clustering step, hierarchical clustering is performed. The user can then decide how many
clusters are needed. Depending on this, the hierarchical clustering is reversed and the
clusters are separated again until the desired number of clusters is reached.

4.1.2. Methods for CT Image Data Segmentation to Retrieve
the Ventricular System

Each discrete layer ln of a head CT scan can be defined by a matrix G ∈ Rn×m, where
gi,j = I(i, j) representing the intensity of a certain pixel pi,j . All layers of a CT together
can be interpreted as a three dimensional volume as they are a pile of two dimensional
images. CT scanners provide only intensity values representing Hounsfield Units. There-
fore, they are visualized as grey-scale images.

The segmentation pipeline is composed of four successive stages, as illustrated in Figure
4.2. In the first step the subarachnoid space is removed to remove unfavorable areas of
cerebrospinal fluid near the skull. This step is only used for extraction of the ventricu-
lar system. A very important step is the preprocessing of the CT data to reduce noise.
Subsequently, voxels of interest are selected and in the last step appropriate clusters are
identified. The last two steps are adapted to the specific structure to be segmented.

The CT scans are converted to the ’nrrd’ file format without any change of the data itself.
’nrrd’ represents a volumetric model that has a height (n), width (m) and depth (k). The
coordinate domain is therefore defined as
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Figure 4.2.: Segmentation pipeline. Adapted from [119].

Vdomain = {(x, y, z)⊺ ∈ [1, n]× [1,m]× [1, k] ⊂ N3} (4.1)

We define the mapping function for the content of the region, the intensity values of the
CT scan, as follow:

Map : N3 → Z (4.2)

The region V can be defined as the graph of the function Map over Vdomain

V = {(v,Map(v))⊺ = (vposition, vvalue)
⊺ | v ∈ Vdomain} ⊂ N3 × Z (4.3)

No alignment of the CT-data is needed. The position and rotation of the patient is not
restricted by our approach. CT scanners produce their own coordinate system, and the
patient can be in different positions in the scan. However, during the intraoperative as-
sistance the holograms need to be registered to the patient in the HoloLens coordinate
system.

In general there are two operators that can be applied to a voxel, a point-based operator
and a local operator. The point-based operator is considering the individual voxel and its
Hounsfield Unit. This is useful for the segmentation of large structures that have a very
unique density, like bone. The local operator also takes the neighborhood of a voxel into
account and can be used to segment more fractured structures like the ventricular system.
This is also used for segmentation of the skin, as it is characterized by its neighborhood
to air.

4.1.2.1. Subarachnoid Space Removal

Degenerative diseases of the brain can cause large bodies of fluid that accumulate between
the brain and the skull, in the so called subarachnoid space. A safe area is defined as

29



4. Automated Operation Planning

Figure 4.3.: Removal of the subarachnoid space.

large amounts of fluid near the skull are excluded. The presented approach takes medical
knowledge into account. It is assumed that the ventricular system is the largest cluster of
cerebrospinal fluid inside the human brain and that the ventricular system is approximately
centered in the brain.

To remove these so-called subarachnoid space in the image, a bone-growing operator is
used to grow the skeletal structure of the skull:

Bonelocalr : V → Z, Bonelocalr (s) =

{
900 |{n ∈ Ns,r | nvalue ≥ 900}| ≥ 1

svalue else
(4.4)

This approach can be processed in parallel and improves the overall results. It uses a local
operator taking also the neighborhood Ns,r of a voxel into account. The neighborhood
Ns,r is defined as a set of all voxels around a selected voxel s within radius r, the maximum
distance between s and the surrounding voxels. It is possible to calculate the distance with
different norms, e.g. the infinity or Euclidean norm. A radius of r = 1 voxel is chosen and
the growing is performed for max(n,m,k)

30
iterations, where n,m and k are the number of

voxels along each dimension of the nrrd volume. The number of iterations was determined
empirically taking the size of the volume and the position of the ventricular system into
account.

In Figure 4.3 an example of a subarachnoid space removal is shown that was generated
utilizing the bone-growing operator.
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4.1.2.2. Noise Removal

A bilateral filter is used to reduce the salt and pepper noise by smoothing the image data.
The bilateral filter is a local operator and can be defined as follows:

Bilateralr : V → Z, Bilateralr(s) =

1

W

∑
n∈N∞

s,r

Gα(|nvalue − svalue|)Gβ(∥nposition − sposition∥)nvalue

W =
∑

n∈N∞
s,r

Gα(|nvalue − svalue|)Gβ(∥nposition − sposition∥)

Gσ(x) =
1

σ
√
2π

e−
1
2
( x
σ
)2

(4.5)

The bilateral filter uses a Gaussian function Gσ for smoothing of intensities and spatial
differences of an input image while preserving its edges. The filter is parameterized with
the two parameters σα and σβ . σα is the spatial parameter and σβ controls the affected
range. Other implementations of the bilateral filter use independent parameters. Here, we
use a fitting parametrization of radius r = 2. We choose σα = r and σβ = 10r to simplify
the calculation.

4.1.2.3. Voxel Selection

In this step, all voxels are identified that potentially belong to the ventricular system. The
ventricular system is filled with cerebrospinal fluid, which has a Hounsfield Unit of 0 to
14, as described in Section 2.1.2, Table 2.1. This may vary for certain pathologies, for
example, when the ventricular system contains blood. The challenge is that the complete
brain is filled with small areas of cerebrospinal fluid as depicted in Figure 4.4 a). The
figure shows the selection of all voxels that represent cerebrospinal fluid. The local op-
erator makes a pre-selection of cerebrospinal fluid accumulations with a certain size. We
select all voxel clusters with the desired Hounsfield Unit and create a binary mask for
voxels potentially belong to the ventricular system as visualized in Figure 4.4 b). When
comparing Figure 4.4 a) and b) it can be seen that the pre-selection leads to a significant
lower number of possible clusters.

We apply the binarization function defined in Equation 4.6 to each voxel s in V . The
binarization function is a local operator that takes the neighborhood αNs,r of a voxel into
account. We choose r = 2 and α = 0.5, which means that 50% of the neighboring voxels
with radius 2 must have a Hounsfield Unit between the min and max values, 0 and 14,
respectively.

The parametrization of r = 2 was chosen empirically and filters most of the small accu-
mulations of cerebrospinal fluid.

V Slocal
min,max,α,r : V → {0, 1},

V Slocal
min,max,α,r(s) =

{
1 |{n ∈ Ns,r | min ≤ nvalue ≤ max}| ≥ α|Ns,r|
0 else

(4.6)
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All results are stored in the binary mask Mmask
CSF and written to a nrrd file. Selected voxels

that could belong to the ventricular system are stored with value 1 in the mask and all
remaining voxels are 0.

(a) (b)

Figure 4.4.: Difference between a point (a) and a local operator (b) to determine accu-
mulations of cerebrospinal fluid. The clusters shown in (b) are the 1-clusters
selected in the image data as described in the ’Cluster Selection’ section.

4.1.2.4. Cluster Selection

After the removal of the areas filled with cerebrospinal fluid we assume that the ventric-
ular system is the largest cluster that is left in the brain scan. For the ventriculostomy
mainly the left and right large lateral ventricles are of interest. Therefore, we focus on the
extraction of these two structures. It can often appear that the ventricular system is not
represented as one connected cluster in the CT data, but as two separated ones.

Using Equation 4.6 voxels of larger groups of cerebrospinal fluid are identified and pre-
selected. In a next step, connected voxels are grouped to clusters. A cluster can be de-
scribed as an accumulation of linked voxels, where a path can be drawn from any voxel
in the cluster to any other voxel without gaps and voxels can be passed more than once.
This can be formalized by defining a discrete cluster using a path P and its connectivity.
We define the connectivity with the help of the neighborhood N1 with radius r = 1, such
that for each point pi ∈ P that is not a starting or end point, the following and previous
points pi+1 and pi−1 are in the neighborhood of r = 1.

We can now establish a formal definition:

M ⊆ V is a discrete cluster ⇐⇒
∀a, b ∈ M : ∃P = {a = p1, · · · , b = pn} ⊆ M with

∀i ∈ {2, · · · , n− 1} : pi−1, pi+1 ∈ N∞
pi,1

(4.7)
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We can now define discrete 1-clusters in Equation 4.8:

MV S is a discrete 1-cluster ⇔ MV S is a cluster and V Slocal
min,max,α,r = {1} (4.8)

On this basis, all 1-clusters can be defined as follows:

C1 = {MV S ⊆ V | MV S is a discrete 1-cluster} (4.9)

With the medical knowledge we have, we can now select the 1-clusters of interest, which
represent the ventricular system. Normally this is the largest cluster of all 1-clusters. It
happens often that the two large lateral ventricles are separated in the CT image data due
to noise. Therefore, all clusters of a certain size of the largest cluster Mmax are selected,
which is determined by counting the overall voxel count per cluster. The clusters are
selected using Equation 4.10. The parameter β = 0.5 is chosen, which means that all
clusters of 50 percent of the size of the largest cluster are chosen. Normally this selects
the two lateral ventricles and sometimes the third ventricle as well.

CV S = {M ∈ CV S | |M | ≥ β|Mmax|} (4.10)

Figure 4.4 b) shows all grouped 1-clusters, while in Figure 4.5 a) the largest cluster and
in b) all clusters of 50% of the size of the largest cluster are visualized.

(a) (b)

Figure 4.5.: (a) Selected left ventricle, when just the largest cluster is taken, b) left and
right ventricles are extracted, when all clusters of 50% size of the largest
cluster are selected.

4.1.2.5. Challenges

In the following subsections challenges in the segmentation of the patient imaging data
are presented and discussed.
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Large Accumulations of Fluid in the Subarachnoid Space
There can be large accumulations in the subarachnoid space between the skull and the
brain as depicted in Figure 4.3. In a healthy brain, the ventricular system is the largest
cluster filled with cerebrospinal fluid. In the described case this can change so that the
subarachnoid space becomes the largest cluster, which is challenging to the here presented
approach. A solution is presented in Section 4.1.2.1.

Blood Clots Inside the Ventricular System
Due to certain pathologies like intracranial hemorrhage or stroke, and others, there can
be blood clots inside the brain that can also accumulate in a damaged ventricular system.
This can change the Hounsfield Unit of the areas to be segmented. A solution is presented
in Section 4.1.6.

Calcification of the Choroideus Plexus
All four ventricular systems have one choroideus plexus. This structure is responsible
to create new cerebrospinal fluid. Due to certain pathologies these areas can calcify.
These calcified areas have the same HU as bone, which can lead to the situation that
the segmentation algorithm stops and these areas are classified as their own cluster. The
calcified regions are located in the last quarter of both large lateral ventricular systems one
and two and prevent the ventricular horns from being segmented. However, these areas
are not of importance for the ventricular puncture and can therefore be neglected, because
the catheter is placed in the first quarter of the ventricle.

An example of a ventricular system with calcified regions is depicted in Figure 4.6 a and
b.

(a) (b)

Figure 4.6.: Calcified areas inside the ventricular system in orange. Cut-off areas of the
horns striped in red/white. a) Top-down view. b) Side view.

Large Difference in Size of the Two Lateral Ventricles
The proposed method of this work selects the largest cluster and the second largest cluster
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of a certain size of the largest one. The standard parametrization of the size parameter
β in Equation 4.10 is 0.75, as it takes all clusters that are 75% of the size of the largest
cluster. Problems occur when one lateral ventricle is much smaller than the other one.
When this happens a neurosurgeon needs to adjust the value for β manually. An example
is shown in Figure 4.4 a) and b). When just clusters of 75% size of the largest cluster are
selected only the left ventricle is taken. Changing the parameter β to 0.5 leads to a correct
selection of both lateral ventricles.

4.1.3. Evaluation of the Volumetric Segmentation

The proposed method for the automated segmentation of the ventricular system was eval-
uated on 26 randomly selected CT datasets, with and without pathologies. Results of the
26 segmented patient scans are shown in Figure 4.7.

4.1.3.1. Qualitative Evaluation of the Segmentation Results

For qualitative evaluation of the extraction results, medical experts (n=4) were asked to
review the results and complete a questionnaire. The experts were asked to investigate all
26 extracted ventricular systems. First the results were visualized in a custom 3D viewer
as a volumetric model where it was possible to change the view. Then the experts used
MITK to review the extracted regions slice-wise as a mask overlay of the original CT data.
In this way, a very accurate pixel-wise evaluation was possible. After the review of the
CT scans, the experts were asked to complete a questionnaire. They were asked to rate
the quality of the results according to the following questions:

1. How good is the quality of the segmentation on a scale from 1-5?

2. Are all relevant areas included?

3. How is the quality of the surface details of the extracted region?

4. What problems exist?

The survey was conducted on the basis of the 26 dataset extractions that are depicted in
Figure 4.7. At this stage most of them were segmented correctly, still some challenges
remained, e.g. segmentation of blood clots. For the first question the experts were asked
to provide a rating from very good (5) to very poor (1). The other questions could be
answered freely.

Question 1: The quality of the segmentation was evaluated as very good by the experts.
They provided a rating of 4.5/5 points on average.

Question 2: All relevant areas are included in 24 of 26 CT datasets. For some, it was
necessary to adjust the second cluster selection to a lower percentage of the largest cluster.
One challenge that remained were ventricular systems with blood. The problem was
solved by an expansion shown in Section 4.1.6. For the quantitative evaluation presented
in Section 4.1.3.2 this problem was solved and the results are based on the adapted version.

Question 3: The surface of the ventricles were rated as too irregular extracted, which could
be improved in the future. The reason for this is the low resolution of the CT scans. The
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Figure 4.7.: Segmentation results of 26 CT scans: a) Example of extracted ventricu-
lar systems without pathology, b) Ventricular systems with pathology (1,2:
Cerebral atrophy, 3: Blood reabsorbed post bleeding, status post endovascu-
lar coiling of an aneurysm, 4: Deformation due to hemorrhage, 5: Prominent
midline shift, 6: Hydrocephalus intraventricular blood clot, status post en-
dovascular coil, 7: Midline shift, 8,9,10: Slim ventricles, 11: Slim ventricles
due to chronic subdural hematoma. Adapted from [113].
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Table 4.1.: Comparison between automatic and manual segmentation of (a) the complete
and (b) the partial ventricular system.

VS1 VS2 VS3 VS4
(a) (b) (a) (b) (a) (b) (a) (b)

F1-Score 0.93 0.95 0.91 0.99 0.85 0.99 0.84 0.99

data is visualized without interpolation, which would lead to a higher resolution. When
creating surface models a more detailed surface could be interpolated.

Question 4: It is challenging to segment ventricular systems with certain pathologies. Just
looking at the segmentation result is sometimes not enough to understand the situation
completely. Therefore, it is necessary to check the 2D slices of the CT scan. Our system
works fully automated. Some pathologies make it necessary to manually adapt some
parameters. The largest challenge remained ventricles with blood clots. The problem
is that blood or other liquids entering the ventricular system due to injuries or strokes
change the density of the liquid inside the ventricular system. The extracted regions are
sufficiently suitable for an AR visualization.

4.1.3.2. Quantitative Evaluation of the Segmentation Accuracy

To evaluate the approach in regard to its segmentation accuracy the generated results are
compared to manually segmented head CT scans. The manual segmentation was done
by two expert neurosurgeons. One challenge in segmenting the ventricular system is
calcifications at the posterior areas, which divides it for the algorithm into two separate
clusters, as depicted in Figure 4.6. However, the intervention is performed on the frontal
regions of the ventricular system, which are segmented sufficiently well by the proposed
method. The segmentation errors of the ventricular system due to calcifications can be
neglected for use in our system. We evaluate the segmentation quality for the complete
ventricular system and only relevant sections excluding the posterior sections. The Dice
Coefficient (F1-Score) is determined to perform a quantitative analysis. The ground truth
is determined through manual segmentation and compared to the algorithm results.

The results are depicted in Table 4.1.

Most calculations of the proposed method can be performed massively parallel on a GPU.
The extraction of the ventricular system was tested on two different systems on all 26
CT datasets. The results of the evaluation are depicted in Table 4.2. The datasets were
processed 5 times in a row to get the average calculation time. The segmentation has a
runtime of 2.3±0.2 s per structure, which makes it a very fast and reliable algorithm.

Table 4.2.: Performance of our implementation on different systems.
CPU GPU RAM OS Avg. Time Used RAM
Intel Core i7-8700K Nvidia GeForce 1070 Ti 32GB DDR4 Ubuntu 16.04 LTS 2.3±0.2 s 500MB
Intel Xeon E5-2670 Nvidia GeForce 1060 16GB DDR3 Ubuntu 18.04 LTS 3.8±0.3 s 500MB
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4.1.4. Segmentation of the Skin

The proposed method is also applicable for the segmentation of the skin and the skull. The
segmentation of skin is challenging, due to the large HU range from approximately −750
to 200. Other tissue types lie within the same range. The use of just point- or region-
based operators for the selection of the skin would also select the entire brain matter,
blood vessels, blood, cerebrospinal fluid and other. The skin has the property that it is
the most outer layer of the human body, which means that it is always in the vicinity of
air. This information can be used to implement a new filter taking the neighborhood to
air into account. The basic idea is to select voxels in direct neighborhood of air. Voxels
that represent air can easily and reliably be identified in a CT scan due to its unique HU
of −1000. Equation 4.6 is therefore adapted and expanded to:

Skinlocal
r : V → {0, 1}, Skinlocal

r (s) ={
1 svalue ∈ [−750, 200] ∧ |{n ∈ N∞

s,r | nvalue ≤ −800}| ≥ 1

0 else
(4.11)

Again, s represents the selected voxel, and we iterate over the complete volume. svalue
is the value of s, its intensity represented as HU. n ∈ Ns,r are neighboring voxels of
s and nvalue their intensity values. We select all voxels s that are in a neighborhood of
nvalue < −800. A lower value of −800 was chosen because voxels near air merge with
skin voxels in the scan data. For the calculation of the neighborhood, a radius r = 3 is
chosen as the skin thickness is approximately 2 voxels.

Figure 4.8.: A skin extraction from a head CT scan using a local operator.

For the segmentation of the skin no preprocessing of the CT data is needed and no cluster
selection must be performed. Looking at Figure 4.8, also areas inside the head are ex-
tracted. These are the skin tissue of the ear canal and the sinuses. These structures are
neither required for this work, nor is it a problem that they are displayed. Additionally,
these structures represent areas of risk that should be avoided. Especially the ear canal is
problematic. When punctured on the way to a target it can contaminate the puncture canal
and lead to an infection.

The segmented skin is later used in Section 5.5.1.4 for the registration of the patient to the
marker system.
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4.1.5. Segmentation of the Skull

The extraction of the skull is needed as an input for the algorithms that automatically
determine the puncture trajectories presented in Section 4.2. The segmentation of bone
is the most simple one, because bone has a very unique HU of 300 to 1900. A simple
point-based operator can be used to perform the selection of the appropriate voxels. We
also do not need any filtering or cluster selection.

Binarypointmin,max : V → {0, 1}, Binarypointmin,max(s) =

{
1 300 ≤ ŝvalue ≤ 1900

0 else
(4.12)

Here we use a point-based operator only taking the selected voxel into account. The values
for min = 300 and max = 1900 were chosen appropriate to the HUs. A segmented skull
is depicted in Figure 4.9.

Figure 4.9.: Exemplary extraction of a skull from a patient head CT using the point-based
operator.

4.1.6. Segmentation of the Ventricular System with Blood
Clots

In brain injury, like hemorrhages, diseased ventricles may contain blood, so that they
cannot be derived with a single HU range. For segmentation of the correct voxels, the
range of cerebrospinal fluid [0, 14] and additionally a range of [60, 80] that represents
blood infused cerebrospinal fluid is used. This leads to the intervals I = [min1,max1] ∪
[min2,max2] = [0, 14] ∪ [60, 80] which leads to a correct selection of the desired voxels.

For the segmentation of ventricular systems containing blood Equation 4.11 is adapted to
the following equation:
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Figure 4.10.: Segmentation of a ventricular system with blood clots.

V Sblood(s) =

{
1 |{n ∈ N2(s) | nval ∈ I}| ≥ α|N2|
0 else

(4.13)

It should be noted that the complete blood infiltration is selected. A surgeon needs to
examine the segmentation result carefully. An extraction of a blood infused ventricular
system is shown in Figure 4.10.

4.1.7. Discussion

We have presented an approach that is able to extract the ventricular system, the skin and
the skull from head CT scans with appropriate designed local or point-based operators.
We therefore take the neighborhood of a voxel into account, except for the extraction of
the skull. The presented method has a very fast runtime of just a few seconds due to its
execution on the GPU. Several pathologies can lead to erroneous segmentation results.
This can be the case for intraventricular blood clots (hyperdens), subdural collections
with consecutive brain shift and deformations of the ventricular system. The methods
were implemented in two stages, while the second introduced expansions to solve the
challenging scenarios. In some cases one ventricle is much smaller than the other one.
This leads to a segmentation where just one ventricle is found in the cluster selection
step. An example can be seen in Figure 4.5. This case was identified as a challenge and
discussed in Section 4.1.2.5. A manual parametrization of the algorithm is necessary in
such cases. The parameter β in Equation 4.8 must be parameterized differently, e.g. with
0.25, to find the second cluster correctly.

The most challenging situation occurs when the ventricles are infused with blood. We
have presented an expansion of our approach to correctly segment the ventricular system
and blood clots as a whole. This comes at the cost of loosing automation so that not every
case is covered fully automated. A medical expert verifies the current case and can easily
start an adapted version of the segmentation as presented in Section 4.1.6. Due to the very
fast implementation, this takes 2-3 seconds per structure.

We performed a qualitative and quantitative analysis of the presented approach. We reach
a F1-Score of 95-99% for the relevant areas. CT scans are limited in their resolution of
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approximately 1 mm slice thickness. Additionally, they have salt and pepper noise. To
overcome this problem preprocessing is an important step to generate good segmentation
results. The medical experts stated that the surface of the ventricular system was too
irregular. Before the volumetric extractions are used as models in the augmented reality
system they are converted to surface models to realize a proper rendering on the HoloLens.
It is possible to smooth the surface, but this needs to be carefully executed, because we
do not want any additional data points that are not present in reality.

We presented solutions to all identified challenges in segmenting the ventricular system.
In addition, we expanded the proposed method to segment the skin and the skull. We were
able to use a local operator considering the neighborhood of air for skin segmentation.
The skull can be segmented using a point-based operator. An improved version capable
of segmenting ventricular systems with blood clots was also demonstrated.

The segmentation time of any structure is 2.3±0.2 s. The runtime does not depend on
the structure to be segmented, since all voxels in the CT scan must be examined for each
structure. The time needed for structure segmentation depends mainly on the resolution
of the CT scan. All three structures can be segmented in 6.9±0.6 s.
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4.2. Automated Path Planning

In the previous section, methods for automated determination of the skin, skull and ven-
tricular system are presented. The extracted models can be visualized to support a surgeon
during an intervention. A surgeon can see the underlying skull of a patient and determine
the Kocher’s points with this additional information. The superimposed else hidden ven-
tricular system can help to target a specific point. For further support, the visualization
of the optimal points could help to improve the accuracy of the catheter placement and
lead to a higher puncture success rate, from which the patient would benefit. It is desir-
able to determine these points automatically to always get an optimal solution. In this
section, an automated process for puncture path determination is presented that includes
the determination of the entry and target points.

4.2.1. Related Work of Autonomous Neurosurgical Planning
Methods

There are only a few papers that address the automatic planning of ventricular punc-
tures. Beckett et al. [18] perform the trajectory planning for ventricular puncture. Their
approach uses classic pattern recognition tasks. They use a small annotated dataset of
CT data with labeled trajectories. This dataset is used as the base to create dataset tem-
plates for different rotations. Using a threshold, the skull is extracted out of the CT scan.
For each template the sum of squared differences (SSD) is calculated. To perform faster
trajectory planning, they use two classes of templates. For alignment of the skulls the
template with the smallest SSD is used. Two registrations are performed, first a linear and
a non linear afterwards. The Kocher’s point (K) and the target point in the VS are mapped
to the CT scan once the registration falls below a certain threshold using the root mean
square (RMS) metric. When the first class of templates is insufficient, the second class of
templates is tried. They also evaluate the length of the trajectory, which is between 6 and
7 cm. The authors determine the Kocher’s point so that an approximately perpendicular
insertion ends in the intended target point. They report results of 99% reliability on scans
without pathologies, and of 95% for intracranial hemorrhage. However, the authors do not
clearly explain the technical details how the mapping was performed, e.g. the calculation
of the error metric and the exact matching procedure. Rehman et al. [174] validate that
the correct orientation for the placement of the catheter is perpendicular to the Kocher’s
point.

4.2.2. Methods for Automated Determination of the Puncture
Path

The process of the automated puncture path determination is depicted in Figure 4.11. The
segmented patient models created using the method described in the previous Section 4.1
are taken as input. The puncture path is generated based on this patient-specific data by
identifying the Kocher’s points on the skull of the patient and favorable target points inside
the VS. To find these target points statistical shape models (SSMs) are utilized.

In the context of this work, anatomical structures are considered. Each of these structures
can be regarded as a shape model. We consider a shape to be all geometrical information
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Figure 4.11.: Process that depicts the proposed method for the automated path planning.
Adapted from [119].

of an object that remains when location, scale and rotational effects are filtered out [139].
Shapes can be grouped to shape families or classes. For example all ventricular systems
form a shape family. We neglect the size for our shape family definition, because the size
of a shape often correlates to a certain shape family. A good example is the anatomy of
children in comparison to adults. The anatomy of children differs in many ways, so it
makes sense to define own shape families for them. In this work we only consider adult
humans.

The SSMs are generated by the creation of a mean model in combination with a kernel.
Within the statistical shape models of the ventricular system and the skull the optimal
target points are defined. The shape model fitting adjusts the statistical shape models to
the current patient-specific anatomy. The target points of the SSM are moved accordingly
to the shape fitting. The path is then derived as the vector from the Kocher’s point to the
target point inside the ventricular system.

4.2.2.1. Creation of the Statistical Shape Model

A statistical shape model is created in three steps. First a mean model is generated out
of sample data. In a second step a kernel is chosen to represent the shape deformations.
In the last step, the mean model and the kernel are combined to form the statistical shape
model.

Preprocessing - Generation of Surface Models
The surface meshes of the ventricular system and the skull are generated from the volume
models that have been created using the proposed methods in Sections 4.1.2 and 4.1.5
from real patient data. The marching cubes [134] algorithm was used to generate stl
surface models from the volumetric segmentations. All 26 CT datasets were automatically
segmented and manually validated. For each dataset the ventricular system and the skull
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were obtained. The surfaces of the ventricular systems were smoothed, to retrieve more
generalized models. A stronger smoothing was used than for the surface models used in
the intraoperative assistance. The segmentation results of the skull were taken without
smoothing, because the surfaces were smooth enough and extracted without outliers.

General Process to Create a Statistical Shape Model
Partial information presented in this paragraph are taken from the online course by Luethi
et al. [136]. To create a statistical shape model a gaussian process GP (µ, k) is derived
from sample data. All possible shape variations of a shape class are modeled through this
process. The gaussian process is defined through a mean function µ(x) and a covariance
function k(x, x′) that is derived from the shape deformations U = u1, ..., uj found in the
dataset. The shape deformations U are vector fields that represent the deformation in
relation to the reference shape. Any input shape can be selected as the reference shape.
Normally, simply the first mesh is used.

The mean is calculated using the following equation:

µ(x) = u(x) =
1

n

i∑
i=1

ui(x) (4.14)

The covariance function is estimated using

k(x, x′) =
1

N − 1

N∑
i=1

(ui(x)− ū(x))(ui(x
′)− ū(x′)) (4.15)

The mean function and the covariance function are then used to define the gaussian pro-
cess g ∼ GP (µ, k).

The statistical shape model can then be defined as

S = x+ g(x) (4.16)

Mean Model Creation
Given the general process for creation of a statistical shape model the mean shape models
of the ventricular system xvs and the skull xskull are generated from n = 26 surface models
from real patient data using the following equations.

xV S =
1

n

n∑
i=1

V S i (4.17)

xskull =
1

n

n∑
i=1

Skulli (4.18)
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Kernel Selection and Parametrization
The ideal way of constructing a kernel is from a large number of sample data. In our case
only 26 datasets where available, which is not sufficient to get a kernel that is reflecting
all shape variations. For this reason it was decided to use a standard gaussian kernel. The
challenge is that the covariance matrix that is generated by Equation 4.15 can become
very large when using meshes that have a high resolution, which makes it impossible to
compute them on a computer. Therefore a low rank approximation of the gaussian process
is estimated using the Karhunen-Loéve expansion [98] [131] [92].

To reduce the dimensionality of the data, the gaussian process can be written as

g = µ+
n∑

i=1

√
diφiαi, αi ∼ N(0, 1) (4.19)

where n is the number of sample shapes used to derive the gaussian process.

The basic concept is that any shape that is modeled by the gaussian process can also
be derived by taking the mean shape and adding up a restricted number of eigenpairs
(eigenvalues mulitplied with its eigenvectors)

√
diφi multiplied by a coefficient αi. The

coefficient α is thereby probabilistic and following a standard normal distribution. It
represents exactly the same shape class as the gaussian process but can be processed on a
computer.

Any new shape gnew is defined only through the chosen coefficients α. The decomposition
of the gaussian process into its Karhunen-Loéve representation is done using the Principal
Component Analysis (PCA). The covariance function is often referred to as the kernel.

Any new shape deformation xnew of a shape class can be described by a valid parametriza-
tion of Equation 4.20.

xnew = x+
d∑

i=1

αiGi (4.20)

This is basically the execution of the low rank gaussian process. x is the according mean
model and Gi is the decomposed covariance function and α the coefficients of the shape
model [25]. The deformation field of the model is defined through the number d of chosen
basis vectors [138]. They are also referred to as the degrees of freedom of the shape model.
The higher the number of the basis vectors the more shape variations are possible.

For the shape model of the skull d = 50 and for the ventricular system d = 200. The
ventricular system has a much larger variety of possible shapes. The gaussian kernel is
parameterized with s = 10 and σ = 40. The parameter s is affecting the variance of the
possible deformation. The parameter σ takes effect on the smoothness of the vector field.
Normally shapes do not change the direction abruptly, σ is a radius in which smoothness
is applied.

For the skull a symmetrized kernel was chosen, as usually the left and right sides are
symmetric with only small deviations. For the ventricular system this is normally also the
case but can vary a lot due to certain pathologies or anatomical specialties. Therefore a
non symmetric kernel was chosen for the ventricular system.
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Kocher’s and Ventricular System Target Point Definition
In the last step to complete the creation of the statistical shape model the Kocher’s points
and the target points in the ventricular system are defined.

The optimal target point lies within the ventricular system. However, it is not possible
to define a point that is not part of the mesh. The point on the surface of the ventricular
system is chosen in a way that it lies directly in the vector between the Kocher’s points and
the target point inside the ventricular system. When the point on the ventricle is derived
within the fitting process the vector between that point and the Kocher’s point is enlarged
until the other side of the ventricle is hit. Then the middle of these points is taken as
visualized in Figure 2.4.

4.2.2.2. Shape Model Fitting

In the following the process step of the model fitting is described in detail. The shape
model fitting takes as input the segmented patient models of the ventricular system and
the skull. The SSMs of the ventricular system xssm

vs and the skull xssm
skull are deformed

according to their parametrization of the kernel to fit the current patient’s anatomy. The
defined target points on the SSMs are moved during this fitting process to receive the target
points on the skull and on the ventricular system to automatically retrieve the optimal
puncture trajectory.

Preprocessing
Any surface model defines its own coordinate space and has a certain translation, rotation,
scale and deformation. When a SSM is fitted to a certain shape model of the same class
all of these four aspects need to be aligned correctly. The scaling needs to be chosen
correctly when the SSM is created. Translation and rotation are aligned during the shape
model fitting and in a last step the deformation is fitted. The more these four aspects of
SSM and target shape differ, the more difficult it gets to fit them. The scaling of a SSM is
determined by the data it was created from. In our case these were the above mentioned
26 patient scans. The SSMs are slightly enlarged for later shrinking over the target shape
like a vacuum bag.

To perform a successful fitting the SSM and the target shape need to have a good inital
matching. If this is not the case the algorithm often runs into a local minimum instead of
finding the global minimum, equaling the best fit of both meshes. The SSMs are generated
in a way that the coordinate source is in the center of the mean ventricular system and the
skull. The patient models are also extracted with coordinate source in the center. The
proposed approach for patient model extraction is invariant to the used coordinate space.
The patient scan can have any orientation and translation in space. However, the extracted
patient models are oriented in the same way as in the patient scan. Also the scanned area
differs from scan to scan, sometimes the scans are cut under the nose, others under the
forehead. In this work, it is assumed that the patient scans are manually oriented correctly
and that they always image the same area of the head. The coordinate system of the target
shape (patient model) is kept. The SSMs are translated into this coordinate space.

Fitting Step
The fitting step is executed by utilizing algorithms that perform shape alignment through
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point set matching. Shape model fitting of the skull and ventricular system are performed
sequentially.

Generally, this can be formulated as a regression problem. In the standard regression
problem a given point set is taken as input. The goal is then to search for a function
that best fits these points. The regression problem for statistical shape modeling can be
formulated accordingly. A reference shape that consists of X = {x1, ..., xn} points is
matched to a target shape with P = {p1, ..., pn} points of the same shape family.

As the target shape may be of a different shape the possible deformation needs to be
found. We do this to move the defined Kocher’s and target points accordingly. Several
algorithms have been implemented to perform the shape matching and will be presented
in the following.

Different versions of the Iterative Closest Point (ICP) and the Markov Chain Monte Carlo
(MCMC) method have been implemented and evaluated.

• Rigid Iterative Closest Point

• Flexible Iterative Closest Point

• Combined Iterative Closest Point

• Markov Chain Monte Carlo

In the following the current patient anatomy or patient scan is referred to as the target
mesh. The statistical shape model is referred to as the source mesh.

Rigid Iterative Closest Point: A certain amount of points is sampled on the target mesh
to reduce the computation time. Then the closest point to the source mesh is determined
and iteratively the distances of all points to the target mesh are calculated. The rigid
version of the ICP method is not deforming as it only changes the rotation and translation.
Throughout the iterations of the algorithm, the target and source mesh converge to the best
match. The chosen number of iterations was twenty as no improvement was detectable
after this amount.

Flexible Iterative Closest Point: The flexible version of the ICP method is very similar
to the rigid version except it additionally deforms and tries to match the target mesh. This
is also called the calculation of the posterior model. The number of iterations were set to
10. No improvement was detected with higher iteration numbers.

Combined Iterative Closest Point: Here both ICP methods were combined. First a rigid
ICP is executed with 10 iterations and afterwards the flexible ICP with 6 iterations. Even
though better matching results are possible with a higher iteration count, this would need
a significant higher amount of time and no large improvements are detectable.

Markov Chain Monte Carlo: In the beginning also a limited amount of points on the
target mesh are chosen and the closest points to the shape model are derived to perform
an initial mapping of both meshes. A random walk is performed that guesses the posterior
model. Then the acceptance / rejection ratio is evaluated and either the new or old proposal
is used. Every proposal is added to the Markov chain. The best fit is taken as the posterior
shape after a defined number of iterations.

The algorithms yielded different results regarding the fitting accuracy and the runtime.
The results are described in the following Section 4.2.3.
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4.2.2.3. Implementation

All implementations regarding the statistical shape models and the fitting algorithms were
done using the Scalismo library or the standalone tool Scalismo Lab version 0.90. The
annotation of the optimal points were done in MITK. The surface models were generated
using a python script utilizing the ITK framework [105]. The marching cubes algorithm
was used to construct the surface of the ventricular system and the skulls.

4.2.3. Evaluation

In this subsection the evaluation of the automated path planning is presented.

4.2.3.1. Experimental Validation of the Comparison of the Fitting
Algorithms

To evaluate the four different methods, exemplary fittings are performed. For this purpose,
five representative datasets were selected. The fitting methods evaluation was performed
on the ventricular systems of the patient models, as they represent the more challenging
structure. On each of these five patient models fitting of the statistical shape model was
performed using all four methods. The algorithm was executed 5 subsequent times in a
row and the mean error and runtime was measured. It must be stated that the algorithms
always result in the same posterior model, as the input was always the same and the same
parametrization was used. The runtime differed slightly.

All experiments were performed on one workstation with Intel(R) Core(TM) i5-8500,
8GB DDR4, Ubuntu 18.04 LTS and calculated on the CPU.

4.2.3.2. Results of the Fitting Algorithm Evaluation

The results of the evaluation of the four presented methods are depicted in Table 4.3.

Table 4.3.: Evaluation of the fitting methods.
Method Accuracy (mm) Runtime (s) Iterations
Rigid ICP 5.1 9.0±1.1 100
Flexible ICP 6.1 140±2.4 100
Combined ICP 4.76 14.8±0.2 10 (rigid) /6 (flexible)
MCMC 5.6 24±0.8 / 85±1.8 100/5000

The fitting with the combined ICP resulted in the best fitting accuracy. The runtime was
also sufficient with 15 seconds. In the further experiments the combined ICP method was
taken for the shape model fitting.

4.2.3.3. Experimental Validation of the Shape Fitting

The proposed method is evaluated on 33 randomly selected real patient CT datasets. Plan-
ning was conducted for the left and right hemispheres resulting in a total of 66 plannings.
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The datasets contained patients with and without pathologies. The plannings of the punc-
ture path were carried out by determing the Kocher’s (K) and target (T) points inside the
ventricular system as depicted in Figure 2.4. The results of the automated planning were
compared to manually performed plannings. The manual annotation was done by two ex-
pert neurosurgeons (1 neurosurgeon, 1 neurosurgical resident). For the determination of
the Kocher’s point an area of 30× 25 mm around it was rated as an acceptable placement
as shown in Section 2.2.1. Points inside the ventricular system were rated as correct when
they were placed in a way that it would have come to a drainage of cerebrospinal fluid
and were located in the first third. The distance to the annotated optimal points were de-
termined for every automatically derived point resulting in an accuracy value. All derived
points are rated by an expert neurosurgeon if they can be categorized as valid or not.

A path is evaluated as properly planned if both points are correctly derived.

4.2.3.4. Results of the Shape Fitting

The results of the automated path planning are visualized in Figure 4.12.

The Kocher’s points are derived through the statistical shape model fitting correctly in
98.4% of cases. The target points inside the ventricular system can be determined cor-
rectly in 95.4%. This leads to a rate of 93.9% properly planned paths. The mean accuracy
of the determination of the Kocher’s points is 8.4±4.5 mm (n = 66). The absolute error
and the resulting errors in x-, y-, and z-directions are visualized in Figure 4.12 a) to d).
An error value of 4.9±2.3 mm is found for the derivation of the target points inside the
ventricular system. The error values of all axes are depicted in Figure 4.12 e) to h). The
runtime of the proposed method is 57.0±3.4 s. A detailed listing of the runtime of the
different steps is given in Table 4.4.

Process step Time (s)
Nrrd to stl conversion 19±1.2 s
Kocher’s point determination 18±0.7 s
Target point determination inside the VS 15±1.1 s
Trajectory calculation and model generation 5±0.4 s
All 57.0±3.4 s

Table 4.4.: Time measurements of all process steps.

4.2.4. Discussion

The mean models of the statistical shape models are generated from 26 real patient scans.
The best way would be to also calculate the used kernel from the sample data. In this
work the number of sample datasets was not sufficient enough. Therefore, a standard
gaussian kernel was used that was parameterized accordingly. In the future more sample
data should be used to generate the statistical shape model from these patient models.
This could lead to better fitting results and a better representation of the possible shape
variations.

The target patient scans were partially not aligned correctly to the midline and different
parts of the skull were present. Three groups were identified. Scans were cutted under the
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Figure 4.12.: (a) Error distance of automated derived Kocher’s points on the skull to the
manually annotated points: in x-direction, (b) y-direction, (c) z-direction
and (d) absolute error. (e) Error distance of automated determined target
points inside the VS to the annotated ground truth: in x-direction, (f) y-
direction, (g) z-direction and (h) absolute error. All values given in mm.
Adapted from [119].

nose, over the nose or the complete patient head was present. In this work, the scans were
cutted manually over the eyes and rotated correctly. This could be accounted for during
the scan procedure, so that always the same area of the head is scanned. However, in
clinical reality the scanned area can differ a lot. Moreover, the patient head is sometimes
only scanned partially to reduce the amount of radiation.
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To address the different groups of scans also three different statistical shape models could
be used. A patient scan could be fitted with all three different statistical shape models and
afterwards an error metric could be determined, e.g. the mean squares error (MSE). The
results of the fitting with the lowest error could then be chosen.

The statistical shape model of the ventricular system was modeled as a whole. This can
lead to limitations when the ventricular system is not symmetric due to pathologies, e.g.
when one ventricle is much larger than the other one. An expansion could be to model the
left and right ventricles separately in two statistical shape models. This could improve the
fitting reliability, especially for certain pathologies. A prerequisite for this would be that
the left and right lateral ventricles are separated correctly in the segmentation step of this
work presented in Section 4.1. Due to the limited resolution of the CT scan often the two
lateral ventricles are segmented as a connected cluster.

Another promising approach would be the use of machine learning methods. Neural
nets have been presented to automatically determine landmarks in CT or MRI data. The
searched points could be directly determined with a neural net. However it is not clear
if the Kocher’s points and the target points inside the ventricular system could be deter-
mined with sufficient accuracy. Machine learning methods are good to find landmarks in
the data, like the nose, ears and the eyes of a patient scan. This could be used to automate
the preprocessing step that was manually done in this work. The scans could be oriented
and cutted automatically, which is the largest source of error when using statistical shape
models. The Kocher’s points could also be constructed via the landmarks, as they can be
defined as 11 cm above the nasion and 2-3 cm to the left or right lateral side towards the
ears. The target point in the ventricular system could be constructed from the foramen of
monro to the Kocher’s points as this is a very unique landmark in the CT data.

Machine learning methods have been used in various works for the detection of landmarks
in medical imaging data [230, 71, 49, 232, 17, 75, 163].
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4.3. Expanded Path Planning based on Risk
Structures

Surgical interventions can take up to several hours resulting in a high workload for the
performing neurosurgeon, while they are required to work with highest accuracy and dex-
terity. Patient data is normally only visualized in 2D, which makes it necessary that the
surgeon has a good spatial imagination in 3D. Navigated interventions are the standard of
care in neurosurgery and technical aids are commonly used, like microscopes, endoscopes
and nerve monitoring. Path planning is done on the basis of learned medical knowledge
and experience of a surgeon, but often does not take the patient individual anatomy and
brain structures into account. Basically, the complete brain is a risk structure. For certain
interventions like the puncturing of the ventricular system or biopsies it is inviteable to
move the instrument through brain tissue to reach the target. The goal then is to reduce
the affected tissue to a minimum and avoid areas of very high risk. There are a number of
different high risk areas inside the human brain. These are the blood vessels, nerve fiber
tracts, eloquent areas, the ventricular system, the midline between both brain hemispheres
and air-filled areas. These areas are gathered using different image modalities that were
presented in Section 2.1.1 and 2.1.2. An expansion of the automated path planning is
presented by additionally taking high risk areas of the brain into account.

The surgeon is provided with an assistive aid for planning of neurosurgical interventions.
The risk structures are visualized to the surgeon in a volumetric view to enable fast, in-
tuitive and reliable risk presentation to perform the planning. The software tool can be
used to plan linear paths by selecting a good entry point on the skull to reach the target
with minimized overall risk. The access route avoids high risk structures and minimizes
the trauma to healthy tissue. The various risk structures were incorporated into a holistic
model. All structures can be individually and freely weighted to each other. The neurosur-
geons are provided with a comprehensive and interactive decision support tool to perform
access planning on the skin, cranial or cortical surface.

4.3.1. Related Work

An automated safe-path planning tool for deep brain stimulation (DBS) was introduced
by Brunenberg et al. [28]. For each voxel of risk structures they compute the Euclidean
distance to the candidate trajectory and choose the trajectory that is most distant. The
disadvantage of this approach is the long calculation time. Navkar et al. [158] describe
a method that calculates the corresponding risk for trajectories from a puncture point on
the head surface to a target point. They project the risk onto the skull surface but use only
blood vessels as risk structures. The risk calculation takes into account the path length and
the proximity to risk structures. The following work of Rincón-Nigro et al. [177] presents
a planning system that enables almost real-time visualization of the risk map. This makes
it possible to change the target of the trajectory and recalculate the risk in real time.

Shamir et al. [197] pair strict constraints such as a maximum path length with various cost
functions. The risk of each voxel is computed according to the neighboring risk structures,
and a sum of weights along the candidate trajectory is used to calculate the associated
risk. A table provides the neurosurgeon with information about the risk parameters of the
selected entry point and trajectory. Considered risk structures are blood vessels and the
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surgical working volume, being defined as a cone-shaped sleeve. Different methods of
risk calculation are also compared and described.

De León-Cuevas et al. [50] presented a user interface that visualizes the risk of several
linear trajectories to a user. Two main steps are performed for risk allocation: a weighted
sum that depends on the distance of a single voxel from other risk structures, and a second
criterion taking into account other risk factors, such as the length of the trajectory with
fuzzy rules.

Herghelegiu et al. [84] present a biopsy planner that visualizes trajectories between man-
ually chosen entry points and the target in an augmented 2D cross-section view. A needle
pathway distance graph was added to determine positions and cross-sections of highest
risk. Bériault et al. [30] enhance the calculation times by including only those voxels that
lie within the cylindrical trajectory. The major disadvantage of this approach is that the
neighborhood is not included and thus the risk calculation is not affected by risk struc-
tures in close proximity. However, all of the above studies include a risk projection to the
outer surface of the skull, either in a flat map representation or for only a section of the
skull. Furthermore, not one of the studies fully addresses the complete surgical planning
process.

Building on this research, Essert et al. [60] use a global trajectory optimization strat-
egy that simultaneously combines cost functions of strict and soft constraints with user-
dependent weights of these cost functions. Each case of the trajectories computation takes
two minutes. As risk structures blood vessels and the ventricular system are used.

In the IEEE Visualization Contest 2010 [39], which addressed the topic of multimodal
visualization for neurosurgical planning, the winners Diepenbrock et al. [55] present a
system for planning brain tumor resections. They examine the interaction of blood vessels,
functional areas and nerve fiber tracts, which are used as risk modalities, with the tumor.
Particular importance is placed on the visualization of this interaction. The introduced
system allows the surgeon to define the access route interactively by using the 3D views
and to measure distances for evaluation of the possible access routes and assessment of
associated risk. The radius of the circular access path can be selected by the user. A probe
view can be used to inspect the trajectory in the first-person perspective.

Vaillancourt et al. [213] also present work on visualization and interaction of risk struc-
tures and consider fiber tracts according to their location in the brain and in relation to the
tumor. In particular, this work focuses on fiber tracts as risk structures and only marginally
accounts for blood vessels and white and gray matter brain tissue. Apart from the use of
appealing visualizations, however, these studies do not provide a projection of risk to the
skull surface.

Other related work addresses trajectory planning. Zhang et al. [231] incorporate eloquent
brain areas into their visualization using diffusion tensor imaging (DTI) and functional
magnetic resonance imaging (fMRI) data. While they visualize these data, they do not
calculate risk measures. Related to this work is that of Vaillancourt et al. [213] and it
extends the state of the art by the use of DTI fiber tracts based on multiple volumes of
interest. De Momi et al. [51] present an automatic trajectory planner that maximizes the
distance to blood vessels while avoiding sulci. Optimal trajectories are proposed based
on manually defined entry and target areas. No individual weighting of different risk
structures is considered, ignoring the case where a voxel is part of multiple risk structures.
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Segato et al. [191] presents an approach for robot-driven curvilinear trajectories to plan
deep brain stimulation treatments. To calculate the optimal path from an entry area on
non-linear paths, the eloquent areas, nerve fiber tracts, the ventricular system and the
tumor are considered, incorporating a safety distance to these structures.

Villanueva-Naquid et al. [219] introduce methods for a faster calculation of an optimal
trajectory. A genetic algorithm is used to solve the safest trajectory search problem by
avoiding an exhaustive search. Using this solution is limited to the use of blood vessels
and the ventricular system.

A detailed comparison of the aforementioned works is presented in Table 4.5 and com-
pared to the proposed method in this work.

4.3.1.1. Commercial Systems

There are several commercial navigation systems in the field of image-guided neuro-
surgery. The systems support by tracking the position of the surgeon’s tools and dis-
playing their position on pre- or intraoperative image volumes. The major competitors
are Stryker (Stryker Corporation, Kalamazoo, Michigan, USA), Brainlab (Brainlab AG,
Munich, Germany) and Medtronic (Medtronic plc, Dublin, Ireland), accounting for up to
three quarters of the market share [6]. All of them use various (semi-) automatic registra-
tion and segmentation algorithms for interaction and highlighting of risk structures.

Key developments in this area involve the integration of robotic applications to ensure
safe intervention based on a pre-planned trajectory. Zimmer Biomet (Zimmer Biomet
Holdings, Inc., Warsaw, Indiana, USA) introduced a system intended for robotic cranial
interventions, the neurosurgical robot ROSA One®, combined with an optical tracking
system. It supports cranial interventions that require surgical planning with preopera-
tive data, patient registration and precise frameless stereotactic instrument positioning
and handling. The ROSA system provides haptic features that allow the neurosurgeon to
manually guide the instruments within limits defined during planning. Another special-
ized navigation system is B.Braun’s (B.Braun AG, Melsungen, Germany) OrthoPilot® for
orthopedic surgery, especially knee and hip arthroplasty. A special feature is navigation
without the use of preoperative images, which enables fast surgery and no pre-registration,
but offers less accuracy. The Mako system from Stryker is specifically designed for ortho-
pedic knee and hip surgery. These planning and navigation systems have the capability to
ensure a better surgical outcome by minimizing soft tissue and bone trauma, increasing
accuracy, as well as minimizing the risk of serious error by limiting movement. The Swiss
company CAScination (CAScination AG, Bern, Switzerland) focuses on targeted otologic
procedures and laparoscopic percutaneous surgery planning.

4.3.2. Requirements Analysis

To implement a reliable, robust and usable system for usage in clinical practice it is im-
portant to understand the needs of the target group which consists mostly of surgeons.
The requirements for a surgical planning tool are identified by conducting a qualitative
user study with medical experts (n = 5; 1 neurosurgical resident, 4 neurosurgeons). A
prototype of the system was implemented and evaluated by these medical experts. Subse-
quently, they were asked to answer a questionnaire.
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Table 4.5.: Related work comparison: Surgical workflow mapping (C-I), integration of
multiple structures into a holistic model (C-II), weighting of each structure’s
risk (C-III), projection of results onto the surface (C-IV), provision of a safety
margin around tool or risk structure (C-V), applied soft (SC) and hard (HC)
constraints (C-VI), and tool access point planning (C-VII) [118].

Method C-I C-II C-III C-IV C-V C-VI C-VII
[28] yes 3 (ventricles (V), no no yes SC: minimize distance to V and BV cortical surface projection

blood vessels (BV) HC: entry points on frontal lobe gyri
gyri (G))

[158] no 1 (BV) no yes yes SC: path length (PL), skin surface projection
minimize distance to BV
(on surface projection)

[213] no 3 (fiber tracts (FT), no no yes none none
BV, functional

areas (FA))
[55] yes 4 (FT, FA, no no yes none exemplary trajectory only

BV,
bone (B))

[84] no 1 (BV) no partly yes SC: minimize distance to BV manual picking of region
for possible entry points

[197] no 2 (BV, V) yes partly yes SC: minimize distance skin surface projection
to BV and V

[60] no 2 yes yes yes SC: minimize PL and upper skin surface
(sulci (S) distance to S and V, projection, gyri projection
and V) optimize electrode placement, on the skin surface

HC: maximum PL, risk avoidance
[177] no 1 (BV) yes yes yes SC: Minimize PL skin surface projection
[231] no 3 (BV, FT, FA) no no no none none
[50] no 2 (V, BV) yes partly yes HC: no crossing of brain midline, skin surface projection

PL <=90 mm,
no direct hit of V and BV

[191] no 3 (V, yes no yes SC: minimize hits none
cerebral cortex of risk structures,

BV) minimize maximum curvature,
minimize PL, smooth path,
orientation of electrodes shape

[30] yes 3 (V, S, BV) yes partly partly SC: avoid subcortical BV, cortical surface projection
minimize overlap with
caudate nucleus, minimal overlap
of cortical gray matter
HC: entry point in frontal lobe,
avoid midline, avoid penetration
of risk structures

[51] partly 4 (V, thalamus, partly no no SC: minimize distance to BV depending on
cerebelum, BV) and insertion angle image resolution

HC: avoid penetration of
risk structures, maximum distance
between electrodes,
maximum curvature

[219] partly 2 (BV, V) yes no no none trajectory count depending
on genetic algorithm used

Presented yes 4 (BV, V, FA, FT), yes yes yes SC: Minimize path length cortical or skin surface
Approach and trajectory risk
[118] not limited HC: maximum PL

avoid penetration of risk structures

The neurosurgeons were asked to answer the following questions freely:

1. Do you use software for planning and during surgery? If yes, which one?

2. What image modalities do you use in general and which are available for plan-
ning?

3. What are high risk structures and how important would you rate them?

4. How much time do you generally have for planning a cranial approach?

5. What features should a tool offer to support the surgical planning process?
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The risk structures were rated as very important, important, neutrally important, unimpor-
tant or very unimportant. The answers were as follows:

Do you use software for planning and during surgery? If yes, which one?
All of the questioned medical experts use navigation software to plan and perform surgical
interventions. They stated that planning tools are an essential part of their surgical work-
flow. Usage of these assistance tools is the standard of care. All questioned surgeons use
the BrainSuite (Brainlab GmbH, Munich, Germany). Note: all questioned neurosurgeons
are at the same clinic.

What image modalities do you use in general and which are available for planning?
Most frequently, an isotropic thin-slice MRI with T1, T2 sequence and a contrast-enhanced
image is obtained to detect and visualize blood vessels. Dependent on the situation,
other image modalities are used to create additional datasets. This depends primarily on
whether the hospital deals primarily with emergency situations or performs more planned
procedures. For tumor treatment, fMRI and DTI scans are often performed, especially if
the tumor is in a critical location, e.g. near an eloquent area. Regular CTs are prepared
as a standard in emergency situations, because they can be obtained very fast, and several
pathologies can be seen like dilated ventricles. MRI T2 FLAIR sequences are used to
separate tissue-bound from free liquids, e.g. to distinguish between cerebrospinal fluid
and lesions in a patient scan.

What are high risk structures and how important would you rate them?
In general, all structures inside the human head are risk structures, but some are more
vital than others. The brain can reorganize when parts are damaged. This is not possible
or very difficult for certain areas. Therefore, these vital structures need to be avoided
during surgery.

Eloquent areas were rated as most vital, with the motor cortex as the most important struc-
ture. In second place is the language center, followed by the blood vessels. Avoidance
of nerve fiber tracts is considered necessary, although the determination of their location
is challenging. Sometimes contact cannot be avoided depending on the selected target
point in the brain. The surgical puncture path length should be as short as possible and
was rated as important. Damage to healthy tissue should be minimized. Cosmetic aspects
were rated as least important from a neurological-functional point of view and should be
considered whenever possible. Incisions in the face should be avoided and existing scars
should be reused whenever possible.

How much time do you generally have for planning a cranial approach?
Each cranial procedure is planned based on individual patient imaging data. Typically this
includes the entry and target point that form the path.

Generally it can be stated that the time for planning depends strongly on the type of proce-
dure. Also the individual experience of a surgeon plays an important role. It is very likely
that an experienced neurosurgeon needs less time for planning. Standard procedures, like
biopsies (e.g. tumor site), take an average planning time of three to ten minutes depend-
ing on the target location. Deep-seated targets need more time for planning due to higher
complexity. For more challenging procedures, such as resection of a tumor, the planning
time is reported to be ten to thirty minutes.

Depending on the current surgical situation a re-planning of the path can become neces-
sary.
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What features should a tool offer to support the surgical planning process?
The medical experts expressed their need for a shorter planning time. It is also desirable
to minimize the risk of a path and to maximize the distance to risk structures leading to
a safe planning procedure. It was also asked which degree of automation is considered
useful and acceptable for a surgeon. Automation should be limited to a certain level and
only recommendations should be provided. It is then in the decision of a surgeon to accept
a planning or adjust the proposal. The planning tool should map the surgical workflow
and should be easily adaptable to changing situations. The system must depict detailed
information about the patient and the used image data to interpret the accuracy of the
proposed surgical planning correctly. This can be the slice thickness and used resolution.

The survey with medical experts lead to several requirements that are listed in Table 4.6
and 4.7.

Two different requirement groups have been identified. On the one hand, there is a strong
need for a good usability and design of the system. Requirements of this category are
referred to as design requirements. On the other hand, the system needs to provide func-
tionalities that are gathered as functional requirements.

Table 4.6.: Design requirements of the system for risk-based path planning gathered in
the user study with medical experts. RD = design requirement

ID Requirement
RD1 User-centered design
RD2 Integration of surgical planning workflow
RD3 Interactive coronal, axial and sagittal planes
RD4 Interactive 3D view
RD5 Pick target point in 2D view
RD6 Pick entry point in 3D view
RD7 Show cross-hair of current position
RD8 Display information about dataset dimensions
RD9 Trajectory visualisation
RD10 Augmented views
RD10.1 Display segmented risk structures in 2D views
RD10.2 Display segmented risk structures in 3D view
RD11 Planning on skin and cortical surface

4.3.3. Dataset and Segmentation of Risk Structures

In this work, a multimodal dataset was needed to obtain as many risk structures as possible
to test the system capabilities. Thus, an open-source dataset from the visualization contest
2010 [9] was used as a starting point and partially modified and expanded, because no
available dataset matched all the requirements.

The blood vessels were segmented out of an added digital subtraction angiography (DSA)
scan that was not part of the original IEEE dataset. The image data was obtained from a
different patient and matched to the IEEE dataset by adjusting the scan accordingly. In
this way a virtual patient was created. A modified Frangi Vesselness Filter [67] was used
to perform the segmentation. The ventricular system was switched and smaller tumors
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Table 4.7.: Functional requirements of the system for risk-based path planning gathered
in the user study with medical experts. RF = functional requirement

ID Requirement
RF1 Dynamic risk weight change
RF2 Modular architecture for including arbitrary structures
RF3 Integration of path length
RF4 Integration of strict & soft constraints
RF5 Save trajectory information
RF5.1 Human-readable data interface
RF5.2 Machine-readable data interface
RF6 Integration into the Robot Operating System (ROS)
RF7 Fast update time

were defined as masks. This was done to create several different scenarios. The original
tumor mask was used as well. Eloquent areas were extracted from the fMRI sequence
with a threshold approach. The segmentation of the nerve fiber tracts was provided in the
IEEE dataset. The skull, skin and the ventricular system were extracted from the patient
scan using the algorithm that was introduced in Section 4.1 and [113]. The segmentations
are stored as nifti or nrrd files [201] [54]. Our system is capable to work with both. The
volumetric file formats are used for faster and easier processing.

It is necessary that all image modalities are scaled, rotated and translated correctly to
each other, so a proper registration needs to be performed. Each voxel of every image
modality then represents the same physical location. This can make it necessary that data
is partially sampled from voxels nearby, e.g. if the resolution is smaller than the target
modality. Different algorithms are used that are dependent on the modality, e.g. the head-
and-hat and iterative closest point algorithm.

The segmented risk structures are shown in Figure 4.13 and together form the risk maps
Mi.

4.3.4. Methods for Risk-based Trajectory Determination - Risk
Calculation

The proposed system is designed to help neurosurgeons find an optimal path to a target in
the human brain with minimized risk. The obtained image data of a patient is presented
to the surgeon in three 2D views as well as one 3D view. The data is augmented with
segmented risk structures derived from that data. To select a target in the desired structure,
e.g. the ventricular system or tumorous tissue, the surgeon can use the interactive tool.
Vertices of surface model meshes (.stl) of the skin, skull (cranial) or brain (cortical) are
used as possible entry points. The system then calculates all risks of all possible paths to
a selected target and stores it as a skin projection map. The number of calculated paths
equals the number of vertices. A high level view of the system workflow is presented in
Figure 4.14.

The risk of these paths is calculated based on an arbitrary number of anatomical structures
inside the brain. These may include the ventricular system, nerve fiber tracts, eloquent ar-
eas, and blood vessels. All represent vital structures of the brain. Multimodal medical 3D
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Figure 4.13.: Visualization of the different risk structures segmented out of the dataset.
a) Blood vessels, b) Ventricular system, c) Eloquent areas, d) Nerve fiber
tracts, e) Tumor mask, f) All risk structures. Adapted from [118].

imaging techniques are used on the patient to acquire these data (e.g. CT, MRI, fMRI,
and DTI). Three-dimensional risk maps are used to store each high-risk area of the brain
individually. A neurosurgeon must avoid each of these structures if possible to reach the
chosen target. Through the modular architecture, it is possible to add additional risk struc-
tures at any time to the risk maps such as sulci, gyri, hemorrhages and special eloquent
areas. This mainly depends on the pathology of a patient and availability of image data.

Each risk structure i is read from its segmentation file and stored in memory as a third-
order tensor (3D matrix) Mi to enable fast processing. For evaluation of the system the
aforementioned dataset is used.

Trajectory planning is performed by selecting a suitable path Tj with the lowest overall
risk, while j is the number of vertices of the surface model mesh.

A medical expert can define a weighting factor wi for every risk map Mi as a reflectance
of its importance as an anatomical structure. Each risk structure can be considered in the
overall risk calculation or switched off. This can be of special interest to integrate less
important structures like cosmetic aspects. It can also become necessary when no path
can be found with zero risk, which means that not all risk structures can be avoided. In
that case the goal is to minimize the risk and the damaged tissue. The marching cubes
algorithm is used to generate surface models of the skin, skull or brain surface.

The total risk of a path is then projected onto one of these surfaces. As a standard, the
surface of the skull is used. Exemplary surface projections are illustrated in Figure 4.23.
The colors represent the risk values from blue (low risk) to red (high risk).

A target point inside the brain is then manually chosen by the neurosurgeon, e.g. the
center of a tumor. Each surface model has a certain resolution in form of the vertices
count. From each vertex to the target a path is generated and the risk is calculated. To
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Figure 4.14.: Activity diagram of the proposed system, visualizing the workflow and the
user interactions [118].
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calculate the total risk of a trajectory all voxels must be determined that lie on the path by
using the Bresenham algorithm [27] due to its fast computational performance. The set of
voxels BTj

of a path is identified.

In a next step, the medical expert can choose a weight for each of the selected risk struc-
tures. As a rule, all risk structures are weighted equally. This lies within the choice of the
medical expert. So it is possible to assign lower values to risk structures that were rated
less important. Additionally a weight can be given for the path length. This weight needs
to be carefully chosen, because it is desirable to minimize the path. This can lead to the
problem that low risk paths are set closer to risk structures.

The system offers two modes for risk calculation: joint and strict mode. Depending on
the selected mode, the risk is calculated differently.

The joint mode represents the basic mode of the system. The trajectory risks are projected
onto the chosen surface and amplified to create a safe area around the risk structures.

The risk calculation is done by adding up all risk values of all voxels at position (k, l,m)
that are part of a trajectory Tj . Risk values are weighted by the chosen factor. The total
trajectory risk r(Mi, Tj) is calculated separately for each risk structure i and its risk map
Mi.

r(Mi, Tj) =
∑

(k,l,m)∈BTj

mi
klm (4.21)

The total consolidated risk R̂(Tj) of a trajectory Tj , including all chosen risk structures,
is computed as a weighted sum as in

R̂(Tj) =
∑
i

r(Mi, Tj) · wi (4.22)

The final risk of a path is then normalized in relation to the maximum risk of all trajecto-
ries:

R(Tj) =
R̂(Tj)

maxk R̂(Tk)
. (4.23)

The total risks of all paths are projected onto the cranial, cortical, or skin surface and
stored as the vertex color value of the surface mesh. Values between 0 and 1 are possible
and mapped to a color scale from blue to red. It is possible that no calculated path has
a risk of 0, but the path with maximum risk has always the risk value of 1. To create
a safe area around high risk trajectories, an amplification function can be applied to all
paths changing the values of the projection map. The amplification function as shown in
Eq. 4.24 is used to intensify these values, where C is the amplification parameter, set by
a user.

Rjoint(Tj) = 1− e−C·R(Tj) (4.24)
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The strict mode is a further development of the joint mode. The projection map gives a
surgeon a very intuitive interface to plan an intervention. Creating a safety area on the
2D projection is fast and robust. However, this neglects the structures in its volumetric
form. Therefore, as an alternative approach the safety area creation can be performed on
the volumetric data by applying a Gaussian filter on the risk maps Mi. The Gaussian filter
was modified because it is not desirable to reduce the risk value of a risk structure. The
goal is to create a safe perimeter by extending the risk structure to a certain amount by
maintaining the original structures.

By applying the modified Gaussian filter to every risk map Mi, new dilated risk maps Gi

are created.

We define the Gaussian filter as in

Kg(k, l,m) =
1

(2π)
3
2σ3

exp(
k2 + l2 +m2

2σ2
) (4.25)

with k, l and m being the dimensions of the kernel of the filter and σ being the strength
factor of the Gaussian filter. The intensity of a voxel in the risk maps Mi is derived by
IMi

(p) at position p(x|y|z) ∈ [0, width]× [0, height]× [0, depth] ⊂ R3.

The new intensity of voxel p after applied Gauss filter can be defined as

IGi
(p) = IMi

(p) ∗Kg(k, l,m) (4.26)

When applying the Gaussian filter to the risk maps Mi the dilated risk maps Gi are created.
The 3D matrix Gi has the entries gi = max{IGi

(x, y, z), IMi
(x, y, z)}, where the discrete

position of a voxel is x, y, z. A dilated risk map of blood vessels is shown in Figure 4.15c.
All risk structures that have been segmented in the patient data were marked as 1 in all
risk maps Mi. The dilated risk around the structures values in Gi range from < 1 to 0
in a specific radius in relation to the chosen value of σ. The original mask is untouched.
A surgeon chooses the value of σ for every risk structure individually. The larger a risk
structure is the larger the value of σ is chosen. A good parametrization for the motor
cortex is σ = 6 and σ = 2 for blood vessels. The values were determined empirically.

A risk value represents a certain hit probability. The safe area was created to react to
a number of uncertainties like brain shift and tool deformations when inserted into the
human brain. The size of the safe margin should be created in a way that it compen-
sates for these uncertainties. Several works have investigated the expected brain shift and
deformations caused by the inserted tools [83, 74, 161, 199, 151, 175, 160, 192].

The safe margin can be adjusted accordingly.

In strict mode hard and soft constraints are implemented. Risks that must be avoided
are classified as hard constraints (HC). They are applied first on every path. If a path
violates a hard constraint it gets blocked and marked with a relative risk of 1, else the risk
calculation is done based on the risk values of all risk maps, i.e. rhc(·, ·) ∈ {0, 1}). All
risks that must be minimized are grouped as soft constraints (SC).

The first hard constraint (HC1) forbids the direct hit of a risk structure. This is the case
if a voxel at position gi has the value of 1 in any risk map. The second hard constraint
defines a maximum length of a path that must not be undercut (HC2).
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Figure 4.15.: (a) Visualization of the blood vessel risk map Mi, (b) the same risk map
Mi after applying the Gaussian filter and (c) the dilated risk map Gi after
applying the maximum function [118].

Figure 4.16.: Visualization of blocked trajectories in strict mode [118].

Paths that are blocked due to the violation of HC1 are depicted in Figure 4.16.

A parameter that must be minimized is the length of a path (SC1), because the goal is to
damage as little healthy brain tissue as possible. To minimize the risk of penetrating a risk
structure the distance to them must be maximized (SC2). Therefore, small path deviations
and brain shift can be compensated.

A linear relationship is assumed between the length of a path Tj and the associated risk.
SC1 is defined as a normalized risk function Rl, where lmin = mink length(Tk) and
lmax = maxk length(Tk) are the longest and shortest paths.

Rl(Tj) =
length(Tj)− lmin

lmax − lmin

(4.27)

The risk of a path considering all risk maps (for the time being without considering the
path length) is defined as a normalized risk function Rd as in
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R̂d(Tj) =
∑
i

r(Gi, Tj) · wi

Rd(Tj) =
R̂d(Tj)

maxk R̂d(Tk)

(4.28)

with the weights wi predefined by a surgeon.

The risk of a trajectory is normalized with the maximum risk of all trajectories maxk R̂d(Tk).
This leads to a normalization of the risk values to a range of 0 to 1.

The total risk of a trajectory in strict mode Rs for a given trajectory Tj is defined as

Rs(Tj) =

{
1 |{Mi|rh(Mi, Tj) = 1}| ≥ 1
1
2
(Rl(Tj) +Rd(Tj)) else

(4.29)

The total risk values are also in strict mode projected onto the chosen surface, to provide
an intuitive planning visualization to a surgeon. The risk calculation for strict and joint
mode are exemplary visualized in Figure 4.17.

Figure 4.17.: Visualization of the different calculation methods for the total risk in (a)
strict and (b) joint mode. Adapted from [118].

The calculation of the different risks per structure and trajectory is executed separately.
For every risk map Mi or Gi the risk per path is determined and stored in its own data
structure. This step was implemented to enable a faster recalculation when weights are
changed intraoperatively. An alternative approach would have been to calculate the total
risk of a trajectory at once. This renders the initial risk calculation of all trajectories
faster. However, a recalculation with updated weights is much slower. In the proposed
system architecture only the trajectory risk of structures with updated weights must be
recalculated to determine the new total weight of all trajectories.

An expanded architecture diagram of the system is depicted in Figure 4.18.

A surgeon can then, in a final step inspect the risk projection map and select a suitable
entry point to a chosen target. It is also possible to check the trajectory in a fly-along
visualization.
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Figure 4.18.: Architecture of the planning tool divided in its main components. Actions
are displayed in rectangles with rounded corners, while data and parameters
are marked by a rectangular outline. Input data are marked light grey, stored
output data are dark grey. Initial risk computation, update of risks, and
saving a trajectory are indicated by blue, red and light green backgrounds,
respectively. Adapted from [118].

4.3.4.1. Implementation

The presented planning tool was implemented as a standalone prototype utilizing Qt, VTK
(Visualization Toolkit) [106] and ITK (Insight Segmentation and Registration Toolkit)
[105]. To create the dilated risk maps Gi a Gaussian filter of ITK was used, the "Smooth-
ing Recursive Gaussian Image Filter". For determination of the voxels that lie on a trajec-
tory the Bresenham algorithm [27] was used.

4.3.5. Integration as Robot Operating System Packages

The implemented tool was used to initially test the risk-based path planning and to obtain
first insights. It was decided to provide two independent modes to a surgeon to choose
from. This was done to provide an easy and understandable way to interact with the
system. However, the system can not be used in automated processes and the two defined
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modes are not customizable. It is desirable that the different modules of each mode can
be integrated freely and that they can be switched on and off to create custom modes to
allow for a more flexible system. To cover these requirements, we integrate the solution
in the Robot Operating System (ROS) as individual nodes or sevices.

The risk maps and consolidated risk maps have a size of round about 25 MB in the pre-
sented scenario which relates to the CT image size. This presents a certain challenge as
it is not easy to process these amounts of data within a system in real time. ROS is a
distributed system and it is also challenging to exchange the risk maps between multiple
systems. The data storage was implemented using a shared memory approach, to enable
a fast way for read and write operations.

The shared memory can only be accessed from the local machine where it was created on.
If another device on the network needs to access the risk maps, they must be requested via
an interface. However, it takes time to distribute and synchronize large amounts of data
over network. Therefore all processing nodes should run on one device. The risk maps,
the consolidated risk map, the paths, and the projection risk maps are stored in shared
memory. The shared memory can be accessed at high speed to process large amounts of
data only limited through the system capabilities.

The risk calculation is executed the same way as described in the previous chapter. The
target point is provided to a ROS node that listens for incoming messages. The system
then starts to calculate the trajectory risks of all possible paths from the surface to the
target. Paths are derived from every vertex of the surface mesh to the target point. The
system can then determine the trajectories with minimal weight. A surgeon can subse-
quently inspect the results in the visualization interface RVIZ. They can then inspect the
risk maps and fly along each trajectory and choose the final path or directly the path with
minimum risk.

An RVIZ example scene is depicted in Figure 4.19.

Figure 4.19.: RVIZ visualization of a trajectory with depicted risk per voxel within a color
scale from green to red [118].
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The architecture of the ROS implementation is depicted in Figure 4.20. The central ROS
node is "Data Management" where all data is managed, like the risk maps, consolidated
risk maps and the projection risk map. All functionality is implemented in ROS as de-
scribed in this section. As a visualization interface RVIZ, the ROS visualization tool, is
used. The manual interaction capabilities such as selecting a point on the surface is not
implemented as the ROS integration is used in automated processes.

Figure 4.20.: Architecture of the proposed method in ROS.

4.3.6. Evaluation of Risk-based Path Planning

To evaluate the proposed system a quantitative analysis was performed. First, the risk-
based trajectory determination is compared to the standard of care, where a surgeon
chooses trajectories without tool support. Second, the performance of the system is eval-
uated. At last, the correctness of the calculations is evaluated and the fulfillment of the
requirements is checked. After the implementation of the final system a second qualita-
tive user study was performed. The aforementioned IEEE 2010 data visualization contest
dataset was used during evaluation.

4.3.6.1. Comparison to Standard of Care

The proposed neurosurgical planning tool was evaluated by performing a quantitative
analysis with expert neurosurgeons (n = 3; 1 neurosurgical resident, 2 neurosurgeons).
They were asked to plan neurosurgical procedures using a biopsy as an example. There-
fore, four realistic target areas were defined inside the brain. Again, the IEEE data visu-
alization contest 2010 dataset (case 2) was used. The four targets are depicted in Figure
4.21. They were given the task of planning a linear trajectory to perform a biopsy of the
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Figure 4.21.: Four targets that are defined in the open source dataset. Adapted from [118].

Figure 4.22.: Results of the quantitative analyses [118].

defined targets. The medical experts were free to choose an exact target point within these
areas and as it made medical sense.

Initially, the medical experts were asked to perform the planning without the help of
visible risk structures and the support of our tool. In a second experiment, they solved the
same task using the switched-on risk projection and risk calculation. Thus, each medical
expert performed four planning sessions without visible risk structures and four risk-based
planning sessions. Each planning was done using the same interface in our tool in order
to obtain comparable results. The results are visualized in Figure 4.22.

In almost all cases, risk-based planning resulted in a lower overall trajectory risk. Only
in one case was the risk value slightly lower (surgeon 2, target 2). The mean relative risk
across all four targets was 0.38 for risk-free planning and 0.14 for risk-based planning.
No units are provided for the risk value, as this metric is derived to compare trajectories
in a specific patient case scenario.
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Two risk structures were perforated directly when no risk planning was used for target 2
and 4. No risk structure was hit when the risk-based planning was used.

4.3.6.2. Computational Performance

The risk-based path planning was investigated in terms of its runtime behavior. Several
time measurements were performed. The results are depicted in Table 4.8. The time for
initial calculation is determined by measuring the time taken for the generation of the con-
solidated risk map and the projection risk map, where all trajectory risks are determined.
Next, the update time for replanning all trajectory risks with changed weights is measured.
The evaluation is carried out in the joint mode, since this mode is more computationally
intensive.

Table 4.8.: Time measurements of the runtime behavior of the presented approach for low
(1’215 vertices, 60 KB), medium (43’280 vertices, 2.7 MB) and high (440’764
vertices, 21.5 MB) surface mesh resolution and according number of trajec-
tories (starting point at each vertex). Initial computation time: Calculation of
all individual risk maps, consolidated risk maps and the projection risk map.
Update time: Recalculation with changed weights. Measurements were done
with 1-4 risk structures [118].

Number of RS Low Medium High
Initial computation time

1 4.5s± 0.3s 11s± 0.8s 145s± 4s
2 4.9s± 0.3s 15s± 1.2s 365s± 5s
3 12s± 0.7s 21.5s± 1.5s 355s± 6s
4 12.3s± 1s 27s± 2s 485s± 8s

Update time
1 0.4s± 0.1s 1s± 0.2s 5.3s± 0.3s
2 0.5s± 0.1s 1.2s± 0.2s 5.7s± 0.4s
3 0.6s± 0.1s 1.3s± 0.2s 6s± 0.6s
4 0.8s± 0.1s 1.4s± 0.2s 6.1s± 0.7s

The runtime was evaluated in regard to the number of used risk structures. One addi-
tional risk map is being calculated per risk structure and used in further calculations. The
more risk structures are used the more computational expensive is the calculation of the
trajectory risks. As shown in Table 4.8 the effort grows linearly. Furthermore, different
resolutions of the surface mesh are investigated, while each vertex represents a possible
starting point of a trajectory. The number of vertices equals the number of calculated
trajectories. We evaluated three different meshes with a low (1’215 vertices, 60 KB),
medium (43’280 vertices, 2.7 MB) and high (440’764 vertices, 21.5 MB) vertex count. In
the proposed tool, this can be selected under ’Mesh Resolution’, see Figure 4.24-(III).

Many scenarios are covered by the medium resolution surface model. When investigating
the distance between the vertices, a value of 1 to 4 mm can be obtained. Modern CT
scanners have a spatial resolution of round about 0.7 mm as found in the used dataset.
This resolution can vary, with the best spatial resolution being 0.15-0.3 mm. The high
mesh surface has a vertex distance of 0.4 to 1 mm.
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Currently, medium- and high-resolution surface models cover all possible scenarios, even
when high accuracy is required, e.g. for nerve biopsies. We evaluated the high vertex
count to show that our approach is capable of processing any number of vertices, con-
strained only by the capabilities of the workstation used and the maximum possible res-
olution of modern imaging technologies. The computation utilizes parallel processing on
the CPU. The results of the performance evaluation are summarized in Table 4.8. The
evaluation was conducted on a workstation laptop with the following configuration: Intel
Core i7 6820HQ, 16GB DDR4 RAM, SSD.

4.3.6.3. Correctness

The algorithmic correctness is analyzed with a unit test and additionally verified manually
to have a second independent method for risk calculation. Four defined paths are inves-
tigated that are depicted in Figure 4.23. The risks of these four paths are calculated as
follows: First the voxels that lie on a path are derived by using the Bresenham [27] algo-
rithm. Then the risk of a path is calculated for every risk structure separately and later on
added up to the total path risk. Two paths are calculated in joint mode and two in strict
mode. This equals the risk calculation presented in Equations 4.24 and 4.29. The risks
are weighted equally with 1 and normalized with the maximum risk of all paths. These
results are then compared to the results that were derived with the proposed method. The
external validation yielded the same results as with the proposed method. Detailed results
are depicted in Table 4.9. Figure 4.23 shows the corresponding paths, projection maps
and entry points.

Table 4.9.: Correctness verification of the path risk calculation. The overall path risk is
calculated from the 3D risk maps of the blood vessels (BV), the eloquent areas
(EA), the nerve fiber tracts (NFT), the ventricular system (VS) and the path
length (PT). The risks of the proposed method and the unit test are depicted.

Path 1 2 3 4
Entry Point (108, 129, 286) (102, 124, 288) (9, 320, 149) (152, 322, 108)
Target Point (95, 192, 234) (81, 192, 146) (60, 286, 120) (114, 291, 109)

Mode Strict Strict Joint Joint
BV 0.1337 1 1.80 1.0796
EA 0.0133 9.65×10−7 0.9295 0.2810

NFT 0.0025 0.0186 0.027 0.9359
VS 0.0003 7.97×10−14 8.46×10−8 9.12×10−24

PT (mm) 41.21 75.57 55.35 40.56
Risk - Unit Test 0.0299 1 0.03 0.013

Risk - Proposed Method 0.0299 1 0.03 0.013

4.3.6.4. Requirements Verification

The implemented standalone tool for risk-based path planning is visualized in Figure 4.24.
The individual GUI elements are numbered from I to X and are explained in detail be-
low. Their functionality is mapped to the appropriate requirements. We designed the
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(a) (b)

(c) (d)

Figure 4.23.: The four chosen paths of the correctness validation. Results are depicted in
Table 4.9.

proposed approach in close cooperation with medical experts to meet all clinical require-
ments (RD1) and match the surgical planning workflow (RD2) as depicted in Tables 4.6
and 4.7.

A surgeon can investigate the patient scans (RD3) in the coronal (Figure 4.24 I-a), axial
(Figure 4.24 I-b), and sagittal (Figure 4.24 I-c) planes and in the 3D-view (RD4, Fig-
ure 4.24 II). The 3D view visualizes the chosen surface mesh. It is possible to load sur-
face meshes of any resolution (Figure 4.24 III). The risk of each trajectory is projected
onto this surface by coloring each vertex according to its risk value within a blue to red
color range. Surface meshes of the skin, cranial or cortical surface can be chosen (RD11,
Figure 4.24 II). It is possible to change the opacity of the projection on the surface model
as desired (Figure 4.24 IV). The dataset dimensions (RD8) are displayed in the left upper
corner of the 2D planes (Figure 4.24 V-a) and in the right corner of the 3D visualization
plane (Figure 4.24 V-b).
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Figure 4.24.: Prototype of the implemented tool for the risk-based path planning.
Adapted from [118].

The target point inside the brain can be selected in the 2D planes by simply clicking on
the desired point (RD5, Figure 4.24 VI). The target point defines the end point of every
trajectory. This can be for example where a catheter needs to be placed or a biopsy needs
to be performed. The target point is also visualized in the 3D plane. In the 3D view, the
entry point on the surface model can be chosen (RD6, Figure 4.24 II). A crosshair in all
three 2D planes displays the current position (RD7). The crosshair can be switched on
and off as desired. The trajectory is visualized from the target point to the entry point in
the 3D plane (RD9, Figure 4.24 II). The perspective in the 3D view can be interactively
changed with the mouse.

The modular architecture allows to load an arbitrary number of risk structures (RF2).
The loaded risk structures are superimposed over the patient data in the 2D views and
visualized as voxels in the 3D view (RD10.1, RD10.2). The entry point planning can
be performed on any registered surface mesh. Therefore, our approach is not limited to
the brain. For each loaded risk structure an individual weight can be set by the surgeon
(RF1, Figure 4.24 VII). The initial risk calculation can be started with the button "Initial
Risk Calculation" (Figure 4.24 VIII). To do so, first the target point needs to be selected.
The initial calculation determines all trajectory risks from all possible entry points on the
chosen surface to the target point - the projection map, as seen in the 3D view. After
selecting the entry point the trajectory can be set by clicking on the button "Calculate
Trajectory" (Figure 4.24 IX). After changing the weights a fast recalculation can be started
(see "Update Risk Calculation" button in Figure 4.24 X).
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Hard and soft constraints as defined in Section 4.3.4 are implemented in strict mode
(RF4). A maximum path length can be set (RF3) and a weight. The tool stores the calcu-
lated risk maps as nrrd-files and all trajectory information for re-use as a machine readable
binary file (RF5.2) and a human understandable yaml-file (RF5.1). The full functionality
was integrated in ROS (RF6) as described in Section 4.3.5. The system was designed in a
way that the update time is fast (RF7) at the cost of a higher initial computation time. All
requirements were implemented in the risk-based path planning tool and as ROS nodes.

4.3.7. Discussion

When the approach for risk-based path planning is used in a real clinical scenario, several
considerations must be taken into account. A serious risk is brain shift, as it can lead
to a significant displacement of the risk structures, and thus the proposed system would
not correctly indicate the current situation. Brain shift occurs mainly when large sections
of the skull surface are removed. However, in scenarios such as ventricular puncture or
biopsies, only a small incision is made which leads to no significant brain shift. To account
for small changes, the risk maps can be dilated with a gaussian filter. Alternatively, risk
areas in the projection risk map can be extended with an amplification function on the
surface. These generated safety margins can compensate for uncertainties.

A further challenge can be the unknown potential deformation of the used tool (e.g. a
compliant catheter), which is compensated for using the same method. The behavior
of a tool inserted into the brain remains an open research question and scientific data is
lacking. One solution may be active instrument tracking or the use of stiffer tools. The
patient movement can be tracked with the marker system that is presented in Section 5.4.
Furthermore, a stereotactic frame could be used to fix the position of the patient head.

Entry point planning of procedures on the brain is a challenging task, as multiple fine
structures in the human brain have to be considered, e.g. blood vessels, eloquent areas and
nerve fiber tracts. Sometimes avoidance of all these high-risk structures during certain
procedures is not possible. It is also difficult to weight the individual risk structures in
relation to each other. Here, a medical expert has the freedom to adjust the weighting
according to their expertise, to consider a structure to a greater or lesser extent.

Any loaded and registered number of risk structures are combined to a holistic risk map
and projected onto the chosen surface. The system supports any registered surface. In
this way it is possible to also plan on partial surfaces, which would also decrease the
planning time. Therefore, it is important that the surface mesh only consists of possible
entry points. When the skull for example is extracted it can happen that there are two
layers that represent the skull bone, the inner and outer side. The planning would remain
to work, but twice as many paths would be calculated. In this case, one side should be
removed.

To date, the medium resolution surface models are mostly sufficient for accurate planning,
considering the limited resolution of current imaging techniques. This was also confirmed
during the on-site survey with medical experts. The resolution of the used surface models
can be freely chosen and is only limited by the capabilities of the used workstation. The
system was designed in a way that it meets the surgical workflow and fulfills all clinical
requirements. Any registered risk structure can be added to the risk calculation, providing
full flexibility. The entry point planning is performed intuitively on the projection risk
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Figure 4.25.: Entry point planning with linear (a) and non-linear (b) trajectories that avoid
risk structures [118].

map. The initial computation of the risk maps can take up to 27±2s on average (n = 20)
when four of the most important structures are loaded and the medium surface models are
used.

The update time is much faster, because the calculated risk maps are held in memory
and do not need to be calculated again until a new target is chosen by the user. When
the weights are updated, the recalculation time takes up to 1.4±0.2 s. The calculation
time is directly related to the vertex count and the number of risk structures. The initial
calculation can be started by assistant staff in the beginning and is only performed once.
There is the potential to reduce processing time by implementing parallel processing on
the GPU. This will be investigated in future research.

The quantitative evaluation performed with three medical experts shows a significant re-
duction in the risk of the selected trajectories. The neurosurgeons who participated in the
evaluation used the tool for both plannings. First, they performed the entry port planning
for all four targets without risk support. Then risk support was switched on and the plan-
ning was again performed for all four targets. Then all targets again with switched on risk
support.

The initial experiments show a slightly faster planning time for the risk-based path plan-
ning. Also statements about a time reduction are limited, because normally the surgeons
would have used their inhouse planning tool for the no-risk planning.

The main contribution of the proposed system is the risk mitigation. The system can auto-
matically suggest the paths with lowest risk to the medical expert. The implementation in
ROS enables integration of the functionality with other hard- and software. The proposed
approach is able to compute the risk of any linear or non-linear path, as visualized in
Figure 4.25. This allows the use of the proposed approach in combination with steerable
needles or flexible instruments. The evaluation was limited to one dataset. In the future
the approach will be tested on multiple multimodal datasets.
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4.4. Chapter Conclusion

This chapter covers the automated path planning for ventriculostomies, which is the main
clinical scenario of this work. Furthermore, an enhancement of the path planning was
introduced based on risk structures. The main scenario here is the biopsy of brain tumors.
The risk-based path planning can also be applied to the ventricular puncture to derive the
optimal path towards the ventricular system.

To automatically derive the puncture path for ventriculostomy, structures in the patients
head must be segmented. In Section 4.1 an algorithmic approach was presented for fast
volumetric segmentation of the skin, the skull and the ventricular system from individual
patient CT image data. A process has been proposed that consists of four steps. First
the subarachnoid space is removed to delete unfavorable large accumulations between the
skull and the brain. Then noise is removed and possible voxels are selected that could
belong to the ventricular system. These voxels are grouped together to clusters and only
clusters of a certain size are maintained. In the last step, the clusters of the ventricular
system are selected, which are the one or two largest clusters that are found.

The voxel selection is performed using a binarization function that utilizes a local opera-
tor. The Hounsfield Unit of cerebrospinal fluid and the neighborhood of a voxel is thereby
taken into account. The proposed method is also capable of segmenting the skull, the skin
and blood infused ventricles. The skin is segmented with a local operator in regard to the
neighborhood of air. The skull is segmented with a point-based operator, because bone
tissue has a very unique Hounsfield Unit. The blood infused ventricles are segmented
using two ranges in the local operator, so that not only voxels of cerebrospinal fluid are
considered but also the Hounsfield Units that represent blood. The presented approach is
capable to segment the structures very fast in six seconds. A high segmentation accuracy
is reached, with a F1-score of over 95%, when pathological structures that are calcified
are not considered.

Based on the segmented structures the puncture path is automatically determined with the
utilization of statistical shape models. Mean models are generated from exemplary patient
data that reflect a wide range of possible ventricular systems and skulls. These mean
models are in a fitting step deformed to match the patients anatomy. The target points
inside the ventricular system and the Kocher’s points are defined on the mean models and
moved according to the deformation. A correct Kocher’s point is determined in 98.4%
of cases and a target inside the ventricular system in 95.4%. This leads to a successful
planning in 93.9%.

Consecutive to the path planning based on surgical knowledge, a risk-based path planning
is presented that can minimize the risk of penetrating high risk structures of the brain.
A risk map is presented that projects the risk of a linear trajectory to the cranial surface,
by taking all risk structures on a path to a target into account. It was shown in an exem-
plary evaluation that a significant lower risk can be achieved and the penetration of risk
structures can be prevented.
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In this chapter, scene registration methods are proposed to enable tracking of a patient for
augmented reality support during neurosurgical procedures. The structure of the chapter
is visualized in Figure 5.1.

Figure 5.1.: Overview of chapter 5.

First, the experimental setup is described that is used to evaluate the proposed methods
of this work (Section 5.1). Next, an overview is given about possible optical tracking
methods. Based on these, markers are presented that could be used to enable robust
patient tracking (Section 5.2). Selected markers were evaluated, compared to each other
and the results are presented. In Section 5.3, methods for tracking of infrared markers
with the HoloLens are introduced. The markers are mounted to a marker system that can
be attached to the patient (Section 5.4). Once the marker system is attached to the patient,
a marker system to patient registration needs to be performed to enable tracking of the
patient when only the marker system is visible (Section 5.5).

5.1. Experimental Setup

To evaluate the methods developed in this work, a custom-built medical phantom was
created. Multiple measuring components were available at the laboratory to evaluate the
proposed methods implemented during this work. The experiments were conducted in
the digital operating room ’OP:Sense’ as described in Section 5.1.2. All components are
described in the following.
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(a) (b)

Figure 5.2.: a) OpenHead side view. b) Front view.

Figure 5.3.: Ventricular systems of the OpenHead. a) View from above. b) Front view.

5.1.1. Phantoms: Synbone and OpenHead

Two head phantoms are used for evaluation of the implemented system. The first one is a
commercially available phantom (Synbone, Switzerland) consisting of a plastic skull with
foam forming the ventricular system and a detachable skin as depicted in Figure 5.6.

The second phantom ’OpenHead’ was rendered from multiple patient scans to create a
realistic virtual patient model. A side and front view of the CAD model of the OpenHead
is depicted in Figure 5.2. Five ventricular systems from real patient data were modeled
and can be attached to the inside of the OpenHead as visualized in Figure 5.3.

The OpenHead is printed from ASA filament on a Stratasys F370 3D printer (Stratasys,
USA). The OpenHead has a detachable and interchangeable cap in the skull, that renders
possible to open the skull. This allows it to be reused for multiple scenarios. A mold
of each ventricular system is printed, so it is possible to model the ventricular systems
from modeling clay for experiments. The molds can be integrated into the OpenHead. A
visualization of the molds is depicted in Figure 5.4.
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Figure 5.4.: Molds to model the ventricular systems from modeling clay.

5.1.2. OP:Sense

The digital operating room (OR) OP:Sense at the Health Robotics and Automation Lab of
KIT includes a moveable OR table with two attached lightweight robots, a Kuka LWR4
and a Franka Panda as depicted in Figure 5.5 (a). The ceiling rack holds multiple optical
sensors attached to it: six IR cameras as part of an ARTRACK 2 (ART, Germany) system
to track retroreflective spheres and four Microsoft Kinect 2 cameras. The sensors are
visualized in Figure 5.5 b).

The ART system (see Section 5.1.2 tracks infrared targets consisting of several infrared
spheres that can be attached to any object with known transformation from marker target
to object, e.g. surgical instruments. The Kinect 2 sensors provide an RGB stream and a
point cloud of the digital OR. Additionally, Intel RealSense D435 and D415 cameras can
be registered to the digital OR to capture near-field areas. The basic software framework
of OP:Sense is the Robot Operating System (ROS), a middleware for robotic platforms.
Many software packages of OP:Sense are implemented in ROS.

(a) (b)

Figure 5.5.: a) OP:Sense system setup. b) Sensor setup with six ART-TRACK 2 IR
cameras (1-red) and four Microsoft Kinect sensors (2-blue) [115].
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(a) (b)

Figure 5.6.: (a) Hexapod M-850 with attached Synbone phantom. (b) FARO Platinum
measuring arm.

5.1.3. Hexapod

A Stewart platform ’Hexapod M-850’ (PI, Karlsruhe, Germany) is additionally available.
It is a high precision movement platform with a positioning accuracy of 2 µm. It allows
for movement in a range of ± 50 mm in x and y direction and 30 mm in z. The Hexapod
is placed on a planar measuring table as visualized in Figure 5.6 a).

5.1.4. FARO Measuring Arm

The FARO Platinum arm (FARO Technologies Inc., Germany) can be used to take high
precision measurements in a defined work space with an indicated precision of ±0.037 mm.
The arm was used in combination wit the FARO CAM2 software. The FARO arm is
mounted to a planar measuring table as depicted in Figure 5.6 b).
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5.2. Marker-based Optical Tracking Methods

In this section optical tracking methods are presented that use planar or spherical markers,
that are potentially trackable through the HoloLens. A selection of potential candidates
was made and implemented on the HoloLens for further evaluation regarding runtime
behavior and tracking accuracy.

When using marker-based tracking a marker M is attached to an object O. When the
transformation TO

M of the marker to the object is known, it is possible to only track the
marker to infer the pose of the object. A good example of this is a surgical procedure, in
which the patient is normally completely covered with sterile drape, except the operation
site. During the sterile phase, a marker needs to be attached to track the patient, because
no visual features are visible that could be tracked, e.g. the face. This is in contrast to
markerless tracking, where image recognition methods can detect and localize objects by
their characteristic features in the image, as shown for example in the work of Joseph Tan
et al. [93].

5.2.1. Comparison of Optical Tracking Methods

In the following, potential tracking methods that can be used to determine an object’s pose
are listed and their operation is explained. Subsequently, further work is summarized that
has dealt with the evaluation of these methods.

5.2.1.1. Aruco Marker

The work of Garrido-Jurado et al. from 2014 describes the development of a marker sys-
tem for camera pose estimation [69]. By utilizing so-called Aruco markers, it is possible
to automatically detect them in RGB images and determine their pose. Instead of using
a predefined number of markers, the work introduced a general procedure for generating
configurable marker dictionaries in size and number of bits. In addition, a solution is
demonstrated to automatically detect the markers in the image and correct possible errors
in the process.

The marker system is open source and supported by the image processing tool OpenCV
[207]. The application of Aruco markers in optical tracking systems is demonstrated, for
example, by a 2015 paper [59], where these markers were used to track the pose of an
ultrasonic sensor and eventually control robot movements based on visual data (visual
servoing). Aruco markers are characterized by two main components, the automatic dic-
tionary generation and the marker recognition including an error correction. Within the
automatic marker detection, individual rectangles in the image have to be detected and
combined to a binary code to clearly identify a marker in the image. The algorithm re-
ceives a gray-scale image as input and extracts the edges in the first step. For this, a local
adaptive thresholding method is first used, which is both more robust to different lighting
conditions and also more suitable for real-time applications than, for example, a Canny
edge detector (see [31]). For contour extraction, the Suzuki and Abe algorithm is run on
the threshold image. Using the Douglas-Peucker algorithm [56], a polygonal approxima-
tion can be used to filter out all edges that are not part of a quadrilateral. For contours that
are close to each other, only the outermost ones are used, so that finally only the marker
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edge is considered. To identify the marker, its code must be determined, so each detected
quadrilateral is examined for its inner region. Since markers are usually oblique in space,
its perspective projection must be removed by computing the homography matrix. Since
the marker is encoded in black and white, the Otsu thresholding method [167] can be
applied here, which binarizes the image section.

The final step in marker identification is to decode the binarized image and filter out any
erroneous detections. First, the results that do not have a black border are discarded. This
means that all border bits must have the value zero. From all further valid results the
binary code is extracted, whereby four different codes are possible per marker, since this
can be present in four different rotations. If one of the codes is present in a dictionary
D, it is declared as a valid marker. The search in the dictionary is accelerated here by an
AVL tree, so that the complexity is logarithmic at this point (O(4log2(|D|))). In this case,
|D| describes the size of the marker dictionary. The algorithm differs from others, such as
ARToolKitPlus or ARTag (see below), mainly in error correction. If the binary code is not
found in the dictionary, it is possible to detect and correct a certain number of erroneous
bits. For a minimum distance τ̂ of any two markers in D, up to ⌊(τ̂ − 1)/2⌋ erroneous
bits can be determined [69]. The Aruco library additionally allows the detection of other
marker families, such as those from ARTag or ARToolKit.

Finally, to determine the pose of the marker relative to the camera, an iterative minimiza-
tion procedure, the Levenberg-Marquardt algorithm, is used. The goal is to minimize the
reprojection error of the marker corners. To determine the corner points of the markers,
a linear regression of the outer marker pixels takes place, allowing their intersection to
be determined. ARTag, ARToolKit and ARToolKitPlus also use this method instead of
alternative corner detection algorithms [69]. The determined vertices can then be used for
the calculation of the spatial pose.

5.2.1.2. AprilTags

In the 2011 paper by Olson [164], a marker system is presented that aimed to improve
performance in terms of robustness compared to previous systems such as ARTag or AR-
ToolKit. In particular, illumination changes, occlusions and accuracy of pose estimation
are addressed. As with the Aruco markers, the marker system consists of two components,
the detector and the encoding system. The detector is implemented to have a low false
negative rate but a high false positive rate [164]. With the help of an encoding system,
this rate is to be reduced.

The flow of the system is similar to that of the Aruco marker detection. In the first step, the
detector also starts with an edge detection, however, in this case the detection is gradient-
based. In the algorithm, the direction and value of its gradient are determined for each
pixel. Afterwards, pixels with similar values are grouped together (agglomerative cluster-
ing) according to the algorithm of Felzenszwalb [63]. This highlights extreme transitions
in the image (i.e. edges). Like other gradient-based edge detection methods, this algo-
rithm is susceptible to image noise. However, a low-pass filter can counteract this. Here,
the loss of information does not affect the detection of markers, since a marker itself is
characterized by significant edges and a low-pass filter has no effect on it.

The next step involves the detection of squares in the image from edges. For this, lines
are generated from the clusters formed before using a weighted least squares method.
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With additional directional information, derived from the gradient direction, a rule can be
established for finding the line segments that eventually form a square. Thereby a line is
linked with another one, if it is close enough and follows a winding direction. The distance
is defined by a threshold parameter, which can be adjusted and thus has an influence on the
robustness against occlusions. In addition, a high threshold results in low false negative
rates, but also in high false positive rates [164]. The marker corners then correspond to the
vertices of the squares. Since the line segments are computed by interpolation of many
edge pixels, the estimation of a marker corner is accurate to a fraction of a pixel.

According to [164], the part for determining the squares takes most of the computation
time and can only be accelerated by a lower image resolution. Accordingly, the frame
rate of a camera only comes into play if the algorithm has at least the same frequency.
This means that should the detection algorithm be able to process fewer images than
available over a certain period of time, the frame rate provided by the camera has no
influence on the total runtime. To identify the marker, a Direct Linear Transformation
[82] (DLT) is used to calculate a homography that maps two-dimensional points of the
marker coordinate system to the vertices of the detected square in the image coordinate
system. The binary code derived from the black and white tiling within the marker is
detected using a thresholding procedure similar to that used for Aruco markers. The
coding scheme here is also a modified Lexicode [210], which can detect and fix bit errors
depending on the size of the dictionary. The Lexicode system is characterized by the
number of bits within a codeword and a minimum Hamming distance between two words.
For example, the dictionary "Tag36h11" includes 36-bit coded markers with a minimum
Hamming distance of 11.

It is particularly important when generating marker codes that the Hamming distance to
other markers remains identical for rotations of the marker by multiples of 90 degrees in
its plane, otherwise the marker could be assigned an incorrect identity.

Overall, a good coding system achieves the reduction of false positive detections in the
previous step and allows the use of a variety of markers in one image. For example, inner
squares would also count as potential markers in the first step, but these are eliminated by
the decoding step.

5.2.1.3. Vuforia

Vuforia is a commercially available framework for augmented reality-based applications
[170] from the company PTC Inc. (Boston, Massachusetts, USA). It offers multiple li-
braries to build augmented reality-based apps for the HoloLens, smartphones or tablets.
It also features a marker tracking method based on features.

5.2.1.4. Infrared Marker Tracking

As mentioned in Chapter 1, infrared-based tracking offers another way to localize marker-
based objects in space. For example, the system of ART (Advanced Realtime Tracking
GmbH & Co. KG, Weilheim, Germany) or also the system of Vicon (Vicon Motion Sys-
tems Ltd UK, Yarnton, England) requires infrared cameras to be permanently installed
in the room, which track spherical reflective markers attached to the objects. Moreover,
infrared-based tracking can achieve an accuracy of up to 0.1 mm [7] and also works on

83



5. Scene Registration

high frame rates (up to 100hz). To achieve this accuracy, multiple cameras are usually
used in the scene, for example, up to six cameras with the ART system. Due to the
technologies used and the high number of cameras, IR tracking systems require a high
installation effort and entail costs of tens of thousands of dollars (see [34]). Neverthe-
less, infrared tracking systems have established themselves in medical application fields.
The company Northern Digital (Northern Digital, Waterloo, Canada), for example, offers
tracking systems specifically designed for medical purposes with various infrared cam-
eras of the Polaris series. The Brainlab suite (Brainlab AG, Munich, Germany) also uses
infrared markers for patient tracking.

5.2.1.5. ARAM

The 2014 paper by Belhaoua, Kornmann, and Radoux [20] presents the development
of the augmented reality for Application on Medical field (ARAM) library for optical
marker tracking, which is specifically targeted at medical application purposes, such as
navigation-guided laparoscopies. Marker detection is performed via classical edge detec-
tion using the Canny edge detection, and subsequent Milgram contour closuring.

The runtime is accelerated via a GPU framework. Individual points of a detected edge are
combined into a segment and, as with AprilTags, the Douglas-Peucker algorithm is used
to interpolate a straight line. Marker code extraction is also performed using an adaptive
thresholding method, always sampling a 7x7 pattern. The Aruco library is used for marker
coding.

5.2.1.6. ARToolKit

One of the first marker systems was developed as early as 1999 by Kato and Billinghurst
with the ARToolKit [100]. The planar square markers consist of a wide black border with
an inner characteristic image stored in a database of valid patterns. It is fundamentally
different from the other systems presented here in that a template matching algorithm is
used for marker identification. As a result, high false positive rates and confusion between
markers occur [69]. In addition, the system is sensitive to changing light conditions due
to a globally set threshold used for initial edge detection.

Following the development of the ARTag system, a revised version, ARToolKitPlus [221],
was released that also uses binary-encoded markers. Public further development of the
project was stopped and continued privately by the Studierstube Tracker project [188]. In
parallel, ARToolkit was further improved and the latest version is publicly available today
as ARToolKitX. It provides its own tool for camera calibration and is not compatible with
other calibration systems.

5.2.1.7. ARTag

ARTag markers were developed by Fiala in 2005 [64]. It takes the concept of the planar
marker design of the ARToolKit markers and extends it with digitally encoded markers
using an unique ID. This resulted in much better detection results in terms of false positive
rate (0.0039%) [64]. In addition, binary coding speeds up the identification step.
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In total, the system can detect 2002 different markers, each encoded over 36 bits. Similar
to the AprilTags system, the detector searches for edges in the image based on gradi-
ents and finally forms them into quadrilaterals [164]. Thus, it is more robust to different
lighting conditions. ARTag is no longer maintained and is not publicly available.

5.2.1.8. ChromaTag

ChromaTags, developed in 2017, differ from other marker systems by using additional
color coding [52]. Mainly, the additional color information is used to reject false positive
detections as fast as possible. ChromaTags are processed at 30fps (frames per second).

The color spectrum of the markers is in LAB color space 4. Large gradients between red
and green in the A channel are used for initial recognition of the markers. Since this rarely
occurs in the natural environment, the gradient can function well as a feature. The black
and white edge of the marker implies high resolution in the L channel, which allows a
polygon around the marker to be determined. Decoding is done using the B channel.

5.2.1.9. Moiré-based Markers

Another approach for a marker design is presented by Estaña in his 2006 work [61],
where the interference of regular patterns (Moiré effect) is used to localize a marker. In
this process, one of the patterns is free in space as a marker and is called the primary
grid. A second pattern is then virtually superimposed on the camera image, resulting in
interference of the patterns at the point where the primary and secondary grids intersect.
Due to the high number of intersections, the position of the marker can be determined
with high precision (up to 5µm accuracy).

The use case described in this paper is only for the two-dimensional case. However, in the
outlook, Estaña describes a possible extension to the three-dimensional case. Interference
with a secondary marker would be created at this point by virtually projecting spherical
shells in space. However, practical considerations of this have shown that these overlays
cannot be interpreted unambiguously using image recognition techniques, since the z-
component is lost in the projection. The depth information could only be determined
by approximation methods, which limits the accuracy to this step. For this reason, a
comparable precision as in the two-dimensional case cannot be expected.

Alternatively, a marker system has been developed by the company Metria (Metria Inno-
vation, Inc., Milwaukee, Wisconsin, USA) which also uses moiré effects for determining
the position of objects in space. In this case, the marker is designed so that two patterns
are offset and separated by a transparent glass layer, so that interferences occur on the
marker at variable viewing angles. The developed system is not publicly available and
can only be purchased. However, the work of [10] describes individual functionalities of
the detection of these markers.

5.2.1.10. Other Marker-based Approaches

Most marker systems presented so far use square markers. In contrast, RUNETag [21] or
Intersense [155] provide a circular marker design. In general, pose estimation of circular
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markers requires the use of multiple markers, since in a single one only its identity is
encoded and has only one correspondence point with the center [69]. This is also the case
for Intersense markers. A RUNE tag marker contains several small salient circles that
appear distorted as ellipses in the image and thus the pose can be computed.

It should be noted that in the detection algorithm of Intersense markers, the image resolu-
tion is reduced to 320x240 pixels for performance reasons [155].

The CALTag system [11] from 2010 presented mainly a solution for camera calibration,
but the markers generated there can also be used for the purposes described here. The
marker itself resembles a checkerboard pattern of individual square markers, allowing a
large number of marker corner points to be used for pose estimation, promising a more
precise result [52],[11].

5.2.1.11. Evaluation Methods

In addition to the marker systems presented above, there are also works that have dealt
with their evaluation. In [133], for example, the accuracy of AprilTags is investigated.
Among them, the influence of factors such as the camera distance, the number of markers
and their position in the image is reviewed. For the evaluation series, a conventional
webcam with a resolution of 640x480 pixels at 25 fps (frames per second) was used,
calibrated with the classical method of OpenCV. Measurements were simulated with the
Gazebo software and the marker was placed in the center of the camera image. In a
test, the accuracy of the pose estimation was investigated for marker rotations around
three axes and increasing camera distance. For rotations in the plane (i.e. around the z-
axis of the camera), it was found that the accuracy of the pose estimation decreases with
increasing z-component, but the error in the range from 1 to 4 m remains below 0.02° and
10 cm, respectively. Rotations in the plane had no influence on the accuracy. The results
show that small sizes cause a larger error for rotations around the x and y axes (roll and
pitch) and with increasing distance. However, larger values for roll and pitch are better
detected. The results of another test, in which the influence of several markers on the
measurement result were determined, showed significant improvements in the accuracy of
the pose estimation already with two markers in one plane. Furthermore, the orientation
error could be halved with four markers up to a distance of 5 meters [133]. In addition,
it was examined whether the arrangement of the markers influences the result. For this
purpose, the markers were not placed in one plane, but with different poses. This reduced
the error, especially at greater distances. Finally, it was also noted that the position of
the marker in the image has an influence on the pose estimation and has error variations
up to 7.1 mm [133]. By simulating each test, the results are not affected by external
confounding factors, such as changing light conditions. However, a statement about the
marker size, where marker size is characterized by the edge length of the marker, was not
made for the measurements in this work. Lastly, an experiment is mentioned in which a
given set of markers was to be detected in order to determine the runtime in the process.
For a 640x480 pixel image the detection time was 115 ms.

The work of Sagitov et al. [185] compares the marker systems ARTag, AprilTags and
CALTag with respect to occlusions and rotations. The individual marker systems were
systematically tested for their detection accuracy with rotations around three axes. For
this purpose, a marker was fixed to the rotation axis in each case and rotated by specific
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numbers of degrees. The coordinate system forming the three axes was aligned with re-
spect to the camera. For AprilTags and CALTag, the publicly available libraries were
used. ARTag markers were detected and decoded using the Aruco library. Precision was
expressed in terms of detection rates, but how these were formed is not further speci-
fied. Overall, AprilTags and CALTag showed better results at different rotation angles
around the axes. CALTag showed the best robustness to occlusions, justified by the grid
arrangement of many individual marker elements. ARTag and AprilTags markers were
only partially detected if only the interior of the marker was affected by occlusions. If
outer marker edges were affected, the markers could no longer be detected.

The use of ARTag markers is described, for example, in a paper from 2017 (see [142]),
which presented an optical tracking system for medical use. The system was primarily
intended to present a low-cost but at the same time accurate marker tracking solution.
ARTag markers can be attached to instruments, all of which can be simultaneously de-
tected by the tracking system. Using a stereo camera with a resolution of 1024x768 pixels
at a frame rate of 20 fps, localization results could be achieved with an accuracy of less
than one millimeter. The marker size was 4 cm [142]. Similar to the medical applica-
tion, the marker was attached to a pen intended to represent a surgical instrument. This
was systematically moved at specified distances on a checkerboard pattern. With known
pen position and registration between marker and pen tip, the detection result could be
compared with the real position. On average, an accuracy of ±0.4 mm was achieved.

In a 2004 paper, the accuracy of ARToolKit markers was investigated (see [4]). A com-
mercial webcam with a resolution of 640 x 480 pixels at 15 fps was used. The orientation
of the marker to the camera, i.e. its registration, was known. The marker length was 5.5
cm. A test sequence consisted of 250 measurements, and between each sequence the ro-
tation around the y-axis and the distance of the marker were varied with step sizes of 10
cm and 2.5°, respectively. The standard deviation of the marker’s position estimate was
2±6 cm for a camera distance ranging from 20 cm to 60 cm. Overall, the best detection
results were obtained with a camera distance between 20 cm and 50 cm and a y-rotation
between 30° and 80°. Measurement series with rotations around the other axes were not
performed.

In addition to the development of a library for the detection of ARAM markers, the second
part of the work [20] focuses on the error analysis of the system, in particular on the
investigation of the error in the primary step of the detection of the marker edges. In the
range between 20 cm and 70 cm in z-direction (camera distance), error values in pose
estimation in x- and y-direction of less than half a millimeter were obtained. The error
of the z-component was less than one millimeter up to 60 cm. Camera resolution, marker
size and lighting conditions remained unchanged during the measurements. The rotation
error was between 0.05° and 0.22° in the mentioned range. Overall, it was found that
the error grew with increasing distance of the marker from the camera. Furthermore, the
error was investigated for different viewing angles in the range ±40°, with similar good
results of error values below two millimeters and below half a degree. The runtime of the
system was finally compared with that of the Aruco v2 library [69]. Here, the ARAM
system showed better performance on average while capturing more than 1000 frames at
a resolution of 640x480 pixels. Lastly, the paper noted that the use of multiple markers
whose relative position to each other is considered known can counteract the occlusion
problem.
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The 2018 work [179] by Romero-Ramirez, Muños-Salinas, and Medina-Carnicer focuses
on runtime analysis of Aruco markers. Higher image resolutions have become increas-
ingly cost-effective over time, but they lead to ever-increasing computation times for
marker detection. In the paper, an approach to speed up the detection algorithm is pre-
sented and subsequently compared with the runtime of the original method and other
methods. Specifically, the modified method is intended to accelerate marker detection in
video sequence. The segmentation step in the image and the extraction of the marker code
account for the largest share of the computation time [179]. Image size and runtime of
the local adaptive thresholding method for segmentation are in proportional relationship.
Moreover, the pixel length of the detected contours in the image grows as the image size
increases. This in turn increases the computation time, both in the subsequent contour
filtering step and for generating the normalized square-shaped image from the contours.
In order to accelerate the first step, a global thresholding method was used. For this pur-
pose, the image is first downscaled in relation to the minimum marker size required for
detection. Here, the marker size is related to the original image size and a factor that has
to be determined. The paper shows a method to dynamically determine this parameter in a
video sequence. In the thresholding method, a global threshold is adjusted until a marker
is detected, or a maximum number of attempts is reached. A histogram of all pixel values
of each detected marker is created and an optimal threshold value for the next frame is
determined using the Otsu algorithm [167]. The threshold can be used under the assump-
tion that consecutive images of a video sequence differ only minimally in their scenery.
The subsequent contour extraction step is similar to that of the original process, whereby
contours that do not reach a minimum are discarded. This minimum is also determined
using the smallest possible pixel size of a defined marker. Next, an image pyramid is
created, i.e. a staggering of images scaled to different sizes. The images are reduced by
a factor of 2 until the length dimensions of the minimum marker size are reached. The
staggered images are used for marker code determination by selecting the image of the
pyramid for each edge, in which the edge length approximately corresponds to the mini-
mum marker length. The further processing for code extraction corresponds to that of the
original algorithm. Based on the results of this work, a global value of 32 × 32 pixels was
determined for the minimum size of the extracted marker for any resolution starting from
480x640 pixels. Since the accuracy of the pose estimation depends on the detection of
the marker corners and this becomes less accurate with increasing scaling, a subsequent
upsampling is performed in the range of the initially estimated corner position. Thus, the
precision of the pose estimation remains the same in the modified algorithm. In the sub-
sequent evaluation of the modified method, different resolutions of a video sequence were
used for runtime analysis. The Aruco v3 method achieves nearly 40 times the speedup
of the conventional Aruco method when given an image resolution of 3840 × 2160 pix-
els. The running time for one iteration of the algorithm in this case was 2.755 ms for
the newly developed method and, consequently, just under 110 ms for the conventional
method [179].

Another work by Babinec et al. [15] focuses mainly on the analysis of the detection
accuracy of Aruco markers depending on the camera system used. For this purpose, two
cameras were selected, a webcam with a resolution of 1 MP and a network camera with
the resolution of 0.44 MP. The latter is equipped with a zoomable lens, allowing a larger
depth range to be covered dynamically. For the measurements, a marker size of 10 cm
edge length was defined and initially checked whether a marker was detected. Two zoom
settings were selected for the network camera. Finally, the position of the marker was
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sampled by both cameras at distances of 20 - 150 cm in steps of 10 cm each. The error
(the difference between detected and real marker position) is measured in each setting.
The results show that webcam and network camera in a normal setting both have a small
error of 0.5 cm up to 1.2 cm for a distance larger than 110 cm. The network camera in
wide angle setting produces a much larger error of up to 6 cm. In a test to determine the
influence of different lighting conditions, the network camera showed better performance
under strong background light, as it is able to attenuate overexposed pixels. Lastly, this
work also confirmed in an experiment the assumption that multiple markers can improve
the detection result. They showed that the accuracy was almost twice as high in the above
measurement setup when two markers were used instead of one.

5.2.1.12. Selection of Possible Tracking Methods for Use with the HoloLens

Analyzing the available marker tracking methods for usage on the HoloLens the Aruco
v2, AprilTags and Vuforia libraries are the most promising methods and therefore selected
for implementation on the HoloLens. These markers can be processed very fast and yield
a high tracking accuracy. In addition, they were used in many scenarios. In the presented
works, cameras similar to the HoloLens sensor have been used. Therefore, the assump-
tion is made that the tracking accuracy and speed is comparable when processed on the
HoloLens. The third version of the Aruco library was not published as this evaluation was
carried out.

Additionally, in Section 5.3 an implementation and detailed evaluation of infrared marker
tracking on the HoloLens is presented. This approach was possible after all sensor streams
were made accessible through the research mode on the HoloLens in 2019.

5.2.2. Offline Evaluation of Aruco and AprilTags Marker
Tracking

In this section a detailed evaluation of the Aruco and AprilTags marker tracking is pre-
sented. The findings are compared to the evaluation results of the commercially available
Vuforia library from literature.

5.2.2.1. Experimental Design

The tracking methods are evaluated on two different sensor systems. First, a D435 Re-
alSense camera from Intel was selected, which utilizes an OmniVision OV2740 sensor. It
has multiple resolution options up to 1920x1080 pixels at 30 fps. This sensor is compara-
ble to the front camera of the HoloLens 1. As a second camera system a PTgrey Blackfly
S (BFS-U3-51S5C-C) industrial sensor with a resolution of 2448 x 2048 pixels at 75 fps
with Computar V0828-MPY (LENS-080C7C) lens was used. The tracking methods were
executed on a workstation with an Intel Core i5 CPU, 16 GB of RAM and a GeForce 1060
Ti GPU. The original libraries of Aruco v2 and AprilTags were used and executed under
Ubuntu 16.04 on the described workstation. Ten measurements (n=10) were performed
for each experiment and the mean error values are computed.
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The markers were mounted to a high precision Stewart platform from PI (M-850) as pre-
sented in Section 5.1.3 with a movement accuracy of 2 µm to create a ground truth from
known movement. The work presented in this section was published in [112].

5.2.2.2. Results

In the following the evaluation results are described.

Tracking Accuracy

The mean tracking accuracy of the Aruco library in relation to the two sensor systems is
depicted in Tables 5.1 and 5.3. The results of the AprilTags tracking are summarized in
Tables 5.2 and 5.4.

Table 5.1.: Tracking accuracy (mean error) of the Aruco library using the RealSense cam-
era [112].

Aruco Marker size Translational system error [mm] Rotational system error [°]
Distance 40 cm 100 cm 200 cm 40 cm 100 cm 200 cm

2 cm 0.715 - - 4.864 - -
3 cm 0.696 3.53 - 1.255 4.664 -
5 cm 0.270 0.911 8.607 1.035 3.788 4.134

Table 5.2.: Tracking accuracy (mean error) of the AprilTags library using the RealSense
camera [112].

AprilTags Marker size Translational system error [mm] Rotational system error [°]
Distance 40 cm 100 cm 200 cm 40 cm 100 cm 200 cm

2 cm 0.495 2.441 - 0.951 3.172 -
3 cm 0.428 1.099 - 0.150 2.465 -
5 cm 0.298 0.685 2.663 0.176 0.596 1.577

Table 5.3.: Tracking accuracy (mean error) of the Aruco marker library using the Blackfly
S camera [112].

Aruco Marker size Translational system error [mm] Rotational system error [°]
Distance 40 cm 100 cm 200 cm 40 cm 100 cm 200 cm

2 cm 0.596 5.642 - 2.315 2.505 -
3 cm 0.435 1.402 22.097 1.221 1.836 4.782
5 cm 0.234 1.036 9.768 1.079 1.389 4.144

Table 5.4.: Tracking accuracy (mean error) of the AprilTags marker library using the
Blackfly S camera [112].

AprilTags Marker size Translational system error [mm] Rotational system error [°]
Distance 40 cm 100 cm 200 cm 40 cm 100 cm 200 cm

2 cm 0.379 1.138 12.156 1.024 2.142 2.895
3 cm 0.269 0.993 3.812 0.222 2.058 2.776
5 cm 0.259 0.560 1.384 0.165 0.452 1.126
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Figure 5.7.: a) Tracking curve of a single Aruco marker. b) Tracking curve of a 5x5 grid.
Camera system: Blackfly S, marker size: 3 cm, distance to camera system:
40 cm [112]. The Hexapod movement is the ground truth.

In the range of 40 - 80 cm used for neurosurgical interventions a tracking accuracy of
under 1 mm can be determined for the Aruco tracking method when a marker of size 5
cm is used in combination with an Intel RealSense camera. The AprilTags marker method
achieves slightly higher accuracy values.

Both libraries support the tracking of multiple markers in one frame. It was further investi-
gated how multiple tracked markers change the tracking accuracy and the jitter behavior.
The results are depicted in Table 5.5 and directly compared to the results tracking one
marker.

Table 5.5.: The mean rotational and translational localization error of the Aruco and
AprilTags tracking method in relation to the number of markers used (grid).
In the experiments the Blackfly S camera was used at a distance of 40 cm.
The marker size was 3 cm. The tracking accuracy of one marker is depicted
for comparison (Single) [112].

Aruco AprilTags
Size System error System error

Translation [mm] Rotation [deg] Translation [mm] Rotation [°]
Grid Single Grid Single Grid Single Grid Single

2x2 0.249 0.435 0.617 1.221 0.173 0.269 0.203 0.222
5x5 0.159 0.435 0.403 1.221 0.161 0.269 0.074 0.222

In Figure 5.7 the tracking curve of a single Aruco marker a) and a 5x5 grid b) is depicted.

When multiple markers are used, the tracking curve can be smoothed by minimizing fluc-
tuations.

Runtime Behaviour

The runtime behavior was determined by measuring the time needed to process one frame
to detect one marker. A marker size of 5 cm was used, placed 40 cm away from the
camera. The results are depicted in Table 5.6.

The Aruco tracking reaches 10.64 Hz and the AprilTags tracking 4.78 Hz using the Intel
RealSense camera. The Aruco library is therefore twice as fast as the AprilTags tracking.
When using the Blackfly camera, the tracking speed is halved.

91



5. Scene Registration

Table 5.6.: Average detection time of one Aruco and AprilTags marker for both camera
systems [112].

Runtime [ sec
frame

]
Marker system RealSense Blackfly S
Aruco 0.094 (10.64 Hz) 0.182 (5.49 Hz)
AprilTags 0.209 (4.78 Hz) 0.541 (1.85 Hz)

Both libraries support the tracking of multiple markers in one frame. The runtime behavior
when tracking 25 markers on a 5x5 grid was investigated. The results are shown in Table
5.7. The number of markers tracked in one frame can be neglected as it took nearly the
same amount of time to track one or 25 markers.

Table 5.7.: Average detection time of a 5x5 grid of Aruco and AprilTags markers for both
camera systems [112].

5x5 grid Runtime [ sec
frame

]
Marker system RealSense Blackfly S
Aruco 0.108 (9.3 Hz) 0.24 (4.17 Hz)
AprilTags 0.209 (4.78 Hz) 0.541 (1.85 Hz)

5.2.3. Offline Evaluation and Comparison to the Vuforia
Marker Tracking

The offline evaluation of the Aruco and AprilTags marker tracking show that the localiza-
tion accuracy is dependent on the sensor quality, the distance to the sensor and the marker
size.

The evaluation shows a mean tracking accuracy of 0.27±0.32 mm accuracy of the Aruco
marker tracking, when a marker size of 5 cm is chosen within the relevant distance range
for neurosurgical interventions. When using smaller markers of 3 cm size this accuracy
reduces to 0.7±0.82 mm. The sensor quality is comparable to the HoloLens front cam-
era. The AprilTags marker tracking often yields better results. A tracking accuracy of
0.3±0.24 mm can be determined for a marker size of 5 cm and a distance of 40 - 60 cm.
An error of 0.43±0.37 mm was found for a marker size of 3 cm. The AprilTags marker
tracking performs much better for larger distances and smaller marker sizes. However,
this comes with the price of a slower runtime. Aruco performs twice as fast as the April-
Tags marker tracking.

The Vuforia marker tracking was evaluated by Kiss et al. [104] and the accuracy was
determined to be 0.31±0.38 mm up to a distance of 100 cm. A smartphone camera was
used. One drawback when using the Vuforia marker tracking is, that this library is not
open source. Additionally, large marker sizes need to be used. In the relevant distance
of 40-80 cm this would be 10 cm. Smaller sizes are possible, but can lead to tracking
issues. At the end of this evaluation a newer version of the Aruco marker tracking version
3 was released [179]. The authors state that it runs 40x faster than version 2. Based on
the results of the offline evaluation it was decided to implement the Aruco and Vuforia
marker tracking on the HoloLens.
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Figure 5.8.: Generated Vuforia Marker.

5.2.4. Implementation on the HoloLens

The Vuforia marker tracking was implemented over its Unity 3D plugin. A custom Vu-
foria marker was generated visualized in Figure 5.8. A stable tracking could be achieved
with 25 fps.

HoloLens applications are implemented using Unity 3D, which uses the programming
language C#, but the Aruco library is implemented in C++. In general, there are two ways
to implement Aruco marker tracking on HoloLens, through a dll-import or winmd. Both
solutions were successfully implemented on the HoloLens. Nevertheless, none of both
approaches yielded a sufficient frame rate of 25 fps. The measured frame rates were low,
i.e. under 5 fps. One possible explanation for this is the low performance of the HoloLens
1. For this reason it was decided to use the Vuforia marker tracking for patient tracking in
further experiments.

5.2.5. Discussion

Multiple options exist for optical patient tracking based on planar or spherical markers.
The most promising marker tracking method is the Aruco library. It yields a good tracking
accuracy and has a fast runtime. Unfortunately, no satisfactory performance could be
achieved on the HoloLens. The reason for this is presumably due to integration problems
on the HoloLens. One bottle neck was the availability of new image frames. Theoretically,
the Aruco library is able to handle a higher number of frames, but it took longer to capture
new frames as expected. This leads to the situation that the algorithm is waiting for a
new frame. The ideal case would be that a new frame arrives just before the algorithm
has finished processing the last frame. This could be due to performance issues on the
HoloLens.

Due to the low performance of the Aruco tracking on the HoloLens it was decided to use
the Vuforia marker tracking to localize the patient during an intervention. The library
provides a fast processing time and a high tracking accuracy. One disadvantage is that the
library is not open source but is free for academic research and non-profit projects.
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The current standard of care in tracking technologies in the OR are infrared sphere-based
markers. They have a lot of advantages like sterilizability and robustness. After Microsoft
made all streams accessible through the ’research mode’ it became possible to track in-
frared spheres with the HoloLens. The solution is presented in the next section.
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5.3. Infrared Marker Tracking

In this section the infrared marker tracking on the HoloLens is presented and a detailed
evaluation is carried out.

5.3.1. Sensor Capabilities of the HoloLens

The HoloLens provides multiple sensors to track its surroundings. They are listed in Table
5.8. For a more detailed investigation on the sensor capabilities of the HoloLens see [89].

Sensor Resolution
front camera (photo video) (fc) 1408 × 792

1344 × 756
1280 × 720
896 × 504

Four environmental cameras
left left camera (ll) 160 × 480

left front camera (lf ) 160 × 480
right front camera (rf ) 160 × 480
right right camera (rr) 160 × 480

Near field - Time of Flight (tof)
short throw reflectivity (str) 448 × 450

short throw depth (std) 448 × 450
Far field - Time of Flight (tof)

long throw reflectivity (ltr) 448 × 450
long throw depth (ltd) 448 × 450

Table 5.8.: Sensors of the HoloLens.

Most of the sensors are accessible over the research mode of the HoloLens (ll, lf, rr, rf,
str, std). In general, there are two options to track infrared markers with the HoloLens.
The lf and rf streams can be used or the time of flight sensor streams str and std. When
using the time of flight sensor the str stream is mapped to the std stream. The lf and rf
sensors form a stereo camera setup. The streams are depicted in Figure 5.9.

Both ways were implemented, because in the tof streams the infrared marker spheres are
brighter, but the lf and the rf streams have a higher resolution of 640 x 480 and therefore
offer the possibility of a higher tracking accuracy. The tof streams have a resolution of
448 x 450 pixels, only capturing data in a centrally located circular area, which leads to
large areas of black pixels at the edges.

Infrared marker tracking is usually based on the capability to perform a binarization of
the image to clearly identify the infrared markers in a frame. The IR markers light up
brightly in the str stream. This works even when they are placed several meters away
from the HoloLens. The maximum measurable distance of the str and std stream is up to
4 meters. When using the lf and rf streams the infrared markers have the same brightness
as the surroundings, so no binarization would be possible. In the str stream this is easily
possible as the infrared markers glow visibly bright.
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Figure 5.9.: Streams of the HoloLens: (1) str (2) std, (3) lf and (4) rf. In the upper
part of subfigure (3) and (4) the additional light emitter sources can be seen.
Adapted from [116].

The infrared markers need be illuminated with an additional infrared light emitting source
in order to increase the contrast in the lf and rf streams. For this purpose, an IR light
emitter was constructed consisting of two LEDs that provide a radiometric power of 530
mW and emit IR-radiation at a wavelength of 850 nanometer per LED. The LEDs need
to be adjusted to the center of the lf and rf streams, because the emitted light needs to be
reflected to the sensors. It is mounted on top of the HoloLens as depicted in Figure 5.10.

With the additional light emitters it is possible to perform a binarization of the frame to
derive the positions of the infrared marker spheres. Also it must be stated that the overall
scene light must not be too bright, else no tracking is possible.

In the following, the process of tracking the infrared spheres on the HoloLens is described.

5.3.2. Process of Infrared Marker Tracking

The goal is to determine the 3D positions of all infrared spheres in a frame. This alone
would not enable the tracking of a patient, because it would just allow the determination of
three degrees of freedom. To track a patient or any other object all six degrees of freedom
need to be determined. To do so a marker target needs to be constructed, consisting of at
least four infrared spheres. This makes it possible to track all six degrees of freedom or
in other terms the pose of the marker target. The process to track the IR marker targets is
shown in Figure 5.11. It will be explained in detail below.
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Figure 5.10.: LED mount for the HoloLens to brighten up the scene.

Figure 5.11.: Process for the determination of an IR marker target in the HoloLens
streams for pose estimation [116].

In each update cycle of the HoloLens, the current str frame is acquired. First a binarization
of this frame is performed. All pixels of the infrared spheres are assigned the value 255
(white), all other pixels are assigned the value 0 (black). This is possible because the
infrared markers glow bright in the str frame. They cause brightness clipping due to
their high light reflectance. To do so the binarization function depicted in Equation 5.1 is
applied on each pixel p with value pval of the str frame Sr. A threshold T = [250, 255] is
applied to each pixel to determine if it belongs to an infrared marker sphere.

B : Sr → {0, 1},B(p) =

{
1 pval ∈ T

0 else
(5.1)

After the acquisition of the binarized frame a blob detection is executed to eliminate all
wrongfully marked white pixels. This can happen when there is additional clipping in
the scene, e.g. through reflective areas. All these areas are filtered out. Normally these
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areas do not form a perfect circle and can easily be deleted. All remaining spherical
reflections are deleted in the 3D reconstruction phase. The 2D position of each detected
blob is determined in the str frame as it is the center of the blob. Now in a next step
the 3D position must be calculated. This is not possible by simply using the value of
the std frame. Instead, an unprojection mapping must be performed to determine the 3D
positions [X,Y,Z] of every center point in the str frame. To perform the unprojection
mapping two additional matrices U and V are used, which can be queried during runtime
for every frame. They describe the relationship between the std depth stream and the real
3D position in space of every pixel Zij of that frame.

The 3D positions are calculated as follows:

[X, Y, Z] = Zij · [Uij, Vij, 1] (5.2)

A more detailed description of the unprojection mapping is given by Labini et.al. [121].

Now, we have the 3D positions of all retroreflective spheres and maybe spherical reflec-
tions that are falsely detected as markers. Next, the 3D reconstruction of the complete
infrared marker tracking is performed. To do so the registration or transformation matrix
of every retroreflective sphere to each other needs to be known. The 3D reconstruction
was done following an approach described in [70]. In a last step the derived transformation
matrix needs to be transformed to the app specific coordinate system. After the complete
process is finished the position of the marker target is updated for further processing.

5.3.3. Evaluation of the Infrared Marker Tracking

In the following the experiments for both methods are described. To measure the accu-
racy of the infrared tracking the marker targets are mounted on the OpenHead phantom
and placed on the Hexapod, which enables the movement in space with a precise known
ground truth. The movement accuracy of the Stewart platform is reported as 2 µm. A
translation is performed in all three axes, x, y and z. The rotational error was not investi-
gated in this study.

The HoloLens was mounted on a stand and aligned with the marker system at a distance
of 60 cm. The evaluated recordings were performed directly on the HoloLens by utilizing
the HoloLensForCV project [148]. The recording was started via voice command. Ten
movements for each axis and ten combined movements over all axes were performed
in n=42 experiments each. The Stewart platform was moved by a preselected distance,
which is the vector length in space. Either variants of the IR tracking algorithms using the
tof or lf and rf streams were evaluated offline. The positions of the infrared spheres are
determined in the streams throughout the whole movement and compared to those of the
Hexapod. The deviation of the vector length in space is determined to be the error.

In addition the runtime behavior of the infrared marker tracking was evaluated when exe-
cuted on the HoloLens.

5.3.3.1. Results

When using the tof sensor, the average tracking accuracy is 0.76±0.65 mm. The results
for the lf and rf streams are in a similar range with a tracking accuracy of 0.69±1.12 mm.
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Figure 5.12.: Evaluation of the tracking accuracy (n=42) of the IR marker targets detected
in the tof (left) and lf and rf (right) streams. Mean values are visualized as
red diamond markers, outliers are depicted as red cross markers. Adapted
from [116].

The results are visualized in Figure 5.12 as a standard box plot. The red line indicates
the median, the blue box the range from the 25th percentile to the 75th percentile and the
black lines the range from the minimum to the maximum. Outliers are depicted as red
cross markers. Additionally, the mean value is visualized as a red diamond marker.

The blob detection can detect the centers of the blobs with sufficient accuracy.

It was decided to use the approach utilizing the str and std streams on the HoloLens. The
accuracy is similar, but additional light emitters are needed when using lf and rf streams.
This leads to a higher weight and low environmental light conditions are required.

Results of detected infrared spheres for both approaches are depicted in Figure 5.13.

Table 5.9.: Runtime evaluation of all process steps of the IR marker tracking [116].
Process step Execution time in s
Binarization 0.000583

Blob detection 0.043253
Retrieve positions in 3D 0.000007

3D reconstruction of IR target 0.00103
Map to app coordinate system 0.000001

Update position 0.000001
All 0.044875 (22fps)

Framerate on HoloLens 55-60 fps
CPU utilization 60%-70%

The results of the runtime evaluation are depicted in Table 5.9. All process stages are
investigated in regard to their runtime behavior. Most time is taken to perform the blob
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Figure 5.13.: Streams of the HoloLens with detected infrared spheres: (1a) str (1b) std,
(2a) lf and (2b) rf [116].

detection with 0.043s per frame. Adding up all computation times one frame can be
processed in 45 ms. This leads to a theoretic overall frame rate of 22 fps. However, on the
HoloLens asynchronous multi-threading is used for the tracking, so that a higher frame
rate of 55-60 fps can be reached. With active tracking performance reserves still remain,
as the CPU of the HoloLens is only used at 60-70% capacity. It is even possible to track
an additional Vuforia marker at the same time. A tracked marker target from HoloLens
view is visualized in Figure 5.14.

5.3.4. Discussion

Two different options to enable an infrared marker tracking on the HoloLens were imple-
mented and evaluated. The results indicate that the tracking of infrared marker targets with
the HoloLens is possible with a high degree of accuracy. An accuracy of 0.76 mm was
found when using the str and std frames and 0.69 mm when using the lf and rf streams
in n = 42 measurements. The infrared spheres can be identified after binarization with
a blob detection algorithm. The center points can be determined robustly and with high
accuracy. A big disadvantage of the environmental cameras (lf and rf ) is, that the infrared
spheres do not glow bright in the frames without an additional light emitting source. This
makes the HoloLens heavier and more difficult to handle. Also there is the problem, that
the LEDs need to be precisely adjusted to the cameras and that they are visible in the
streams as can be seen in Figure 5.14. A further problem is the transformation to the app
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Figure 5.14.: IR markers in reconstructed point cloud after unprojection (left). IR target
visualized in HoloLens (right) [116].

specific coordinate system. The HoloLens framework does not directly provide a possi-
bility to perform this automatically as it is possible for the tof streams. The str and std
streams have a lower resolution, which lead to a slightly lower accuracy in comparison
to the environmental streams. Finally it was decided to use the time of flight sensor for
tracking and the solution was implemented on the HoloLens.

The str and std streams run at 30 fps. It was evaluated that the algorithm can be processed
with 22 fps. When the application is executed on the HoloLens a stable frame rate of 55-
60 fps is reached. The reason is that the visor is updated in a dedicated thread. This frame
rate decreases if the HoloLens is too heavily utilised. The pose of an infrared marker
target is updated every 45 ms (22 fps). This can lead to a small but noticeable delay of the
hologram movement, when the wearer of the HoloLens or the patient is moving. Further,
the frame rate of the std stream can reduce to under 20 fps during fast movements for a
short period of time, which is usually not the case in the scenarios presented in this work.
Another limitation is that the tracking of the markers fluctuates by a certain amount. An
extended Kalman filter can be used to smooth the tracked position. The blob detection is
the process step that takes up most of the processing time. It is being investigated whether
this can be optimized in the future.
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Id Requirement
R.MS.1 Fast Assembling Time
R.MS.2 Support of the surgical process change
R.MS.3 High Reattachment Accuracy
R.MS.4 Marker Visibility
R.MS.5 Low Weight
R.MS.6 Sterilizability
R.MS.7 Modularity

Table 5.10.: Requirements of the marker system.

5.4. Marker System

In the prior chapters, markers for patient tracking were presented. These markers must be
rigidly attached to the patient to allow online tracking of movements. In the following a
marker system is presented that can hold different types of markers and can be attached to
a patients head non-invasively. A very important aspect for the application in neurosurgery
is the need to support the process change from the non-sterile to the sterile surgical phase.
It is not possible to use a non-sterile marker throughout the intervention to ensure hygienic
protection. During the process change the patient is fully covered with sterile drape. Thus,
a solution must be found for using a marker system in combination with this cover. The
marker system was designed in a way that it consists of four major parts that are depicted
in Figure 5.15.

The marker system is attached to the head of a patient and fixed to it non-invasively. The
marker system to patient registration is performed during the non-sterile phase while the
patient is not covered. After everything is prepared the patient is fully covered and only
the surgical site remains visible. A coverage of the whole marker system would not be
possible, because the marker system could not be tracked. Possibilities to use active LED
markers under the foil were examined, but the sterile drape is not completely transparent,
which makes it very hard to track any marker. Therefore, the marker system was designed
in a way that the marker carrier can be removed after a successful registration. Then the
patient and the marker base get fully covered. After that a sterile marker carrier is being
reattached.

Figure 5.15.: General design of the marker system.

5.4.1. Requirements Analysis

The marker system must fulfill the requirements listed in Table 5.10. These are explained
in more detail below:
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Fast Assembling Time (R.MS.1): The assembly of the marker system should be able to
be performed quickly. It must be easy to mount by medical personnel or neurosurgeons
with as few additional aids or tools as possible. There should be only one way to mount
the marker system, to avoid mistakes.

Support of the surgical process change (R.MS.2): The marker system must support the
process change from the non-sterile to sterile surgical phase. The patient is prepared for
the operation in the non-sterile phase. The marker system to patient registration can be
performed in this step, while the patient is still completely visible. After the full coverage,
this is not possible any more. As the markers must be visible during the intervention and
the marker system must be attached to the human body, a solution must be found that the
sterile drape can be combined with the system, e.g. between the marker head and the base.

High Reattachment Accuracy (R.MS.3): After registration of the marker system to
the patient, the position of the marker head must be maintained. In order to support
the process change from the non-sterile to the sterile phase the marker head needs to
be replaced with a sterile one. After the change of the marker head a high reassembly
accuracy (repeatability) of under 0.5 mm is required to keep the overall reassembly error
as low as possible. During the process change a sterile drape is placed between the marker
head and the base. It is not avoidable that the position may change because of the thickness
of the drape. The thickness of the foil needs to be considered and the new position needs
to be determined.

Marker Visibility (R.MS.4): The marker system should be designed in a way that the
attached markers are always visible in the field of view of the HoloLens during an inter-
vention to ensure that a patient can be tracked at any time by detecting the markers in
every frame. The main scenario of this thesis is the ventricular puncture, therefore the
main focus of a surgeon is the upper head and a view from the Kocher’s points to the
target points inside the ventricular system. A marker system should cover this scenario,
but the installation room must be chosen so that it does not disturb a surgeon during a
procedure and affect the work in any way. If possible, the marker system should allow
360° tracking around the patient.

Low Weight (R.MS.5): The weight plays a subordinate role, since the patient is sedated
by the anesthesia during the operation. Nevertheless, the weight should be as low as
possible. Biocompatible materials and smooth surfaces should be chosen so that a patient
is not injured in any way.

Sterilizability (R.MS.6): Basically there are two possibilities to allow the use of a sterile
marker system during an intervention. First the marker system can be build in a way
that it can be sterilized, or a new marker system is used for an intervention. For the
second option, two marker heads would be needed to cover the process change from non-
sterile to the sterile phase, because it could not be guaranteed that the first marker remains
uncontaminated during the preparation process. If possible, the marker system should be
designed in a way that it is sterilizable. All parts should be designed reusable to keep the
costs low.

Modularity (R.MS.7): The marker system should be able to accommodate different types
of markers. At the current state these are Aruco, Vuforia and infrared markers. Therefore,
different marker heads shall be designed. This lays the basis for a detailed evaluation of
the different markers and their implementation on the HoloLens.
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Figure 5.16.: Overview of the marker system and all possible configurations.
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5.4.2. Methods

In Figure 5.16 the different configuration possibilities of the marker system are depicted.
Basically three parts of the marker system can be interchanged: the skin fixation, the
marker base to carrier connection and the marker carrier. Different options of these are
detailed below.

5.4.2.1. Skin Fixation

The marker system is attached to the patient’s forehead and must therefore be fixed to the
skin to maintain a stable position. Three types of skin fixation options were investigated
in this work: a thermoplastic polymer polycaprolactone, a light-curing composite and
electrocardiogram (ECG) electrode pads on a printed tripod.

The thermoplastic polymer deforms at 42°C and hardens as it cools to room temperature.
The used temperature is suitable to be used on human skin without causing any damage to
it (see Figure 5.17 a). The light-curing composite is widely used in dentistry and is non-
toxic. It hardens under ultraviolet (UV) light. In this work a dental UV polymerization
light pen (Kent Dental Kentolight LED 800) was used, that emits light with 800 mw/cm
with a wave length of 350 - 400 nm. Normally this pen is used for dental applications.
Therefore, the effective light emitting area is quite small, which makes it necessary to
move the pen over the skin fixation to cover the complete area. This increases the time
required for hardening. The hardening process is depicted in Figure 5.17 b. The third
way is to use ECG electrode pads which are normally used for electrocardiograms. They
provide a standard of care way to attach objects to the human body. The electrode pads
have a male snap (push button) on their top as depicted in Figure 5.17 c and d. Their
counterpart, the female snaps, are glued to all three legs of the tripod. The ECG electrode
pads are glued to the human head with the help of a template and the tripod is attached to
it via the snaps.

The different skin fixation options are depicted in Figure 5.16-1.

5.4.2.2. Marker Base and Connection to Carrier

Two different options are available for the connection between the marker base and the
carrier as shown in Figure 5.16-2. The base is chosen accordingly to the selected connec-
tion.

The first option is a screw attachment with knurled screws. A mounting plate with two
screw threads is used as the base. Alternatively, a magnet attachment was developed in
combination with a printed base that holds one side of the magnets, the other side of
magnets must be attached to the marker carrier. See both options visualized in Figure
5.18. The base is pressed into the composite or polymer while still deformable to create
an imprint. After hardening the base is removed and glued to the skin fixation and fastened
with an elastic band to the patients head for a robust fit. When using the tripod, the base
is screwed to it.
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(a) (b)

(c) (d)

Figure 5.17.: a) Skin fixation with thermo polymer. b) Skin fixation with light-curing
composite. c) Wooden prototype of the tripod with skin fixation with ECG
electrode pads. d) Skin fixation with ECG pads on the Synbone phantom
head.
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(a) (b)

Figure 5.18.: a) Mounting plate that is used with the skin fixation options polymer and
composite and screws. b) Magnet attachment.

5.4.2.3. Marker Carrier

For every possible marker technology a unique marker carrier was designed to optimally
integrate them into the system. The general marker carrier design is similar. The carrier
must be connected to the base over the chosen connection, via screws or magnets. When
using the screw attachment the carrier has counterbore holes to accommodate the screws.
The magnets are placed in recesses and glued to the carrier. The different marker carriers
are depicted in Figure 5.16-3.

The Aruco and infrared marker carriers were designed in a way that the markers are also
visible when standing left or right to the patient. Two different versions of the Vuforia
marker carrier were tested. The first one has the markers on top, which can lead to a non-
visibility in some recorded frames, but is not limiting the work space of the surgeon. In
the second design the markers are placed beside the patients head. This leads to a better
visibility but limits the workspace of the surgeon. A detailed evaluation is presented below
in Section 5.4.3.

5.4.2.4. Sterilization Methods

High demands are placed on the hygienic status of medical products in order to keep the
risk of infection as low as possible. The Federal Health Journal evaluates the hygiene
requirements depending on the risk of infection for the patient and lists recommendations
for prevention [1].

Accordingly, a distinction is made between three risk levels:

• Uncritical:
Medical products coming into contact only with intact skin.

• Semi-critical:
Medical products used with mucosa or pathologically changed skin.
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• Critical:
Medical products that are in direct contact with blood or internal tissues.

Sterilization is required in addition to cleaning and disinfection for the use of all products
classified as semi-critical or critical. For a product to be considered sterile, a probability
of finding a viable germ of 10−6 is defined in [3]. There are several standardized steriliza-
tion processes to meet this requirement, which are chosen depending on the application
scenario and the nature of the product [79]:

• Heat sterilization procedure:
Moist heat sterilization is the most commonly used process for reprocessing medi-
cal devices, for whose use and permissible process parameters there are European
standards, which can be found in [2]. For dry heat processes higher temperatures
and longer sterilization times are required and therefore they are used less often.

• Low temperature gas procedures:
For thermally sensitive materials and components, sterilization with gases is the
most common option. The main methods involve Ethylene Oxide (EO), Steam
Formaldehyde or Gas Plasma. Ethylene oxide has the highest sterilization capacity
and the best diffusion properties and is therefore often used for polymers.

• Sterilization with ionizing radiation:
Ionizing radiation in the form of accelerated electrons or gamma rays is mainly used
for the sterilization of disposables. Both processes incur high costs due to the high
complexity of the devices and also require authorization.

5.4.3. Experimental Validation

The evaluation was performed using two configurations of the presented marker system.
The first one uses the screw attachment and Vuforia markers, the second uses magnets
and infrared marker targets. The marker systems were attached to the Synbone phantom
head (Synbone, Switzerland) with an attached silicone skin as presented in Section 5.1.1.
The two configurations are depicted in Figure 5.19.

The mounting error of the marker head after process change was determined with mea-
surements on six reference points. Three reference points were located at the marker head
and three on the phantom, respectively. The marker head was removed and reattached
twenty times and measurements were taken with a high precision measuring arm (FARO
platinum arm with FARO CAM2 software, FARO Technologies Inc., Germany). The
FARO arm has an indicated precision of ±0.037 mm.

The reference points on the marker system were numbered as Mi and on the patient as
Pi (i = 1, 2, 3). The used coordinate system Cp was created over the points Pi on the
phantom as it is important to use one fixed coordinate system for all measurements. The
point P1 is located on the forehead, P2 on the cheek and P3 on the chin, respectively.
Reference points M1, M2 and M3 are distributed over the marker head and marked with
indentations to make it easier to place the spherical tip of the FARO arm. The position of
points Mi are measured in the coordinate system Cp in all twenty experiments. To make
sure that the coordinate system Cp has not changed in space the three points in Pi are
measured as well. The mounting error is determined by measuring the position change of
the points Mi in the phantom coordinate system.
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Figure 5.19.: The two evaluated configurations. a) Screw attachment and Vuforia marker.
b) Magnet attachment and infrared markers.

Three different experimental setups (E1, E2, E3) were evaluated for the first marker sys-
tem configuration (screw attachment and Vuforia marker).

In the first experiment, E1, a static setup was used and the marker head was removed
and reattached twenty times and measurements were performed. This mimics the process
change from the non-sterile to the sterile phase. In a second experiment, E2, the phantom
head was randomly moved in space after mounting it to a Stewart platform (Hexapod,
PI GmbH, Germany). Within this setup the small movements of a sedated patient can
be simulated. The last experiment, E3, was used to simulate the behavior of the marker
system under vibrations, like the ones that can occur during drilling of the burr hole trepa-
nation. To do so a wooden plate was placed on the phantom head and a surgical drill was
used to drill a hole into it. Thus, similar vibrations as those occurring during the burr hole
trepanation when opening the skull to puncture the ventricular system were generated.
The measurement uncertainty was obtained by performing twenty measurements with a
fixed marker head.

The results indicate no change of the repeatability between experiments E1, E2 and E3.
Results are presented in detail in the next chapter. The second marker system configu-
ration (magnets and infrared markers) is therefore only tested in experiment E1. Addi-
tionally, the reattachment accuracy was evaluated with and without sterile drape between
the marker base and the carrier. Ten measurements were performed on each measurement
point.
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Table 5.11.: Reattachment error on reference points M1, M2, M3. E1: Static phantom, no
movement. E2: Slight random motion. E3: Drilling simulation. Configura-
tion 1 was used as depicted in Figure 5.19-a. (All values in mm.)

E1 E2 E3 Mean(Mi) SD(Mi)
M1 0.17 0.16 0.16 0.16 0.06
M2 0.21 0.18 0.16 0.19 0.06
M3 0.23 0.16 0.17 0.19 0.06
Mean(Ei) 0.20 0.17 0.17 0.18 -
SD(Ei) 0.08 0.05 0.04 - 0.06

5.4.4. Results

The measurement uncertainty for all configurations was determined to be within 0.02 mm.
For determination the tip of the FARO measurement arm was placed twenty times in a row
at the same position. The measurement uncertainty is the maximum deviation over all
measurements. The reason for this is that the measurement arm is manually manipulated
in space and a human is not as accurate as a robot.

In the following the results for the first configuration (screw attachment and Vuforia
marker) are presented. The results of all three experiments are summarized in Table 5.11.
The carrier head could be reattached with an accuracy of 0.18±0.06 mm over all three
experimental setups.

The results yielded nearly the same results for all three experimental setups. This indicates
that small movements and vibrations do not severely change the position of the marker
system.

The second configuration (Figure 5.19-b) was only evaluated with experimental setup E1.
It was additionally tested how the marker system behaved when a sterile drape was placed
between the marker base and the carrier to simulate the coverage of the patient during the
process change from the non-sterile to the sterile phase. A mean error of 0.018±0.01 mm
was determined for the reattachment accuracy without sterile drape used. The mean errors
and standard deviations for every single axis are as follows: x (mean: 0.005, std: 0.004),
y-axis (mean: 0.008, std: 0.005), z-axis (mean: 0.014, std: 0.011). When using foil, the
error increases to a value of 0.195±0.018 mm. The mean errors and standard deviations
for every single axis are as follows: x (mean: 0.027, std: 0.016), y-axis (mean: 0.024, std:
0.012), z-axis (mean: 0.190, std: 0.018). In Figure 5.20 and 5.21 the detailed results over
all three axes are illustrated.

It is noticeable that the main error is determined by the thickness of the sterile drape in
z-direction. The sterile drape has a thickness of 0.15 mm. The thickness can be added in
z-direction after the registration process to compensate for this error. By eliminating this
error, the overall error when sterile drape is used drops to 0.054±0.019 mm and is thus in
a similar range as during experiments without drape.

In the following, the requirements as summarized in Table 5.10 are checked for fulfillment
and evaluated.

The preparation time of each work step is listed in Table 5.12. For configuration one
(screw attachment and Vuforia marker), an assembly time of 380 s was determined and
346 s is required for configuration two. Most of the time is needed to prepare and harden
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Figure 5.20.: Detailed evaluation results over all three axes without the use of sterile
drape. The grey line describes the mean value.
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Figure 5.21.: Detailed evaluation results over all three axes with the use of sterile drape.
The grey line describes the mean value.
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Task Time
Thermoplastic polymer
Preparation of thermoplastic polymer 180 s
Press marker base into thermoplastic polymer 5 s
Hardening of thermoplastic polymer 120 s
Glue marker base into head fixation 15 s
Fix marker base to patient with elastic band 15 s

335 s
Light-curing composite
Preparation of light-curing composite 10 s
Press marker base into light-curing composite 5 s
Hardening of light-curing composite 300 s
Glue marker base into head fixation 15 s
Fix marker base to patient with elastic band 15 s

345 s
ECG and tripod
Glue marker base into head fixation 15 s
Attachment of the adhesive EKG strips to the tripod 10 s
Glue tripod to patient 15 s
Fix marker base to patient with elastic band 15 s

55 s
Mount marker head with screw attachment 45 s
Mount marker head with magnet attachment 1 s

Table 5.12.: Time expenditure of each work step for mounting the marker system.

the skin fixation, which could be done prior to the intervention. Other materials like
foam were also tested and first results seem promising. The preparation time of roughly 6
minutes is acceptable for planned interventions (R.MS.1).

To optimize the preparation time an alternative approach was examined that utilizes ECG
electrodes to glue a tripod to the patient’s forehead. The marker base is then attached to
the upper side of the tripod with screws or glue and the marker system can be attached
with both connection types (magnets and screws). This diminishes the issue of the time-
consuming preparation and curing of the polymer and composite. The marker system
mounting time can be reduced to 56 s when using the magnet attachment. Therefore,
requirement R.MS.1 is fulfilled.

Two configurations using the tripod in combination with the magnet and screw attachment
are depicted in Figure 5.22.

The marker system supports the process change (R.MS.2) from the non-sterile to the ster-
ile phase. The sterile drape is thereby placed between the marker base and the connection
to the marker carrier. As described above a sufficiently high reattachment accuracy is
reached (R.MS.3).

Different marker carriers have been presented, that allow a placement of the markers
slightly above the head. This can lead to the situation that the markers are not visible
in every recorded frame, which makes it necessary for a surgeon to sometimes look up
to recapture the markers with the AR glasses. An alternative design has been proposed
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(a) (b)

Figure 5.22.: a) Marker system configuration with tripod, magnet attachment and infrared
markers. b) Marker system configuration with tripod, screw attachment and
Vuforia markers.

where the markers are placed beside the head of a patient, which results in a better overall
coverage of the marker in the frames. However, this limits the workspace of a surgeon
and makes it hard not to have contact with the marker, which may lead to a displacement
of the marker system. In addition the coverage of a patient is not possible without greater
changes of the sterile drape and therefore not feasible in daily clinical reality. For this
reason, it was decided not to use this concept. The requirement R.MS.4 can nevertheless
be evaluated as fulfilled, since the marker visibility is rated as good. The HoloLens uses
the last known position of a marker when the tracking is interrupted, which guarantees a
stable tracking even when the marker is not visible in every frame.

The marker system has a low weight (R.MS.5) of 210.9 g for the Aruco marker sys-
tem, 193.4 g for the Vuforia marker system and 146.5 g for the infrared marker system.
Currently, the marker system is not sterilizable as it is partly printed from ABS or ASA
filament. The melting point of this material is with 100°C too low for the sterilization
methods in Section 5.4.2.4. During process change a sterile marker carrier needs to be
used. An alternative would be to manufacture the marker system completely from alu-
minium. This would be possible but would lead to a higher weight. It is also possible to
print on aluminium to create sterilizable markers, which was already done in this work.
Requirement R.MS.6 can therefore be seen as fulfillable. It was shown that the marker
system is widely customizable and has a high modularity (R.MS.7) as it is capable of
holding different types of markers. In general, the marker system can easily be adopted
to any kind of marker.

5.4.5. Discussion

Tracking the patient is a crucial requirement when supporting a surgeon with augmented
reality. Clinical reality scenarios can vary widely. A modular marker system design was
therefore presented that is capable of holding different types of markers. The marker
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system is basically divided into five parts: the skin fixation, the marker base, the marker
carrier, the attachment that connects both with each other and the tracked marker. Several
options were provided for each part. The marker system can be attached at any position
of the human head as long as the marker has a good visibility to the HoloLens. The
registration from the marker system to the patient is performed after the attachment. After
that the marker needs to stay at the registered position.

The skin fixation that can be attached fastest uses ECG electrode pads in combination
with a tripod base structure. It guarantees a stable connection to the patient and allows for
fast and safe attachment. However, the polymer and the composite are preferable when
time is no issue, as they prevent almost any movement of the marker base. Attachment
of the ECG electrode pads is not simple as the three pads need to be secured on the
correct locations on the forehead of the patient. This can become challenging due to
shape variations of patient’s foreheads. A simple template sheet with holes that mark the
position of the pads can be used to mark the correct position on the forehead of the patient.
An interesting option could be to create a fitting template sheet for every individual patient
with the usage of statistical shape models, as presented earlier in Section 4.2. Generally,
due to the design of the tripod it is easy to attach it to any human forehead.

All requirements were fulfilled. The marker system can be assembled fast, has a low
weight, is sterilizable and modular in its design. It supports the process change from the
non-sterile to the sterile surgical phase. Two connection options were presented, which
both yield a good reattachment accuracy of under 0.2 mm. However, the magnet attach-
ment has the advantage of a much faster attachment time and a slightly higher reattach-
ment accuracy. The presented designs yield a good marker visibility.
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5.5. Marker to Patient Registration

In the previous sections trackable markers were presented and a modular marker system
that can hold these markers. Several possibilities have been shown to mount the marker
system to the patients head and support the transition from the non-sterile to the sterile
phase by reattaching a sterile marker carrier with sufficiently high accuracy of under 0.2
mm.

Figure 5.23.: Overview of the coordinate systems of the surgical scene.

The position of the marker system can be freely chosen, which makes it necessary to
perform a registration from the marker system to the patient. Every involved entity in
our experimental setup is described through its own coordinate system, this can be the
surgeon, medical staff, one or more patients, surgical instruments, sensors, robots and so
on. Sometimes several coordinate systems are grouped together by registering them to
each other. This is the case for the HoloLens, where all sensors (see Table 5.8) represent
their own coordinate system and are registered to the HoloLens coordinate system that
is created at the spatial starting position in the room. For example the short throw depth
streams represent coordinates in its own coordinate system and need to be registered to
the HoloLens coordinate system with a transformation matrix. All coordinate systems of
the investigated surgical scene are visualized in Figure 5.23.

It is assumed that the surgeon who wears the HoloLens TH is present in the same co-
ordinate system, which means that the eyes of a wearer see everything in the HoloLens
perspective. It is necessary to perform a calibration to the user as described in Section
6.1.1.3. The patient model coordinate system TPm needs to be aligned with the patient
coordinate system TP . The coordinate system of the marker system TMS has its origin
in one of the used markers. If more than one marker is used these are registered to the
main marker. Additionally, the catheter is represented with TC . The transformation ma-
trices represent the registration of the different coordinate systems to each other. TMS

H is
the transformation matrix from the HoloLens coordinate system to the marker system and
T P
MS defines the transformation from the marker system to the patient.

To enable the tracking of a patient during an intervention the position of the patient defined
through the marker system needs to be constantly derived and updated. This is described
through the transformation matrix T P

H . The transformation to the marker system TMS is
determined simply by tracking the individual marker. To superimpose the patient models
at the correct position the transformation T P

MS needs to be determined. The patient coor-
dinate system can be spanned from every point on the patient. In our case it is defined
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by the patient models coordinate system that needs to be aligned with the patient. This is
done in the non-sterile surgical phase while the patient’s head is not covered.

In the following, four methods are presented to perform the registration from the marker
system to the patient. Three manual methods and one automated one are examined and
evaluated against each other.

5.5.1. Methods for Registration of the Marker System to the
Patient

The registration is performed by placing the patient models over the real patient to derive
the transformation T Pinit

H . Simultaneously, the marker system is tracked to determine
TMS
H . The transformation from the marker system to the patient is given by

T P
MS = (TMS

H )−1 · T Pinit
H (5.3)

As shown in the previous section a sterile marker system can be reattached with very high
accuracy. It remains stable even during small movements and vibrations. The marker
system was designed in a way that it can be attached to any suitable position on the head
of a patient. The position of the patient is then constantly derived as in

T P
H = TMS

H · T P
MS (5.4)

The patient’s head is completely covered during an intervention, except for the surgical
site. Only the marker system is visible. The placement of the patient models over the real
patient can be done with four different methods, that will be described below. The patient
must not be moved during this process.

The generalized workflow is depicted in Figure 5.24.

Figure 5.24.: Overview of the general workflow to perform the registration from the
marker system to the patient.

5.5.1.1. Registration Using a Game Controller

The game controller-based registration is performed with an Microsoft XBox One Con-
troller. The process is visualized in Figure 5.25. The attached marker system with un-
known registration T P

MS is tracked within the first recorded frame to perform a rough
alignment of the patient models. It is roughly known where the marker system will be
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attached to the patients forehead within a range of a few centimeters. The patient model
can then be moved in all six degrees of freedom with the game controller. One axis at a
time can be selected to change the translation or rotation. It was decided to perform one
action at a time with only one joystick of the controller to keep the interaction simple and
robust.

When the models are aligned with the real patient or phantom the registration is calculated
using Equation 5.3, by tracking the used marker and taking the position of the placed
models.

Figure 5.25.: Workflow to perform the registration with a XBox game controller.

In Figure 5.26 a and b the registration process from HoloLens view is depicted.

(a) (b)

Figure 5.26.: a) HoloLens view of the registration process on the OpenHead phantom. b)
HoloLens view of the game controller-based registration process on a real
person (non-clinical real world example).

5.5.1.2. Registration with Pointing Device

The second option to perform the registration of the patient model is utilizing a pointing
device that is visualized in Figure 5.27 a and b. The pointing device is tracked with an
attached infrared marker target. The tip of the pointing device is determined through
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a known transformation matrix that is extracted from the CAD models. Figure 5.27 a
shows the transformation from the mount position of the marker target to the tip. This
corresponds to the source of the marker target. Depending on the marker target, additional
transformations could be necessary, e.g. from one infrared sphere to the marker target
source. A printed pointing device with attached marker target is depicted in Figure 5.27
b.

(a) (b)

Figure 5.27.: a) Transformation from the mount position of the marker target to the tip of
the pointing device. b) Printed version of the pointing device with attached
infrared marker target.

The workflow for registration with the pointing device is depicted in Figure 5.28.

Figure 5.28.: Workflow of the registration with the pointing device.

In the registration step, the patient models with indicated registration points are visualized
to the user as visualized in Figure 5.29. The user must then place the tip of the pointing
device on the displayed points.

In our experimental setup this was performed on the OpenHead on recesses in the phan-
tom. In a real world clinical environment this could be done with fiducials attached to the
skull of a patient prior to the CT scan. The four indicated points must be touched and their
positions are saved to the system. Since the surgeon does not have a free hand, they can
use the voice command ’save’ and the number of the point to save it. While all points are
recorded, the patient models are moved according to the saved positions. At any time the
registration can be visually checked. When the registration is satisfying, the position of
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(a) (b)

Figure 5.29.: a) Indicated capture points on the OpenHead phantom numbered from 1 to
4 that are shown to the user. b) Detailed view of the OpenHead phantom
with recess to which the tip can be pointed.

the patient model can be saved and the registration step is performed. The voice command
’head’ is used to do so.

5.5.1.3. Gesture-based Registration

In the third method, patient models are placed with gestures over the real patient. The
HoloLens is able to detect several gestures that can be processed and handled with the
MRTK toolkit [149]. The gestures used in this work are the ’click’ and ’grab’ gesture
shown in Figure 5.30 and Figure 5.31. Furthermore, the movement of the head and voice
commands are used. The initial coarse alignment can be done by detecting the marker in
the first frame. Alternatively, it is possible to use the ’click’ gesture to perform the coarse
alignment of the marker system to the patient. To do so the surgeon is positioned at the
top of the operating table and performs the click near the top of the patient’s head. The
pose of the patient is roughly known as the patient is always lying on their back. The
’grab’ gesture can then be used to grab the patient model and perform a finer translational
alignment. To make the rotational fine adjustment an axis is selected using voice com-
mands. Alternatively it would still be possible to use the game controller, however this
registration method was designed to only use intuitive interaction. The rotation is then
changed by moving the head to the left or the right side as shown in Figure 5.32.

The workflow is depicted in Figure 5.33.

5.5.1.4. Patient Model Alignment via Surface Matching

The three previous presented methods for the patient model alignment must be performed
manually. However, it would be preferable to perform this step fully automatic in the
future. Therefore, an automated process using a surface matching approach was imple-
mented that is depicted in Figure 5.34.
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Figure 5.30.: Click gesture.

Figure 5.31.: Grab gesture.

Figure 5.32.: Head movement to the left and right side with HoloLens.

Figure 5.33.: Workflow of the gesture-based registration.

The approach is based on matching two point clouds, each forming a surface. The first
point cloud is generated from the previously acquired patient models out of the patients
CT data. The second point cloud is recorded from the sensor streams of the HoloLens in
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Figure 5.34.: Workflow of the registration using surface matching by utilizing depth
cloud fusion.

the preoperative stage during registration. Within the experimental setup, the OpenHead
phantom is used without the attached silicone skin.

Point Cloud Acquisition: In Section 4.1, the segmentation of the patient models is de-
scribed. The output of the segmentation are generated volumetric (nrrd) and surface (stl)
models of the skull, skin and ventricular system of the patient. To match the surface of the
patients head both point clouds need to be in the same file format, which in our case is the
polygon file format (ply). Therefore, the surface model of the patient’s skull is converted
to point cloud PS in the ply file format. In this simple conversion every vertex of the
surface model represents a point in the point cloud.

Normally the patient’s skull and skin consist of an inner and outer layer due to a certain
thickness of the tissue (Figure 5.37 a). The inner layer is removed manually in the data as
visualized in Figure 5.37.

The point cloud PS is aligned with the point cloud PH , which is recorded from the
HoloLens short throw depth and short throw reflectivity streams. The short throw re-
flectivity values are used to colorize the point cloud.

Preprocessing - Segmentation: If the entire acquired frame is used, it is often not pos-
sible to determine the correct position of the patient’s head, because the surface matching
approach runs into local minima. Therefore, the point cloud must be segmented so that
only the patient’s head remains. To do so, the OpenHead phantom is placed on a dark
sheet in the segmentation step so that it can easily be determined in the short throw re-
flectivity frame using a threshold. An example of a recorded frame is depicted in Figure
5.36.

An alternative approach is the placement of a virtual box that covers the space of the
patient’s head. This is easily possible with the MRTK toolkit [149] and the HoloLens by
placing a three-dimensional box in the scene that can be scaled and moved to the position
of the patient’s head. The box is placed in the HoloLens coordinate system and the point
cloud PH is present in the same coordinate space. All points that do not lie within this
box are filtered out. A similar approach without augmented reality support was presented
by Martin et al. [145].
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(a) (b)

Figure 5.35.: a) Patient model with inner and outer layer. b) Patient model after inner
layer was removed.

Figure 5.36.: Recorded point cloud of the short throw depth stream.
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A further solution is to use a depth threshold to filter every point that is within a certain
distance of the HoloLens. The wearer needs to focus on the head of the patient and the
area of recording is displayed. A trough pass filter defined in Equation 5.5 is used to filter
all values outside a certain range between 20 and 60 cm.

f : N → N, T (pmodel) =

pxpy
pz

=



pxpy
pz

 −0, 6 < pz < −0.2

00
0

 else

(5.5)

Preprocessing - Adjust resolution: In order to shorten the computation time of the sur-
face matching, an adjustment of the resolution is carried out. For this purpose, a down-
sampling is executed utilizing a three-dimensional voxel grid filter. The filter creates
small three-dimensional voxels (i.e. boxes) in space with a certain side length over the
point cloud. All points inside a voxel are approximated with their centroid, as in

cv =
1

k

k∑
i=0

(xi, yi, zi) (5.6)

Only the centroids in the respective voxels are used for the further calculation. An imple-
mentation in the Point Cloud Library [183] of the voxel grid filter is used [184].

Preprocessing - Calculate Normals: Since knowledge about the normals of the point
cloud is required for the surface matching procedure utilizing the Sample Consensus Ini-
tial Alignment algorithm, these are calculated beforehand using the PCL function Nor-
malEstimation.

To determine the normal vector ni of a point pi of the point cloud, again a set K of
points in a neighborhood Nr with radius r is selected and their centroid is calculated as
in Equation 5.6. Points in a radius of 2.5 cm are chosen. Then the covariance matrix is
calculated following Equation 5.7.

C =
1

k
·

k∑
i=0

wi · (ni − cv) · (ni − cv)
T

C · v⃗j = λj · v⃗j
j ∈ 0, 1, 2

(5.7)

Where ni ∈ Nr are all points in the neighborhood with radius r of a point pi. The weight
wi represents a possible weight for ni and normally equals 1. For a more detailed descrip-
tion see [182]. λi are the eigenvalues of the covariance matrix and v⃗j are the eigenvectors.
The eigenvector corresponding to the smallest eigenvalue is an approximation of the nor-
mal ni of point pi.

Additionally, it must be checked if the normals are oriented correctly. This is done by
setting a suitable view point. In our case it is suitable to take (0,1,0), which is the origin
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(a) (b)

Figure 5.37.: The figures show the patient model converted to the ply format. a) Original
orientation of the normals after conversion. b) Normals after orientation to
the center of the model and the flip to the outside.

of the HoloLens coordinate system and an added meter above the ground. Thereby it is
guaranteed that the normals are always flipped to the outside of the patient’s head.

The normals of the point cloud that is generated from the patient scan must also be ori-
ented correctly, because the normals are often not correctly aligned as depicted in Figure
5.37 a). To do so, the viewpoint is set to be directly in the middle of the patient model.
All normals are then flipped inwards in the direction of the center of the head. In a second
step, all normals are simply turned outwards. The results are depicted in Figure 5.37 b).

Preprocessing - Calculate Fast Point Feature Histograms: The feature-based matching
to perform the initial alignment relies on fast point feature histograms (FPFH) that are
calculated from the normals that were determined in the previous step utilizing the PCL
function FPFHEstimation.

The approach determines a histogram for every point pi in both point clouds PS and PH by
calculating point features that represent geometric features taking the k-neighborhood (k
neighboring points) of a point into account. For each pair of points in the k-neighborhood
the difference is calculated by determining a quadruplet (α, ϕ, θ, d). All k quadruplets are
combined into one histogram per point. A detailed description is provided in [181].

Feature-based Matching for Initial Alignment: To perform the feature-based matching
the Sample Consensus Initial Alignment algorithm is used. A certain number of points in
the point cloud to be registered are selected. For each of these points, the respective FPFH
is compared with the point histograms of the target point cloud. A transformation matrix
is calculated from the correspondences and executed. After the transformation, an error
metric is calculated over all points by using the Huber penalty measure, as in

Lh(ei) =

{
1
2
e2i ∥ei∥ ≤ te

1
2
te(2∥ei∥ − te) ∥ei∥ > te

(5.8)

125



5. Scene Registration

where ei is the error value and ti a distance threshold of both point clouds [156]. This step
is repeated and the transformation with the smallest error is saved [181]. In a last step, a
non-linear local optimization is applied utilizing the Levenberg-Marquardt algorithm on
the transformation [65].

Iterative Closest Point Matching: In our pipeline we use two matching approaches, the
Sample Consensus Initial Alignment (SCIA) and the Iterative Closest Point (ICP) algo-
rithm. The reason for this is that the first algorithm finds even in large scenes the position
of the patient head, but the fine alignment sometimes fails and it can result in an offset of
a few centimeters. The ICP algorithm is not suitable for the fitting of small objects into a
large point cloud as it runs into local minima very often and gets stuck. It needs a good
initial alignment. The combination of both a feature-based approach and ICP solves the
issues both algorithms have. For a coarse alignment SCIA and for fine alignment ICP is
used to obtain the best alignment results. ICP was first introduced in 1992 by [37] and
[23]. Since then, different types of ICP have been proposed. A detailed survey about
different ICP implementations are given in [180].

The algorithm ICP works iteratively. For each point in a point cloud, the nearest neighbor
in the second point cloud is determined. In each iteration of the algorithm, the distance
between the points is reduced by a change of the transformation parameters. After every
iteration, an error value is calculated to determine the quality of the matching by using the
least squares method. This procedure minimizes the euclidean distance between the two
point clouds. In this work the standard ICP method of the PCL library is used.

Transformation: The matching result is stored in the transformation matrix T P
H . The

transformation describes the translation and rotation applied to each point of the source
point cloud to match the target point cloud. For matching, the model’s point cloud PS

was chosen as the origin cloud because the feature-based algorithm selects random points
from the point cloud to be matched. If the HoloLens point cloud was chosen as the origin
cloud instead, it could be that the algorithm uses irrelevant points for matching.

A matching procedure is visualized in Figure 5.41.

5.5.2. Evaluation of the Registration Methods

In the following a detailed evaluation of the presented registration methods is carried out.
The four registration methods are evaluated and compared. The registration methods us-
ing a controller and gestures are evaluated with the same method. The evaluations are
carried out on the OpenHead phantom skull with mounted Vuforia marker. The real phan-
tom is fixated on a desk so it can not move. To measure the deviation on all axes a digital
caliper is used to determine the misalignment of the digital model to the real OpenHead
skull. Ten measurements are performed per axis to determine the error separately. The
virtual skull is registered with the controller or gestures. The misalignment is measured
using the digital caliper by estimating the error on the defined recesses of the OpenHead
on all three axes.

To determine the registration error using the pointing device method, measurements are
taken at all four recesses of the OpenHead. The pointing device is thereby tracked with an
infrared marker target. The measured length between the points is compared to the known
real length.
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Figure 5.38.: Results of the controller-based registration. Mean values are visualized as
red diamond markers, outliers as red cross markers.

The automated surface matching method is evaluated offline by determining the registra-
tion error between both point clouds after matching.

5.5.2.1. Accuracy of the Registration with the Controller

The controller-based registration is performed using an XBox game controller. After
aligning the virtual skull model with the real OpenHead, ten measurements are performed
for each axis. It is assumed that the rotational error is neglectable due to the fact that
the OpenHead is placed vertically to the desk in a holding contraption. The base and the
boundaries of the OpenHead are used to estimate the misalignment with the digital caliper.
For the x-axis this was done using the base connector of the OpenHead. The y-axis error
is determined by measuring at the upper part of the skull. The z-error is measured on the
back of the skull by looking from the side onto the OpenHead.

The experiments were conducted by two persons who made ten registrations each. The
results are depicted in Figure 5.38.

A mean error over all axes of 2.71±1.18 mm was observed: 1.36±1.4 mm for the x-axis,
1.45±0.92mm for the y-axis, and 1.19±0.87 mm for the z-axis. The mean error over all
three axes is larger than for every individual axis, because it is determined over all three
dimensions.

5.5.2.2. Accuracy of the Gesture-based Registration

The gesture-based registration is evaluated in the same way as the controller-based reg-
istration. The virtual patient model is placed over the real OpenHead phantom by using
gestures. The experiments were carried out by two people who each conducted ten regis-
trations. Again, a digital caliper is used to measure the deviation. The results are depicted
in Figure 5.39.

127



5. Scene Registration

Figure 5.39.: Results of the gesture-based registration: Alignment error over all three
axes and for all individual axis are depicted. Mean values are visualized as
red diamond markers, outliers as red cross markers.

A registration error of 1.09±0.78 mm was determined for the x axis. 1.64±1.10 mm for
the y axis and 2.11±1.29 mm for the z axis. This leads to an overall error of 3.31±0.75
mm.

5.5.2.3. Accuracy of the Registration with the Pointing Device

The pointing device registration is evaluated differently compared to the previous ones.
Measuring the misalignment with a digital caliper is error-prone due to the fact that a
human must estimate the displacement. A better approach is to conduct a digital mea-
surement and compare it to a known ground truth. A digital measure of the hologram
displacement is difficult, as it is not possible to record the virtual world through the lenses
of the HoloLens, because it is hard to mimic the behavior and human perception this way.
To get better results, measurements are taken on the four points primarily defined on the
OpenHead.

The pointing device is used to determine the position of the patient model in space by
placing the pointing device on the four recesses as described in Section 5.5.1.2. The dis-
tance between these points is known, which provides an accurate ground truth. Although
we do not know the absolute position error of the measured points in space, we do know
the distance between them and can compare them to the measured value. The distances
between the measured positions of the points P1, P2, P3 and P4 are calculated and com-
pared to the known value. To determine the registration error, the virtual patient model of
the skull are placed over the OpenHead phantom ten times using the registration method.
After saving every point, the position is stored and the distances between the points are
determined. The measured distances are displayed in Table 5.13.

The results of the evaluation are depicted in Table 5.13 and in Figure 5.40.

The mean error over all axes is 3.71±3.25 mm.
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Points Distance Axis Error & Standard deviation
P1 to P2 65.97 mm x 5.26±3.94 mm
P1 to P3 37.68 mm yx 3.02±3.04 mm
P2 to P3 37.35 mm yx 1.96±1.65 mm
P3 to P4 92.15 mm yz 4.58±2.76 mm

Table 5.13.: Measurement points with their distances on the OpenHead and results of the
evaluation.

Figure 5.40.: Results of the pointing device-based registration. Mean values are visual-
ized as red diamond markers, outliers as red cross markers.

5.5.2.4. Accuracy of the Registration with Surface Matching

The evaluation of the automated registration using surface matching is evaluated by car-
rying out ten matching procedures. For this purpose, ten recordings of the short-throw
sensors are made and combined to generate a high-resolution point cloud. The distance
between the points is approximately 2 mm. An example is depicted in Figure 5.41 a). The
patient model (Figure 5.41 b)) is then matched to the recorded point cloud as visualized
in Figure 5.41 c). The registration error of the matching result is evaluated by measuring
the distance of the matched patient model to the recorded patient anatomy. The distance
between five points is measured. The four points defined earlier at the OpenHead are used
and a fifth one is defined at the edge of the teeth. The additional measurement point was
chosen to get a more distinctive landmark point to perform the measure on.

All ten matchings aligned the model PS over the recorded OpenHead PH . Out of ten
matchings, eight were aligned sufficiently well, while two matchings had a bigger align-
ment error and were rotated incorrectly.

The results of all ten matchings are depicted in Figure 5.42. The misaligned point clouds
are numbers 4 and 8 as can clearly be seen by the high error value in the plot. The reason
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(a)

(b)

(c)

Figure 5.41.: a) Point cloud PH recorded from the HoloLens short throw streams (green).
b) The patient model point cloud PS (blue) that will be matched to the
recorded point cloud PH . c) Matched point clouds after alignment proce-
dure.
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Figure 5.42.: Registration error of the point cloud matchings. All ten point clouds are
visualized with numbers PC1 to PC10 and the overall error of all alignment
procedures. Mean values are visualized as red diamond markers, outliers as
red cross markers.

for the matching error is the run into a local minima due to a high sensor noise of the
depth stream.

The registration results of the successful matchings are visualized in Figure 5.43. In the
case a matching does not succeed, a slightly different recording angle should be chosen.
The registration error was determined to be 9.77±13.43 mm including all registrations.
When considering only the successful registrations an error value of 4.62±3.76 mm can
be obtained.

5.5.2.5. Comparison of the Accuracy Measurements

In the previous sections all four registration methods have been presented and a detailed
evaluation was carried out.

In Figure 5.44 and Figure 5.45 all methods are compared to each other. The controller-
and gesture-based manual registration are the most accurate methods. In Figure 5.44 all
surface matching results are included, while the failed alignments are for better compari-
son not included in Figure 5.45.

The worse results of the pointing device-based and surface matching registration methods
are presumably due to a high sensor noise of the short throw depth sensor. A wavelike
scattering noise is depicted in Figure 5.46. In Section 5.3 it was shown that an infrared
marker can be tracked at sub-millimeter range. This value was obtained with a HoloLens
mounted to a tripod. The tripod was not moving, the scene was static.

When the HoloLens is worn on the head of a user this accuracy drops to a lower accuracy
value, due to the movement of the HoloLens. The evaluation of the registration methods
that are using the depth stream indicate error values of 2-7 mm with high noise. In the
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Figure 5.43.: Registration error of the point cloud matchings without misaligned point
clouds PC4 and PC8. Mean values are visualized as red diamond markers,
outliers as red cross markers.

Figure 5.44.: Registration error of all four proposed methods. C = Controller, G = Ges-
ture, PD = pointing device, SM = surface matching. Mean values are visu-
alized as red diamond markers, outliers as red cross markers.
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Figure 5.45.: Registration error of all four proposed methods without unsuccessful sur-
face matching results. C = Controller, G = Gesture, PD = pointing device,
SM = surface matching. Mean values are visualized as red diamond mark-
ers, outliers as red cross markers.

Registration methods Time
Controller 100.5±63.5 s

Gesture 124.2±46.2 s
Pointing device 28.7±15.1 s

Surface matching 115.8-1227 s

Table 5.14.: Results of the time evaluation of the different registration methods.

future, further evaluations need to be performed to determine the tracking accuracy in
relation to the movement of a user.

5.5.2.6. Time Evaluation

The time measurements were conducted in a row by two persons. The registration results
were reviewed to ensure that they are in the evaluated range. Generally it must be stated
that the time needed for the manual approaches depends strongly on the user’s experience
with the system. The time evaluations of the manual registration methods were done with
two test participants (n = 2, computer scientists). The results are depicted in Table 5.14.

The automated registration method using surface matching takes the longest time, de-
pending on the resolution of the point clouds to be matched. A detailed time evaluation is
depicted in Table 5.15. The time needed for computation is mainly depending on the size
of the voxel grid used. When a higher resolution is chosen, the feature-based approach
needs much more time to compute the features and perform the initial alignment.
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Voxel grid size Points Time
3 mm 4380-5125 1072.2 - 1227 s
4 mm 2719-3320 442.2 - 485.4 s
6 mm 1214-1311 115.8 - 130.8 s

Table 5.15.: Detailed time evaluation of the surface matching in relation to different voxel
grid sizes.

5.5.3. Discussion

The manual registration with a game controller is easy to perform and provides a high
precision input device. Through an initial tracking of the marker system a coarse align-
ment of the patient model can be done. The whole registration process relies on the visual
perception of the HoloLens wearer. Therefore, a calibration needs to be performed as
described in Section 6.1.1.3.

The registration using gestures works basically the same as the controller-based registra-
tion. Instead, hand and head gestures are used to align the models to the real phantom.
Similar accuracy values can be achieved, although more training is needed to perform the
alignment correctly.

The two registration methods using the pointing device or surface matching rely mainly
on the quality of the short throw sensors. The infrared markers are tracked within these
streams, and the point cloud that the patient model is registered to is generated from the
short throw streams. We were able to obtain a resolution of 2 mm distance from point to
point. As shown in Section 5.3 an infrared marker tracking accuracy of 0.76±0.65 mm
was achieved.

This high accuracy was possible because the center of the infrared markers were inter-
polated through the tracked pixels that glow bright in the short throw reflectivity stream.
These accuracy values can be achieved when the HoloLens is fixed to a tripod.

Initial experiments indicate that the tracking accuracy decreases to 2-7 mm per infrared
marker due to motion noise in the short throw streams, when the HoloLens is worn on
the head. The high noise in the short throw depth stream is the biggest error source
in the registration process when using the pointing device or the automated method via
surface matching. This lowered tracking accuracy while the HoloLens is worn leads to a
registration accuracy of 3.71±3.25 mm for the pointing device and 4.62±3.76 mm for the
surface matching. The slighlty better registration accuracy of the pointing device method
is presumably due to a better tracking performance of the infrared spheres, because sensor
noise can better be minimized, when the center of the infrared sphere is determined.

It can be assumed that these accuracy values are better when the sensors on the HoloLens
are updated in newer versions. The small but constant movement of the human head will
remain a challenge. This could be adressed with appropriate algorithms or additional
sensors, e.g. with an accelerometer. A further possibility would be a higher frame rate of
the depth sensor.

The same applies to the registration over surface matching as the results are comparable to
those of the pointing device. Again, the noise of the short throw sensors and their limited
resolution leads to a limitation of the registration accuracy. Overall the results are good as
eight out of ten matchings succeeded. If a higher resolution is chosen, the two misaligned
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point clouds can be matched with the OpenHead model sufficiently. This comes at the
price of longer time that is needed to perform the matching procedure. Future work will
investigate how to speed up this workflow and to perform matching in a reasonable amount
of time.

When evaluating the results of the surface matching in more detail, it can be stated that
there are some irregularities in the measured data. Measurements were performed on five
points to compare both point clouds. In one evaluation a nearly perfect matching was
executed, with a detected misalignment on just one measurement point. This leads to
the conclusion that every recorded point in a frame of the short throw depth sensor has
a uncertainty of a few mm. When a planar surface is recorded the points are scattered,
which leads to an uneven surface as depicted in Figure 5.46. This scatter noise correlates
with the distance of an object from the HoloLens. In the working distance of this work,
this error is determined to be 2.07±1.98 mm, but can increase to several cm for distances
over one meter. The error value was measured in the depicted point cloud.

Figure 5.46.: Wavelike scattering noise of the recorded point cloud from the short throw
depth stream.

The registration methods were evaluated on the OpenHead phantom printed from ASA,
which represents a static surface and therefore ideal conditions of a matching of a patient
model generated from prerecorded image data. The human skull with its skin is slightly
deformable, especially in the jaw region. When translating the methods to a real clinical
environment this problem would need to be addressed, too. The standard of care would
be to fix fiducial markers to the skull of the patient prior to the CT scan and then use a
pointing device to perform a registration.

5.6. Chapter Conclusion

In this chapter, methods for scene registration were presented. First the experimental setup
was presented that was used to evaluate the proposed methods.

Then possible markers for patient tracking were presented and evaluated in regard to a
possible usage in this work. As an outcome the Aruco, AprilTags, Vuforia and infrared
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markers were chosen to be the most promising ones and evaluated further. The Vuforia
markers are not open source but their tracking accuracy has already been published in
literature. Aruco and AprilTags perform both sufficiently well, but Aruco markers can be
tracked twice as fast as AprilTags. In the beginning of this work infrared marker tracking
was not possible because access to the short throw sensors was restricted by the hardware
provider. It was initially decided to implement the Aruco marker tracking on the HoloLens
1, which seemed to be the most promising candidate. However, no sophisticated framerate
could be reached on the HoloLens. Therefore, it was decided to use the Vuforia marker
tracking to derive the position of the patient.

After the research mode of the HoloLens 1 was introduced in 2019, sensor access was
possible and a solution was presented to track infrared markers directly with the device.
Two different approaches were investigated to do so. The first method utilizes the two time
of flight sensor streams str and std. The second approach uses the environmental cameras
lf and rf. Both approaches were evaluated against each other and it was decided to use the
time of flight sensor. The accuracy is nearly equal but no additional light emitting LEDs
are needed. An error value of 0.76 mm at a distance of 40-60 cm was measured. High
framerates on the HoloLens of 55-60 fps are reached.

With the presented method it is possible to use well established and sterilizable infrared
markers in the operating room to track the relative motion between the patient and the
HoloLens.

To mount the markers to the patient, a marker system was developed. Various configura-
tions are possible. The most important part of the marker system that is responsible for
the reattachment error is the used connection between the marker base and the carrier. In
a first version, a screw attachment was used. A reattachment accuracy of 0.18±0.06 mm
was reached. The second version uses a magnet attachment and yields better accuracy
values of 0.018±0.01 mm without sterile drape between base and carrier. When using a
sterile drape as patient coverage this error increases, but can be minimized with a known
drape thickness to 0.054 ±0.019 mm. It was shown that the marker system remains stable
even during vibrations and small movements of a patient.

In the last section, four methods for marker system to patient registration were presented.
Three manual registration methods were proposed: via a XBox controller, a pointing
device or gestures. Additionally, an automated method for the registration was presented
using surface matching utilizing the short throw sensors. The evaluation showed that
registration with a controller yielded the most accurate results and was simple to perform.
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In this chapter, the three different levels of augmented reality-based surgical assistance
are presented. The structure is shown in Figure 6.1.

Figure 6.1.: Overview of chapter 6.

In the first stage, only the HoloLens is used to assist a surgeon during an intervention with
augmented reality by superimposing the patient models over the patient’s head (Section
6.1). The second stage uses an additional catheter navigation aid that is tracked with an
infrared marker to additionally provide information about the puncture angle and Kocher
point location to the surgeon (Section 6.2). In the last stage a robot is used to guide the
catheter navigation aid to enable a more stable and accurate puncture trajectory (Section
6.3).

The three stages of intraoperative assistance were all validated with simulated ventricular
punctures in preliminary and preclinical experiments. All experiments were conducted
on the OpenHead phantom and its corresponding five interchangeable ventricular systems
as presented in Section 5.1.1. The first stage, the AR-guided intervention was evaluated
in a preclinical environment by expert neurosurgeons, while for the other two a proof of
concept was done in preliminary experiments in the OP:Sense environment with novice
non-medical experts having a technical background.

6.1. Augmented Reality-guided Intervention

In this section the first stage of the intraoperative assistance is presented.
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Figure 6.2.: Overview of the complete process of the proposed system. In the preopera-
tive stage the patient models are generated, by segmenting the patient scans.
After that the optimal puncture trajectory is determined. Before a surgeon
can use the HoloLens it must be calibrated to the individual user. In the in-
traoperative phase the patient models are superimposed over the patient to
support a surgeon during an intervention. Adapted from [119].

6.1.1. The HoloLens Application for Intraoperative Assistance

The HoloLens application for augmented reality support is started by a user when be-
ginning the AR-guided ventriculostomy. The components described in Sections 4 and
5 are used in this application. The generated patient models and puncture trajectories
are superimposed over the patient to guide a neurosurgeon during the intervention. The
scene registration methods are used to register the patient to the HoloLens and to track the
marker during the procedure and compensate for movement.

An overview of the preoperative and intraoperative process is given in Figure 6.2.

6.1.1.1. Workflow of the HoloLens Application

The workflow of the application is depicted in Figure 6.3. First a user can decide if they
want to start a new intervention or if they want to load a previously saved patient to marker
registration. The latter can be used to restart the HoloLens during an intervention or after
a break. The new registration option performs an initial alignment by tracking the marker
once. This leads to a registration accuracy of up to a few centimeters, depending on the
position of the marker system. In the registration step one of the four methods as described
in Section 5.5 can be used to perform the marker to patient registration.

When the registration step is completed the intraoperative assistance is executed. The
medical expert can choose between different visualization modi. The different patient
models can be switched on and off. It is possible to visualize the ventricular system, the
skin, the skull, the target points inside the ventricular system, the Kocher’s points and the
puncture trajectories.
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Figure 6.3.: The process of the HoloLens application to support a user with augmented
reality.

6.1.1.2. Rendering Techniques

There are two possible ways to visualize patient models on the HoloLens. The standard
way is to use the standard shader provided by Unity 3D to visualize surface models to the
user. With the implementation of a ray trace shader it is also possible to render volume
models on the HoloLens 1. Examples are visualized in Figure 6.4.

(a) (b) (c) (d)

Figure 6.4.: a,b) Surface models (Synbone phantom). c,d) Volume models (real patient)
[111].

The surface models are stored as obj files and added as an asset to the Unity project. The
volume files are stored as nrrd files and converted to a binary file representing a three
dimensional array. The binary file is also saved as an asset in the Unity project. Both
assets can then be accessed from the appropriate shader. A detailed evaluation regarding
the runtime behaviour was carried out. Each model dataset consisted of three models:
the skin, the skull and the ventricular system. Properties of the used surface models are
summarized in Table 6.1. For reduction of the vertex count Blender (v.2.79b) was used.
Two patient model datasets of different size were investigated.

The same applies to the volume models. Also different volume model sizes were evalu-
ated. The models were reduced using the unu resample tool with default parameters [202].
Applications running on HoloLens are limited to a memory allocation of approximately
900 MB. When trying to render the original size (100%) of the volume models, 950 MB
was allocated in RAM and the application crashed.

In Table 6.2 the evaluated volume models are depicted.

To render the volume models on the HoloLens a ray trace shader was implemented, based
on the approach introduced in the work of Amanatides et al. [8]. The shader has been
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Model 1 (real patient data) Model 2 (Synbone phantom head)
Skin Skull Ventricles Total Skin Skull Ventricles Total

Vertex count 4 595 8 103 4 068 16 766 17 633 42 310 5 977 65 950
Triangle count 8 942 16 255 8 149 33 346 34 994 83 805 11 922 130 721
Size (in kB) 280 500 248 1 028 1 154 2 839 369 4 362

Table 6.1.: Details of the two combined surface models that are used for evaluation (skin,
skull and ventricular system). Model 1 was created from real patient data.
Model 2 was generated out of a CT-scan of the Synbone phantom [111].

Head 100% Head 75% Head 50%
Dimension (in voxel) 512 x 160 x 512 384 x 120 x 384 256 x 80 x 256
Voxel size (in mm) 0.488 x 1.000 x 0.488 0.653 x 1.333 x 0.653 0.980 x 2.000 x 0.980
Binary file size 160 MB 67.5 MB 20 MB

Table 6.2.: Volume models: The volume model was generated from a CT-scan of a real
patient and later on reduced to 75% and 50% of its size [111].

implemented to mimic a CT scan to make it possible to look through a patient’s head and
inspect the ventricular system.

The method utilizes a fast voxel traversal algorithm that sends rays through the three-
dimensional volume to project the scene onto a two-dimensional plane. The algorithm
calculates the pixel value based on the Hounsfield units of the voxels that lie on the ray.

Using all voxels on one ray would be too computational expensive. Therefore, the voxels
taken into account are limited to a certain number. In this work 16 or 96 sample points
on the rays are evaluated in regard to the rendering performance of the volume model
visualization. The more sample points are used, the more computational expensive is
the calculation of the two-dimensional projection. The mean value of all voxel values
is calculated, also taking their neighbourhood into account (all 27 connected voxels) to
determine the pixel value. A visualization of the volume models is depicted in Figure 6.4
c and d.

The scene displaying the surface or volume models were started and measurements were
made. The evaluation was performed using the built-in performance tracker of the Holo-
Lens. The evaluation results are the average of a one minute measurement. The RAM
utilization was determined after the scene was loaded. In Table 6.3 the results of the
evaluation are depicted. The SoC power utilization describes the system on a chip power
usage averaged over one minute [150]. The SoC power utilization may represent inaccu-
rate values when the framerate is below 60 fps.

Volume models Surface models
Head 100% Head 75% Head 50% Model 1 Model 2

Samples per ray - 16 96 16 96 - -
FPS - 54 13.5 52 13 60 46
CPU utilization (in %) - 11 3 10 2.5 12 9
RAM (commit size) (in MB) - 507.2 509.4 271.3 271.1 162.8 164.7
SoC power utilization (in %) - 100 95 61 61 97 116

Table 6.3.: Render performance of the volume and surface models on the HoloLens [111].
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Figure 6.5.: Visualization of the intraoperative assistance.

Discussion of the Hologram Visualization

Both models can be visualized on the HoloLens using an appropriate shader with an ac-
ceptable speed as depicted in Table 6.3. The volumetric models need to be of a usable
size else the maximum RAM allocation is exceeded. It is also important not to choose a
to high ’samples per ray’ count to achieve an acceptable framerate. The volume model
visualization is especially suitable to view the patient models before an intervention to
study the patient anatomy. Due to its limited framerate of 54 fps this rendering method
should not be used during an operation. The surface models can be rendered much faster
on the HoloLens with a stable framerate of 60 fps when the model size is not too high
(roughly < 4 MB).

6.1.1.3. Augmented Reality Guidance

In the last step the intraoperative assistance is activated. A scene from the experimental
validation is shown in Figure 6.5.

The hidden structures that lie within the patient’s head, i.e. the Kocher’s points, the ven-
tricular system, the optimal puncture points inside the VS and the puncture trajectories
are visualized as navigation aid.

The patient surface models are generated within 6.9±0.6 seconds, the automated path
determination is calculated in 57.0±3.4 s. The generated surface models can then be
accessed from the network. Looking at the complete surgical workflow, a navigation aid
is possible in under five minutes. The neurosurgeon can then place the catheter based on
the augmented holograms for a successful puncture of the ventricular system.

The representation of the characteristics of the vizualised patient models were designed
with three expert neurosurgeons. An evaluation was performed to determine suitable
colors, their combination and alpha values for optimal usability even under various light
conditions present in the operating room. A detailed user study was carried out. Different
visualizations were tested in a realistic OR environment and rated regarding their usability.

Three example color combinations are shown in Figure 6.6. The figures can be misleading
as the visibility when seen through the HoloLens is different. A user may choose from
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different visualization templates to customize the provided navigation aid. In the experi-
ments, the OpenHead was used, therefore just the model of the skull is used and shown in
Figure 6.6, whereas the skin is neglected. Theoretically, all models could be switched on
or off, but four combinations are preselected for the user. The skull in combination with
the ventricular system or just the ventricles can be visualized. Additionally, the puncture
trajectories can be turned on and off. When just the ventricles are used the user has a
clearer view on the operation situs, while the turned on skull gives more orientation help.
The marker system is also visualized to the user during the complete procedure to verify
a proper tracking functionality. The tracked marker position is indicated with a light blue
rectangle that glows brighter when the marker is detected in one frame. A shader from the
Microsoft Mixed Reality Toolkit is used that implements a transparent optic of the patient
models. In addition, the hardware buttons on the left side of the HoloLens may be used
to control the brightness of the holograms manually to give a surgeon full and additional
control of the visualization brightness.

After the registration process a fine calibration of the user to the marker system is per-
formed. As the HoloLens 1 does not provide eye tracking, this needs to be done manually.
The wearer aligns the edges of the marker system with the edges of the hologram. In most
cases the hologram positions are well aligned and just a small displacement is visible. A
wrong position of the HoloLens on the wearers head can lead to a misalignment of more
than 1 cm. In the HoloLens configuration the interpupillary distance (IPD) is set for every
user individually to visualize the holograms at the correct position.

Figure 6.6.: a) Final representation of the patient model visualization with included Vu-
foria marker system, b) representation of the Kocher’s points in magenta
and the skull in blue, c) visualization mode with just the VS, the trajectories
(grey) and optimal points (yellow) visible, d-e) different color representa-
tions of the patient models that were evaluated in regard to visibility [119].
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6.1.2. Preliminary Experiments

Eight non-medical novices with technical background were asked to perform ten ventric-
ular punctures each on the OpenHead phantom. One catheter placement was done for
every left and right ventricle of the five designed ventricular systems of the OpenHead, as
introduced in Section 5.1.1 and visualized in Figure 6.7 a).

6.1.2.1. Experimental Validation

The preliminary experiments were conducted in the OP:Sense laboratory environment
(see Section 5.1.2). The participating subjects (n=8) were non-medical novices with tech-
nical background. One OpenHead was used with predrilled burr hole trepanations of
11 mm diameter in the detachable skull cap at the Kocher’s points. The novices were not
asked to localize and burr the Kocher’s point trepanation.

All five ventricular systems were modeled from soft modeling clay with the printed moulds
as depicted in Figure 6.7 a and b. The surface was modeled with a mould cap with inte-
grated pins of the reference points so that two small indentations are left after the mod-
eling process, one in each ventricle, respectively. The indentations are filled with a small
amount of soft modeling clay of white color. The subjects had to consecutively place a
disposable skewer in the left and right ventricle of every ventricular system, simulating
catheter placement. After both sides were punctured the mould that is holding the ven-
tricular system formed from modeling clay was taken out and replaced with the next one
until all five ventricular systems were punctured. The participants punctured with no re-
sistance through air, as no filling of the OpenHead was used. In contrast the preclinical
experiments were conducted on OpenHead phantoms filled with agar gel to simulate brain
tissue as described in Section 6.1.3. A filling was not possible for the preliminary exper-
iments as no CT scanner was available. After the experiment, all 5 ventricular system
moulds were prepared for digitalization with a 3D line scanner. When the ventricles were
hit by the skewer an indentation was created. To measure the distance error to the marked
reference points the new intendations are also filled with a small amount of modeling clay
of different color. A 3D line scanner (25xx-100, resolution in z: 12 µm, x: 0.15 mm, y:
0.1 mm, Micro-Epsilon, Germany) was used to digitalize the results. The euclidian dis-
tance is then measured in the point cloud from the reference point to the puncture result.
When the ventricle is not successfully punctured, the puncture is counted as a non hit.

The evaluation metric is visualized in Figure 6.8.

The OpenHead used in the experiments has a fixed mount for the marker system, so that
the transformation T P

MS is known. This is done to separate all potential error sources and
excluding the registration error.

6.1.2.2. Results

The results of the preliminary experiments of the non-medical novices with technical
background are visualized in Table 6.4. For each of the five ventricular systems the mean
error, the standard deviation and the success rate is depicted for the left and right ven-
tricles. The success rate describes the amount of correctly placed catheters. The overall
success rate of all catheter placements was 91.25% with a mean error of 5.6 ± 2.8 mm.
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(a)

(b)

Figure 6.7.: a) Five OpenHead phantoms with all modeled ventricular system moulds
stacked in. b) Ventricular system mould for taking and modeling the clay to
receive the desired shape.
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Figure 6.8.: Evaluation metric of the puncture experiments for determination of the place-
ment error. The reference path is compared to the placed catheter. Prelimi-
nary experiments: The pentration points on the ventricular system are com-
pared to the annotated reference points. Preclinical experiments: Addition-
ally, the chosen Kocher’s points are compared to the annotated points. All
values given in mm. Adapted from [119].

The highest error values ocurred when puncturing the left ventricle of the third ventricular
system with 8.8 ± 3.1 mm. However, all placed catheters were rated as success as they
would have resulted in a drainage of cerebrospinal fluid in a real surgery. The displace-
ment was in y-direction on the ventricle. Low success rates were observed for the 5th
ventricular system (left: 87.5%, right: 62.5%), which is the most difficult one to puncture
as described in Section 5.1.1. This is due to its narrow shape and its steep surface. The
lowest displacement error was found for the right of the second ventricular system with a
mean error of only 4.0± 1.8 mm, which is a large and symmetric ventricular system.

A graphical representation of the puncture results is depicted in Figure 6.9.

The qualitative evaluation of the system that supported the novices with augmented reality
showed good acceptance ratings. The anatomical structures that were superimposed over
the OpenHead were visualized clearly without clutter. It was also appreciated that the
brightness was adjustable because every person perceives the holograms differently. This
way it was possible to react to differing light conditions. It was also rated as good that the
system was intuitively controllable.

Rated negative was the small field of view of the HoloLens 1 and the sometimes unsatis-
factory contrast of the hologram colors.
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Figure 6.9.: Preliminary experiments: a) Puncture results for all five ventricular sys-
tems, b) Success rate. Mean values are visualized as red diamond markers,
outliers as red cross markers.

Table 6.4.: Preliminary experiments: Distance to reference points (mean error), stan-
dard deviation (SD) and overall success rate for all 5 left and right ventricles.
Adapted from [119].

Novice (n=80) VS1L VS1R VS2L VS2R VS3L VS3R VS4L VS4R VS5L VS5R All VS
Mean error (mm) 6.0 5.6 5.4 4.0 8.8 5.4 5.5 4.3 5.4 4.9 5.6
SD (mm) 3.6 2.9 2.3 1.8 3.1 2.8 1.4 1.9 1.6 4.7 2.8
Success rate (%) 87.50 100 100 87.5 100 87.5 100 100 87.50 62.50 91.25

6.1.3. Preclinical Experiments

Preliminary experiments demonstrated the general feasibility of AR-guided interventions.
In a next step, the ability of the system to support a surgeon during a neurosurgical inter-
vention in a preclinical environment was evaluated. Two experiments were carried out.

First, complete ventriculostomies were performed after the standard of care without aug-
mented reality support. This was done to evaluate the performance of the participating
neurosurgeons in the phantom experiments. Then experiments were conducted where the
neurosurgeons used the proposed system supported with augmented reality. The control
experiments according to the standard of care were conducted by 11 neurosurgeons (8
neurosurgeons and 3 neurosurgical residents). A total of n = 110 ventriculostomies were
carried out. The planning of the procedures were done with an in-house medical imaging
system.

The augmented reality supported experiments were conducted with a total of 11 neurosur-
geons (8 neurosurgeons and 3 neurosurgical residents). Three test series were conducted.
Ten neurosurgeons participated in the first test series. Three neurosurgeons participated in
all three test series. One experiment was not valid due to a failure of the system, therefore,
one neurosurgeon participated in two test series. In every test series, a neurosurgeon was
asked to puncture the left and right ventricle of all five OpenHead phantoms. This led
to a total of n = 100 ventriculostomies in the first test series. In the second and third
test series n = 40 ventriculostomies were carried out, respectively. A total of n = 180
ventriculostomies were performed.
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The second and third test series were conducted to investigate the influence of experience
with the system to the evaluation results and to identify the learning curve.

After an experiment a participating neurosurgeon was asked to fill out a questionnaire to
determine the level of acceptance and usability of the AR system. Additionally, they were
asked to rate the five ventricular systems according to their difficult level, in other words
how hard they think it is to hit the presented ventricular system correctly.

6.1.3.1. Experimental Setup

The preclinical evaluation was done with medical expert neurosurgeons in the university
hospital in Günzburg. Nearly the same experimental setup was used as described in Sec-
tion 6.1.2.1. Instead of using just one OpenHead, five printed skulls were used with one
ventricular system each. The preparation of the OpenHead phantom is depicted in Figure
6.10. The phantoms were filled with agar gel at a concentration of 0.5% to simulate brain
tissue after cooling and hardening [38].

The neurosurgeons were asked to puncture all ten venricles with and without AR support.
The standard of care experiments were performed without AR-glasses. The AR-guided
procedure was carried out as described in Section 6.1.1.2. As for the preliminary experi-
ments also a fixed marker position was used and no registration needed to be performed.
The surgeons wore the AR glasses during the whole procedure and placed the catheters
aided by the visualized trajectory and the reference points. An XBox controller (Microsoft
Corp., Redmont, WA, USA) was used to control the user interface. Conventional neuro-
surgical catheters were used to puncture the ventricles. Additionally, the neurosurgical
experts were asked to determine the position of the Kocher’s points on the detachable
skull cap. The burr hole trepanation was then drilled with a surgical drill with diameter
11 mm (Stryker Corp., Kalamazoo, Michigan, U.S.). The same skull cap was used on all
five OpenHead phantoms. When one ventricular system was punctured, the skull cap was
detached and attached to the next head. Care had to be taken not to remove the placed
catheters in the process.

After all five OpenHead phantoms were punctured, they were placed on a bracket and a
CT scan (Siemens Healthcare, Erlangen, Germany) was made of all.

The metric described in Figure 6.8 was used to determine the puncture error in the CT
data. In the preliminary experiments a 3D laser scanner was used to measure the displace-
ment error on the surface of the punctured ventricles. The volumetric CT data enables a
more accurate investigation and determination of the displacement error. A reference CT
scan was made from a specially prepared OpenHead. The Kocher’s points were marked
with a piece of a catheter and the reference points in every ventricular system as well. The
neurosurgical catheters have a high Hounsfield unit, comparable to bone, and thus were
easy to detect and localize. The puncture results were then compared to these reference
points.

Both, the experiments according to the standard of care and those supported through AR-
guidance, were evaluated in the same way.

The coordinate system of the patient model is aligned with the patient. The elongated
shape of the ventricular system is following the y-axis. The x-axis is defined from ear to
ear of the patient. The two insertion angles defining the catheter placement are depicted
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(a) (b)

(c) (d)

Figure 6.10.: a) OpenHead phantom with inserted ventricular system mould and modeled
clay. b) OpenHead phantom after filling with agar. c) Agar after it cooled
and solidified. d) OpenHead with attached Vuforia marker system and de-
tachable skull cap with drilled burr hole trepanation at the Kocher’s points.
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Figure 6.11.: Representation of the two insertion angles that define the puncture trajec-
tory of the catheter placement. In the left upper corner of the left and right
figure the coordinate system of the patient model is depicted.

in Figure 6.11. The angle α is defined between the z and y-axis and the angle β between
z and x-axis. A change of the α angle changes the end point of the insertion following the
y-axis of the ventricular system and its elongated shape. If, on the other hand, the angle β
is changed, the end point changes in the direction of the x-axis. If the angle β is wrongly
chosen, this is more serious than a wrongly chosen angle α, because the ventricular system
is only 1-2 cm wide in x-direction. Due to the elongated shape of the ventricular system
larger displacements are possible in y-direction.

6.1.3.2. Results of the Standard of Care Experiments

The results of the standard of care experiments of the medical experts are presented in
Table 6.5 and depicted in Figure 6.12. For all ten ventricles of the five ventricular sys-
tems the mean error, standard deviation and success rate are visualized for the catheter
placements inside the ventricular system. The evaluation of the displacement error of the
Kocher’s points determination is presented in Table 6.6 and visualized in Figure 6.13. A
puncture is rated as a success if the ventricular system is perforated. The overall success
rate of the standard of care experiments is determined as 72.73% with an error of 6.6±3.1
mm. The Kocher’s points were determined with an accuracy of 8.45±3.0 mm with 100%
success rate.

Table 6.5.: Standard of care experiments (no AR-support): Mean error, standard deviation
(SD) and overall success rate for all 5 VS (left and right ventricles).

SoC (nc = 110) VS1L VS1R VS2L VS2R VS3L VS3R VS4L VS4R VS5L VS5R All VS
Mean error (mm) 8.7 6.8 5.2 5.3 8.0 4.4 7.1 6.6 6.6 5.1 6.6
SD (mm) 2.8 3.7 1.7 2.6 5.3 2.6 2.9 2.3 1.9 1.8 3.1
Success rate (%) 90.91 90.91 100 54.55 72.73 36.36 100 63.64 72.73 45.45 72.73
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Figure 6.12.: Standard of care experiments: a) Results of the catheter placements for all
five ventricular systems, b) Success rate. Mean values are visualized as red
diamond markers, outliers as red cross markers.

Table 6.6.: Standard of care experiments (no AR-support): Mean error, standard devi-
ation (SD) and success rate for the left and right side Kocher’s points (K)
determination (n = 22, 11 participants, both sides).

SoC (nc = 22) K-l K-r All K
Mean error (mm) 7.7 9.2 8.45
SD (mm) 3.0 3.1 3.0
Success rate (%) 100 100 100

Figure 6.13.: Standard of care experiments: Results of the Kocher’s points determination
for the left and right side and overall values. Mean values are visualized as
red diamond markers.

6.1.3.3. Results of the AR-guided Experiments

In a next step, ventriculostomies were performed with augmented reality support of the
proposed system. The results of the experiments are presented in Table 6.7. The mean
error, standard deviation and puncture success rates are visualized in Figure 6.14 for the
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catheter placement inside the ventricular system. The ventricles were punctured with
an accuracy of 4.8 ± 2.5 mm in 81.7 % of cases. The results for the Kocher’s points
determination are presented in Table 6.8 and depicted in Figure 6.15. The Kocher’s points
were found in 100% with a mean error of 5.4± 2.4 mm.

Table 6.7.: AR-guided experiments: Mean error, standard deviation (SD) and overall suc-
cess rate for all 5 VS (left and right ventricles). All test series n = 180.
Adapted from [119].

AR-guided (nAR = 180) VS1L VS1R VS2L VS2R VS3L VS3R VS4L VS4R VS5L VS5R ALL VS
Mean error (mm) 3.9 4.6 5.0 5.8 5.4 4.4 5.7 4.7 4.1 3.6 4.8
SD (mm) 1.5 2.3 3.0 2.7 3.4 2.7 2.1 2.3 1.8 2.0 2.5
Success rate (%) 88.9 88.9 100 83.3 72.2 55.6 94.44 88.9 88.9 55.6 81.7

Figure 6.14.: AR-guided experiments: a) Results of the catheter placements for all five
ventricular systems, b) Success rate. Mean values are visualized as red
diamond markers, outliers as red cross markers. Adapted from [119].

Table 6.8.: AR-guided experiments: Mean error, standard deviation (SD) and overall suc-
cess rate for determination of both Kocher’s points (K). All test series n = 36.
Adapted from [119].

AR-guided (nAR = 36) K-l K-r K
Mean error (mm) 5.5 5.3 5.4
SD (mm) 2.7 2.2 2.4
Success rate (%) 100 100 100

The experiments were carried out by eleven medical experts who punctured in one to three
test series ten ventricular systems each. Three neurosurgeons punctured three times, one
of them two times and seven once. This resulted in the participation of 10 neurosurgeons
in the first test series and four in the second and third test series. One experiment of test
series one was not rated as there was a problem with the visualization.

In Table 6.7 and Figure 6.14 the results of all 180 punctures are depicted, not divided into
test series. Now, a closer look is taken at the puncture performance in relation to the test
series.
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Figure 6.15.: AR-guided experiments: a) Results of the Kocher’s points determination for
both sides. Mean values are visualized as red diamond markers. Adapted
from [119].

Table 6.9.: AR-guided experiments - Test series one: Mean error, standard deviation (SD)
and overall success rate for all 5 VS (left and right ventricles).

n1
AR = 100 VS1L VS1R VS2L VS2R VS3L VS3R VS4L VS4R VS5L VS5R ALL VS

Mean error (mm) 3.0 5.3 5.9 7.5 4.6 7.8 6.6 5.4 4.2 3.5 5.3
SD (mm) 0.8 3.0 3.3 2.4 1.1 2.0 2.3 2.8 1.7 2.3 2.6
Success rate (%) 80 80 100 70 50 30 90 80 100 50 73

Table 6.10.: AR-guided experiments - Test series two: Mean error, standard deviation
(SD) and overall success rate of the AR-guided evaluation for all 5 VS (left
and right ventricles).

n2
AR = 40 VS1L VS1R VS2L VS2R VS3L VS3R VS4L VS4R VS5L VS5R ALL VS

Mean error (mm) 4.3 4.3 2.8 3.8 5.2 2.8 5.2 3.3 4.5 4.0 4.0
SD (mm) 1.8 1.3 1.8 2.2 2.6 0.9 2.0 1.0 1.9 - 1.8
Success rate (%) 100 100 100 100 100 100 100 100 75 25 90

The results of the first test series are depicted in Table 6.9 and Figure 6.16. A puncture
accuracy of 5.3± 2.6 mm was reached with a success rate of 73%.

Table 6.10 and Figure 6.17 show the results of the second test series. The ventricles were
penetrated with a puncture accuracy of 4.0± 1.8 mm and a success rate of 90%.

Table 6.11.: AR-guided experiments - Test series three: Mean error, standard deviation
(SD) and overall success rate of the AR-guided evaluation for all 5 VS (left
and right ventricles).

n3
AR = 40 VS1L VS1R VS2L VS2R VS3L VS3R VS4L VS4R VS5L VS5R ALL VS

Mean error (mm) 5.2 3.5 5.2 4.8 6.7 3.2 4.3 4.7 3.3 3.7 4.5
SD (mm) 1.2 1.4 1.9 2.0 5.8 2.0 1.1 2.2 2.6 2.4 2.5
Success rate (%) 100 100 100 100 100 75 100 100 75 100 95
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Figure 6.16.: AR-guided experiments - Test series one: a) Results of the catheter place-
ments for all five ventricular systems, b) Success rate. Mean values are
visualized as red diamond markers, outliers as red cross markers.

Figure 6.17.: AR-guided experiments - Test series two: a) Results of the catheter place-
ments for all five ventricular systems, b) Success rate. Mean values are
visualized as red diamond markers, outliers as red cross markers.
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Figure 6.18.: AR-guided experiments - Test series three: a) Results of the catheter place-
ments for all five ventricular systems, b) Success rate. Mean values are
visualized as red diamond markers, outliers as red cross markers.

Table 6.11 and Figure 6.18 show the results of the third test series. In the last test series a
success rate of 95% and a puncture accuracy of 4.5± 2.5 mm were reached.

The comparison shows that the success rate increased throughout the test series and that
there is a steep learning curve when using the proposed system. Already, after the second
test series a siginificantly better success rate is observed. The mean error also decreased
but did not improve from test series two to three. A possible explanation for this is,
that the participants learned how to use the system and minimized the catheter placement
error in x-direction (β). This is much easier to accomplish than to minimize the error
in y-direction. Due to the elongated shape the error in y-direction does not have such a
significant impact than in x-direction (α). The errors and the success rates are depicted in
Figure 6.19.

The Kocher’s points determination accuracy could also be improved over the test series.
In the first test series an accuracy of 5.5±2.73 mm was achieved. In the second test
series this could be improved to 5.14±2.11 mm. In the last test series the mean error was
determined to be 4.33±1.79. The results are depicted in Figure 6.20.
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Figure 6.19.: AR-guided experiments - All Test series comparison: a) Results of the
catheter placements for all five ventricular systems, b) Success rate. Mean
values are visualized as red diamond markers, outliers as red cross markers.

Figure 6.20.: AR-guided experiments - All Test series comparison: Results of the
Kocher’s points determination. Mean values are visualized as red diamond
markers, outliers as red cross markers.
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After the puncture experiments the medical experts filled out a user questionnaire for a
quantitative evaluation of the system for AR-guided interventions. The surgeons were
asked to rate the following aspects:

• The system is convenient to use

• The system has the potential to improve the accuracy of my cranial procedure

• The system would speed up my workflow

• I would use the system in the operating room

• I believe my patients would benefit from the system

• If the system was a product, I would buy it.

They were asked to rate each aspect as "strongly agree", "agree", "neutral", "disagree" or
"strongly disagree". The results are depicted as a Likert scale in Figure 6.21.

Figure 6.21.: Results of the expert user acceptance survey for the AR navigation aid
(ARNA). Users answered to statements on a 5 point Likert scale: 1) ARNA
is convenient, 2) ARNA improves accuracy of ventriculostomy, 3) ARNA
speeds up my workflow, 4) I would use ARNA in the OR, 5) My patients
would benefit from ARNA, and 6) If ARNA was a product I would buy it.
[119]

The convenience of the navigation aid has been approved by 85.6% of the participating
surgeons (strongly agree or agree) and 92.9% feel that the system has the potential to
improve accuracy of cranial procedures. A lower number of surgeons (64.2%), however,
believe that AR support would speed up the surgical workflow. Furthermore, 78.6% of
surgeons in the survey would use the navigation aid in the OR and think that patients
would benefit from the system. In summary, 85.7% would consider purchasing the system
if it was a marketed product.

Additionally, the neurosurgeons were asked to rate the ventricular systems according to
their puncture difficulty. They were asked to rate the difficulty as "very easy", "easy",
"neutral", "challenging" and "very challenging". The results are depicted in Figure 6.22.

Each of the first two ventricle systems (VS1, VS2) were rated easy and very easy by
84,6% of the surgeons. VS3 was considered challenging by all surgeons. Regarding VS4,
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46.2% of the surgeons rated it easy and neutral, while 7.7% viewed it as challenging. The
fifth and last ventricle system (VS5) was considered challenging by 76,9% and even very
challenging by 7.7%.

Figure 6.22.: The five ventricular systems used throughout the experiments rated accord-
ing to their difficulty.

The results are confirming the puncture experiments, as for all catheter placements the
third and fifth ventricles were the most difficult to puncture (i.e. with the highest errors).

6.1.3.4. Discussion

The preliminary experiments have proven the general feasibility of AR-guided ventricu-
lostomies. One limitation with the laboratory experiments was that the subjects punctured
through air inside the head phantom. This made it possible to freely change the inser-
tion vector until the left or right ventricle was perforated. In contrast to the preclinical
experiments where this was not possible, because the skull was filled with agar gel. The
OpenHead was filled with agar gel which made it impossible to change the insertion vec-
tor once inside the skull. Therefore, it was important to choose a good initial insertion
vector because the movement is limited to two degrees of freedom, allowing only forward
motion of the catheter.

The comparison of the standard of care to the AR-guided experiments show a significantly
higher success rate and puncture accuracy. A 9% better succes rate is reached and a
higher accuracy of approximately 2 mm. This is an increased accuracy that can make the
difference between a successful and a non-successful ventricular puncture considering
that the ventricular system is only 1 to 2 cm wide.

A fixed marker position was used, so the registration error was minimized and not taken
into account in the experiments. When looking at the results of the registration presented
in Section 5.5 an additional error needs to be considered.

When the system should be used in a real clinical scenario, several additional factors need
to be considered. The registration of a real patient could be rendered more difficult than
on a static phantom, although the human head is relatively rigid. The standard of care
includes usage of fiducial markers attached to the human skull prior to the CT. These
markers could then be used in combination with the pointing device to perform a precise
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registration. Also, brain shift limits accuracy during a real intervention, although this
mainly happens when larger portions of the skull are removed. Brain shift describes the
displacement of the brain over time.

The test series showed a steep learning curve, from 73% in the first trial to 95% in the
third test series. This shows that significantly higher succes rates can be achieved with
AR-support, but the surgeon needs to get confident with the system through tracking.

6.2. Navigated Intervention

The biggest limitation with the presented system for AR-guided interventions is that a
good initial trajectory needs to be chosen, because it is not possible to change the angle
once inside the brain. At this point just a forward motion is possible.

To overcome these shortcomings, possibilities are investigated how a surgeon can be sup-
ported in this process. Therefore, a guidance aid was investigated that is tracked with
an infrared marker target with the HoloLens, that is referred to as catheter navigation aid
(CNA) in this work.

6.2.1. Catheter Navigation Aid

The catheter navigation aid is depicted in Figure 6.23 b and c. It has a small tube that
is used to guide the catheter to its target point inside the ventricle. A standard of care
reinforced neurosurgical catheter is depicted in Figure 6.23 a.

When the CNA is tracked through the HoloLens the transformation from the HoloLens
coordinate system to the CNA TCNA

H needs to be derived. The coordinate source of the
catheter navigation aid is in its tip. To do so, the following equation is used:

TCNA
H = TMT

H · TCNA
MT (6.1)

The marker target is tracked with the HoloLens to derive TMT
H . The transformation from

the marker target to the tip of the CNA TCNA
MT is known through the CAD data of the

marker target and the navigation aid.

The tip of the navigation aid is placed in the trepanation of the Kocher’s point K so that the
tip of the navigation aid Ct equals the position of the Kocher’s point. The system knows
the exact position of the Kocher’s points and the target points T inside the ventricular
system because the models are registered to the scene. The insertion vector a⃗ is derived
from the Kocher’s point K to the target point T inside the ventricular system. The second
vector b⃗ is calculated from the entry point on the tube Ce to the tip Ct of the navigation
aid.

The angle between a⃗ and b⃗ is constantly derived and visualized to the user. The goal is to
manually minimize this angle (α) to get the optimal puncture trajectory.

α = cos−1 · (⃗a · b⃗)
(|⃗a| · |⃗b|)

(6.2)
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(a)

(b)

(c)

Figure 6.23.: a) Neurosurgical catheter. b) Catheter navigation aid (sideview). c) Top
view.

The coordinate system and the described vectors are visualized in Figure 6.24.

A second option is to derive the angle between the vector a⃗ and the vector from the tip
of the navigation aid Ct to the target point T inside the ventricular system as depicted in
Figure 6.24, for the left and right ventricle respectively. This way the displacement of the
Kocher’s point is taken into account and the navigation aid is always aiming towards the
target points.
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Figure 6.24.: The used coordinate system in combination with the CNA.

6.2.2. Experimental Setup

The same experimental setup was used as presented in Section 6.1.2.1. Additionally,
the catheter navigation aid was used to visualize the insertion angle to the user. Due to
the experimental setup the experiments are comparable to the evaluation with medical
experts, because the catheter navigation aid was used to determine a good initial puncture
trajectory of the catheter without the possibility to change the angle when inside the skull.
The setup is depicted in Figure 6.25.

Two novice non-medical experts with technical background performed n = 50 ventricular
punctures on the standard five ventricular systems. The results were again digitilized with
a 3D line scanner.

6.2.3. Results

In Table 6.12 the results of the navigation aid supported experiments are summarized.
Stated are the mean error to the reference points, the standard deviation and the overall
success rate of the punctures.

Table 6.12.: CNA-guided experiments: Mean error, standard deviation (SD) and overall
success rate of the catheter navigation aid and AR-guided evaluation for all
5 VS (left and right ventricles).

CNA-guided (n = 50) VS1L VS1R VS2L VS2R VS3L VS3R VS4L VS4R VS5L VS5R ALL VS
Mean error (mm) 4.0 3.1 3.2 2.7 2.9 3.7 2.9 2.1 2.5 4.3 3.1
SD (mm) 2.8 1.9 1.0 1.6 2.3 1.6 1.9 1.3 2.2 0.7 1.8
Success rate (%) 100 100 100 100 100 100 100 100 100 80 98

The mean error was found to be 3.1 ± 1.8 mm with an overall success rate of 98%. A
graphical representation of the experiment results is depicted in Figure 6.26.
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6.2. Navigated Intervention

Figure 6.25.: Experimental Setup using the catheter navigation aid.

Figure 6.26.: CNA-guided experiments: a) Results of the catheter placements for all
five ventricular systems, b) Success rate. Mean values are visualized as red
diamond markers, outliers as red cross markers.
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6.2.3.1. Discussion

Compared to the AR-guided experiments performed by medical experts the catheter nav-
igation aided experiments yielded a 16.3% better success rate. The mean error was also
significantly lower with 3.1±1.8 mm. A limitation is that the navigation aid is manually
manipulated, rendering it difficult to puncture the ventricles and holding the navigation aid
at the same time. During the experiments no adjustment of the puncture trajectory was
done. This way the experiments were comparable to the expert AR-guided evaluation.

The analysis of the puncture results showed that with the help of the CNA the puncture
angle β could be minimised. With the assistance of the catheter navigation aid it is pos-
sible to adjust the real tube of the CNA with the virtual puncture trajectory. It is much
more difficult to adjust angle α. It would be necessary to inspect the CNA from the side or
above, which is not possible when manually manipulating the CNA. The infrared marker
tracking is not robust and accurate enough to just rely on the visualized puncture angle.

6.3. Robot Assisted Intervention

In the third stage of intraoperative assistance, AR guidance is extended with a robot guid-
ing the catheter navigation aid (RNA). The user can control the robot with a Microsoft
XBox 360 controller to set the insertion angle and can then puncture the ventricular sys-
tem in a consecutive step. This allows a much more stable placement of the catheter. This
is to overcome the problems with holding the manually guided catheter navigation aid.

As a robot a Franka Emika Panda is used. All software components are implemented in
the Robot Operating System (ROS) middleware as nodes.

6.3.1. Robot Control

The Panda robot is integrated into the OP:Sense environment and an altered version of the
catheter navigation aid is mounted to it, as seen in Figure 6.27. The coordinate system of
the robot is configured in a way that a user can intuitively control the robot when standing
in front of the OR table. The user manually places the tip of the robot navigated aid in
the center of the burr hole trepanation at the left or right Kocher’s point. This is done via
force controlled hand guidance of the Franka Panda robot. Then the mode is switched to
the controller-based guidance and the user is able to teleoperate the robot with the XBox
360 controller. The used coordinate system is depicted in Figure 6.28. The angle of the
RNA is intuitively controlled with the control sticks of the controller.

The puncture path is displayed similar as for the CNA to the user in the AR glasses.
Additionally, the virtual puncture path is visualized over the navigation aid and over the
patient model. Both trajectories must be aligned with each other to set the optimum
insertion angle. After the robot has been brought into position, the user can then manually
place the catheter through the RNA.

The Panda robot is controlled over the libfranka library on the client site. Franka_ros
integrates the control functionality of the libfranka into ROS Control and represents the
interface to ROS. See the robot control diagram in Figure 6.29.
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6.3. Robot Assisted Intervention

Figure 6.27.: Franka Emika Panda with attached robot navigated aid.

Figure 6.28.: Integrated Franka Panda robot in OP:Sense and used coordinate system.
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6. Intraoperative Assistance

Figure 6.29.: Control diagram of the Franka Panda robot.

6.3.2. Experimental Validation

The experimental setup as presented in Section 6.1.2.1 is expanded with a robot for
catheter navigation aid manipulation. The cathter navigation aid is therefore remodeled
to make it possible to be mounted to the robot as depicted in Figure 6.27.

Two novice non-medical experts with technical background performed n = 50 ventricular
punctures on the presented five ventricular systems. The results were again digitilized
with a 3D line scanner.

6.3.3. Results

The results of the robot supported ventricular punctures are summarized in Table 6.13 and
in Figure 6.30. The mean error, the standard deviation and the overall success rates are
shown.

Table 6.13.: RNA-guided experiments: Mean error, standard deviation (SD) and overall
success rate of the robot-guided evaluation for all 5 VS (left and right ventri-
cles).

Robot-guided (n = 50) VS1L VS1R VS2L VS2R VS3L VS3R VS4L VS4R VS5L VS5R ALL VS
Mean error (mm) 3.5 2.9 2.4 1.4 0.9 1.1 1.9 1.6 2.2 1.6 1.9
SD (mm) 0.9 0.7 0.8 1.8 1.0 0.8 1.0 1.0 1.5 0.3 1.2
Success rate (%) 100 100 100 100 100 100 100 100 100 100 100

It was determined that the mean error of the catheter placements was 1.9±1.2 mm. All
ventricles were punctured correctly.

6.3.3.1. Discussion

The robot-guided catheter navigation aid yielded significantly better results than the AR-
guided and CNA-guided experiments. However, one limitation is, that only a small
amount of experiments were performed. Experience from the other experiments showed
that most puncture results are in a certain range and do not differ much from subject to
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Figure 6.30.: RNA-guided experiments: a) Results of the catheter placements for all five
ventricular systems, b) Success rate. Mean values are visualized as red
diamond markers, outliers as red cross markers.

subject. All reference points were nearly perforated directly, as an error of 2-3 mm means
that they are placed in near range to the annotated points.

The punctured ventricular systems are depicted in Figure 6.31.

Figure 6.31.: RNA-guided experiments: Results of the catheter placements. White mod-
eling clay: reference points, green modeling clay: puncture results.

The RNA experiments are also comparable to the preclinical expert evaluations as the
puncture path of the catheter could not be altered when inside the patient’s head.

6.4. Overall System Error

The total system error consists of several error sources that add up and can be described
as the catheter placement error as depicted in Figure 6.8. The error describes the deviation
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on the surface of the ventricular system from the optimal points to the puncture results. It
is challenging to determine which factors are responsible for the catheter placement error
and to which extent. These factors can be identified, but not precisely separated from each
other, because it is challenging to measure each individual factor.

One factor is the patient model to patient registration error ϵreg that was determined in
Section 5.5. The controller-based registration yielded an accuracy of 2.71±1.18 mm.
The HoloLens to wearer calibration error ϵcal cannot be determined directly because it is
included in the registration error. It is determined by measuring the displacement after
the registration. The calibration error could also change while using the HoloLens to
some extent, because the HoleLens can move slightly on the wearer’s head. The marker
tracking error of the Vuforia marker tracking method is measured to be 0.31±0.38 mm.
The reattachment accuracy of the marker system was determined to be 0.18±0.06 mm.

Additionally there are some other factors that can lead to a higher displacement. First
there is the hologram fluctuation error ϵfluc that is describing the stability of the holograms
present in the spatial map of the HoloLens and the ability to visualize the holograms on the
visor of the HoloLens. This error is included in the registration error as it is not possible
to separate it from the experienced displacement of the patient models. Then there is the
marker system production error ϵms, which can be up to 0.1 mm, but can be minimized
with controlled production techniques. A sub error of this is the printing error of the used
marker, or in case of the infrared spheres, also a construction error. The correctness of
the construction mainly depends on the used printers (2D and 3D), while 3D printers have
larger printing errors due to the higher complexity.

The registration error (ϵreg), the marker tracking error (ϵm) and the reattachment error (ϵre)
determine the hologram visualization error ϵv.

ϵv = ϵreg + ϵm + ϵre (6.3)

The calibration error ϵcal and the fluctuation error ϵfluc are included in the error sources
as described above. The overall hologram visualization error ϵv was evaluated to be
3.2±1.62 mm.

The complete error equation is as follows:

ϵplace = ϵreg + ϵcal + ϵm + ϵre + ϵfluc + ϵms + ϵh (6.4)

To all above mentioned error sources an additional error ϵh needs to be added, that de-
scribes the human error of manually placing a catheter to a non-visible target. Even when
the registration would be perfect, so that ϵv is zero, a certain placement error occurs. The
manual placement error is dependent on the skill of a surgeon and can not clearly be
stated.

The catheter placement error (ϵplace) has been investigated for all three stages of the AR
guidance. The individual mean error values were presented in this chapter and are de-
picted in Table 6.14.
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6.5. Discussion and Comparison of the Three
Stages

In this chapter three consecutive stages for AR guidance were presented. In the basic
augmented reality-based intraoperative assistance, the patient models are superimposed
over the patient during an intervention. The patient is thereby fully covered and just the
operation situs is visible. To be able to track the patient during the intervention, a marker
system is used that is registered to the patient preoperatively. Four different registration
methods were presented in Section 5.5. Their advantages and disadvantages were briefly
discussed and a detailed evaluation was carried out. In the experimental evaluation a fixed
registration of the marker system to the OpenHead phantom was used. This would comply
with the standard of care, where fiducial markers are attached to the skull prior to a CT.
The pointer could then be used to perform the registration.

When looking at the registration errors the most important displacement to be considered
would be the one in x-direction of 1.36±1.4 mm, when using the controller-based regis-
tration. The coordinate system is depicted in Figure 2.4. The error in y- and z-direction is
less significant. The surgeon is looking directly along the insertion vector, the z-direction.
A misalignment in z-direction renders holograms just a little bit larger or smaller and can
therefore be neglected. The y-direction is following the elongated shape of the ventricular
system. Therefore larger displacements in this direction still lead to a perforation of the
ventricular system. The only issue can be that more unfavourable parts of the brain are
penetrated. Also considering the additional error in x-direction the catheter still would
have penetrated the surface of the ventricular system in nearly all cases of the preclinical
experiments (1st stage) that were rated as a successful ventriculostomy.

One major limitation with the HoloLens 1 is the insufficient sensor quality which limits
the tracking accuracy of infrared markers to 2-7 mm when worn by a user. Vuforia mark-
ers are trackable with higher accuracy but are also bigger in size (10 cm in the distance
of 40 - 60 cm for neurosurgical interventions). The basic AR guidance was rated as very
good by the participating eleven neurosurgeons as described in the evaluation in Section
6.1.3. Still, challenges remain with the hardware of the HoloLens 1 as the field of view
was rated as too small or the visualization of the holograms are sometimes not sufficient
and can lead to headaches or an unnatural way of perception.

In comparison to the standard of care, a nearly 10 percent higher success rate was reached,
which clearly shows the potential of augmented reality support during an intervention.
The major challenge in placing the catheter is to be able to get a good initial insertion
vector, because the angle could not be changed once inside the brain of a patient or inside
the agar of the phantom. If problems occur at this point, no adjustment is possible.

It is also very likely that the human is one of the biggest error sources during the procedure
even if the holograms are displayed at the correct position. This was also the reason
why a fixed position of the marker system was used in the experiments. This way the
visualization error was reduced to a minimum, but still no 100% success rate was reached.

To counter the problem of a bad initial insertion angle, a catheter navigation aid (CNA)
was constructed that guides the catheter after an angle is set.

On top of the CNA the insertion vector is displayed to the user so he or she can choose
a proper insertion vector by minimizing the angle error. The CNA-guided experiments
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Figure 6.32.: All success rates of all ten ventricles for all three AR-guidance stages.

were evaluated by novice non-medical experts, but the experimental design is comparable
to the design of the first stage preclinical experiments as it was not possible to change the
insertion vector of the catheter inside the phantom. One problem with the CNA guidance
was the manual manipulation of the CNA, which was error prone. A user needed to
manipulate the device in space and simultaneously puncture the ventricular system. The
manual hand-guided manipulation is not sufficiently steady considering the fact that even
small deviations of the angle can lead to a big displacement error. A 16.3% higher success
rate was reached in comparison to the AR-guided preclinical experiments. The mean error
was also significantly lower with 3.1±1.8 mm. One factor for the better success rate was
a lower mean error on the x-axis, that could be detected.

In the final stage the catheter navigation aid is mounted to a robot to compensate the non
steady handguided manipulation. Again better results were achieved. The mean error was
determined to be 1.9±1.2 mm, which is less then half the error of the preclinical experi-
ments (AR-guided, stage one). All ventricles were punctured correctly. These are values
determined in only 50 catheter placements, but the experience from the other experiments
show that most of the punctures of one test series lie within the same error value range.

Accuracy values of all catheter placements of the three stages in comparison are visualized
in Figure 6.33. Success rates of the catheter placements of all three stages are depicted in
Figure 6.32.

As it can be seen better puncture results are reached over the three stages. The most
difficult to puncture ventricular systems are the left and right ventricles of VS 3 and VS 5.
Ventricular system VS 3 is shifted to the side for several mm and has very thin ventricles.
For ventricle 3-right only 36.4% of catheters were placed correctly in the standard of care
experiments. With AR-guidance 55.6% of punctures were rated successful and 100%
when the CNA and RNA was used. The robot navigated aid yielded in all experiments a
100% success rate.

Ventricle 5-right was the most difficult one to puncture. This is due to the fact that it is
very narrow in x-direction and has a steep surface. Even when the catheter is placed in a
range of 2.5 mm, it is possible to puncture not correctly. When the AR-guidance of the
CNA is used only slightly better results are achieved. With the RNA-guided placement,
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Figure 6.33.: Results of all accuracy values of all puncture experiments in comparison.
Mean values are visualized as red diamond markers, outliers as red cross
markers.

the ventricle was hit correctly. This shows that limitations regarding the AR-guidance and
the CNA were adressed in the RNA-guided experiments.

All puncture errors are shown in Figure 6.33. The diagram shows the errors for each of
the ten ventricles in relation to the puncture method used in comparison.

A comparison of the mean accuracies and overall success rates is depicted in Figure 6.34.
It also shows that AR-guidance lead to a lower mean error and higher success rate. The
comparison of the CNA and robot-guided experiments to the AR-guided is only condi-
tionally possible as the AR-guided were performed by medical experts. It can be assumed
that they generally reach a higher success rate than non-medical experts, due to their ex-
tensive training. Therefore, it is very likely that they would perform better when using the
CNA.

The mean error results need to be carefully interpreted as they just reflect the accuracy
of the catheter placements that were rated as correct. Placements that not perforated the
ventricular system and were rated as misplaced were not included in the error calculated.
This would not have been possible for the CNA and robot-guided experiments because no
CT scanner was available.

6.6. Chapter Conclusion

In this chapter three consecutive stages of augmented reality support have been presented.
In the first stage the generated patient models are superimposed over the patient to support
a surgeon in the placement of the catheter. Scene registration is based on the presented
marker system of Section 5.4. In the second stage, the challenge of a good initial puncture
angle is addressed using a catheter navigation aid that is manually manipulated to reach
an optimal insertion vector. To enable more stable manipulation of the catheter navigation
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Figure 6.34.: Results of all puncture experiments in comparison. Mean values are visual-
ized as red diamond markers, outliers as red cross markers.

aid, it was mounted to a robot that can be controlled by the surgeon. The robot can then
be telemanipulated to set the correct insertion angle.

All accuracy values and success rates are depicted in Table 6.14. Throughout the consec-
utive stages higher success rates and lower mean error values were observed.

Table 6.14.: Accuracy, standard deviation (SD) and overall success rate for all three
stages.

Guidance method Mean error (mm) SD (mm) Success rate (%)
Standard of care (n = 110) 6.6 3.1 72.7
AR-guided (n = 180) 4.8 2.5 81.7
CNA-guided (n = 50) 3.1 1.8 98.0
Robot-guided (n = 50) 1.9 1.2 100.0
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The different proposed methods of this work are discussed in detail in the corresponding
sections. In this general discussion we will discuss the results of this work from a broader
perspective and connect them to the established research questions of this work.

How can suitable medical knowledge be automatically retrieved and usefully applied
to plan linear paths for the neurosurgical interventions ventriculostomies and biop-
sies?

In Chapter 4 methods are presented to perform automatic planning of the ventricular punc-
ture as well as an expansion to additionally consider the individual risk structures of a
patient. To plan ventriculostomies, first vital structures of the patient anatomy must be
determined. The intervention is performed by opening the skull at the Kocher’s points
and puncture the ventricular system with a neurosurgical catheter. A target point inside
the ventricular system must thereby be perforated that lies in the first quarter of the ven-
tricular system.

The segmentation and the determination of the relevant points is medical knowledge used
to create algorithms that apply this knowledge to automatically derive the puncture path.
In Section 4.1, a method for automated segmentation of the ventricular system, the skull
and the skin are proposed. This utilizes knowledge of the Hounsfield unit of cerebrospinal
fluid and its distribution in the brain. The proposed method reaches a sufficiently good
segmentation accuracy (F1 score) of over 98% when no pathologies are present. We also
proposed an enhancement of our algorithm to segment blood clots inside the brain and the
ventricular system, which further could be used for the drug treatment of these blood clots.
The proposed method is also capable of segmenting the skull and the skin. Some patients
suffer from a calcification of the plexus choroideus, which has the same Hounsfield Unit
as bone, making it hard to segment the complete ventricular system. This leads to parts of
the horn of the two big lateral ventricles that are not segmented correctly. However, for the
ventricular puncture these structures are not of importance as they lie in the last quarter
of the ventricular system that are irrelevant for the procedure. Estimating the borders of
the ventricular system in the calcified area to derive the complete shape is a challenge.
Advanced methods would be necessary to also segment these structures. Here machine
learning methods could be applied. Due to the limited resolution of a CT scan it is also
difficult to segment the third and fourth ventricular system because of its narrow structure.
Very often even trained experts cannot find these structures in the CT data. However for
the ventricular puncture the two big lateral ventricles are the most important ones. With
the segmented structures, we are now able to derive the puncture path fully automated.

In Section 4.2, a method based on statistical shape models is proposed. Statistical shape
models are a powerful tool to model all shape variations of a shape class. In our case,
this is the skull and the ventricular sytem. Two statistical shape models were generated
from sample data and a standard gaussian process. The optimal points were defined on
the statistical shape models by using medical expert knowledge. In 93.9% of cases, a
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valid trajectory could be derived. The largest challenge are misaligned patient models and
different scanned parts of the patient head. However, the shape models showed a good
robustness against the differing anatomy of patients. In the future the preprocessing could
be automated to obtain correctly oriented and cutted patient scans. An alternative could be
the use of different statistical shape models in relation to the scanned parts of the patient
head. In the future, it must also be investigated how a valid puncture path can be derived
when the patient’s head is severely damaged or deformed, e.g. after an accident and the
suffering of a traumatic brain injury. In such a case, it would be necessary to digitally
reconstruct the head, derive valid Kocher’s points and project these onto the deformed
patient surface anatomy. Also specialized statistical shape models for various pathologies
could be a solution to enhance fitting results.

The derivation of the optimal puncture trajectory is based on digitized medical expert
knowledge but does not take the individual patient anatomy into account. Therefore, an
expansion of the automated trajectory planning was presented in Section 4.3. Initially a
risk-based path planning was shown for tumor biopsies, but this could be directly used
also for the ventricular puncture. In the evaluation of the risk-based path planning lower
risks were found when the risk projection was used. One tumor target was at the anatomic
position of the ventricular system. The tumor moved the ventricular system to the side. In
the puncture path was a high risk area down to the target, which led to a direct penetration
of that risk area. This high risk area was found in the fMRI data of the dataset that was
used. Common medical knowledge would have been that there is none such high risk
area. Here, the proposed method clearly showed its advantage.

Another interesting idea is to derive a valid area with the statistical shape models for
determination of the optimal Kocher’s points. With the help of an additional assumption
of the risk structures from all trajectories in the derived Kocher’s area, the path with
the lowest risk could be determined. One challenge with such an approach is that there
is no standard patient set of image data that is acquired for every patient. Especially
in emergency situations only a CT scan is available. The ventricular puncture is also
performed as part of planned operations where a wide range of image data is available.

As a summary, medical knowledge can be used to create algorithms for automated punc-
ture path determination with minimized risk for the patient. It is necessary in a first step
that these knowledge is integrated in the algorithms, so that it is possible to further on ac-
cess this knowledge without the need of an intervention of a surgeon. Once the algorithms
are created, it is possible to retrieve this medical knowledge automatically.

Which algorithmic methods may be applied to perform an accurate neurosurgical
scene registration?

In Chapter 5 methods were proposed to perform an accurate scene registration for neu-
rosurgical interventions. All entities that are present in the HoloLens application need to
be registered to the HoloLens coordinate system in order to process them in the system.
In the proposed system these are the marker system that is registered to the patient, the
pointer, the catheter navigation aid (CNA) and the robot navigated aid (RNA).

An extensive evaluation of several marker tracking methods was performed to compare
them to each other. There is a large number of possible marker tracking methods that could
be used to continuously derive the position of the patient. However, a lot of solutions are
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not widely used, so that just a few possible candidates remain. In our case, these were
ArUco, AprilTags, Vuforia and infrared marker tracking.

The best candidate was the ArUco tracking library as it enables fast and accurate tracking.
In addition, the library is free to use. However, it was not possible to implement the
solution on the HoloLens with acceptable performance. This shows that the HoloLens
1 is still a development and research device with room for improvement. Also, there
are limited options available to investigate the limitations. One assumption is the access
to the camera stream of the HoloLens as a bottle neck. The advantage when working
with the HoloLens is that there is a large scientific community that is working with the
device. Additionally, all solutions of the Unified Windows Platform (UWP) are available
for HoloLens development. For example, it is easily possible to use the Microsoft XBox
One controller with the HoloLens.

As an alternative it was decided to use Vuforia marker tracking. The tracking accuracy is
high at a stable high framerate of 25 fps. A negative point here is that the library is not
free to use in commercial settings. Perspectively, if this library is used in a commercial
system, this could lead to high fees which would make the product much more expensive.

With the research mode of the HoloLens it became possible to implement infrared marker
tracking on the device. High accuracy of under 1 mm were realized at a high framerate,
when the HoloLens was mounted on a tripod and was not moved in space. A general
problem of augmented reality became apparent. The accuracy dropped from 0.76 mm to
over 2-7 mm when the HoloLens was worn by a person. It needs to be investigated in the
future if this observation is due to the sensor quality or related to the registration of the
different HoloLens streams to each other. This should be evaluated on the HoloLens 2.

When using augmented reality hard- and software components need to be integrated per-
fectly with each other to minimize possible error sources. The marker system, to which
the markers are mounted supports the process change from the non-sterile to the sterile
phase at a high reassembly accuracy.

Three manual and one automated registration methods for patient to marker registration
were presented. Again, one limitation was the sensor quality of the HoloLens, that were
recognized when registering with the pointer or when analyzing the point cloud for the
automated registration via surface matching. The used algorithms are dependent on the
quality of the sensors. Therefore, it can be stated that the maximum possible accuracy in
relation to the sensor quality was reached.

An accurate scene registration can be achieved with an integration of hard- and software
components. A robust marker system and a reliable marker that can be tracked with
high accuracy is the base of the patient tracking. The sensor quality of modern augmented
reality system is still a major challenge. The maximum possible tracking accuracy directly
correlates to the sensor quality.

How can these methods and the results of the automated operation planning be used
to implement an augmented reality-based intraoperative assistance?

Three different stages of AR-based assistance have been proposed in this work. The
generated patient models and the automatically derived optimal trajectories are used in all
stages to support a surgeon in the placement of the catheter.
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One observation was that even when the patient models are superimposed at the correct
position, a human is often not capable to place a catheter perfectly at the visualized target
due to motoric limitations. This was one of the outcomes of the preliminary experiments
performed by non-medical experts with technical background. The subjects punctured
through air and a fixed marker system position was used, therefore an ideal registration.
The puncture success rate was high with 91.25%, but a rather large error was recognized
of 5.6±2.8 mm. The preclinical evaluation with medical experts yielded a lower success
rate of 81.7% but a higher accuracy of 4.8 ± 2.5 mm. The experts punctured through
agar gel to simulate brain matter, which required a good initial puncture angle, as it was
not possible to change the angle after the catheter was inside the skull. This shows that
manual manipulation by humans is a major source of error.

Control experiments were conducted by the expert neurosurgeons to obtain comparable
results following the standard of care without using augmented reality. An accuracy of
6.6±3.1 mm and a success rate of 72.7% was reached. This clearly shows that a higher
accuracy and success rate can be reached with AR-support.

The question arose how the human error can be minimized further to obtain even better
results. One possibility is an extensive training of each surgeon to reach better results.
We have investigated the performance of four participating surgeons in the AR-supported
preclinical experiments. A steep learning curve was observed from 73 % to 95% success
rate within three test series of n=100 for the first test series and n=40 for the second and
third test series.

To get a better initial puncture angle, a catheter navigation aid (CNA) was introduced.
Proof of concept experiments showed a success rate of 98%. One limitation with the
infrared marker tracked CNA was the not ideal tracking accuracy due to sensor noise.
In the future, it should be investigated if the tracking accuracy in newer versions of the
HoloLens is better. A placement accuracy of 3.1±1.8 mm was observed. The major
limitation of the CNA is the manual simultaneous manipulation of the device.

To optimize the manipulation, the CNA was mounted to a robot to enable a more stable
puncture aid. The robot-guided CNA was telemanipulated by a human subject. Exper-
iments showed that a higher accuracy of 1.9±1.2 mm was reached and a 100% success
rate. Although these results must be confirmed in a realistic scenario with medical experts,
the preclinical AR-guided evaluation showed comparable results to the non-medical ex-
perts study. Therefore, it can be assumed that medical experts would reach at least similar
values.

An augmented reality-based intraoperative assistance can be achieved when all compo-
nents are integrated in each other to support a user in the best possible way. Automation
of the planning process enables a fast and reliable assistance that is accessable in under
five minutes. It is thereby crucial that the planning is executed in a short period of time.
The experiments showed a higher success rate and a lower mean error that can lead to
a better outcome for the patient. Most importantly the system must be accepted by the
users, the neurosurgeons. Only when a user feels comfortable using the system, higher
accuracies can be achieved.

Key question: Can augmented reality help to optimize the accuracy of ventricu-
lostomies and biopsies?

The experiments clearly show that a significant higher accuracy can be reached for the
placement of catheters for the ventricular puncture in preclinical studies performed on
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the OpenHead phantom when a surgeon is supported through augmented reality. The
question arise if these results are transferable to a real clinical scenario and what possible
challenges will be.

Li et al. [127] show similar results as for the preclinical evaluation presented in Section
6.1.1.3. No patient tracking was used. This confirms the results, although questions
remain how patient movement was compensated.

The next step would be to perform cadaver or porcine ex-vivo studies to evaluate the
accuracy of placements in a real clinical environment. The aspects that would be neces-
sary to investigate are especially the marker system mounting and the registration to the
subject. On the realistic Synbone phantom with attached silicone skin this worked suffi-
ciently well, as the evaluation has shown. First preliminary experiments on human skin
(not shown in this work) showed similar results. However, the registration of the marker
system to the patient could be challenging. In general, the registration of the patient mod-
els to the Synbone phantom are comparable as the behaviour of the silicone is similar to
the human skin. Problems occurred in the area of the jaw as it is not fixed and the mouth
can be opened or closed.

This can lead to a different status of the patient model as for the real patient. The other
parts of the skull are rigid and represent the real patient sufficiently enough due to the high
resolution of modern CT scanners. When trying to register the models to the patient’s
head, this did not pose a problem.

Two preliminary experiments in a clinical environment were performed with two Syn-
bone phantoms. The complete procedure was performed including the registration of the
marker system to the Synbone phantom and mounting of the marker system. All four ven-
triculostomies were performed correctly. This provides a good initial assessment that the
system can be translated into clinical reality and potentially increase accuracy and safety
of future neurosurgical procedures.
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8.1. Summary

In this work, the potential of augmented reality-based assistance for neurosurgical inter-
ventions is investigated on the example of the ventricular puncture. The system takes into
account the automation of the complete surgical process from planning to surgical nav-
igation. The placement of the catheter is still manually performed by a medical expert.
For every patient, individual models are generated from CT image data, which includes
the skin, the skull and the ventricular system. A segmentation accuracy of 98%, as de-
termined by the F1 score, was achieved. An optimal trajectory is planned from these
patient-individual models by determing the Kocher’s points and the target points inside
the ventricular system utilizing statistical shape models. A valid trajectory can be planned
in 93.9% of cases.

As an expansion, path planning on the basis of patient-specific risk structures was shown
on the example of tumor biopsies. The approach can easily be adopted to every linear
puncture scenario. It was shown that a significantly lower risk can be reached when a risk
visualization is shown to the user. When the planning according to the standard of care
was used without risk visualization two risk structures were directly perforated. With our
proposed method no risk structure was damaged.

A marker system has been developed to track the patient during an intervention. The most
important feature is the support of the process change from the non-sterile to the sterile
phase with very high accuracy of 0.18±0.06 mm. Multiple registration methods have
been proposed, from which the manual registration method via a XBox controller was the
most accurate one.

Three consecutive stages of AR-guidance have been implemented and experimentally
evaluated. For better comparison, experiments according to the standard of care were
performed, which yielded a success rate of 72.7%. Preclinical AR-guided catheter place-
ments reached significantly better results with 81.7% success rate. To overcome the short-
comings of manual catheter placement a catheter navigated aid was introduced which led
to a 98% success rate. However, limitations with hand-guided manipulation of the aid
remained. For this reason the aid was mounted to a robot and a 100% success rate was
reached in a proof of concept experiment.

8.2. Outlook

Methods for automated path planning have been presented and were enhanced with a
risk-based path planning approach. At the moment it is not the standard of care to gather
a standard set of imaging data of a patient. This could greatly enhance the safety of
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neurosurgical procedures in the future. A full set of preoperative imaging data would shift
the automated path planning from generalizing medicine to a patient-specific treatment.

It is planned to combine the algorithms for the automated path planning with machine
learning algorithms in the future to enable an automated preprocessing of the data, like
scaling, rotating, translating and cutting. Certain pathologies can lead to parts of the
ventricular system not being segmented correctly, like calcifications and blood clots. An
expansion was presented to segment blood clots inside the ventricular system, but machine
learning approaches could be more flexible and robust against certain pathologies. With
modern deep learning techniques it would be possible to reconstruct the surface of the
ventricular system or a deformed skull. The presented algorithms for automated path
planning use statistical shape models to derive the optimal puncture points. This could
also be done by a landmark detection based on neural networks. The statistical shape
model itself could be enhanced with machine learning, e.g. to perform the fitting step with
a neural network. The goal would be rather not to follow an end-to-end learning approach,
but a combination of medical expert knowledge with powerful machine learning methods.

One limitation of this work is the hardware in form of the HoloLens 1 and its limited
sensor quality. Therefore, tracking of infrared marker spheres and the registration with
surface matching was limited. A further limitation is the small field of view and an un-
natural way of seeing. Meanwhile, the second version of the HoloLens has been released.
Better hardware could lead to much better results and need to be investigated in future
research.

The HoloLens 1 had not the performance to run powerful machine learning algorithms.
Therefore, they were not used in this work. In Appendix A, two works are presented that
use neural networks to track the used catheter and the surgical staff. The goal would be
to use these algorithms directly on the HoloLens to enable a scene analysis directly com-
puted on the device. This promising approach would render it possible to be independent
from any other system.

In this work, the medical experts place the catheter with AR support in three consecutive
stages, but no tracking of the catheter is done. We have shown that this is possible with a
semantic scene analysis by segmenting the camera frame. The algorithms were executed
offline, because the performance on the HoloLens 1 was not sufficient. A second option
would be to stream all data to a workstation in the OP:Sense environment. The algorithms
are then used as a service. Considering all streams of the HoloLens one frame package
can have the size of more than 3 MB. When investigating the whole workflow the network
speed is still not high enough to reach an acceptable framerate.

The algorithms for semantic segmentation of the catheter run at 14 fps and the people
tracking utilizing OpenPose at 21 fps on a high speed workstation. One challenge is also
the high demands for processing of machine learning methods based on neural networks.

The here proposed methods could be also used in other scenarios like the treatment of
tumors or deep brain stimulation. Further, the system could be used to train neurosurgeons
to perform better and reach higher accuracy rates during surgery.
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Appendix

A. Scene Analysis

A.1. Instrument Tracking

This content is taken from Reister et al. [176] and is presented in abbreviated form.

Assistance systems in the operating room can significantly improve the chances of a suc-
cessful surgery. With the help of augmented reality, normally hidden structures can be
visualized. This work addresses the necessary pose estimation of surgical tools. The tools
in the color image of the camera are segmented using Deep Learning and then fused with
the depth image to get a three-dimensional representation. The solution was implemented
and later on evaluated using the example of a catheter for ventricular punctures.

A.1.1. Experimental Setup

An Intel RealSense SR300, statically mounted on a tripod, was used to provide color and
depth data. A Synbone phantom head was used as a patient phantom. To create different
lighting conditions a surgical lamp was utilised. A workstation was used with an Intel
Core i7-8700K (3,7GHz), 64GB RAM and a Nvidia GeForce 1080 Ti GPU.

A.1.2. Segmentation of Colored Images

A Full-Resolution Residual Network based on the FRRN-A architecture proposed in [169]
was used. A categorical cross entropy was taken as a cost function, only considering the
worst pixels as suggested by Pohlen et al. [169]. Then a backpropagation was performed
using the Adam optimizer [103], leading to an accurate segmentation for fine image struc-
tures [176]. The segmentation was carried out on the rgb image.

The segmentation was later on fused with the depth stream to perform a 3D projection
and to cluster voxels belonging to the catheter. The segmentation pipeline is visualized in
Figure A.1.

A.1.3. Generation of Training Data

Based on the method of Zeng et al. [229] the whole scene was labeled initially as back-
ground. A single object added to the scene was then segmented by means of color and
depth, as depicted in Figure A.2. A Gaussian mixture-based approach [233] was chosen
to handle tool shadows under illumination changes. To train the model, three datasets
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Figure A.1.: Segmentation pipeline [115].

were created as described in Table A.1 and shown in Figure A.3, using different scenes,
lighting conditions and viewpoints. Each dataset contains approximately 1500 images
with the catheter being partially or fully visible [176].

Figure A.2.: Top: Catheter segmentation based on the color image. Bottom: Segmen-
tation based on the depth stream. From left to right: Image with catheter,
background image and segmentation. The same camera position was used
for all images [176].

Dataset 1 2 3
Scene Desk Surgery Surgery with additional items
Training images 5000 5000 4000
Validation images 2000 1500 1500

Table A.1.: Scenarios used for segmentation [176].

Figure A.3.: Exemplary images of the generated datasets [176].

A.1.4. 3D Pose Estimation

A point cloud of the tool is created based on the segmented part of the image and the
depth image. A density based clustering algorithm is applied to identify multiple objects
of the same type. A catheter is modeled as a cylinder, the eigenvector corresponding to
the greatest eigenvector indicates the direction of the cylinder [176].
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A.1.5. Segmentation Evaluation

For each dataset, precision, recall and F1-Score are used as metrics for validation (Figure
A.4, Table A.2). Figure A.5 shows representative training results. The first two columns
show how well the catheter is recognized in a crowded scene. Column three shows that
the trained network produces a better prediction than the training data offers and column
four shows that poor training data can lead to poor predictions [176].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A.4.: Validation datasets. Images corresponding to the datasets listed in Table A.2
[176].

Surgery 1 Surgery 2 Catheter Catheter Catheter Bright Bright, Increased
Dataset horizontal vertical diagonal patient covered distance

(a) (b) (c) (d) (e) (f) (g) (h)
Precision 84.1% 64.0% 77.1% 47.7% 81.0% 59.0% 72.9% 11.5%
Recall 58.7% 61.9% 51.2% 19.2% 31.0% 15.4% 43.1% 55.8%
F1-Score 69.2% 62.9% 61.6% 27.4% 44.9% 24.4% 54.1% 19.0%

Table A.2.: Evaluation results for semantic segmentation [176].

Figure A.5.: Selected samples for training. Top: RGB image. Center: training data.
Bottom: Prediction [176].

A.1.6. Model Fitting Performance

To evaluate how well the catheter length of 34.5 cm is recognized we recorded 500 frames.
During the whole time the catheter was fully visible. The length prediction is pretty stable
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when the catheter is placed parallel in the front of the camera. The length estimation
becomes worse when the catheter is moved towards and away from the camera, closer to
the image border or is rotated away from the camera [176].

A.1.7. Discussion and Conclusion

The semantic segmentation was able to classify fine image structures like the catheter
for ventricular puncture. To improve the performance issues, the training dataset could
be extended by automatically creating more images using a camera mounted to one robot
arm and the tool to another and slightly change positions of both for each image. The used
depth camera doesn’t handle dark and reflective surface well and could be replaced by a
time-of-flight sensor together with a color camera. A Kalman filter was used to reduce the
input size to achieve higher performance. The system could be augmented to track also
the surgeon, the patient, the operating table and other tools [176].

The system is able to perform an accurate pose estimation of a surgical tool using a color
image in combination with a depth image. The semantic segmentation works well in
complex situations. This approach could be combined with an augmented reality-based
surgical navigation system to present the surgeon additional information about the surgery
and the status of the patient [176].

A.2. OR Staff Tracking

This content is taken from Kunz et al. [115] and is presented in abbreviated form.

The presented system integrates augmented reality into the digital operating room (OR). It
enables the surgeon to see obscured structures during neurosurgical operations in realtime.
The system tracks the patient on the OR table, medical instruments and the medical staff
to provide a better understanding of the current situation in the operating room [115].

The goal is to integrate the proposed augmented reality system [111] into the surgical
research platform for robot-assisted surgery OP:Sense [152]. To track the patient on the
operating table, a two-stage process was implemented. To determine the coarse position
of the patients’s head on the OR table, first a YOLO v3 net is applied to reduce search
space. A robot with an RGB-D sensor mounted on it, is used to capture a point cloud of the
OR table. After the YOLO net has found the coarse position of the patient and marked it
with a bounding box, a two-step surface matching approach is used to determine the exact
position of the patient. When the surface matching procedure is completed, the marker,
mounted on the patient’s head, is tracked to determine its position. The registration matrix
can then be calculated once the positions of the patient and the marker are known. In
addition, the puncture catheter is tracked to determine its insertion depth into the brain.
Tracking the medical staff enables the system to react to the current situation, e.g. passing
of an instrument [115].

OP:Sense is our digital operating room (illustrated in Figure 5.5a).

It consists of an OR table with a Kuka LWR4 and a Franka Panda robot attached to it.
The following sensors are attached to the ceiling rack: an ARTTrack 2 system consisting
of six IR cameras and four Microsoft Kinect sensors (Figure 5.5b). A custom-build phan-
tom skull and a patient phantom head from Synbone were used during the experiments.
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For AR visualization, the surgeon wears a Microsoft HoloLens. For patient tracking Vu-
foria markers are used. The Robot Operating System (ROS), a middleware for robotic
platforms, is the base of OP:Sense [115].

Alternatively, the Kinect RGB image streams can be used to detect the patient’s head with
the YOLO v3 CNN. When this is not working, the mounted camera on the Franka Panda
is used, as it is closer to the patient. With additional information from the depth stream,
the 3D position is determined. Retro-reflective markers of the ARTtrack system are used
to track the OR table and the robots. The key points on the bodies of the medical staff
are tracked using the OpenPose [32] library. To integrate OpenPose in the OP:Sense ROS
environment, the available ROS nodes have been modified. The architecture is presented
in Figure A.6 [115].

Figure A.6.: Architecture of the OpenPose library implementation in ROS for integration
in OP:Sense [115].

A phantom head was placed on the OR table to evaluate the systems performance. First
the coarse detection of the patient’s head with the YOLO v3 net was evaluated. Figure A.7
shows multiple secenarios with changing occlusion and lighting conditions. The evalua-
tion results are shown in Table A.3. Then the position is determined via surface matching.
The system detects the patient with an accuracy between 3 and 7 mm. Under normal OR
conditions the results are satisfying. Under bright lighting conditions the solution perfor-
mance drops. The reason for this are large flares on the phantom made of plastic, which
prevent the YOLO v3 net to find the patient’s head. Normally, these large flares do not
occur in every stream when using the four Kinect cameras, so an overall robust detection
is possible.

The OpenPose [32] library is used to track body parts and joint positions of the visible
medical personnel. Initially, only a qualitative evaluation was performed, which yielded
good results, as shown in Figure A.8. A frame rate of 21 fps was reached on a workstation
with an Intel i7-9700k, 32 GB RAM and a GeForce 1080 Ti [115]. The ready-to-use
detection algorithm OpenPose produced good results even with the medical stuff wearing
surgical clothing [115].

209



Appendix

Figure A.7.: Coarse determination of the patient’s head on the OR table with YOLO v3
[115].

Precision Recall F1-Score average IoU mAP
Normal OR conditions 92% 99% 95% 67.59% 90.35%
Occlusion 99% 93% 96% 75.77% 90.86%
Strong Illumination 62% 66% 64% 41.01% 62.23%
Illumination and Occlusion 65% 51% 57% 41.83% 45.62%

Table A.3.: Evaluation of the position determination of the phantom head with YOLO v3
[115].

Figure A.8.: Results of the medical staff tracking [115].
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