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VAN DER WAALS-LONDON INTERACTION OF ATOMS WITH

PSEUDO-RELATIVISTIC KINETIC ENERGY

JEAN-MARIE BARBAROUX, MICHAEL C. HARTIG, DIRK HUNDERTMARK,

AND SEMJON VUGALTER

ABsTrACT. We consider a multiatomic system where the nuclei are assumed
to be point charges at fixed positions. Particles interact via Coulomb potential
and electrons have pseudo-relativistic kinetic energy. We prove the van der
Waals-London law, which states that the interaction energy between neutral
atoms decays as the sixth power of the distance |D| between the atoms. In the
many atom case, we rigorously compute all the terms in the binding energy
up to the order |D|~% with error term of order O(|D|~19). This yields the
first proof of the famous Axilrod—Teller-Muto three-body correction to the
van der Waals—London interaction, which plays an important role in atom
physics. As intermediate steps we prove exponential decay of eigenfunctions
of multiparticle Schréodinger operators with permutation symmetry imposed
by the Pauli principle, and new estimates of the localization error.
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The van der Waals—London force plays a vital role in many natural phenomena.
Its importance for the structure, stability and function of molecules and materials
can hardly be overemphasized. To give a few examples, the van der Waals—London
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force is needed to explain the condensation of water from vapor, the structural sta-
bility of DNA, and the binding between several layers of graphene to form graphite.

The importance of the van der Waals—London force is not restricted to the micro-
scopic scale. The van der Waals—London forces are used to explain some biological
processes and there are efforts in nanotechnology to take advantage of this attrac-
tive force. For further examples, see the introductory discussion in [6] or [18] and
the references therein.

Surprisingly enough there are only few mathematically rigorous results concern-
ing the van der Waals—London force. In [29], J. D. Morgan and B. Simon proved the
existence of an asymptotic expansion of the interaction energy using perturbation
theory. They note that this asymptotic series neither converges nor is Borel sum-
mable. Moreover, under the assumption that individual atoms have no dipole nor
quadrupole moments, the leading behaviour of their asymptotic series is O(|D|~9),
where |D| is the distance between two nuclei, but they do not give an explicit ex-
pression for the coefficient of the leading order term nor do they prove that the
asymptotic starts with the term of order |D|=%. We will compare their method
with ours in more detail later in the introduction.

Another result concerning van der Waals—London interaction is obtained in [27]
by E. H. Lieb and W. E. Thirring where they constructed a trial function to show
that attractive energy between two atoms without permanent polarity is at least
—C|D| % for some positive constant C'.

This result was improved by I. Anapolitanos and I. M. Sigal in [6], who used the
Feshbach—Schur method to obtain under some restrictions, which we will discuss
later, the leading term of order |D|=% for the intercluster energy in the nonrel-
ativistic case with an error O(|D|~7). Later the remainder term in the van der
Waals—London force was analyzed in [4] using again the Feshbach Schur method.
As our work shows, the bound for the remainder in [4] is not optimal, see the dis-
cussion after Theorem However, unlike [4] our method provides no information
on the dependence of the constant in the remainder term on the number of atoms.
In a recent work, I. Anapolitanos and M. Lewin [5] considered the van der Waals—
London interaction for molecules. The difference between atoms and molecules is
that it is easier for molecules to have a permanent dipole moment in their ground
state. This leads to the possibility of interactions decaying slower than the van der
Waals—London interaction, or decaying with the same rate but having a different
physical origin, see section C in [5].

Note that all previous rigorous results were only proven for non-relativistic ki-
netic energies. For heavy atoms one should include relativistic effects for the elec-
trons. This is one of the main goals of the work at hand. Our approach is purely
variational and similar to the one used in [37] 38, [39] to obtain the asymptotics of
eigenvalues of multiparticle Schrodinger operators near the bottom of the essential
spectrum and in [I0, [IT], 13} 2] to get the asymptotics for the binding energy of
the Pauli-Fierz operator.

Most importantly, in Theorem[T.4]below we rigorously prove the famous Axilrod-
Teller-Muto D? three body correction to the van der Waals-London interaction
which is a genuine non—additive three body effect and which plays an important
role in the case of three or more interacting atoms in atom physics [7} [0, 18] [30].
To the best of our knowledge, this has never been rigorously shown before.

In addition, we believe that our variational approach has several advantages
over other approaches using the Feshbach—Schur map: First, to be able to use the
Feshbach—Schur map, the authors in [4} [6] need to show that the ground state is
isolated before they could apply the Feshbach—Schur map. On the other hand,
although we do not need this explicitly in this paper, our method also works when
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the ground state is not isolated from the continuum, see, for example, [11], 13} [12],
where this has been carried out in a different situation. Secondly, it is known
from physical heuristics that the reason for the van der Waals—London attraction
of neutral atoms is due to induced virtual dipole moments, which show up in high
enough orders of perturbation theory. So on a heuristic level the origin of the van
der Waals—London attraction is well-understood. These calculations are far from
rigorous, however. Our variational approach uses a construction of trial function
which is motivated by the physical intuition gained from second order perturbation
theory to get a precise upper bound for the van der Waals—London attraction. To
get a matching lower bound, we use geometric methods based on suitable partitions
of unity of the configuration space which is an extension of ideas in [37,[38,39]. Thus
our variational approach is not only motivated by informal calculations based on
perturbation theory but it also justifies these calculations. Moreover, the inherent
simplicity of our method — follow perturbation theory and make it rigorous for
upper and lower bounds — enables us to relatively get precise results for some higher
order terms, given the complexity of the many—body problem. For example, for two
atoms, we show that the terms of order D=7 and D~ in the van der Waals-London
interaction do not exist, while for three or more atoms we rigorously establish the
Axilrod—Teller—-Muto correction.

Comparing our method with the early work of J. D. Morgan and B. Simon, it
is important to mention that they also use trial functions for the upper bound and
geometrical methods for the lower bound on the interaction energy. The difference
with the approach of Morgan and Simon and our work is that in [29] the ground
state energy was estimated with an error of order D~!, to show that eigenvalues
of a Schrédinger operator with inter—cluster interaction converge to the eigenvalues
of the cluster operators without inter—cluster interaction at large distances. They
use this then later to justify a clever perturbation theory approach. In the work
at hand, we estimate the ground state much more precisely using corrections terms
motivated from formal second order perturbation theory. This allows us to not only
obtain the leading order van der Waals—London term but also rigorously establish
higher order corrections, including the Axilrod—Teller-Muto correction.

We consider a molecule with N electrons of charge —e and spin %, and M
pointwise nuclei with charges eZ; located at positions X; in R3, which we suppose
to be fixed (Born-Oppenheimer approximation). We assume that the system is

neutral, which means that Z;\il Zy; = N. The corresponding Hamiltonian is
N M 2 2 2
e*Z, e e“Zr 4
H = T, — — | + —+ — (11
Y (n L) T w0
= = <i<y< 1<k<I<M
with k-th electron kinetic energy operator

(1.2)

T v/ pi 4+ 1—1 in the pseudo-relativistic case
k= : . C .
in the nonrelativistic case

v

and form domain H'/2(R3N) in the pseudo-relativistic case and H'(R3N) in the
nonrelativistic case. As usual pr = —iV,, denotes the momentum of the k-th
electron. If T}, is pseudo-relativistic, we assumed Zje? < %, which ensures that the
Hamiltonian is semi-bounded from below, see [19] 28].

In the main part of the paper we will focus on the pseudo-relativistic kinetic
energy case Ty = /pi +1 —1 (see [22] and references therein) although all the

2
results hold for T}, = %’C likewise. Here the Hamiltonian is written in atomic units,
ie.c=h=m=1.
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The phase space for a system of N electrons, taking into account the Pauli-
principle, is the antisymmetric tensor product of N copies of L?(R?;C?), namely
the space A" L2(R3;C2) of functions in ®" L2(R3;C?) that are antisymmetric
with respect to transpositions of pairs of position and spin particle variables (z;, s;)
and (x;,s;), for i # j.

The operator H we consider does only depend on the coordinate variables x;,
but not on spin variables s;. Hence we consider H to act on the projection of
AN L2(R3;C2?) onto the space of functions depending on coordinates alone, that is,
on the space Hperm;i defined by

N 1 1\
Hrormi = { (5, W)l € AL2®R%:C),s: { - 2,01 ¢} (19
where

(8, U)gpin := Zﬁ(sl, oo, sn) (21,81, , TN, SN)-
S
Note that Hperm; is a subspace of L2(R3V).

The condition of antisymmetry with respect to transposition of the particle vari-
ables implies certain symmetry properties for permutations of coordinate variables
after decoupling of the spin variables. Namely, permutations of electrons transform
the functions according to a Young pattern with at most two columns as described
in [21), § 7.3.]. Note that for more than two particles a function which is completely
symmetric under transposition of coordinate variables can never be antisymmetric
under transposition of the full particle variables, since the spin can only attain two
values.

More precisely, let Sy be the group of permutations of N electrons. For any
m € Sy let Tr : HFermi — HFermi With

7;¢($1a"' 7'TN) = 1/)(1‘71'*1(1)7"' 7'T7T*1(N)) (14)

be the operator that realizes a permutation on the particle variables.

Let a be an irreducible representation of the group Sy and P¢ the projection on
the subspace of functions transformed under the action of operators T, according
to the representation o. These projections decompose the space Hperm; into a finite
number of orthogonal subspaces H* := P*Hpermi such that

HFermi = @ Hav (15)

acA

where A is the set of all irreducible representations of the group Sy correspond-
ing to a Young pattern with at most two columns. Note that for such «, we
have P*Hpermi = P*L?(R3*N). In fact, studying the operator H on the subspaces
P2L?(R3N) gives us complete information on the spectrum of the operator on
Hpermi- 10 that end let

H® := HP® (1.6)
be the operator H restricted to the space H* and
E(OéXl,n-,X]VI) = lnfU(Ha) (17)

In the work at hand, we will compute the interaction energy for fixed positions of
the nuclei, which is the difference between E( e Xa) and the sum of ground state

energies of atoms. Let us start with the sunplest case of a diatomic molecule, i.e.
M =2.



1.1. Diatomic molecules. Let C C {1,--- , N}, C # 0 be an arbitrary subsystem
of a system of N electrons. We define R(C) as the vector space of position vectors
(7;)iec of particles in C. Note that this space is isomorphic to R3¢ where #C is
the number of elements in C. We let L?(R(C)) be the space of L2-functions with
arguments in R(C). Denote by L?(R(C))* the orthogonal complement in L?(R3Y)
of L2(R(C)).

For particles in C interacting via Coulomb potential with a nucleus at the origin
of charge eZ we define the Hamiltonian

HE = "T;— ZII Z _x‘ (1.8)
iec iec 17 zlj<ejc !

acting on L?(R(C)). We extend the operator by the identity in L*(R(C))* to an
operator acting on functions in L?(R?*V). In abuse of notation we will write fICZ for
both, the one acting on L2(R(C)) and the operator acting on L?(R(C))® L%(R(C))*.

Let S(C) be the group of permutations within C. Obviously S(C) is a subgroup
of Sy. Consider a¢ to be an irreducible representation of S(C).

Definition 1.1. For « a type of irreducible representation of Sy, we say that o, is
induced by a and write o, < «, if a is contained in the restriction of a to S(C),
see |21), p. 94-98|.

In the same way as the space Hpermi can be decomposed into the spaces H<, the
corresponding Fermi subspace of L?(R(C)) can be decomposed into subspaces

P L*(R(C))

where a¢ runs over all irreducible representations of S(C) corresponding to a Young
pattern of at most two columns.

We will consider a cluster decomposition 8 = (C1,Cz2) of the original system
{1,---, N} into clusters C; and Cs such that C; UCy = {1,--- ,N} and C; NCy = 0.
Define D3, as the set of all such decompositions. Decompositions where the number
of electrons in Cy, #C; = Z; and the number of electrons in Co, Co = Z5 will be
called atomic decomposition D C D%.

For the decomposition S = (C1,Cs) we define the intercluster interaction

—e Zg —e 21 €271 Zs
_ 1.9
g Zm Z | Z |ﬂ7z—$3| | X2 — X1 (1.9)

1€Cq

]Ecz

and set the cluster Hamiltonian Hg to be
HB ::H—IB. (1.10)

In other words, Hp is the operator where particles from different subsystems do
not interact. Note that for each 8 € D3, we have L2(R(C;))*+ = L?*(R(Cs)) . The
symmetry group of this Hamiltonian we consider is Sg := S(C1) x S(C2) C Sn, the
group of permutations which leave the cluster decomposition § intact. We use the
same notion of inducing of representations as above. Since Sj3 is a direct product
of two groups, the irreducible representations ag of Sg are direct products too. In
particular, for any irreducible representation O/B < «a of Sg there exists a unique
pair ap < a and ap, < « such that

alcl & Ctlc2 = a%, (1.11)
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see [21] p. 110-114]. We take P% to be the projection in Hpermi onto functions of
symmetry type aj;. Letting

Hy" == HyP*s and H§:= Y Hy’, (1.12)
;3<oz

we define

pG = min infa(Hgﬁ) (1.13)
ap<a
and

%= min pg. 1.14
H = min p (1.14)

By translation and rotation invariance of the Hamiltonian for M = 2, E?Xh X2) only
depends on [D|, where D := X5 — X;. We will write E}; instead of Efy v ). In
both, the pseudo-relativistic and the nonrelativistic, cases it is not difficult to see
that p® = lim|p| 500 E|Ob|-

For some fixed point X € R3, which will be the position of one of the nuclei, and
the variable 2 € R3V | we define the unitary shift by X in the i-th particle variable
as

u}(;) : { LQ(RSN) —>L2(R3N) (115)

L{)((Z)go(m) = L)0('/1717"' y Li—1y T4 +Xaxi+1a"' ,.’L'N)-

For 8 = (C1,Cs) € D% and X1, X» being the positions of the nuclei we define the
shift operators

us == [Tul T ud- (1.16)
i€Cy JEC2
We set
Hg = UsHplj;. (1.17)

Note that H g is unitary equivalent to Hg and
fly = 07+ 07,

We define for 3 € D% the functions fa, f3 € L? (R3N) as

falz) == Z —e*(3(zi -ep)(z; - ep) — x; - x;), (1.18)
fa(@) ==Y % (3(%‘ — ;) -ep[2(zi - x;) = 5(zi - ep)(x; - ep)]
f=ch (1.19)

+ 3|xi|2(xj -ep) — 3|l‘j|2(-%'i . €D))7

where ep = a unit vector in the direction from X; to X5. Note that the

D
Dl
functions fs, f?|, dlepend on the cluster decomposition 5. These functions stem from
a Taylor expansion of the Coulomb interactions representing dipole—dipole, respec-
tively dipole—quadropole type interactions.

For now, let us fix any 8 € D*. We will show in Appendix [B| that pu“ is a
discrete eigenvalue of HE. By unitary equivalence p® is also a discrete eigenvalue

of
g =Y EI;‘% = Y HgP (1.20)



where the sum is over all induced irreducible representations a% < «a. Denote by
WE“ C H® the eigenspace of fIg corresponding to u® and let
- _1
ay(B) == max [[(Hg — u*)7% oo *. (1.21)

bEWS
lloll=1

Although p® is an eigenvalue of H 5 the value a1(8) is well-defined since fo¢ is
orthogonal to the corresponding eigenspace, see Lemma We define Vg C Wg
as the subspace of all ¢ such that ||[(Hg — u®) "2 fo¢||? = a1(8) and

az(B) = max ||(Hg — p®) 7% f30]>. (1.22)
PEVE
lloll=1

Similarly, Lemma[E.2] ensures that also as(/3) is well-defined. Due to permutational

symmetry, for any 31,82 € D% we have a1(31) = a1(82) and az(B1) = a2(B2).
Hence we omit the argument S in the definition and write a; and ay throughout
the paper. For diatomic molecules our main result is

Theorem 1.2 (van der Waals-London interaction for diatomic molecules). Assume
that Z;e? < %, for all nuclear charges when the kinetic energy of the electrons
is taken to be pseudo—relativistic. Let o be an irreducible representation of Sy
corresponding to a Young pattern with at most two columns and assume that
1) For all B € D%, \ D

pg > pt.
2) For each 8 € D G{Ld each irreducible representation aj of the group Sg with
o <« such that P*sW§ # 0,

dim(P*sW§) = dim o}

Then . . ar a 710
|D| — M :*W*WJFOUM ) (1.23)
where a1 > 0 and as > 0 are defined in and respectively.
Remarks 1.3. e Conditions 1) and 2) of Theorem are the same as in the

previous work [6] by I. Anapolitanos and 1. M. Sigal, where they obtained
an asymptotic expansion of Eﬁj\ — pu® in the nonrelativistic case with an

error of order O(|D|~7).

e The physical meaning of Condition 1) is that the lowest energy of the non-
interacting system occurs when the electrons are allocated neutrally. It is
important to mention that if Condition 1) does not hold, then E|ob| — pue

is dominated by Coulomb interaction which decays like |D|=* and is thus
much stronger than the van der Waals-London interaction. Both variants
are possible. Experimental data shows that for some molecules Condition
1) is fulfilled and for some it is not, see discussion in the introduction of
[6].

e Condition 2) imposes restrictions on the rotational symmetry of the atoms
in the diatomic molecule. In particular the ground state space of flg only
contains functions which transform according to the irreducible represen-
tation of the group SO(3) of degree £ = 0. To see this, notice that the
Hamiltonian f{g‘ is invariant under rotations R € SO(3). Thus for any
eigenfunction ¢ € PO‘%VVE the rotated function Tro is an eigenfunction
corresponding to the same value. Rotation and permutation operators com-
mute, thus Tro € PO‘;?VVBQ, So by [21] §3.19] the dimension of P%Wg 18
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an integer multiple of the dimension of O/B and the dimension of a repre-
sentation of the SO(3) group. By Condition 2) dim(PagWE‘) =dimaj so
the dimension of the representation of SO(3) describing the symmetry of ¢
is one. So it must be the irreducible representation of degree £ = 0.

o Qur method allows to obtain the erpansion of Elobl — u® up to arbitrary
negative power of |D|. In particular, for diatomic molecules this expansion
does not include odd powers |D|~7 and |D|~° in both the pseudo-relativistic
and nonrelativistic case. There is a correction, the famous Axilrod—Teller—
Moto correction to the van der Waals law, which starts with the |D|~° term.
However, it is well understood in the physics literature that this correction
s due to interactions between triplets of atoms, hence it should be absent
for diatomic molecules. As our Theorem[1.9 shows, this is indeed the case.
For three or more atoms, this correction is present, see Theorem |1.4}.

e In the definition of the functions fo, f3 and therefore in the definition of ay
and az, we use the vector ep. By the SO(3) symmetry offfg and Condition
2), the values of a1 and asy will not change if we replace ep in and
with an arbitrary normalized vector in R3.

e The functions fa, f3 are, respectively, the second- and third-order coeffi-
cients in the Taylor expansion of the intercluster interaction (see Appen-
diz @) They are invariant under permutations in Sz and hence for any
irreducible representation a'ﬁ < o of Sz, we have flPO‘Z3 = P fi, for
1=2,3.

Strategy of the proof of Theorem To prove the main result, we derive
estimates of the difference E‘O‘D| — p® from above and from below. These bounds
coincide up to an order O(|D|~1%). To get an estimate from below for the interaction
energy, we apply a partition of unity to the configuration space, and minimize the
functionals in the corresponding regions. To obtain an upper bound, we construct
a suitable trial function.

More precisely, let 8% = ({1,---,Z1}, {Z1 + 1, ,N}). By permutation sym-
metry of the operator H 50> the ground state space Wgo of H o can be written as
a direct sum of subspaces transforming according to the induced irreducible repre-
sentations O/BO < «, more explicitly

Wgo = @ Pa;jowgo.

a%o<a

Thus there is at least one oz;go < « such that there exists ¢ € PO‘;‘0 Wg‘o that realises

the maxima aq and ay with ||¢|| = 1. For such a ¢ € P ~go we define

T xo<m>{¢><x> (- (25 + f’,ﬁi’)w)} (1.24)

where x,(x) is a smooth function which localizes each particle in a ball of radius
|D|%7 centered at the origin. As a trial function, which yields the required estimate
of E|QD\ — p® from above, we define Yy, := P“Z/{;(,T.

To prove the estimate from above, we need to show that applying the cutoff
function x,(x) increases the energy only by an exponentially small amount. To this
end we need to prove exponential decay of ¢, (ﬁﬂo —u®) " fa¢, and (ﬁﬁo —u®) "L f30,
which is done in Section 2] In addition, we need a suitable estimate for the so-
called localization error for the pseudo-relativistic kinetic energy. Such an estimate
is obtained in Section In both cases, the proof of exponential decay and the

8



estimate of the localization error, the main difficulty arises from the non-locality of
the pseudo-relativistic kinetic energy operator.

For the estimate from below we consider all possible cluster decompositions into
three clusters 8 = (Cp,Cy1,C2). Some of the clusters may be empty. Particles in Cy
are far from the nucleus. Electrons in C; and C; are close to X; and X5 respectively.
We apply a partition of unity of the configurations space with smooth functions J3
cutting the configuration space according to the clusters in 3. If Cy # ) or if C; and
C5 are not neutral atoms, the infimum of the spectrum of the cluster Hamiltonian
corresponding to this 8 on the subspace HOs is, by assumption, strictly greater
than p® for all ajy < a. For sufficiently large | D], this implies

(Jpw, (H* — p®)Jg) = 0.
Now consider 3 for which Cy = ), and (C;,Cz) € D. Similar to |10, 1T} 13}, 12, 37,
38, 39] we define a bilinear form

(o, )1 = (g, (Hg — p*)p)

and the corresponding semi—norm

lell? := (@, @)1

Then we project the state /3 Jg1) onto the ground state subspace Wg of the operator
ﬁg to get

UsJgp =mo+ R
for a normalized state ¢ € Wg We proceed by projecting the rest term R onto the
functions ~

— _ ,,a\—1

¢3 = (Hg—p*)"" f3¢

consecutively, with respect to {-,-);. Note that by Corollary these states are
well-defined. For the state Jg1 we arrive at the following representation

Jpb =Us (¢ + |D| > v202 + | D]~ 33 + g) (1.26)
for a suitable function g. We substitute ([1.26]) into the quadratic form of
(H — p*)P* = (Hg — u® + Ip) P*.
Then we expand Iz as a Taylor series and do a simple minimization in parameters
V1,72, 73, using orthogonality relations proven in Appendix[D] It turns out that ||g|
will be very small and 1, 2, v3 close to the coefficients of the trial function, which
we used to get the upper bound, when 1 is close to a minimizer of the energy.

Finally, in analogy to the estimate from above, the localization error is small on
¢, ¢2, and ¢3 due to their exponential decay.

1.2. Extension to M-atomic molecules. We can extend the result of Theo-
rem [I.2] stated for a diatomic molecule, to larger systems.

We will assume that the distances between atoms are simultaneously scaled by a
parameter d > 0. For all 1 <k <1 < M, we write X3, — X; =: dDy,;, where vectors
Dy, are assumed to be fixed. The scaling parameter d will tend to infinity. The
operator H can be written as

2

N Mo 2y e AV

k k21
H=Y(1,-Y — % e ) . (127
i=1 ( k=1 |z — Xk) * ' T d|Dy,1 ( )

T; —
1§z’<j§N| g J‘ 1<k<I<M

We let
Ef :=info(H®) (1.28)
denote the infimum of the spectrum of H restricted to the space H* = P*Hpermi-
9



Consider the cluster decomposition Sy := (C1,---,Cps) of the original system
into M clusters such that Uﬁil Ch={1,---,N}and C, NC; = 0 for all k # 1. We
define the set D! as the collection of all such decompositions. Let

M
Hg, = HE* (1.29)
k=1

where fICZk * is defined according to , acting on the space L?(R3V). The sym-
metry group of this Hamiltonian is Sg,, := S(C1) x --- x S(Car) C Sn, the group
of permutations which leave the cluster decomposition (3, intact. Once again,
the irreducible representations of Sg,, can be expressed as direct products of irre-
ducible representations a;, of S(C). In particular, for any irreducible representa-
tion a}iM < «a of Sg,, there exists a unique M-tuple of irreducible representations
ag, =< a such that

M
®O/Ck ~ap,, (1.30)
k=1

We take Po‘/ﬁM to be the projection in Hgermi onto functions belonging to the

irreducible representation oz;;M. Letting ﬁ;}i M= H B P we define

’

pg,, == min info(Hg M) (1.31)
;3]\/I_<a
and
¢ = min us . 1.32
Har BaeDl KB ( )

Similar to the diatomic case u§; = limgoo £S. We define the functions f2(k’l)7

£ € L2(R3V) as

k.l
55 0@) =3 = (3 - epy )@ - epy,) — 3 15), (1.33)
1€Cy
JEC
kDo N E
3 (x) = Z 5(3($1 - xj) * €Dy, [Q(xl ’ xj) - 5(:81' ’ eDk,l)(xj : eDk,L)]
e (1.34)

+ 3|$i‘2($j ' eDk,l) - 3|17j‘2($i : 6Dk,l))’

D
where ep, , = 51

: Al is the unit vector in the direction from nucleus & to nucleus [.

The functions f2(k’l) and fék’l) are related to the second- and third-order coefficients
in the Taylor expansion of the intercluster interaction of cluster k& with cluster [,
see Appendix [D] for details. )

The value p$; defined in~ (1.32)) is a discrete eigenvalueNOf the operator HE , see
Thg(;rem Denote by Wg, =~ C H® the eigenspace of Hf, corresponding to pf,
and let

o a1 —3 p(k,l
al = max |(Hg, —p§) "2 Y. D202 (1.35)
4"%“’5? 1<k<I<M

We define f/gM C WE‘M the subspace of all ¢ such that

o a -1 —3 p(k,l
I(Hpy — 15072 > [Deal 2 55V 9)? = !
1<k<I<M
10



and

- a \—1 —4 (Kl
ad! = max |(Hg, —p§) "2 Y |Dral 70l (1.36)
‘T‘Z‘H@f 1<k<I<M

Slightly abusing notation, for 3 € DY we write 8 € D iff for all k € {1,--- , M}
one hase C, = Zj.

Theorem 1.4 (The Axilrod-Teller-Muto three body correction to the van der
Waals-London interaction). Assume that Ze? < %, for all nuclear charges when
the kinetic energy of the electrons is taken to be pseudo—relativistic. Let o be an
irreducible representation of Sy corresponding to a Young pattern with at most two
columns and let the following conditions hold:
1’) For all B € DA\ D*

WGy > M- (1.37)
2’) For each induced irredducible representation g, <o of the group Sy such that
P WE,, # 0,

dim(P**n WS, ) = dimas,,. (1.38)

Then

o o aM oM gM _
where

= a -1 gk, 1), o \—1 r(n,k

3 oy 8| Dyt |3 Din 3| D e *
I#£n,ntk

Remarks 1.5.

o The term of order d—% is a sum of the corresponding terms in Theorem .
Again no term of order d=7 appears. The main difference to the diatomic
case is the appearance of the term of order d=°. This term, a non-additive
many body effect, is the famous Azilrod—Teller—Muto three-body correction,
which plays an important role for atom physics [7, 9, 18, [30]. It stems from
an interaction of three atoms, each of the atoms induces dipole momenta
in the other two atoms of this triplet. Their interaction is proportional to
d=9. To the best of our knowledge our result is the first proof of this famous
conjecture in atom physics.

o Recently I. Anapolitanos [4] studied the error term in the van der Waals—
London estimate. The focus was to provide information how the constant
in the remainder term depends on the number of atoms. Under the same
conditions as in Theorem[I.4)it was shown in [4] that the difference between
the van der Waals-London term and the term a?td =5 is bounded by

4

M
62M2d77 + c3

=5 (1+ NZemesd) (1.40)

for d > N*3, where M is the number of atoms, Z is the mazimal charge of
the nuclei, N the number of electrons and cy,ca, c3 are some non—specified
constants. Our Theorem [I.J) shows that such a bound on the error is not
optimal. The term of order d~7 is, in fact, absent in the expansion, the
first correction term should have power d=8. Moreover, the term of order
d=? is a three-body effect, thus it should grow as M?> and not as M*, since
it describes interactions of tripels of atoms whose combinatorial factor is
given by M(M —1)(M —2). A term in the expansion with a factor growing
like M* should come with a much higher power than d=°. However, our
11



method provides no information on the dependence of the constant in the
remainder term O(D~19) in terms of the number of atoms.

e In the diatomic case the result will not change if we replace the vector
ep n the definition fo, f3, and by an arbitrary mormalized
vector. In contrast to that, in the multi-atomic case the term of order d=°
depends on the angles between vectors Dy, Dy, and D, i, which confirms
the prediction of Axilrod—Teller and Muto. .

The paper is organized as follows. In Section [2] we prove exponential decay of
functions ¢, (Hg — u®) " fa¢p, and (Hg — )" f3¢, which play a crucial role in the
proof of Theorems [1.2] and

In Section [3] we prove a localization error estimate for the pseudo-relativistic
kinetic energy, which shows that outside the region, where the derivative of the
cutoff function is non-zero, the localization error is exponentially small.

In Sections [4] and [5] we prove Theorems [I.2] and [1.4] respectively.

In Appendix[A]and [B]we prove the HVZ theorem for atoms and atomic ions and
the existence of a ground state for pseudo-relativistic atoms and positive ions on
spaces with fixed permutation symmetry. This result was announced by G. Zhislin
in [4T]. For convenience of the reader we give a complete proof of these statements.

In Appendix [C] and [D] we prove several technical estimates, which we use in
Sections [2] and [d] respectively.

Finally, in Appendix [E] we prove orthogonality relations, which are due to the
symmetry of functions ¢ and Ig.

2. EXPONENTIAL DECAY OF EIGENFUNCTIONS

In the nonrelativistic case, exponential decay of eigenfunctions with given per-
mutation symmetry is well-known (see e.g. [2]). The exponential decay of eigen-
functions of a Hamiltonian with pseudo-relativistic kinetic energy proved by Car-
mona, Masters and Simon in [I5] does not apply for Coulomb potentials, how-
ever. Although being motivated by the question of exponential decay estimates for
multi—particle pseudo-relativistic Schrodinger with Coulomb interactions, the class
of potentials they use, the so—called relativistic Kato—class, does not contain any
potential with a Coulomb singularity. For pseudo-relativistic kinetic energy and
Coulomb potentials, exponential decay of eigenfunctions was shown by Nardini in
[31] for the two body case. He extended his results to the N-body case in [32].
However, in the proof he uses a method which destroys permutational symmetries.
To prove Theorem we need exponential decay of ground states ¢ € Wg of H 8
and exponential decay of functions of the form (E[ 5 — pu®)"Lfig, | = 2,3 where
¢ € Wg‘ is a ground state. To this end we will apply a modification of Agmon’s
method (see [2]), adapted to the nonlocal pseudo-relativistic kinetic energy, which
preserves symmetry.

Let a¢ be an irreducible representation of S(C). We define

$oc = fm o imf [l 2w, AZY), (2.1)
)

R—00 yepac HY/2(R(
supp(¥)NBr(0)=0

where Bp(0) is the ball in R(C) of radius R centered at 0 and Hf was defined in
(1.8). Everywhere in this section we treat the pseudo-relativistic kinetic energy

operator T; = y/p? + 1 — 1 only.

Theorem 2.1. For any fized p < $°¢, assume that T € HY?(R(C)) satisfies
PoeY =Y and (HZ — p)Y =T, where T is a function with e®''T" € L2(R(C)) for
12



some a > 0. Then there exists b > 0 such that
Y e L2(R(C)). (2.2)

Remark 2.2. Choosing I' = 0 in the above theorem implies that any eigenfunction
T of HCZ with associated eigenvalue p < 3¢ is exponentially decaying.

In addition to Theorem 2.1l we will need a similar statement for cluster Hamil-
tonians Hg corresponding to a cluster decomposition 8 into two clusters.

Proposition 2.3. Let ag be an irreducible representation of Sg and let

£ := lim inf ~2(p, Hgp), 2.3

ot e A (2.3)
supp(¢)NBr(0)=0

where Br(0) is the ball in R3N with radius R centered at 0. For any fired fi < X7,

assume that T € HY?(R3N) satisfies P**Y =Y and (Hg — 1) =T, where T is a

function with e®'T € L2(R3N) for some a > 0. Then there exists b > 0 such that

T e L2(R3N). (2.4)

Proof. The proof of Proposition 2.3 follows immediately from Theorem [21] since
the Hamiltonian H g describes non-interacting clusters, whose center has been moved
to the origin. Thus the total system is a direct sum of these noninteracting systems
to each of which Theorem [2.1] applies. O

Corollary 2.4. Let B € D% and V~V/§y be the ground state subspace of the Hamilton-
ian ﬁg = fIBPO‘ corresponding to ~the energy u. Then for any~normalized function
¢ € Wg the functions ¢, ¢2 = (Hp — )" fag, and ¢35 = (Hg — u®) =1 fs¢ with
fa, f3 defined in (L.18)),(1.19) and some by, b, b3 > 0

e, ey, ellps € L2RY). (2.5)

Proof. Since ¢ is a ground state, the existence of a b; > 0 such that e®l'lgp e
L?(R3N) follows immediately from Proposition Notice that for [ = 2,3 we have

(Hg — p*)r = (Hg — p*)(Hg — )" fi0 = fugp (2.6)
The functions f; grow at most polynomially in |xiﬁhich is controlled by the ex-

ponential decay of ¢ so we can apply Proposition |2.3| with I = fi® to obtain the
result. O

It remains to give the

Proof of Theorem[2.1] Let k := #C be the number of electrons in the cluster C. To
simplify the notation assume C = {1,--- ,k}. Let T € H'/2(R(C)) be a solution of
the equation (HZ — )T =T and £ = &, . p € C®°(R(C); R) be a family of functions
with the following properties:

e ¢ is bounded

e ¢ is invariant under all permutations of the variables in the cluster C

e supp(§) N Br(0) = () for some large enough R > 0, which will be chosen

later
o [¢] < Cell for some constant C' > 0

By the definition of ¥*¢ in (2.1)) and since supp(¢) N Br(0) = 0, there exists a
function ¥(R) such that limp_, ¥(R) = 0 and

(Z0¢ — p = I(R))[IEL)* < (€Y, (HE — p)EY). (2.7)
13



Since (ﬂ'cz — )Y =T, we can write
(€0, (HE — p)€T) = Re(€Y, (HE — p)éY) = Re(¢*Y, (HE — p)Y) + LE (T, 1)
= Re(¢°Y,T) + LE (Y, T)
(2.8)

with Lg the quadratic form for the commutation error from Lemma Clearly
Re(€2Y,T) = Re(€Y, D) < ||EY]|||IET||. Together with (2.7) we get

(B¢ — u—O(R) €T < € IET]| + LE (T, T). (2.9)
We now specify the choice of £ =&, . g: For v > 0 and for € > 0 we set
vr
Gre(r) =15 (2.10)
and
Foe=Y Gyc(lz)) (2.11)
jec

Pick xo € C*°(R4;[0,1]) such that

poo{ L i<l
XV =0 i r>2
and define for x € R3* the function x € C*(R3*;[0,1]) with
k
x(@) =1 xo(l)- (2.12)
i=1
For R > 0 we set
Xr(z) = x(z/R) (2.13)
and
§=8&ver = XReFV’E- (2.14)

Lemma [C.10] gives a convenient bound for the second term on the right hand side
of (2.9). Using (C.23) in (2.9) yields
2
(8¢ — u— R)EX]? < €T D] +kC, (Ly/R+0)* "X |* (215)

where k is the number of particles in the cluster C' and, for simplicity of notation,
we abbreviated F' = F,.,

Note that (1 — xg)ef < e?*E hence ||(1 — xr)ef Y| < e2*E||T||. Using this
and [[ef' Y| < |lxref Y| + ||(1 — xr)ef Y| in and rearranging terms, we get

(2%¢ — = 9(R) = 6(Rw))|&T|* — (2R3 (R, v) [T + €T I€T
< §(R,v)e™ BT
Where we also abbreviated §(R,v) = kC, (v + L, /R)?. Since
]%grlm(ﬁ(R) +6(R,v)) = kC,v?,

(2.16)

we can find, for any 0 < v < a with kC,v? < £%¢ — pu, a radius R > 0 such that
v i=3% —p—9(R) - §(R,v) > 0.
With such a choice for v and R, setting C' = 6(R,v), we get from
v e, 2 XNP = (CITI + [N 100, £ YN < Ce R 7. (2.17)

since & = &, . g < e/l < el which clearly gives ||£T|| < [le?l'IT||.
Note that the r.h.s of (2.17)) is independent of . Since v > 0, the map

0 < s s> = (CI) + [le*T)]) s
14



is unbounded from above. Furthermore, £, . r converges monotonically to x re”l
as € — 0. Thus the monotone convergence theorem and the bound (2.17)) shows

Ixre” 1Y) = lim [|&,.c Y| < 0.
e—0

Since xr equals one outside a ball of radius 2R, this implies ||e’/"IT|| < oo, which
completes the proof of Theorem [2.1] O

3. LOCALIZATION ERROR ESTIMATES

In the proof of Theorem and Theorem we will use a partition of unity
of the configuration space. In addition to this, we use a cutoff function in our
construction of the trial function which we will use to bound the intercluster energy
from above (see the introduction in Section . To obtain the required upper bound
we need to show that cutting the ground states of the subsystems leads to an
exponentially small increase in the expectation value of the intercluster energy.
Therefore we need a suitable estimate of the so-called localization error. Note that
in contrast to the nonrelativistic kinetic energy operator, the pesudo-relativistic
operator is not local. Consequently the localization error is non-zero everywhere,
including the regions where derivatives of the cutoff functions vanish. Of course,
there exist several estimates for the localization error of the pseudo-relativistic
kinetic energy. However none of them are precise enough for the proof of the van
der Waals-London law. The main difference between the bound for the localization
error given below in Theorem and most of the previously known results (see
for example [14, 24] 25 26] 28]) is, that the localization error is confined to a
region which is close to the support of the derivatives of the cutoff functions with
a remainder which decays exponentially with the distance to the support of the
derivatives of the cutoff functions. A similar bound was given in [36], however, our
bound is simpler, with a simpler proof, and more suitable for our application.

Take any Lipschitz continuous cut—off functions wg, w1, ws on R3 and assume
that 212:0 wi(2)? = 1. We will choose them later such that wy, respectively ws,
localizes near the nucleus at X7, respectively Xs. Then

N 2 2 N
=X w?) = 3 TTw )
j=1 1=0 l1,...,In=0j=1
- ¥ ( I witz) [T welzs) I] wo(zk))2 (3.1)
(Co,C1,C2)EDE,  i€Cy jeCs kECo

gathering the indices with the same [; into clusters C; = {j =1,... ,N: [; =1}, 1 =
0, 1,2, which form a partition of {1,..., N}. We also denote by D%; the collection of
decompositions 8 = (Cp,C1,C2) of {1,---, N} into three clusters (Cy,C1,Cs), with
CeNC = 0 for all kK # [ and Uizock = {1,---,N}. In this way the cluster Cy
contains particles far from both nuclei while clusters C; and C; contain electrons
localized near X; and Xs, respectively.

For z € R*"N and 8 = (Cy,C1,Cs) we define a family of bounded Lipschitz
continuous cutoff functions Jz € Lip(R3V;[0,1]) by

Ta(x) = [T wies) [T walz;) T wolzr)- (3.2)
1€Cq jGCQ keCo
Because of (3.1)) these functions form a partition of unity, i.e., for all z € R3Y
> @) =1 (3.3)

BED3,
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A convenient choice of cut—off functions wy is as follows: Let y be given by x(t) = 1
for 0 <t <1, x(t) =cos (Z(t—1)) for 1 <t <2 and x(¢t) =0 for ¢ > 2. This is a

Lipschitz continuous function and /1 — x2 is also Lipschitz continuous.
Given positions X7, X5 of the two nuclei define for z € R?

wi(2) = X ("RX>

ual) = x (257 (3.4

z) = \/1 —wi(z) —wi(z).

Note that under the condition 4R < | X3 — X;]|, we have wijwy = 0, hence wy =
V1—w? —w3 =+/1—w}/1—w?is also Lipschitz continuous.

The localization error for some state 1» € H'/2(R3Y) and the partition of unity
defined by the functions Jg € Lip(R3*Y;[0,1]) is given by

LWL = > (Ja, HIg) — (i, H). (3.5)
BED3,
For z € R? we set
Or(2) := 1ir/2,5r/2)(|2]) (3.6)

and for z € R3" we define
@17]‘,3(37) = @R(xj — )(1)7 G)QJ‘,R(J}) = @R(Z‘j — XQ). (37)

and

N N
@LR = Z @1,j7R, @27}% = Z @1,j7R , Orp= @LR + GZ,R (3.8)
j=1 j=1
which count the number of electrons in an annulus around the nuclei at X7 or Xs,
at least, when R < 2|X; — X;|/5, when there is no overlap of the two annular
regions. With this, we can formulate our bound on the localization error.

Theorem 3.1 (N electron localization error estimate). There exists C > 0 such
that for any v € H'/?(R3*N) we have

£l < o (0, 0me) + e ) (39)

for all0 < R < |Xy— X1]/4, where the constant C depends only on N, the number
of electrons.

For the proof of this theorem we need the following result.

Proposition 3.2. Let wg,wy,ws be as defined in (3.4). Then there exists a con-
stant C < 00, such that for all 0 < R < |Xo — X1|/4 and all h € H'/?(R3)
2
| (wlh, T1w1h> — <h, T1h>|
1=0 (3.10)

C _
< =5 (|| (10 R (= X0)RIP + [1©n(- = Xa)l2) + e~ /4|n))?)

Proof. Note that w; and y/1 — w? are both bounded Lipschitz continuous functions
with Lipschitz constants R~!. Lemma shows that all the terms in the lLh.s.
of @ are well-defined. According to Lemma and choosing d = R/2 in
Lemma [C.8 we have

(h,T1,h) = (wih, Tywh) + <Mh Tiy\/1 - w%h> + errory (3.11)




with
lerror | < = (||@R( — XDRJ? + e/ n)12), (3.12)

with a slight abuse of notatlon for © (compared to Lemma |C.8)).
Iterating this for h = /1 — w?h € HY/?(R?) and the cutoff function wy, we get

(h, T, h) = (wah, Tywsh) + <\/ 1—wh, Ty\/1 — w%h> + errory (3.13)
with
ferrors| < 5 (IO( — Xa)RIP” + ¢~ /4 1?)
ﬁ(n@fc(- — Xo)h2 4 ¢ F/4n)2)
since |h| < |h|. Moreover, since supp(w;) N supp(ws) = § we find
wo/1 — wy = wo,
hence wgﬁ = woh and
wl —ud)h = /(1 wd)(1 —w})h = woh.
So from (3.11) and ( we get

|(w1h,T1w1h> + (wgh, Trwah) + (woh, Tywoh) — <h7T1h>’ = |error1 + err0r2|

C J—
< > (IOr( = X)hI + [On(- = X)h|? +e ¥4 n|2) O

Remark 3.3. Without much change in notation, the above proof easily applies to
an arbitrary number of nuclei at positions X1, ..., Xy for all0 < R < ming | X, —
Xi|/4.

Proof of Theorem[3.1 The Coulomb potential, as a multiplicative operator, com-
mutes with the functions Jg. The operator T, only acts in the m-th particle,
meaning that it commutes with functions w;(z;) for I = 0,1,2 and j # m and we
have

N 2
‘CWJ] = Z <Z<wl(xm)w7mel("Em)w> - <¢ame>> . (315)

1=0
Applying Proposition on the r.h.s. of (3.15) yields the result, since (0 ; r)* =
Oy ;g for k =1,2. To see (3.15) note

m=1

N
Ll = 37 U, TIgw) — (6. T6) = 30 (S0 (s, Tdpw) = (0, Tt))
BeDY, m=1 geD3,

Givenm € {1,..., N} and a cluster decomposition 3 = (Co, C1,C2) let 5 =C;\{m},
j=0,1,2. Then ﬁ (Co, C1,Cs) forms a cluster decomposition of {1,....N}\{m},
i.e., N — 1 particles. Furthermore, let | be uniquely determided by C 75 Cy, i.e, the
particle m was removed from the cluster C;, and denote the corresponding cluster
decompositions by ;. Define Jz, (Tn) for Ty = (21, -+, Tin—1, Tint1,-- -, IN) €
R3WN=1) similarly as Jg in (3.1). Then Ja(z) = J5,(Zm)wi () and since Ty, acts
only on the m-th particle, one has

<J,3w’T Jﬂw _<J~ wl(xm)¢7 ('%m)wl(mm)w>
< U}l xm)wv mwl( )1/)>
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Thus

BEDY, By

S ot Tdg) = 30 S0 T3 @2 (), T ()0
=0

[V

(Wi (X )V, Ty wi (xm)V)

[}

since, by the same argument as for (3.3), we also have } 5 Jj3 (Zm)? = 1. This

implies (3.15]). O

Remark 3.4. With just minor changes in notation, the above proof can be easily
adapted to cluster decomposition with an arbitrary number of clusters. In particular,
this allows for an arbitrary finite number of nuclei.

4. DIATOMIC MOLECULES

4.1. Lower bound. Let ¢ € H* with [[¢]| = 1 and a1, as defined in (1.21) and
(1.22). We have to show that there exists a constant 0 < C' < co such that

o a1 a9 C
(s (H = 1)) > 55~ T~ T (4.1)

We decompose an arbitrary state ¥ € H® with respect to the partition of unity
given by Jz defined in (3.2) according to the cluster decompositions in D3; to get

(W (H = p®)) = Y (Jpth, (H = ) Tptb) = L[Y] (4.2)

BED3,

where L[] is the localization error defined in (3.5). By Theorem [3.1| there exists a
constant 0 < C' < oo such that

C _
— L[] =~ (. Or) + e V). (43)
where O p and O p are defined in (3.8]). Let
c
L) =i, (H = p*)J5t) = 5 (s OnTav) + e 4 Jpw)2) . (44)
We will choose R = Rp = |D|Z with D = X5 — X4, so that for all large enough
separations |D| of the nuclei we have R < | X3 — X7|/4 and, in addition, that the

support of O, is far from the nuclei at X; and X». According to (3.3) we have
9= > [ Js¢l® and [©F popl* = > |OF g s> k=12 (4.5)

BeD3, BeDY,
and from (4.2)),(4.3)) and (4.4)) we get
(W, (H = p®)) > > LLTsy). (4.6)
BEDS,

Slightly abusing notation, we say 8 = (0,C1,C2) € D if $C; = Z; and {Cy = Zo
From (4.6) we have

Yo Lls¥l= Y Llstl+ > LlJs¥l. (4.7)

BeDY, BeD BeD3\Dt

We start with estimating the second sum in the r.h.s. of (4.7).
18



For B = (Cy,C1,C2) € D3, we set

o —e ZQ e2
b= ¥ ERt Y e S wa

i€CoUCT JECHUC i€Cy
Jec (4.8)
+ Z 622122
Tp — T; Xo— X
& o wl XX
1€C1UCo

the sum of Coulomb interactions between particles belonging to different subsystems
and let
Hg:=H — Ig. (4.9)

Then we can write
(Jph, (H — pu*)Jpap) = (Jptp, (Hg — p*)Jpp) + (Jpv, I Jp1)). (4.10)

4.1.1. Non-neutral decompositions. If 5 is a non-neutral cluster decomposition, i.e.
B € D3\ D, on the support of the function Jg1), the distances between a particle
in subsystem 1 to a particle in subsystem 2 grows in |D|. The same is true for an
electron in Cy and both of the nuclei.

Hence, since the interaction is small when the clusters are far apart, there exists

gip| > 0 with e pj —— 0 such that
|D|—o0

(T, IgJph) = —epyl|Jaeb |- (4.11)

As the next step, we find that for 3 € D3; \ D, for some § > 0 independent of
and |D| we have

(Jp, (Hp — p) Jgp) = 8| 0| (4.12)
For Cy(8) = 0 the inequality follows from Condition 1) in Theorem If
Co(B) # 0, the inequality follows from the fact that for all irreducible representations
of Sy, Hamiltonians of neutral atoms have discrete eigenvalues at the bottom of

their spectrum, see Theorem [B-I] Removing an electron will increase the energy of
the system, according to Theorem- Combining (4.11)) and ( - 4.12)) yields

%
LLJs] > (6= ep) [ Jawll* - (<Jﬁw,eRJﬁw>+eR/‘*nJﬂwn) (4.13)

choosing R = |D|*/* and |D| blg enough. We can now begin to estimate the
functionals L[Jzv] for B € D

4.1.2. Neutral decompositions. Let 8 € D, which implies 1C; = Z; and 1Cy = Z
For this g and ¢, € H* recall that the weighted bilinear form was defined as

(.01 = (o, (Hp — p)0) (4.14)

and the corresponding semi—norm

1117 = (¥, ) (4.15)
where Hy was defined in (L17). Let Wg C H® be the ground state space of f{g‘
corresponding to u®. Note that Wg # () by Theorem We project the function
UpJgyp onto the space Wg‘ with respect to the standard L?(R3M)-inner product
where Ug was defined in . For some v; € C with |y;| < 1 and ¢ € Wg with
[6]] =1 we get
Us g = o+ G. (4.16)
As the next step we project G in the sense of the bilinear form (-,-); consecutively
onto the functions

bo = (Hg — p®) "L fagp (4.17)
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and
¢3:= (Hp — p*) " f30, (4.18)
where f5 is defined in (1.18) and f3 in (1.19). We will prove in Lemma that

the function ¢, because of its rotational symmetry, is orthogonal to fo¢ and f3¢
with respect to the standard L?-inner product, which ensures that the functions
¢2 and ¢z are well defined. Furthermore we show in Corollary [E4] that ¢, ¢a,
¢3 are mututally orthogonal with respect to the bilinear form (-,-);. After this
decomposition we have

Jah = Uz (¢ + |D|*ya¢2 + | D]~ y3s + g), (4.19)
where

(9,9) = (9, d2)1 = (g, ¢3)1 = 0. (4.20)

By definition of the functions ¢, ¢o, ¢3, and g and their orthogonality with respect
to (-,-)1 we have

(Jpib, (Hg — p®) ) = U Jp, UsHaU — p*)Us Jp1h)
= (UsJp, (Hg — p™)Us Jg1)) (4.21)

|72|2 |73|2
= D[S pall + DF lpall + llgllF-

Now we turn to the term with the intercluster interaction Iz. In Lemma we
prove that for any J > 0 there exist C' > 0 such that for | D| sufficiently big

(Js, I5J50) = 2|D|~° Rem17z]|62(7 + 2| D|~° Re 750l

il + el +hsl? 5 (4.22)
Summing (4.21]) and (4.22)) we arrive at
a 2l* + 2Re 72 [y3l” + 2Re s
o, (= i) T} > D2 g - D0 g
P + [of? + ol 2
1 2 3
-C o —3llgll* +Ilgl1?-
D]

Let  be the distance between ground state energy and the next higher eigenvalue
of Hg. By Theorem H we have xk > 0 and, since g is orthogonal to Wy, also

Igll? = (g, (Hs — u®)g) > kllgl|*>. Taking & < & we get

K
lgll? = ollgl* > 5”9\\2- (4.24)
Note that
2l? + 2Rev17z = | +72l* — I (4.25)
and
32 + 2Re 195 = | +3l* — I [*. (4.26)
Summing the bound for (Jg, (H — u®)Jz1)) yields
o =yl + v+l I+ I+ sl
ClnlP +hel* +hsl?) | &y 2
o + 2ol

(4.27)
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We now minimize the expression on the r.h.s. of (4.27)) with respect to v2 and 3.
We aim to show that for |D| large enough, minimization in ~, yields

2 2
Y1+ 2 Y2 4Cm
el 12 ool ACT|

— . 4.28
Dp “Ipm =~ o (4:25)
Assume that |y2| > 2|y1], then
1+ Clyl* _ gl Clya/?
4.29
|D|6 H(b Hl |D|10 |D|6 H(b ||1 ‘D|1O ( )
which is positive for large |D)|.
Whereas for |y2| < 2|71| we have
|’71 + 72|? Clyl? ACIm
> — 4.
|D|6 ||¢2||1 |D|10 = ‘D‘IO ( 30)

which is obviously smaller than the expression on the r.h.s. of (4.29). Minimizing
similarly in vs, for |D| large enough we get

I +sl? + 7/ sl — Clys|? > _4C|W’1|2
~[pp " ppe = T po

Plugging (4.30) and (4.31)) into (4.27), taking into account that |y1|? < ||Jg2||? we

arrive at

(4.31)

<J w (H— O‘)J w> > _”(Z)QH% _ ||¢3||% _C|D|—10 ||J ,(/)H2_|_E‘| ||2 (4 32)
SN T T Tl

Now we turn to the estimate of the term coming from the localization error, that
is,

o (W, O s + e g0?) (43)

The second term of this expression is exponentially small. For the first term we
have

(T, OnTsv) < 203 (no+ 2ign+ Tios)|| + 210 uzg1. (430

|DJ? [DI*
The operator © counts the expected number of particles in an annular region
close to either of the two nuclei. According to Corollary 2.4 ¢, ¢2, and ¢35 are
exponentially decaying, for normalized ¢ we get

(Jst, ORTst) < 20O US| + O(e™ /). (4.35)
Thus
1 _ 1 « _
=5 (5w, OrTv) + P 10117) S = (IORUsgl* + O™ /%) .
1 2 —R/4 '
< =5 (Nlgl? + 0 /) .

Substituting this into (4.4)), together with the estimate for (Jgv, (H — p*)Jge) in
[32) we get
ay

L{Jgy] = (_|D|6 - |D|8 —C|D|~ 10) B2 +( CNR?+ )HQHQ O(eR/Y),

(4.37)
Again choosing R = |D|?/* and |D| sufficiently large, the second to last term is
positive and we arrive at

ay

I S PR 10 2 —|DJ3/2 /4
LUs0] 2 (=i = 1 = €D Il - 0P (aas)
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This inequality is true for any 8 € D%. Recall from ([4.6)) the bound
(W, (H = p™)) > > LIJgy]. (4.39)

BEDY,
By (4.13)) for all 8 € D3, \ D
L{Jgy] = 0. (4.40)
Since the number of cluster decompositions 5 € D is finite and Y- 5 pa: [ Js90]1? <

I4]12 = 1, gathering (6), (I-13), and ([E38) we obtain

(W (H = poygy > -4 22 C (4.41)

~[DI®[D]E - [DP

for some constant C' < oo and all large enough |D].

4.2. Upper bound. We aim to construct a trial function g € H* with ||| =1

such that N
ay ag

H— 1)) < -2 _ _
(o, (H =)o) < =155 ~ TpF ~ Do

where a1 and as are defined in ((1.21)) and (1.22).

Now we fiz some neutral cluster decomposition 3 € D* and denote by Wg the

(4.42)

ground state space of ﬁg Using the permutation symmetry of H s we have
wg= @ PYOwg, (4.43)
o’ (B)<a
thus there is at least one a*(f8) < « such that there exists ¢ € P"*('B)Wg that

realises the maxima a1 and ay with ||¢|| = 1. For such a ¢ € PO‘*('B)WE‘ we set

pe) "2 (Hg— ua>—1f3¢>

do =3 (- (Hs —

3 1
D] D] i)
— U3 (6 — P2 o3 )
g |DIP [D]*”
by definition of ¢5 and ¢3 in (4.17)) and (4.18). With P* being the projection onto
H* and the cutoff function Jz defined in (3.2), we define the trial state as
P Jg)
o 1= I8%0_ (4.45)
[P Jgibo|
4.2.1. As a first step, we will show
Jstbo, (H — u®)J gt
(oo (H — o) = T80 L = 1%) Tgto). (4.46)

1750l
Let x&_, denote the character of the element 7! € Sy in the representation a. For

Tr defined in ([1.4)), and |a| denoting the dimension of the irreducible representation
a, by [21, p. 113] the projection operator onto H® is given by

P = % > Xe T (4.47)
TeESN
Following [43] we write the r.h.s. of as two sums. In the first sum we col-
lect the permutations which only permute particles within the subsystems of 5.
The second sum contains permutation which change at least one pair of particles
belonging to different subsystems of 5. We get

o la o |ov| o
P = > X Tet > XEaTs (4.48)
TESR T€SN\Sg
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For o/(3) < a we set
Z1!ZQ! ‘Oél

9 ’ = . 4.49
@ =R (B (449
Note that for 7 € Sp
o= > X ® (4.50)
o (B)<a
and
/ ’
po(B) — o/ (B)] a’(B) . 451
7020 ﬂ;ﬁxﬂ_l 7. (4.51)
Let us define )
Pfi= Y O PP (4.52)
o' (B)<a
and
o ._ o] o
PQ = ﬁ Z Xﬂ__17;-. (453)
T€SN\Sp
Then following [43] we rewrite (4.48)) as
P* = PX+ Py (4.54)

To prove ([@.46)) we first compute || P*Jg)||2. Since (P*)? = P, by ([@.54)) we have
1P Tgthol* = ((PT* + ) Jato, Jstho)
/ ~ ~ « ~ ~
= Y o) (PP Jgto, Jyto) + 'N—! > X1 (TaTsibo, Jsvo).

o’ (B)=<a " meSn\Ss

(4.55)

The function Jg is invariant under permutations in Sg, thus Jﬁlﬁo belongs to the

same symmetry type o*(3) as the function ¢. The projectors P (B are mutually
orthogonal for different o/(8). Hence for the first term on the r.h.s. of (4.55) we
get

D> o) (PY P Jsto, Tatho) = O ()| a0l (4.56)

o' (B)<a

The last sum on the r.h.s. of (4.55)) is zero, as the functions ﬁJm@o and ngfzo are
supported on different domains (for details see Appendix [F]). Thus

1P Jat)0 |2 = O ()| Tp¢0l |- (4.57)

Note that (4.49)) implies 0,+ gy # 0, which yields, in particular, PaJﬁ’lZ)O #0.
As the next step we would like to show

(P Jgtho, (H = p)Jgtbo) = O () (Jptbo, (H — ) Jgtbo). (4.58)
To this end we split P as in (4.54) and get

(P Jstho, (H = 1i*) Jgtho)

= (P Jgtho, (H — p)Jatbo) + (Ps Jgtho, (H — ) Jatbo).
Let us show that the second term on the r.h.s. of (4.59)) is zero. Since for all 7 € Sp,
7;\—;]51210 and [, 5J51ﬁ0 have disjoint support

(4.59)

(P Jgtbo, 15 Jgibo) = 0. (4.60)
Furthermore Hpg is the sum of two operators
Hg =UsHZ Us + U HIUp. (4.61)

The first operator acts only on particles in C; and the second operator acts only
on particles in Cy. The localization function Jg is supported in the region, where
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particles in C; are located near X; and particles in Co are near X with distances
to the corresponding nucleus X; and X5 much smaller than |D| = |X; — X5|. We

can apply Lemma [F-]] to see

(Ps' Jgtbo, U HE Us Tgth) = 0 (4.62)
and

(Ps Jgtbo, U5 HE?Us Jg1bo) = 0 (4.63)
since the respective functions have disjoint support (see Appendix . Equalities
[£60), (E62) and (E63) imply

(P§' T, (H — pu®)Jgibg) = 0. (4.64)
Now we turn to the first term on the r.h.s. of (4.59)). The operators (Hz — u®) and
I are invariant under permutations in Sg, thus (H — p®)Jz%o belongs to the rep-

resentation «*(5). By orthogonality of functions belonging to different irreducible
representations, we get

(PP Jgtho, (H — ) Jgtbo) = Oa-(g)(Jatbo, (H — p®)Jtbo). (4.65)
This proves (4.46).
4.2.2.  Our next goal is to estimate
(Jatho, (H — u®)Jgto). (4.66)

We substitute H = Hg + I3 to get

(Jgtbo, (H — p®)Jgtbo) = (Jgtho, (Hg — p*)Jgtho) + (Jatbo, IsJgtho).  (4.67)
For the first term on the r.h.s. of we write
(Jgtho, (Hg — p®) Jatho)
) ) ) . O (4.68)

where E[l&o] is the localization error coming from the partition of unity with cutoff

functions Jg and /1 — JE. Similar to Theorem H this can be estimated as

1£5150ll < 5 (o, Onto) + e~/ ol). (169

By Propositionthe function 1[)0 decays exponentially. Choosing R = |D|3/4 then
implies
~ 1
|Laltol] = O(e™1P1%). (4.70)
for all large enough |D|. The operator (Hg — %) is semi—bounded from below, thus
for some constant C' > 0 we get

(\J1 = J3do, (Hp — p®)1 /1 = T2io) > —C||\/1 = J3o|* = —Ce™IPI?  (4.71)

taking into account exponential decay of @[AJO. This together with (4.68]) yields

~ ~ ~ N 1
(Jstho, (Hs — u™)Jgtho) < (o, (Hp — u®)ho) + Ce™ P17 (4.72)
Once again, by exponential decay of 1[)0
~ ~ 1
[Tg0l|* = lIdolI* + O(e™1P1%) (4.73)
and since ¢ is orthogonal to ¢2 and ¢3, we get from the definition (4.44)
loll® = 1+ O(ID|~°). (4.74)
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Combining (4.72)), (4.73)) and (4.74) yields

17530l = (Tstbo, (Hg — u®)Jgtbo) = (o, (Hg — p)dbo) (1 + O(ID|~°)
= (lg21I3 + g5l (1 + O(IDI7%)).

(4.75)

Applying in we get
(o, (H — u*)o) = ((Jgtbo, IsJgtho) + ll62]1F + llo5]17) (1 +O(DI7%)).  (4.76)

Similar to the estimates done in Lemma [D.5] with simplifications coming from the
fact that we have 73 =1, 79 = v3 = —1 and g = 0, we obtain

(Jatbo, IgTptbo) = —2||dallf — 2]l 63l + O(ID| ) (4.77)
which completes the proof of Theorem [I.2}

5. MULTI-ATOMIC CASE

The proof of Theorem is very similar to the proof of Theorem We start
with the lower bound. Define cluster decompositions 8a; = (Co, - - ,Cpr) into M +1
clusters, such that particles which are far from all nuclei belong to the subsystem
Co. As the next step we define the cutoff functions Jg,, corresponding to the cluster
decompositions ;. The estimate of the localization error is not different from the
diatomic case.

Similar to the proof of Theorem one can show that if 8 is not a decompo-
sition into M neutral atoms, for ¢ € H* we have the inequality

(Jap 0, (H — 1) 50, 00) > 0.

Now we turn to the estimate of the quadratic form (Jg,, ¢, (H — u®)Js,,¢) for
decompositions By corresponding to M neutral atoms (c.f. Section |4.1.2)).

We defined I~{5M,V~V§M and functions fQ(k’l), f:,fk’l) in equations (|1.29)- (1.36). Let
Ugs,, be the shift operator defined analogous to Ug in (1.16]). Similar to (4.19) we

write

Tt = Uz, (16 +d " ya¢s + d 303 + g). (5.1)
where ¢ € Wg =~ and the functions ¢, ¢3 are given by
¢2 = (Hgy — ui) ™ D IDual 156 (5.2)
k<l
and
ds = (Hgy, — ui) ™ D IDial 4156, (53)
k<l

Note that by the same reasons as in the diatomic case we have

(b, p2) = (b, P2)1 = (b, P3) = (D, P3)1 = (D2, P3) = (P2, P3)1 = 0. (5.4)

With the above definitions we get the same epression as for the expected
value of (Hg,, — 13,,)-

We now estimate the expectation value of the interaction Ig,, of particles belong-
ing to dofferent clusters (Jg,, ¥, I, J3,,%). Our goal is to generalize the estimate
, which is proven in Lemma to the case of M atoms. Let xg,, be the
characteristic function of the support of Jg,, and let

IEM = IBMXBJW‘ (5.5)
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Note that
<JﬂM ¢’IBAI JBM 1/J> = <J5M P, IEM JBIW "/}>

= ml* U, ¢ 15, U5, 0) + %%M 2, 15, Us,, @)
i %(U}M s, 15, Us, &) + |126| (Usy, 02, 15, Us,, 02)
2R s o 15, U0+ 0 00 1,5 00) (5)
2R U, 0, T8, U ) o 2 U0, 18,15, 02)
2Rens

+ d4 <UEM 9 IEJ\IZ/IE]M ¢3> + <uﬁM 9, IgMuﬁM g>

= B{V[ + Bé\/[ + Bé\/[ + <uEMg’ IEI\/IZ/{EM9>7
where BM contains the first three terms of the r.h.s. of (5.6), B3! the second triple
and B} third triple on the r.h.s. of (5.6). We define analogously to the diatomic
case the functions fik’l), fs(k’l), see Appendix [D| Let x € R3" and | - | denote the
standard norm in this space. On the support of Jg,, we have |z| < C(Dod)? with

Dy = miny; |Dg,| and some constant C. We can expand IgM as a Taylor series for
large d arriving at

k1) (k1) (k1) (k1)
|Io _Z uBJ\Jf2 _Z uﬁMfS _Z Us\ Ta _Z UBMfS } |JU\6
2 Py 2|Dk’l|3d3 oy 2|Dk’l|4d4 Py 2|Dk’l‘5d5 oy 2|Dk$l|6d6 -
(5.7)
As the first step, we note that for BM, similar to Proposition we have,
2Re’71’Y2 QRe’Yl’Ys |71|2 + [yl + sl
B > o217 + [ pall? — : (5.8)

410
To prove we substitute into the expression for I, in By and follow
the same steps as in the proof of Proposition replacing orthogonality relations
from Lemma with the following proposition.

Proposition 5.1. Let Condition 2°) of Theorem be fulfilled. Then for n,m =
2,3,4,5, n#m and all k, 1 =1,--- M, k # 1 we have

(Sm, fFV ) =0 (5.9)

where

_ (k1)
Om = (Hp,, — i)t Z fm_©

(5.10)
oy 2|Dk,l|m+l

Proof. By Condition 2’), the state ¢ belongs to the irreducible representation of the

SO(3) group corresponding to the degree ¢ = 0. The functions f,(lk’l) belong to the
irreducible representation of the SO(3) group corresponding to the degree £ = n,

see the proof of Lemma Consequently, ¢,, and fﬁk’l)d) are orthogonal as two
functions belonging to different irreducible representations of the SO(3) group. O

For B we have
£ a \—1 gkl L,n) /1 a V-1 £(n,k
py sy s i) 00 £ (Hyyy — )" ")

k#£l n.k|®
I#£n,n#k (5.11)

_ C|71\2 + [72l?
(Dod)*0 -
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To prove (5.11]) we proceed similar to the proof of Proposition except the remark
after (D.50), which says that for M = 2 we have (¢2, fad2) = 0. For M > 3 the

argument of Lemma [E.7] yields

(Haoy = 1) 5™ 0, 37 (Hpy — i)™ f30) =0 (5.12)
only if at least one of the indices m,m’, k,k’,1,1' appears an even number of times.
Consequently the terms with each of the indices m,m’, k, k’,1,I’ coming twice con-
tribute to the estimate of B!,

The bound for B} is not different from the one given in Proposition for
M =2.
To get the upper bound, analogous to the diatomic case let agM < « such that

there is a function ¢ € P WE“M with ||¢|| = 1 that realises the maxima a}/ and
M. We set
A y (k 1) f (k l)
o = MEM (¢ - (HﬁM Z |D |3 BM 2 5 13)
k<t k<l
and take as a trial function
P Jg, 1)
o i= %leo, (5.14)
”P JﬂM wOH

and follow the same steps as in the proof of Theorem [I.2}

APPENDIX A. THE HVZ THEOREM

In Appendix [A] and [B] we prove two fundamental facts regarding the spectra of
a pseudo-relativistic Hamiltonian of an atom or positive ion, which are of crucial
importance for Theorems [I.2] and [I.4}

In Appendix [A] we prove a HVZ-type theorem, which gives the location of the
essential spectrum for an arbitrary type of permutational symmetry. In Appendix
[B] we prove that Hamiltonians of pseudo-relativistic atoms and positive ions for
any type of permutational symmetry have discrete eigenvalues at the bottom of the
spectrum. Both results were announced earlier without proof by G. Zhislin in [41].
For the convenience of the reader, we give complete proofs in these appendices.
In the nonrelativistic case both results are well-known. The first one, which is
called HVZ theorem (see [34]), was first proven without symmetry considerations
in 1960 by G. Zhislin [40], and later generalized by Sigalov and Zhislin to the case
of subspaces with fixed permutational symmetry [43]. The second one, which is
known as Zhislin’s theorem was proven in the same publications [40} 43]. Nice
discussions of Zhislin’s method are given in [23], including the extension to particle
symmetries, and Chapter XIIL.5 of [34], which discusses also the proofs of van
Winter and Hunziker and where one can find further references for extensions of
the methods, including symmetry considerations, in the notes to Chapter XIIL.5.

For multiparticle Schrédinger operators with pseudo-relativistic kinetic energy
the HVZ-type theorem was proven earlier in [25], where systems with finite particle
masses and fixed total momentum were considered. The result needed for Theo-
rems 1.2 and [1.4]is different from [25], because on one hand we have a particle with
infinite mass, the nuclei, which makes the situation easier. On the other hand we
need to include the permutational symmetry.

We follow the ideas in the work by Sigalov and Zhislin [42], with necessary mod-
ifications related to the fact that the pseudo-relativistic kinetic energy operator is
non-local, which also requires a different estimate of the localization error. Not only
for convenience of the reader but also because some of the necessary modification
are not at all obvious, we give complete proofs.
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For any k € N and Ze? < % we set

k k o2y
HY =" T; -
. |4
1=1 =1

acting on L?(R®), where T} denotes the pseudo-relativistic kinetic energy opera-
tor for the i-th electron. Let aj be an irreducible representation of the group of
permutations of k electrons S;. We set

po* = inf o (HZ P*). (A.2)

Denote by 0‘%—1 < «y an irreducible representation of S;_; induced by ajp. We
define

(A1)

—x
1<z<]<k Li 7|

ppty = min inf o(HF | PY-1). (A.3)

!
ap _<ag

Theorem A.l. For subcritical nucleus charge Ze? < % and for any irreducible
representation oy of Sk,
Tess (HE PY*) = [u* |, +00).
Proof. The proof is split into two parts.
A.1.1. "Easy part”: Let us first show that
Cess(HEPH) 2 [, +00), (A1)

To do so, for arbitrary A > u*,, we give the construction of a Weyl sequence
(m)men C P L2(R3*) with [|¢hy,|| = 1, thm — 0 and

lim [|(HZ = A\l = 0.
m— o0
Let af_; < ay, be an irreducible representation of Sj_; such that
inf o(HE_ Po=1) = 0% .
Since C§°(R3* 1) is dense in the domain of HZ | P**-1, for any ¢ > 0 there exists

a function ¢, € P*-1C5°(R3*~1) with ||¢.|| = 1 such that

I(HZ y — ugt)oe|® < g (A.5)
Let R. be such that
supp(¢:) C {z = (w1, ,wx—1) € R** Vg, <R, i=1,--- k—1}. (A.6)

The spectrum of T}, is the positive real axis and C§°(R?) is dense in the domain of
Ty.. Thus for any € > 0 there exists f(¢) € C(R?) with ||f(5)|| =1 such that

17— - e 7O < &

Let us consider a decreasing sequence €, — 0 and the functions ¢. ,, f (em) chosen
accordingly as described above. For each of the ¢, we will pick a vector A4,, € R?
and define the shifted function

fan, e (@) = fE) (2 + Ay).

The sequence of shifts Ay, is chosen such that supp(fa,,.c,,) N B2r., =0, and such
that

m—1
supp (fa,.e,,) N ( U supp (fAz,sz)) = (.
=1

Because the kinetic energy operator is translation invariant we get

17 = O = i ) e | < 55 (A7)
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We set

m (@) = @e,, (71, Tp-1) fa, e (Th) (A.8)
and let
Ym(x) := P @, (x). (A.9)
Similar to the proof in Section we have
me”Q = Hpakso’m«”? = 9a2—1||¢5mfAm’5m||27 (A]'O)

where 0,: > 0 is a constant depending on aj_; and ay only (see Section .
By choice of A,,, the functions 1, have disjoint support and thus 1, — 0.

We will now estimate ||(HZ — A\)4,,||. The Hamiltonian H# commutes with the
projection operator P+, and since ||[P*:|| < 1 we get

I(HE = NP ol |* = 1P (HE = Nml|* < I(HE = Vel
We split (HZ — M) into three parts

2 2Z
HE = X) = (HE . — 5% ) + (T — (A — 58 ) + L E———
( k ) ( k—1 :u’k;—l) ( k ( :u]g—l)) (1;16 ‘xi _xkr‘ |$k:|)
On the support of ¢, we have
2
2 2
Z m
D e g (A.11)
1<i<k i — x| 9
Together with (A.5)) and (A.7) this yields
I(HE = NP |* < em. (A12)

This shows that A € oy (HZ P**), and since A € [ug* |, +00) was chosen arbitrarily
this proves the inclusion (A.4]).

A.1.2. "Hard part": We will show that
Jess(HkZPa"") C [pp*,, +00). (A.13)

We prove this inclusion by induction in k. For k£ = 1, the hydrogen-like case,
this is well-known. We fix an arbitrary ¥ < Z and assume that for any k' < k
is true. Take any \ € 0.s5(H kZ Per) and a corresponding Weyl sequence
(¥1)1en C P L2(R3F). Our aim is to show that

lim (g, HZ ) > i .
l—o00

By Weyl’s criterion this implies (A.13)).
Let ur € C*°(R?;[0,1]) such that

[ 1 if]z|<R
ur(2) = { 0 if[z] > 2R (A-14)
and for any C C {1, -+ ,k} we define
Fe(z) == HuR(xi) H V1= u%h(x)). (A.15)
ieC jéc
With this definition we have
Y =1 (A.16)
cC{t, -k}
Let C* :={1,--- , k}; observe that
k
supp (Fc) C ®B§Z}%.
i=1
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We apply a weakened form of Theorem [3.I] to estimate the localization error and
get

(1, H ) = (Fe-toy, HE Feht) + Y (Fethy, HY Feby) —
c#C

= (Fe-tp, HY Feetpy) + > (Fetbr, HE Feby) + O(R™2).
C#C*

For the first term on the r.h.s. of (A.17)) the definition of u®*, see (A.2]), implies
(Fe-tu, Hf Fehr) > p®* || Fe-u|®

(A.17)

an 5 o o ) (A.18)
= iy | Fe=bill® + (0 — pg® Dl Fe il
Let
Z _
HE =S T - §:|| §:|x_x| (A.19)
ieC ieC i i,j€C v J
1<J

For each summand of the second term on the r.h.s. of (A.17) we write

(Fetn, HiY o) = (Fepy, HE Febr) + > (Feuy, Ty Fedy)

ngC
, (A.20)
+ > (Feu, (

e
AW rer L
j¢c ¥
Each term in the second sum on the r.h.s. of 1) is non-negative. For the
[A.20

summands in the third term on the r.h.s. of (A.20), by construction of Fg, there
exists a constant C' > 0 such that

e?Z e? C
> (Fetr, (- m*‘Zﬁ) Fetr) > E”FCWHQ' (A.21)
X 7 T
j¢c
It is obvious that for any C C {1,--- , k} the function F¢ is invariant under permuta-

tions in S(C). This implies, that for 1 € P** L2(R3¥) the function Fg necessarily
has a symmetry corresponding to an induced representation a < ay, of S(C). Thus
for any C # C* we have

(Feyn, HE Fer) > e inf o (HE Poe)|| Fetpul|* > pit* || Fo|? (A.22)
Otc (6773

by the induction assumption, since HCZ Pac is unitarily equivalent to H{ P for

k' = #C and some oy < ay. Gathering (A.17)), (A.18) and (A.20)-(A.22) we get

that for some constant C' > 0 independent of [ € N we have
C

(v Hifin) > Z\\chznz =) | Fes il - . (A.23)

%,_/
=1

It remains to show that ||Fg-v]|? — 2%, 0. The operators Hy := Z \T; and HY
are semi—-bounded from below, thus there exists a constant ¢ > 0 such that (Hp+c)
and (HF + c) are positive operators. We write

Fethy = Fe- (Hj} 4 ¢) " (H + ¢). (A.24)

Firstly we claim that the sequence ((HZ —i—c)wl)leN
(¥1)1en is a Weyl sequence, (HZ — \)i; converges to zero in norm and

(H + )iy = (H{ = N+ (e + Ve
—_—

—0 —0

converges weakly to zero. Since



Our next goal is to show that the operator Fe« (HkZ +¢)~ ! is compact. We write

1

Fe-(HE +¢)™t = Fe- (Ho +¢) "3 (Ho + )5 (HZ + ¢) 5 (HZ +¢)7%.

Since (H kZ + c)_% is the inverse of a strictly positive operator, it is bounded. To
obtain a bound of (Hy + ¢)2 (HZ + ¢)~=. Let V be the sum of Coulomb potentials
in HkZ, such that

Hf = Hy+ V.
Since V is relative Hyp-bounded, there exist 1 > a > 0 and b > 0 such that for all
© € D(Hp) ND(V) we have
{0, V)| < alep, How) + blle*.
By this inequality, for all ¢ € D(Hy) we get
(¢, (Ho + )p) = (0, (Ho + V + ¢)p) — (¢, Vo)
< {0, (H? + ¢)¢) + alp, Hop) + bll¢]|*.
Since a < 1, this is equivalent to

1
1—a

—ac

2
gl

b
(o (Ho + 9) < —— (. (HE + ) + =
In particular, setting p = (HZ + ¢)~24) this yields
1
2

|(Ho +¢)2 (HZ + ¢)" 2|2 = (HZ + ¢)" 2%, (Ho + ¢)(HZ + ¢) " 2¢)

b—ac

1 _1
< mnwuu I(HE +¢) 2|

1-a
Together with boundedness of (HZ +¢)~2 this implies that (Ho+¢)z (HZ +¢)~2 is
bounded. Finally note that the operator Fe«(Hy + c)_% is compact, being a norm
limit of Hilbert-Schmidt operators

B, = Fe-(Hy + ¢) " 'x(Hy < n). (A.25)
Thus
| Fe-il|? = |[Fe- (Ho + €)% (Ho + )3 (HF +¢) "3 (HE + ¢) 3|2 = 0. (A.26)
Recall from inequality that

(o, HE ) > pges g + (™ — p ) | Feshu|)® — i

Picking R and I large yields A\ > pu;*,, where A\ was an arbitrary value in the
essential spectrum of HfPak. O

APPENDIX B. EXISTENCE OF A GROUND STATE FOR ATOMS AND POSITIVE IONS
Let H,f, Sk, and oy be the same as in Appendix |A|and let k£ < Z.

Theorem B.1. For any irreducible representation ay, of the group Sy, the operator
HkZPO‘k has a discrete eigenvalue at the bottom of its spectrum.

Proof of Theorem[B-1 We prove the theorem by induction in k = 1,---,Z. For

k =1 we have ) ) )
A A
lez,/pQ_‘_l_l_ieSpi_i.
lz| = 2 |z
Ze?
T el

2
The operator - has an infinite number of negative eigenvalues, which yields

the existence of a negative eigenvalue for HY. Note that for one electron we do not

have restrictions regarding its symmetry.
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For fixed but arbitrary & < Z, let us assume that for each irreducible represen-
tation a1 of the permutation group Sy_1, the operator H,f_lPo"“*1 has a ground
state.

We will construct a trial state 19 € P** H'Y2(R3*) for arbitrary irreducible
representation ay of Si such that

||1/’0H_2<1/)07HkZ¢0> < inerSS(HkZPak)-

Let af_; < aj, be an irreducible representation of S,_; such that

info(HZ [ P*-1) = min info(HZ [ P%-1)=: Rty (B.1)

!
Qg =ag

By the induction assumption, there exists a state ¢ € P*-1 H/2(R3(*=1)) with

(6, Hi18) = it |l (B.2)
Let f € C§°(R?) with || f||z> = 1 and supp(f) C {z € R3|1 < || < 2}, and let
fr(z) == R_%f(zR_l), (B.3)
so that ||fr]| = 1. For u € C*=(R3;[0,1]) with
1 ifz <
u(z) := { 0 if]s] > 1 (B.4)

we define the cutoff function

Crz(T1, + ,Tp—1) == kl:[lU(Iz R ) (B.5)
i=1

Z+1
This cutoff function localizes each particle ¢ = 1,--- |k — 1 in a ball of radius ZL;I
and is invariant under permutations in S;_;. We define
do(x) == (Crzd) (w1, wk—1) fr(T1) (B.6)
and the trial state )
Pk
o = o (B.7)
[[ P bo|
Following the same argument as in Section we have
(o, HE Prby) _ (o, HE o) (B.8)
[Pk 2 [[4ol[?
We split the Hamiltonian H kZ into three parts
2 2Z
HE =HE + T+ (> -T2, B.9
k k—1 k Z |xi_37k:| |$k| ( )

1<i<k
Using the exponential decay of the eigenfunction ¢, similar to (4.72)), we get
(Crz0 Hi-1Cr,20) = 1, |I9]° + O(e ™) (B.10)

for some constant ¢ > 0. Note that for zj € supp(fr) we have |zx| = (1 + 6)R for
some 6 € [0, 1] and by choice of (g, z, for x € supp(¢y) we get

62 62
- < [
PR e P DN Fp v _—
2k —1)(Z +1) '
= (Z+Z0+0)R
and e’z e’z
= OTOR (B.12)
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Using (B.11)) and (B.12), and k¥ < Z, we arrive at

e A S U kL)
(Sl — el ol T R(L+60)(Z + 20 4 6)
(B.13)
¢? €220

< .
= R(Z+Z0+0) R(+0)(Z+20+0)

The first term on the r.h.s. is increasing in # and the second term is non-positive,
which yields the bound

o 3 S = S0y < -l (B9

N i—zkl_W 27 +1)

Furthermore, for the particle & we have

(o, Tibo) = |Cr,z0|1* (fr, T fR)

2
p
< |I<r,2¢l1*(fr, = fr) (B.15)
c .
< <ol
Collecting (B.8)), (B.10]), (B.14) and (B.15), we get
(o, Hif P**4o) c e?
Ty T — - <t B.16
[Peedal? =M1t R T @z DR <M (310
for sufficiently large R. By Theorem we have
pt | = inf opes (HE PO*). (B.17)
So (B-16) shows that the discrete spectrum of HZ P below u{* | is not empty, in
particular a ground state of H kZ P> exists. U

APPENDIX C. COMMUTATOR BOUNDS VIA QUADRATIC FORMS

In this section we gather some auxiliary results, which are essential for the proof
of exponential decay of eigenfunctions of pseudo—relativistic operators and also to
give exponentially small error bounds for some of the error terms in the van der
Waals—London asymptotic. For non-relativistic Schrédinger operators exponen-
tial bounds for the decay of eigenfunctions at infinity are well understood since
the groundbreaking works of Slaggie and Wichmann for three-body systems [35],
Ahlrichs for atoms [3], O’Connor [33], Combes and Thomas [16], Deift, Hunziker,
Simon, and Vock [I7] for multi-particle systems, which culminated in the work of
Agmon [2]. Of course, O’Connors analytic method for proving exponential decay
for eigenfunctions also works, neglecting symmetry issues, for non—local operators
like v/p2+1 — 1 due to the analyticity of the corresponding symbol in a strip
{z € C3V 1 |3(2)| < &} for suitable § > 0. This was done by Nardini in [32], but
it does not allow to include the required symmetry of the eigenstates. Thus we de-
velop a variant of Agmon’s method, which is based on configuration space methods,
for multi—particle pseudo-relativistic Schréodinger operators, because it is invariant
under permutation of particles and easily allows to include particle symmetries.
However, due to the non-locality of the pseudo-relativistic operator /p? + 1 — 1,
this is considerably harder than in the non-relativistic case.

Our main tool is an extension of the localization error formula of Loss, Lieb,
and Yau in [28] in the spirit of [20], see Lemma below. Before we can state
it, we need to first investigate the behavior of H'/?(R%) under multiplication with
bounded Lipschitz continuous functions.
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Lemma C.1. Let ¢ : R* — C be a bounded Lipschitz continuous function. Then
for any f € HY?(RY) the product £f is also in H'/?(RY).

Remark C.2. That HY/?(R?) is invariant under multiplication with bounded C'*
functions, whose derivative is also bounded, is well known, see |26, Theorem 7.16].
That it is enough to have bounded Lipschitz functions, seems to be less appreci-
ated. As our proof shows, it is enough to assume that £ is bounded and ~y-Hdélder
continuous with Hélder constant 1/2 < ~ < 1.

Proof. Clearly, if € is bounded, then [|£f|| < ||€|loo]| f]]; sO it is enough to show that
¢f is in the domain of the fractional Laplacian |p|*/? = (=A)'/4. According to [26}
Theorem 7.12| the quadratic form of |p| is given by

_ 2
R4 xR

dt1
with c¢qg = 271:(((“%)32, and T" being the Gamma function. Hence

x xTr) — 2
o 2612 = (e lple) = o [[ EOTDERIO rgy e

R4 xR
Using
E@) (@) — EWFW) = (E@) — E@)F@) + ) (F(@) — F0)?
<20(@) — EWPIFWIR + 20 F @) — F5)P
inone has
ol 2er 5 [ €|d+1)||f( e dody + el | 'fwif'dxdy

Re xR R2 xR

(e
< / SWIE 41712 + I o211
xeRd |

With L the Llpschltz constant of &, we have
§(z) = &(y)| < min(Llz — y|, 2[[{]leo) -

/ |£ ‘2 mln L2|y|2a4”£”go) dy 5 L2||§Hgo
zE]Rfl y|d+1 U

Hence

by evaluating the integral in spherlcal coordinates. This shows
P2 £12 S L2EN I + NENZ Pl 2 £ 1% < oo
for all f € H'/?(R%), thus ¢f € H'Y/2(RY). O

Lemma C.3 (Commutation formula for the relativistic kinetic energy, one particle
case). For a bounded real-valued Lipschitz function &, T = y/p* +1—1, and any
function ¢ € H'/?(R®) we have

Re(€%¢, T) = (€p, TEp) — Le(p, 0) (C2)
where the quadratic form Le is given by
Ks(lz —yl) y\ _ Py
Leloop) = 3 [ TR Ew) - € eietn) dady ()
R3 xR3

where Ko is the modified Bessel function of order two.
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Remark C.4. An analogous formula, when 1 = Z]K:1 5]2 for a partition of unity,
was found by Michael Loss and used in [28] (see formula (3.6) in Theorem 9 in [28] ).
For our applications it is important to have (C.2)) in its full generality, however.

Proof. Note that L¢ (i, ) is well-defined for all ¢ € L%(R3), since ¢ is a bounded
Lipschitz continuous function, so £2¢ and £y are in Hl/z(]RS), due to Lemrna
So all terms in are well-defined. According to [26, Theorem 7.12] we have

K2 I(E _ 2 .
(. ] // y|2 lo(z) — ()P dedy (C.4)

for ¢ € H'/2(R3). By polarization, this extend to

1.19) = 1 [ S G e - stists(©5)
R3 xR3
for two functions f,g € H'/?(R?). Thus
Re(f%,Tw
i [ 2 ke (@) - @@ elo) - p))asdy (©O)
R3 xR3

For a,b € R and ¢,d € C one has the simple identity

Re ((a2c — b2d)(c — d)) — |ac — bd|* = —(a — b)* Re(ed) . (C.7)
Using (C.7) in (C.6) immediately yields (C.2) and (C.3)), since, by symmetry,
Le(p, @) is real. O

Lemma C.5 (Simple bound on the commutation error, one particle case). Assume
that € : R — R is Lipschitz. Then

3L2
Lelp. 0 < 5ol (C8)

where L¢ is the Lipschitz constant of .
Proof. Using the Lipschitz continuity, |£(x) — &(y)| < Le¢|z — y| for all z,y € R?, in

, we get

L)l < 5 / Ko(le — y)lp()llp(y) | dady
R3 xR3
2 L2
< o5 [[ Kalle = ublg (@) + o)) dedy = L5101 Dl el
R3 xR3

Since [;° Ky(r)r? dr = 37, see [I, Formula 11.4.22], we have

NE(] - Dllpr@s) = 47r/ Ky(r)r?dr = 672, (C.9)
0
this proves the lemma. O

If the weight € is of the form & = ye®, with x a cut—off function and F bounded
and Lipschitz, then the Lipschitz constant of £ is bounded by L¢ < (L +Lp)elFle,
no better bound being available, in general. Thus the simple commutation error
bound from Lemma[C.5]is insufficient for the application to exponential bounds for
eigenfunctions of pseudo-relativistic Schrédinger operators, where we have to use a
sequence of bounded functions F,,, whose Lipschitz constant is uniformly bounded
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in n € N, but for which ||F,||« diverges as n grows. The next Lemma shows how
such a refined bound can be achieved.

Lemma C.6 (Refined bound on the commutation error, one particle case). Assume
that &€ = xe™ with F Lipschitz and bounded and x Lipschitz and 0 < x < 1. Then

||K26LF"| ||L1(R3)
L6 9)] < (L + L)

where Ly, respectively L, is the Lipschitz constant of F', respectively x.

Hngsz (C.10)

Remark C.7. For the application to exponential bounds for eigenfunctions it is
important that the exponential weight e™ appears only in the form e¥¢ in the r.h.s.
of (C.10) and the rest depends only on the Lipschitz constants of F and x. Using

the known asymptotics of the modified Bessel-function, Ky(r) ~ \/5-e~" for large

r and Ka(r) ~ 2 for smallr > 0, (e.g., [1, (9.7.2)] and the remark after [, (9.7.4)],
for large r € R or |8, §4.8] and [8] (4.12.6)] for a more detailed discussion) one sees
that

HK26LF|.|’|L1(R3) = 47r/ Ko(r)e e r? dr < oo
0

iff Lp < 1. It is easy to see that any function F of the form
_ vl
1+ ¢z
with v,e > 0, is subadditive, that is, F(x +y) < F(x) + F(y) for all x,y. Hence,
by the reverse triangle inequality
|F(z) = F(y)| < F(z —y) < vlz —y|

which shows that F, ¢ it is Lipschitz continuous with constant L, . < v.
Furthermore, if x is Lipschitz, its scaled version

xr(z) = x(z/R) (C.11)
for R > 0, is Lipschitz with constant Ly, = L, /R. Such a choice for F' and x
makes the factor (Lp + Ly)?* as small as one wishes and taking the limit ¢ — 0+
allows to recover the exponentially growing weight efvo = eIl

Proof. Lemma [C.3] gives

F(x) = F#,E(x)

Ka(lz —yl)

1< —5(E(2) = £)le(@)| () |dyda (C.12)
472 Jge |x —y|

1Le(p )
Since
E(x) = €(y) = x(2)e" @ — x(y)e" W)
= (x(2) = x(1))e"™™ + x(y) (") — " W)) (C.13)
= x(@) (@ — W) 4 (x(2) — x(y))e" ¥ (C.14)
and averaging and one sees

£(@) ~ €03) = 5 (x(2) ~ X)) (7 + 70 4 2 (x(2) + x(3)) () — 7 )

2
= (x(2) = x(y)) cosh (F(x);F(y)> 3 F(@) 3P ()
+ (x(z) + x(y)) sinh (W) B F(@) 1P () (C.15)

Now we note that due to the subadditivity of F' we have

F(x) — F(y) <|F(z) = F(y)| < F(z —y) < Lp|r -y
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and
Ix(z) = x(y)| < Lylz —yl.

Moreover,
1
| sinh(a)| = sinh(]a|) = 56'“'(1 - 672“”) < |ale!,
thus
sinh (F@) = FW)Y  Lele =yl rpja-yi/2
2 - 2
and

2
Hence from (|C.15)) we get the bound

€(x) — E(y)] < (Lylz — y| + Lp|z — y|) eLrlemvl/2e3F (@5 w)

and using this in (C.12)) yields

Ly +Lg)? o
(X47T2F) /RGK2(|$—9\)6LF' Uef @)l @ p(y)|dydz

(C.16)

cosh (M> < elrle=yl/2.

|Le(p,0)| <

Since the Bessel-function K5 is positive

[ Kl = et ot 7D oty iy

IN

5 [ Kalle = et (1P e + | Dol ) dyda
. 2
= || Ko™ M| g el

thus (C.16) yields (C.10). O

For our derivation of upper and lower bounds to the van der Waals energy, we
also need an additional refinement, which is our main tool for showing that the
localization error is exponentially small, see Section [1.1.2]

Lemma C.8. Let x : R® — [0,1] be Lipschitz continuous cut—off function which
varies only on the transition region Q C R3, i.e., x(x) € {0,1} for all x € Q. Given
d>0 let Qy = {x € R® : dist(z,Q) < d}. Then

o= /2
Extoroll < € (L200ul? + - lol?) ©17)

for all R > 0, where ©4 = 1q, is a cut-off function corresponding to a slightly
enlarged region where x varies and the constant C' depends only || K (]-|)el'l/? | 11 (rs).

Proof. To prove the Lemma, it is convenient to split the integral into two regions,
Ag={(z,y) eR*xR®: |z —y| < d}

and its complement
A5 ={(z,y) eER¥xR®: |2 —y| >d}.

Note that if ¢ Q4 and |z — y| < d, then x(z) = 0 implies x(y) = 0 and x(z) =1
implies x(y) = 1. Thus

(x(2) = x())* = (x(x) = X(¥))*1a, (2, y)Ou(z)Ou(y)

+ (x(@) = (@) Lag (2,y) .
37
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By assumption, 0 < xg < 1 and x is Lipschitz continuous with Lipschitz constant
L,. Thus |x(z) — x(y)| < min (L |z — yl,2) for all z,y € R3. Hence

Kolle =) (2) - x(v)
|z -yl (C.19)

< L2 K| — yl)La, (2, 9)Ou()Ou(y) + s Ko(| — yl)Lac (. )

d
Using this bounds in the definition (C.3)) of L, one sees
L2 1
1Ly (0, 0)| < le + WIQ (C.20)
with

I :/ Ka(lz = y[)Oa(z) | (2)|Oa(y) e (y)| dydz

=3 //R3 I 2(Jz = y]) (10a(z)e(2)]* + |©a(y)e(y)?) dyda
= [ K2(] - Dl R3)||@d<,0\|2

since K3 is positive. Similarly, using also |z — y| > d on Aj,

L— / sl — y)le(@) o ()| dyda

a5
<2 [[ Kallz = el g@)llp(y) dyd
R3 xR3
< 2 K| el V2 o sl = Ce 2] g =

and from Remarkwe know that C' = || Ky(] - \)e"‘/QHLl(Rs) <infty.

We also have to extend the commutation error bound from Lemma to the
many-body case, which needs some modifications, mainly in notation. Let C' be
cluster, i.e, C C [N] = {1,2,...,N}. Given j € C and any y € R? we denote by 3’
the coordinate in R(C) with (y7); = yd,;, where d;; is the Kronecker—delta. That
is, if one relabels the coordinates in R(C) so that R(C) = R¥ | with K = number of
particles in the cluster C, one has 3/ = (0,...,0,y,0,...,0) with y in the j** slot.
With this notation we have

Lemma C.9 (Commutation formula for the multi-particle case). LetT =, -~ Tk

with Ty, = \/p; + 1 —1, the total kinetic energy operator of the particles in the clus-
ter. For any bounded Lipschitz continuous function & and any ¢ € H'/?(R(C)) we
have

Re(&%), Y Tip) = (€, > Théw) — LE (1, ) (C.21)

keC keC
as quadratic forms, with

0= 3 [ [ 06~ elo ) ReGTEor ) s

(C.22)
and t(y) = Kf(";" fory € R3.

Proof. The proof is a straightforward adaptation of the arguments in the proof of
Lemma 0
38



Lemma C.10 (Refined bound on the commutation error, multi-particle case).
Assume that € = yel” with F bounded and Lipschitz and x Lipschitz. Then the
commutation error L'g from (C.21)) can be bounded by

128 (1, 9)| < KCpp (Ly + L) ||y (C.23)

where Ly, respectively L, , is the Lipschitz constant of F, respectively x, K is the
number of particles in the cluster C, and

[5e ]
Proof. As in the proof of Lemma, we have
(E(@) = &(a +y7))?
. F(z)— F(x+197
= | (x(z) —x(fc+y3))cosh( (@) 2( )) (C.25)
. F(zx)—F JY\ T2 ;
+(X(9€)+X(a:+yj)sinh( (@) 2(3:—!—1/ )ﬂ eF@eF@+y’)
Since |x(z) — x(z +v7)| < Ly|y| and |F(x) — F(z 4+ y?)| < Lr|y|, we can conclude
as in the proof of Lemma to get (C.23). O

APPENDIX D. INTERCLUSTER INTERACTION IN DIATOMIC MOLECULES

In this part we estimate the term (Jgt, I3Jz1) which is an important part in
the proof of Theorem [I.2] For these estimates we will use orthogonality relations,
which will be proven in Appendix [E]

Denote by P,(z),n € N,z € R the n-th degree Legendre polynomial, these
polynomials are generated by (1 — 2zt + t2)*% (see [1 22.9.12]). More explicitly,
for —1 < z < 1 and |t < 1 we have

D.1
V1— 2zt+t2 Z (D-1)
Consequently, for D, h € R? with h < D we get
1 = h DY\ |n"™
—_— = Pl— — | —=——. D.2
oo~ 2 (i o) ope (b2

In particular for n = 2,3,4 we have

1 1

5(52:3 —32), Pi(z)= g(352:4 — 3022 +3). (D.3)
Let 8 be a decomposition into two clusters C; and Cy with 4C; = Z; and 4Co = Z5
The intercluster interaction is given by

(& Z2 e Z1 62Z122
. D4
P e AP M AR \xz—m oy - PY

T

1€Cy i€Cy
J€C2
For 45, € C; we define
;D
FO@) =3 fel Py (x . ) , (D5)
ZC [zl D]
D
FiP (@)=Y |a;|"Pn ( ) (D.6)
2 2| D]
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and

— D
(3) _
F§ = | —a;|" Py (mx' D). (D.7)
i€Cq J
j€C2
Let
fn(x) = —eng]-',(Ll)(x) — eQZl]:,(LQ) (x) + e2f,s3) (x). (D.8)

Note that for n = 2,3 the functions defined in are the same as fo and f3 in

(1.18) and (1.19)). Observe that x € supp(Js) implies |z; — X;| << |D| for i € ¢4
and |z; — Xa| << |D| for j € Co and the Taylor series of Ig converges. This yields

Us fn(x eQZ Z
B 142
Z |D|"+1 D Vz € supp(Ja) (D.9)
where Upg is defined in .
Lemma D.1. For any decomposition 3 € D
U3 folz 27,7
sh@ | 42, =0 and fi(z)=0. (D.10)

D] |D|

Proof. For 3 € D we have #C; = Z; and §C2 = Z. Since Py(z) = 0, by (D.5)) -
(D.7) we get

F@) = 21, F (@) = Zo, and F§ (2) = 21 Zo. (D.11)
By definition of fj in this implies
Us fo(x) = U (—€*Z220) = —€* Zy 71 (D.12)
which proves the first part of the lemma. Since Pi(z) = z, writing ep := ‘% we
have
]:1(1)(.1‘) = Z Ti-ep,
1€Cq
(D.13)
.7:1(2)(96) = Z —zj-€ep
J€EC2
and
FO @)=Y (2 — ;) - ep. (D.14)
1€Cy
JEC2

By definition

Uz fir(x ( ZeZgacZ ep) ZeZl —xj-ep +Z Ti—T5)- D])zO.

i€Cq J€Ca i€Cy
J€EC2

(D.15)

U

In the next lemma we will establish a bound of the remainder in the Taylor
expansion of Ig. Let us define the potential

I5(x) = (Ix,) (2) (D.16)
where x s, () is the characteristic function of the support of Js.

Lemma D.2. Let 8 € D, then for any k > 2 there exists a constant 0 < C < oo
such that for x € supp(I§) we have

LU o (a dg(z))"
-3 <ol oy
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where

:(E:z]m—xﬁﬁ. (D.18)

1=1,2icC,

Remark D.3. Notice that dg(-) characterizes how far away the particles in C1 and
Cy are from their respective nucleus. This norm does not depend on the distance
|D| between the nuclei. In particular

Updp(-) = [| - |- (D.19)

Proof. Note that for k = 2 the sum on the Lh.s of (D.17) is the empty sum which,
by convention, is zero. The k-th summand of the Taylor expansion of I is

x; || x; |z ;%
zr(—ézg _a< ~e> — 7 _P( e> j
p ji: |:] |D|F+1 :E: |z, |D[k+1

1€Cy jeCo
D.20)
P : ).
e Zc ’“(m—x] GD) [ DI+
JECs

We apply the Taylor theorem with a remainder in Lagrange form. Since the Le-
gendre polynomials take values between —1 and 1 on the interval [—1,1], the La-
grange form remainders are bounded above by one. Consequently

Usfn €2 Zs|x; — X |F e2Zy|x; — Xolk
B 2|Lq 1 1[{&Lj 2
I5 - Z|D|n+1 —Z +Z

IDI’“+1 |DJF+1
i€Cy JEC
— (z; — Xo)|F
oy e
1€Cy
j€C2
and there exists a constant C' such that
N Uifa(@)) L (ds()”
pln 8 ,
Z | D[+ ‘ = D[+ Va € SUPP(15)~ (D.21)

O

Corollary D.4. Let B € D* and @1, p2 € L*(R*Y) such that there exists b > 0
and Ay with

e s * < A a1 (D.22)
Then for any k > 2 there exists a constant Ci(b, Ag) < 0o such that
Uit
(g, (15 - > [ppei JUiez)| < DI Dl ool (D23)

Proof. To prove (D.23]) we apply Lemma to get

U fn * * (d ())
‘<Z/I5g01, (Iﬂ Z |D[|3n+1>u/3902>’ < Cl{User, |D[F+1 ST Use2)] (D.24)
and by (D.19)) we arrive at

ds())"

. (ds())”
C|<U5g01, D[+

A1
Now (D.23) follows, using the Cauchy-Schwarz inequality and the exponential decay
of ¢o from assumption (D.22)). O
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To simplify the notation in the remainder of the section, we set

¢ i=Usp, ¢y:=Ujps, ¢3:=Ujps and §:=Usg. (D-26)

Lemma D.5. Let ¢, ¢pa, d3,9 € H® and v1,7v2,73 € C be as defined in (4.16])-(4.19).
For any fized 6 > 0, there exist C > 0, Dy > 0 such that for |D| > Dy

(Jg, 13J50) > 2|D| " Rev17a|d2||T + 2| D] Re 173 ¢33

_C|71|2+|72‘2+|73|2 _6HgH2 (D27)
|D|10 :
Proof. Note that by definition of I in (D.16) one has
(Jph, IgJptb) = (Jpib, I Jp0)), (D.28)
and, according to (4.19),
Jpb =Us (¢ + |D| > v202 + | D]~ 33 + g) (D.29)
=116+ |D|*y262 + [D| 1565 + §. '
Using this we can split the expression on the r.h.s of (D.28]) into the terms
(S, I5J5¢)
-~ 2Rev17v2 2Rev17s3
= P 130) + (62, 150) + =5 (03, 139)
D] D]
on |72| 2Re273
+2Revl<g7]’ﬁ¢> |D|6 <¢27I,3¢2> ‘D|7 <¢37[ﬂ¢)2> (D3O)
2Reva . o=\, [sl? 2Revs . 7 = o
+ =5 (9. I502) + (b3, I563) + (9. 13¢3) + (9, 139)
|D|3 8 ‘D|8 B |D|4 B B
= B1 + By + B3 + (g, 139),
where
~ o 2Remiy2 2Rev173
By = m*(6, I5¢) + |D|; (6, 180) + |D|i i (93, 159) (D.31)
el® 2Re7s |sl?
By = (62, I502) + (93, I502) + (¢, 1503) (D.32)
o 2 15020 T (e Tl s (0013
and 2R 2R
~ ot Y2, g €3~ Y
Bz :=2Re1(g, I59) + |TP2<9’IE¢2> + |T|43<97 I543). (D.33)
In Propositions[D.6] [D-7]and [D-§ we bound these three terms separately. We obtain
2Re 1%z 2Re 173 ol + el + sl
By > |D|6 ||¢2||1 |D|8 ||¢3||1 |D|10 ) (D34)
[72l? + [l
By > -C——r——— D.35

and we show that for any ¢ > 0 there exist C, Dy > 0 such that for all |D| > Dy
we have

Il o el sl 8
B3 > - - - = . D.
32 ~C1pg ~ C1pm — Cpppa — 519l (D.36)

For the term (g,1gg) in (D.30) we use the fact that on the support of Jg, the
distance between particles belonging to different subsystems grows proportionally

to |D|. Thus for any § > 0 we can choose Dy > 0 such that for |D| > Dy

= o 5. )
(9. 189) = =519l = =5 llal* (D.37)
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Collecting the estimates (D.34) - (D.37) proves the lemma. O
Proposition D.6 (Estimate of By). We have

Ivll2 + |2 + |ys)?

2Rev173
- 3||¢)3||1 |D|10 : (D38)

2Rev172
B >
! |D|®

N

=113 +

Proof. By Condition 2) of Theorem for each o/ < «, the functions in P”‘/Wg
transform according to the ¢ = 0 degree irreducible representation of SO(3). In
particular the one electron densities are spherically symmetric with respect to their
associated nucleus, see [6]. Due to mutual orthogonality of the spaces PO‘/VNVE‘ for
different o/, all functions in Wg have this property. Applying Newton’s theorem
(|26, Theorem 9.7]) we get

[ l*(o, I§¢> =0. (D.39)
For the second term of (D.3]] m by Lemma and Lemma, [D.2] m we get

(62, I50) > |D|~(¢o, U} f2)9) + | D]~ <¢2,(U5f3) B) + | D% (¢2, (U f1)P)
(ds()" >‘

Bl

DI, WU f2)3) - (0, 2
(D.40)

Notice that for [ = 2,3,4,5 we have
(b, U 1)0) = Ui, Uz [)Us8)) = (P2, f16)- (D.41)

We will use the following orthogonality relations between ¢o and fip, [ = 3,4,5
from Lemma [E.6t

(92, f30) = (b2, f19) = (¥2, fs9) = 0. (D.42)
This implies
. as()" -
(62.139) 2 1D {62, £26) — | (2, 2 ) (D.43)
Note that by Remark [D.3|and due to exponential decay of the function ¢ we have
6
i, L9 < cIpTloallol (D.41)

By definition of the semi-norm, see ([£.15)), (¢2, f2¢) = ||¢2||7 and since 2Rev1 75 <
71]? + |72]? we get

2Re 172 2Rev172 o + of®
I . D.45
|D|3 <¢23 B¢> |D|6 H¢2H1 |D|10 ( )

Now we estimate the last term in . Since ¢ decays exponentially we can
apply Corollary with k£ =5 and proceeding as in (D.41)) yields

(03, 150) > |DI™*(@3, f20) + | DI~ 3, f36) + [D|~*(¢3, fa) — CID|°[i g2 1 #ll-

(D.46)

According to Lemma the first and third summand of (D.46)) are zero and we
get

2Re 173 2Re17s o + hsl®
ML I C——. D.47
|D|4 <¢3a ﬁ¢> |D|g H(b Hl |D|10 ( )
O
Proposition D.7 (Estimate of Bg). There exists a constant C > 0 such that
[2l® + [yl
By > -C D.48
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Proof. Recall that

[72|? 2Re 073 s 2
By = |Dz|6 (62, I§6a) + |D|$ 2B, I960) + |D3|8 (3, I503). (D.49)

For the first term on the r.h.s. of (D.49), since ¢o decays exponentially (see Corol-
lary [2.4), we can use Corollary with & = 3 and the analogous to (D.41) we
get

(b2, I5h2) > |D|%(¢2, f2cp2) — C|D|*||¢al|>- (D.50)
By Lemma we have (¢2, fap2) = 0 which implies
[2]? o 2

‘5‘6 (fo2, I5h2) > |D2|10 (D.51)

To bound the second and third term on the r.h.s. of (D.49) we apply Corollary
with £ = 2 to get

2Reo73 12| + |3l
|D|7 <¢37[ﬂ¢2> 2 -C |D|10 (D52)
and
2 2
7 7
]

Proposition D.8 (Estimate of Bs). For any fized § > O there exist C > 0 and
Dy > 0 such that for |D| > Dy we have

7l? [72[? s> 0y o
> - - - =5 lgll” :
Proof. Recall
2Re ~ 2Re Y o T
Bs = 2Rem (g, 130) + ‘D‘;h( g, 15¢2) + |D—|Z‘°’<g, I5¢3). (D.55)

For the first term, by Corollary n with k£ = 4 and the analogous to (D.41)) we get

2Rev1(3,I56) > 2Rev1|D| (g, fod) + 2Rev1|D|~*(g, f38) — C|m||ID|llg]l 4|

(D.56)
where by definition of g we have
(9, f20) = (g, $2)1 =0 (D.57)
and
(9, f3¢) = (9, 9301 = 0. (D.58)
This implies
2Rev1(g,156) > —Clm D[ ~°[lg]l[14ll- (D.59)
By Corollary [D-4] with k£ = 2 we get
2Re
S @:132) = ~Clrul DI gl 6] (D.60)
and
2Rewys . .~ _
D (9 18s) = ~Chsl|DI " llgs) (D.61)

Applying Young’s inequality for products in (D.59)-(D.61) yields the result. O
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APPENDIX E. ORTHOGONALITY RELATIONS

In this section we prove several orthogonality relations, which follow from the
symmetry properties of functions in W§. Let PO L2(R3Y) — L2(R3N) such that

(P(Z)Qp)(x) = Sp(xh oy Tg—1, —Lgy Tj41, 0" 73?[\/*) (El)
and define '
Pcl = H 'P(l).
1€Cy

As usual we say that a function ¢ € L2(R3Y) is P¢, -even iff Pe,¢p = ¢. A function
¢ € L2(R*Y) is called Pc,-odd iff Pe,p = —¢. Similarly, we define the operator
Pec, and set

Pe,e, == Pe, Pe,-

Lemma E.1. Let o < « an irreducible representation of Sg be such that Pa’Wg #
0. For Pe = Pc,,Pc,, Pe,c, we have
either: all functions ¢ € Pa/Wg are Po—even
or: all functions ¢ € P"‘/Wg are Pe—o0dd.

Proof. From the definition of H, g it is apparent that P.H 8Pe = H g. Consequently
the P,—even and the P,~odd functions are invariant subspaces of Hg. By Condition
2) we have dim(Po‘/Wg‘) = dim o’ and since o' is irreducible it can not contain

nontrivial invariant subspaces, so either all functions in Pa/Wg are Po,—even or all
functions in PO‘/VNVE‘ are Py—odd. O

Lemma E.2. For any ¢ € Wg we have

(¢, f20) = (&, f3) =0 (E.2)
Proof. Recall the definitions
fa(x) = Z —e*(3(x; - ep)(zj - ep) — w; - ;) (E.3)
=2t
and

2

fa@) = > 5 (3 —2,) - ep[2(@i - 2;) = 5(ai - ep)(a; - ep)]

i€C
jecs (E4)
+ 3@ - ep) = 3la;A (@i - ep) ).
It is easy to see that fy is P¢,—even and Pc,—odd. Note that fs is invariant under
permutations in Sg which preserve the cluster decomposition 5. Hence multiplica-

tion by fo commutes with the projection P*. Since the spaces P”‘/Wg are mutually

orthogonal for different o, for all ¢ € Wg we have

(6, f20) = D (P¥'6, f2P*'9). (E.5)
a’ <o
Since |P* ¢|? is P¢,~even and f, is Pe,~odd we get
(P ¢, f2P* ¢) = 0. (E.6)
Similarly, from the explicit expression of f3 in (E.4) follows
PC1C2f3 = _f3 (E7)
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which yields
(@, f30) = > (P¢, fsP”¢) = Y (P¥¢,(Pere, f3)P¥'¢) =0.  (ES8)

a’<a a’<a
d
Corollary E.3. For any ¢ € Wg‘ the functions
o = (HY — p®) " fud, k=2,3 (E.9)

are well defined.

Proof. This is an immediate consequence of Lemma since it states that fr¢ is
orthogonal to ¢. O

Corollary E.4. For any ¢ € Wg‘ we have

(¢, 9201 = (¢, P3)1 = 0. (E.10)
Lemma E.5. For any ¢ € Wg‘ we have
(¢2, f2p2) = 0. (E.11)

Proof. By the same argument used in Lemma [E.2] since fo appears three times in
the expression

(62, fatr2) = (Hg — 1) " fod, fo(Hp — i)' o) (E.12)
applying Pc, results in a change of sign which yields the result. O

Lemma E.6. For any ¢ € Wg and with ¢o, ¢3 defined in Corollary we have
i) (P2, 93) = (P2, f30) = (¢2, f50) =0

ii) (¢3, fo9) = (¢3, fad) = 0. (E.13)
Proof. Notice that the Legendre polynomials fulfill
P, (—z) = (-=1)"P,(2). (E.14)
In particular for h, D € R? we get
—h D h D
2 (i o) = 0 (i ) (19
and thus
(Peyeyfn) (@) = (=1)" fu(2). (E.16)
Hence
(f20, f30) = ((Peyea f2) b, (Peies f3)0) = —(f20, f30) = 0. (E.17)
Analogously
(f20, f50) = (f30, fad) = 0. (E.18)

Since Hy commutes with Pe,c,, so do (Hz — pu®) and (Hg — p®)~". Hence by the
same argument we also get

(B2, ¢3) = (D2, f30) = (P2, [50) = (B3, f20) = (93, f1¢) = 0. (E.19)
O

In the next lemma we will use the SO(3) symmetry of the system.
Lemma E.7. For any ¢ € W‘B" and ¢y = (Hg — ™)~ fagp we have
(¢2, fa9) = 0. (E.20)
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Proof. As a first step we notice that the functions f> and f4 are the sums of Legendre
polynomials of degrees 2 and 4 respectively. For the Legendre polynomials Py of
order k and the spherical harmonics Y, we have

47
(20+1)

Note that in —, leading to the definition of f,, in , for F,(Ll) we

Py(cosf) = Y20, ).

have cosf = ‘i—i‘ . ‘—g‘, for ]—'722) we have cosf = % . % and in .7:7(13) we have
cosf = ‘?:;j B % respectively. Consequently the Legendre polynomials of order

£ are transformed according to the irreducible representation of degree ¢ under the
actions of the SO(3) group, see [2]].

By Condition 2) of Theorem the state ¢ belongs to the irreducible repre-
sentation of degree ¢ = 0 of the group SO(3). Thus the products fo¢ and fy¢ are
transformed according to the representations of degree ¢ = 2 and ¢ = 4 respectively.

By rotational invariance of the operator H 8, the function (ﬁ 5 — 1®) "1 fa¢ has
the same symmetry a fy¢, namely it transforms according to the irreducible repre-
sentation of degree ¢ = 2.

But functions belonging to two different irreducible representations are orthog-
onal. This proves the lemma. O

APPENDIX F. REMARK ON ACTIONS OF THE PERMUTATION GROUP

Let g € L*(R3(™*™)) be a function depending on position vectors of (m + n)
particles. Let A be an operator on L?(R3™) and g € D(A ® 13"), so that A ® 13"
acts on g as a function of the first m position vectors.

Lemma F.1. Assume that for some R > 0 we have supp(g) C {£€ € R3(m+n) |&| <
Ri=1,---,m,|¢| > 2R j > m+1}. Let Sy 4 be the permutation group of (m+n)
particles and m € Sy such that m ¢ S, ® S, In other words w exchanges at least
one of the first m particles with a particle labelled by j > m + 1. Then

supp ((A® 113")9) Nsupp (Txg) =0 (F.1)
where 7;1'9(6) = g(ﬁﬂ'*l(l)a T 7577*1(m+n))~

Proof. For local operators A this relation was first used by Sigalov and Zhislin to
prove existence of an eigenvalue of atoms with arbitrary types of rotational and
permutational symmetry [43]. If the operator is local, (F.1)) can be rewritten as

supp(g) Nsupp (Trg) = 0. (F.2)

If A is a non-local operator, (F.1) is still true, because for at least one particle
ig > m + 1 we have

|&:,] > 2R on supp ((A® 1°")g) (F.3)

and
€] <R on supp (Txg). (F.4)
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