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ABSENCE OF POSITIVE EIGENVALUES OF MAGNETIC SCHRÖDINGER

OPERATORS

SILVANA AVRAMSKA-LUKARSKA, DIRK HUNDERTMARK, AND HYNEK KOVAŘÍK

Abstract. We study sufficient conditions for the absence of positive eigenvalues of magnetic Schrödinger

operators in Rd, d ≥ 2. In our main result we prove the absence of eigenvalues above certain threshold energy

which depends explicitly on the magnetic and electric field. A comparison with the examples of Miller–Simon

shows that our result is sharp as far as the decay of the magnetic field is concerned. As applications, we

describe several consequences of the main result for two-dimensional Pauli and Dirac operators, and two and

three dimensional Aharonov–Bohm operators.
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1. Introduction and description of main results

The question of the absence of positive eigenvalues of Schrödinger operators has a long history. In 1959
Kato proved that the operator −∆+ V in L2(Rd) has no positive eigenvalues if V is continuous and such
that

V (x) = o(|x|−1) |x| → ∞, (1.1)

by deriving suitable lower bounds on solutions of the Schrödinger equation. His lower bound showed that
for positive energies these solutions decay so slowly at infinity that they are not normalizable, see [20]. It
is known that condition (1.1) is essentially optimal since there exist oscillatory potentials of the Wigner-
von Neumann type, decaying as |x|−1, which produce positive eigenvalues of the associated Schrödinger
operator, see [31, 37] or [30, Ex. VIII.13.1].
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Kato’s result was generalized by Simon [31], who considered, for d = 3, potentials of the class L2 +
L∞ which are smooth outside a compact set and allow there a decomposition V = V1 + V2 with V1 =
o(|x|−1), V2(x) = o(1), and

ω0 = lim sup
|x|→∞

x · ∇V2(x) <∞. (1.2)

Under these conditions Simon proved the absence of eigenvalues of −∆+ V in the interval (ω0,∞). Note
that ω0 ≥ 0 since V2(x) → 0 as |x| → ∞. Later it was shown by Agmon [1] that under similar assumptions
the operator −∆+ V , in any dimension, has no eigenvalues in the interval (ω0/2,∞).

By exploiting a clever exponentially weighted virial identity, Froese et al. proved the absence of all
positive eigenvalues of −∆ + V under relative compactness conditions on V and x · ∇V , [12, 13]. Their
conditions on the regularity and decay on V and x · ∇V were still global but much more general than
the pointwise conditions of Kato, Simon, and Agmon. Yet another approach to the problem is based on
Carleman estimates in Lp-spaces. This method allows to further weaken the regularity and decay conditions
and to include rough potentials, see the works of Jerison and Kenig [18], Ionescu and Jerison [18], and the
article [21] by Koch and Tataru.

Much less is known about the absence of positive eigenvalues for magnetic Schrödinger operators of the
form

H = (P −A)2 + V, P = −i∇, (1.3)

in particular in dimension two. In the above equation A stands for a magnetic vector potential satisfying
curlA = B. The results obtained by Koch and Tataru in [21] cover also Schrödinger operators with
magnetic fields. But they impose decay conditions on the vector potential A which are not gauge invariant
and which imply, in the case of dimension two, that the total flux of the magnetic field must vanish.
Therefore they cannot be applied to two-dimensional Schrödinger operators with magnetic fields of non-
zero flux.

Certain implicit conditions for the absence of eigenvalues of the operator (1.3) in R2 were recently
found by Fanelli, Krejčǐŕık and Vega in [10], see also [11]. However, their result guarantees absence of all
eigenvalues of H, not only of the positive ones. Consequently the hypotheses needed in [10] include some
smallness conditions on V and B which are not necessary for the absence of positive eigenvalues only. In
[14] Ikebe and Saito proved the limiting absorption principle for H under certai pointwise decay conditions
on V and B, see Remark 1.5.

In this work we develop quadratic form methods which are an effective tool to rule out positive eigenvalues
for a large class of magnetic Schrödinger operators while at the same time allowing the existence of negative
eigenvalues, which one does not want to rule out a priori. In addition, intuition from physics and experience
from the rigorous study of Schrödinger operators without magnetic fields clearly show that while eigenvalues
depend on global properties of the potential and the magnetic field, energies in the essential spectrum
depend only on asymptotic properties. Thus, the nonexistence of eigenvalues embedded in the essential
spectrum should depend only on the asymptotic behavior of the potential and the magnetic field, as long
as the local behavior of the potential and magnetic field is not so singular such that it destroys the self–
adjointness of the magnetic Schrödinger operator. Our results make this intuition rigorous: the local
behavior of the magnetic field and the potential is largely irrelevant for the non-existence of positive
eigenvalues. Our results also cover cases where the magnetic field decays so slowly that no choice of vector
potential satisfies the conditions in [21]. Moreover, the famous Miller–Simon examples show that our
results are sharp concerning the decay of the magnetic field at infinity.

In dimension two we identify the magnetic field with a scalar function which, in turn, can be interpreted
as a vector field in R3 perpendicular to the plane R2. In general dimensions the magnetic field is an
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antisymmetric two–form, which can be identified with an antisymmetric matrix–valued function on Rd

satisfying, in the sense of distributions, the condition

∂jBk,i + ∂kBi,j + ∂iBj,k ∀d ∈ {1, . . . , d} . (1.4)

Here Bj,k(x) denotes the entries of B at a point x ∈ Rd. If d = 3, then B can be identified with a vector
field with components B1 = B3,2, B2 = B1,3, and B3 = B2,1. Equation (1.4) thus coincides with the usual
divergence free condition

∇ ·B = 0 [d = 3] (1.5)

dictated by Maxwell’s equations. It is well known that there exists a vector potential A, a one–form, such
that B = curlA or B = dA, with the exterior derivative.

1.1. The method. Let us briefly describe our method and its most important novel features. As already
mentioned above we build upon the technique invented by R. Froese and I. Herbst and M. and Th.
Hoffmann–Ostenhof [13] and further developed in [12]. The latter is based on weighted virial identities
which require working with dilations and their generator. For non-magnetic Schrödinger operators this
is facilitated by the fact that the momentum operator P has very simple commutation relations with
dilations. In particular, the domain of P is invariant under dilations. This is not true anymore for the
magnetic operators, since the vector potential spoils the dilation invariance of the domain of P − A. One
of the crucial new features of our approach shows that to overcome this difficulty one has to work with
a vector potential A in the Poincaré gauge and exploit its connection with the dilations and the virial
theorem. This connection, which enables us to develop a quadratic form version of the magnetic virial
theorem, is explained in Section 3. We also show that the rather different conditions of Kato and Agmon–
Simon are, in fact, just two sides of the same coin. Kato’s condition for the absence of positive eigenvalues
can be easily recovered from the quadratic form version of the virial of the potential, see Section 3.3 for
details. Moreover, the use of the Poincaré gauge leads to very natural decay conditions on B required for
the absence of positive eigenvalues. The well-known example by Miller and Simon then shows that these
conditions are sharp, see Section 6.

1.2. A typical result. In order to describe a typical result with general and easy to verify conditions
on the magnetic field B and the potential V , we need some more notation. We denote by Lp = Lp(Rd),
1 ≤ p ≤ ∞ the usual scale of Lebesgue spaces. Moreover, we need their locally uniform versions

Lp
loc,unif =

{
V : sup

x∈Rd

∫
|x−y|≤1

|V (y)|p dy <∞
}

(1.6)

with norms

∥V ∥Lp
loc,unif

:= sup
x∈Rd

(∫
|x−y|≤1

|V (y)|p dy
)1/p

(1.7)

when 1 ≤ p < ∞ and the obvious modification for p = ∞. Clearly these spaces are nested, that is,
Lq
loc,unif ⊂ Lp

loc,unif when 1 ≤ p ≤ q ≤ ∞. Moreover, we need

Definition 1.1 (Vanishing at infinity locally uniformly (in Lp)). A function V ∈ Lp
loc,unif with

lim
R→∞

∥1≥RV ∥Lp
loc,unif

= 0 (1.8)

vanishes at infinity locally uniformly in Lp
loc,unif.

Here 1≥R is the characteristic function of the set {x ∈ Rd : |x| ≥ R}. In fact, we will only need the
p = 1, 2 versions of vanishing locally uniformly in Lp at infinity.
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Given a magnetic field B and a point w ∈ Rd let B̃w(x) := B(x + w)[x]. More precisely, B̃w is a
vector–field on Rd with components

(B̃w)j(x) := (B(x+ w)[x])j =

d∑
m=1

Bj,m(x+ w)xm , j = 1, . . . , d . (1.9)

Using translations, we will usually assume w = 0, in which case we will simply write B̃. In dimension two,

identifying the magnetic field with a scalar, the vector field B̃w is given by B̃w(x) = B(x + w)(−x2, x1)
and in three dimensions it is given by the cross product B̃w(x+ w) = B(x+ w) ∧ x.

The simplest version of our results is given by

Theorem 1.2 (Simple version). Given a magnetic field B assume that B̃w ∈ Lp
loc,unif for some p > d and

some z ∈ Rd. Then there exists a vector potential A ∈ L2
loc(Rd,Rd) with B = dA. Moreover, let V be a

potential with V ∈ Lq
loc,unif for some q > d/2 which allows a splitting V = V1 + V2 such that xV1 ∈ Lq1

loc,unif

for some q1 > d and x · ∇V2 ∈ Lq2
loc,unif for some q2 > d/2 and assume that B̃ and xV1 vanish at infinity

locally uniformly in L2 and V , V1, and x · ∇V2 vanish at infinity locally uniformly in L1.
Then the magnetic Schrödinger operator (P −A)2+V , defined via quadratic form methods, has essential

spectrum equal to [0,∞) and no positive eigenvalues.

Remarks 1.3. (i) The decay condition on xV1, respectively x · V2, are generalizations, in terms of local
Lp conditions, of the pointwise conditions of Kato [20], respectively Agmon [1] and Simon [31]. For a
generalization using only natural quadratic form conditions, see Theorems 1.6 and 4.8 below.

(ii) Even in this simplest version the conditions on B and V allow for strong local singularities and
the decay condition at infinity is rather mild: for example, if one splits V in such a way that V1 is
compactly supported. Then xV1 is zero outside a compact set, so clearly vanishing at infinity. The
condition xV1 ∈ Lq1

loc,unif for some q1 > d allows for rather large local singularities. In particular, the virial

x · ∇V has only to exist in a neighborhood of infinity in order to be able to apply Theorem 1.2. One can

also include a long range part of V in V1. Moreover, since |B̃w(x)| ≲ |B(x+w)||x|, the magnetic field can
have strong local singularities, in particular at w. The decay of the magnetic field B has to be faster than
⟨x− w⟩−1, which is in line of what one expects from the Miller–Simon examples, see Section 6.1.

Let us now briefly describe our main results in full generality.

1.3. Full quadratic form version: absence of all positive eigenvalues. It turns out that the absence

of positive eigenvalues depends, in a sense, only on the behavior of B̃, xV and x·∇V at infinity with respect
to the operator (P −A)2. The latter are to be understood in a weak sense according to the following

Definition 1.4 (Vanishing at infinity). We say that a potential W vanishes at infinity with respect to
(P−A)2 if for some R0 > 0 its quadratic form domain Q(W ) contains all φ ∈ D(P−A) with supp(φ) ∈ Uc

R0

and for R ≥ R0 there exist positive αR, γR with αR, γR → 0 as R→ ∞ such that

|⟨φ,Wφ⟩| ≤ αR∥(P −A)φ∥22 + γR∥φ∥2 for all φ ∈ D(P −A) with supp(φ) ⊂ Uc
R (1.10)

Here UR = {x ∈ Rd : |x| < R} and Uc
R = Rd \ UR is its complement.

By monotonicity we may assume, without loss of generality, that αR and γR are decreasing in R ≥ R0.
This definition is inspired by Section 3 in [19]. It allow us to effectively treat magnetic fields and

potentials which can have severe singularities even close to infinity.
In order to guarantee that there is a locally square integrable vector potential A with dA = B, we need
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Lemma 1.5. Given a magnetic field B and w ∈ Rd let B̃w be given by (1.9) and assume that∫
|x−w|<R

|x− w|2−d
(
log

R

|x− w|

)2
|B̃w(x)|2 dx <∞

for all R > 0. Then there exists a vector potential A ∈ L2
loc(Rd,Rd) with B = dA in the sense of

distributions.

We then have

Theorem 1.6. Given a magnetic field B assume that it fulfills the condition of Lemma 1.5 for some

w ∈ Rd and that B̃2
w given by (1.9) is relatively form bounded and vanishes at infinity with respect to

(P − A)2. Moreover, assume that the potential V is form small and vanishes at infinity with respect to
(P − A)2 and allows for a splitting V = V1 + V2, such that |xV1|2 and x · ∇V2 are also form small and
vanish at infinity with respect to (P −A)2.

Then the magnetic Schrödinger operator (P −A)2+V , defined via quadratic form methods, has essential
spectrum [0,∞) and no positive eigenvalues.

Remark 1.7. Some comments concerning Theorem 1.6: (i) We only need relative form boundedness of

B̃2
w with respect to (P −A)2. Its relative form bound does not have to be less than one.

(ii) While the conditions on the potential V and the magnetic field B with respect to (P − A)2 might
be difficult to check, the diamagnetic inequality shows that it is enough to check them with respect to the
non-magnetic kinetic energy P 2, see [3].

(iii) One can again absorb strong local singularities of the potential in a suitable choice of V1. Thus the
local behavior of the potential V and the magnetic field B is largely irrelevant for the non-existence of
positive eigenvalues. Moreover, the virial x · ∇V2 has to exist only in a weak quadratic form sense, see
Lemma 3.7 and the discussion in Section 3.3.

(iv) An inspection of the proof shows that in Theorem 1.6 it is enough to assume that x · ∇V is bounded
from above at infinity by zero, see Definition 1.8 below for the precise meaning. Classically the force is
given by F = −∇V . Thus x · F = −x · ∇V is negative, i.e., the force is confining, if x · ∇V is positive,
otherwise the force is repulsive, i.e., it pushes the particle further to infinity. Thus in order to prevent
localization of a quantum particle only the positive part of x · ∇V should have to be small at infinity.

(v) We would like to stress that unlike all other results on the absence of positive eigenvalues for magnetic
Schrödinger operators that we are aware of, with the exception of [10], we impose only conditions on the
magnetic field B and not directly on the vector potential A. Decay and regularity conditions on the vector
potential A are not invariant under gauge transformations and thus unphysical. The conditions of [10], on
the other hand, are quite restrictive. For example, in [10] the authors need that various global quantities
related to the magnetic field B and to the potential V are absolute form bounded with respect to (P −A)2,
i.e. without allowing for lower order terms in the respective bounds and and they need an explicit smallness
condition for the various constants involved in their bounds. This makes their conditions difficult to check
and the resulting assumptions turn out to be so strong that they rule out existence of any eigenvalue.

However, for a large class of physically relevant potentials and magnetic fields one expects that the
corresponding magnetic Schrödinger operator has negative eigenvalues, while it typically should not have
positive eigenvalues, at least when the magnetic field and the potential vanish in a suitable sense at infinity.
This is exactly what our Theorem 1.6 and its generalizations below provide.

(vi) In order to prove invariance of the essential spectrum, one usually assume that the potential V is
relatively (P − A)2 form compact. We do not assume this! In fact, we show in Theorem 4.8 that if the
potential V is form small, i.e., form bounded with relative bound < 1, and vanishes at infinity with respect
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to (P − A)2, then σess((P − A)2 + V ) = σess((P − A)2). This shows invariance of the essential spectrum
under a large class of perturbations. In particular, it confirms the physical intuition that local singularities,
as long as they do not destroy form smallness, cannot influence the essential spectrum, at least as a set.
For example, one can have a potential with local Hardy type singularity and even a sequence of suitably
decreasing Hardy type singularities moving to infinity. Moreover, using ideas of Combesure and Ginibre
[4] and Maz’ya and Verbitzky [26], we can allow perturbations with rather strong oscillations, both locally
and at infinity.

(vii) Theorem 1.2 above is the most general formulation of our results, when one considers magnetic fields
and potentials vanishing at infinity, in a suitable sense. We can allow for much ore general condition on
the potential V and the magnetic field B, see the following section and Section 2.3 below for more general
assumptions.

1.4. Full quadratic form version: absence of eigenvalues above a positive threshold. If B̃2, |xV1|2
and x · ∇V2 do not vanish at infinity with respect to (P − A)2, we can still exclude positive eigenvalues
above a certain threshold. For this we need

Definition 1.8 (Bounded at infinity). A potential W is bounded from above at infinity with respect to
(P−A)2 if for some R0 > 0 its quadratic form domain Q(W ) contains all φ ∈ D(P−A) with supp(φ) ∈ U c

R0

and for R ≥ R0 there exist positive αR, γR with limR→∞ αR = 0 and lim infR→∞ γR <∞ such that〈
φ,Wφ

〉
≤ αR∥(P −A)φ∥22 + γR∥φ∥2 for all φ ∈ D(P −A) with supp(φ) ⊂ Uc

R (1.11)

By monotonicity we may assume, without loss of generality, that αR and γR are decreasing in R ≥ R0 in
which case we set γ+∞(W ) := limR→∞ γR = infR γR, the asymptotic bound upper bound of W (at infinity).

A potential W is bounded from below at infinity with respect to (P −A)2 if −W is bounded from above
at infinity. We set γ−∞(W ) = γ+∞(−W ).

A potentialW is bounded at infinity with respect to (P −A)2 if ±W are bounded from above at infinity.
We set γ∞(W ) := max(γ+∞(W ), γ−∞(W )), the asymptotic bound of W (at infinity).

Using the diamagnetic inequality, one can replace (P − A)2 by P 2 in the definition of the asymptotic
bounds γ+∞(W ) and γ∞(W ).
We split V = V1 + V2 and set

β2 := γ∞
(
B̃2
)
, ω2

1 := γ∞
(
(xV1)

2
)
, ω2 := γ+∞

(
x · ∇V2

)
(1.12)

Under mild regularity conditions the magnetic Schrödinger operator (P −A)2+V has [0,∞) as its essential
spectrum and our main result, Theorem 4.8, implies that it has no eigenvalues larger than

Λ(B, V ) = Λ :=
1

4

(
β + ω1 +

√
(β + ω1)2 + 2ω2

)2
(1.13)

While the β, ω1, and ω2 might be difficult to compute directly from the definition it is easy to see

β ≤ lim sup
|x|→∞

|B̃(x)|, ω1 ≤ lim sup
|x|→∞

|x| |V1(x)|, ω2 ≤ lim sup
|x|→∞

(x · ∇V2(x))+ . (1.14)

once the limits are well-defined and finite. We would like to point out that Theorem 4.8 can be applied
also in situations in which the limits in (1.14) might not be defined. Morally, γ∞(W ) is the bounded part
of W at infinity, modulo terms which are small uniformly locally in L1: If W is in the Kato–class outside
a compact set, which, in particular, is the case if W ∈ Lp

loc,unif outside of a compact set, and if W −Wb

vanishes at infinity locally uniformly in L1 for some bounded function Wb, then

γ∞(W ) ≤ ∥Wb∥∞ , (1.15)
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and a similar bound holds for γ+∞(W ), see Section 5. This allows to effectively compute upper bounds on
β, ω1, and ω2 when the limits in (1.14) exist not.

1.5. Relation to previous works. If B = 0, then by choosing V1 = V and V2 = 0 we obtain a generaliza-
tion of the result of Kato [20]. On the other hand, by choosing V1 such that V1(x) = o(|x|−1), and setting
V2 = V − V1 we get Λ = ω0/2, see equation (1.2), and recover thus the results of Agmon [1] and Simon
[31]. Moreover, Theorem 4.8 extends all the above mentioned results to magnetic Schrödinger operators
with magnetic fields which decay fast enough so that β = 0, see Section 5 for more details.

Vice-versa, if V = 0, then we have Λ = β which is in agreement with the well–known example by
Miller and Simon [27], cf. Section 6 if one corrects a calculation error in their examples. The Miller–Simon
examples show that our condition on the magnetic field for absence of eigenvalues above a threshold is
sharp.

It is tempting to split V = sV +(1− s)V and to optimize the resulting expression for the threshold energy
(1.13) with respect to 0 ≤ s ≤ 1. This minimization problem can be explicitly done. It turns out that the
minimum is always given by the minimum of the two extreme cases s = 0 and s = 1, see Corollary B.2 in
Appendix B.

Ikebe and Saito proved in [14] the limiting absorption principle, and hence also the absence of eigenvalues
ofH under the condition that V allows the same decomposition as above with |V1(x)| ≤ C|x|−1−δ, |V2(x)| ≤
C|x|−δ, |x| ·∇V2(x)| ≤ C|x|−δ, and that B is continuous and satisfies |B(x)| ≤ C|x|−1−δ. Here C and δ are
positive constants. These conditions are easily covered by Theorem 4.8. Indeed, if V an B satisfy these
upper bounds, then β = ω1 = ω2 = 0. Hence there are no positive eigenvalues.

1.6. Essential spectrum. In Section 7 we establish new sufficient conditions on B under which

σess((P −A)2) = [0,∞).

Roughly speaking we require that B(x) → 0, in a mild way, as |x| → ∞ along only one path connecting to
infinity, see Theorem 7.5 and Definition 7.3 for details. As a consequence of this result we show that under
the assumptions stated in section 2.3 we have σess((P−A)2) = [0,∞) , cf. Corollary 7.7. We also show that if
the potential V is form small and vanishes at infinity w.r.t (P−A)2, then σess((P−A)2+V ) = σess((P−A)2),
see Theorem 7.8. For this one usually assumes that V is relative form compact w.r.t. (P − A)2 which is
a considerably stronger assumption, excluding, for example, Hardy–type singularities. Our result proves
invariance of the essential spectrum under a conditions which includes all physically relevant examples,
even exotic one with strong singularities or oscillations.

2. Magnetic Schrödinger operators and the Poincaré gauge

First let us fix some notation. Given a setM and two functions f1, f2 :M → R, we write f1(m) ≲ f2(m)
if there exists a numerical constant c such that f1(m) ≤ c f2(m) for all m ∈M . The symbol f1(m) ≳ f2(m)
is defined analogously. Moreover, we use the notation

f1(m) ∼ f2(m) ⇔ f1(m) ≲ f2(m) ∧ f2(m) ≲ f1(m),

and

lim
|x|→∞

f(x) = L ⇔ lim
r→∞

ess sup
|x|=r

f(x) = L. (2.1)

The quantities lim sup|x|→∞ f(x) and lim inf |x|→∞ f(x) are defined in a similar way. We will use ∂j =
∂

∂xj

for the usual partial derivatives in the weak sense, i.e., as distributions.

For any u ∈ Lr(Rd) with 1 ≤ r ≤ ∞ we will use the shorthand

∥u∥r := ∥u∥Lr(Rd)
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for the Lr-norm of u and

∥T∥r→r := ∥T∥Lr(Rd)→Lr(Rd)

for a norm of a bounded linear operator T : Lr(Rd) → Lr(Rd). The space Lloc(Rd) is the space of all
complex valued functions f such that f1K ∈ Lr(Rd) for al compact sets K ⊂ Rd. Here 1K stands for the
indicator function of K. By Lr

loc(Rd,Rd) we denote the space of all vector fields v which are locally in Lr,

that is, |v| := (
∑d

j=1 v
2
j )

1/21K is Lr
loc(Rd).

The space C∞
0 = C∞

0 (Rd) is the space of all complex valued test–functions f which are infinitely often
differentiable and have compact support. Given measurable complex valued functions f, g ∈ L2(Rd) we
denote by 〈

f, g
〉
=

∫
Rd

f(x) · g(x) dx

the usual scalar product on L2(Rd). By the symbol

UR(x) = {y ∈ Rd : |x− y| < R}

we denote the ball of radius R centered at a point x ∈ Rd. If x = 0, we abbreviate

UR = UR(0).

2.1. The magnetic Schrödinger operator. Given a magnetic vector potential A ∈ L2
loc(Rd,Rd), the

magnetic Sobolev space is defined by

H1(Rd) := D(P −A) =
{
u ∈ L2(Rd) : (P −A)u ∈ L2(Rd)

}
, (2.2)

equipped with the graph norm

∥u∥H1 =
(
∥(P −A)u∥22 + ∥u∥22

)1/2
. (2.3)

Here P = −i∇ is the momentum operator. Note that for u ∈ D(P − A) one has Au ∈ L1
loc(Rd,Rd). So

we only know that Pu ∈ L1
loc(Rd) for a typical u ∈ D(P − A), which is one of the sources for technical

difficulties of Schrödinger operators with magnetic fields. Nevertheless, Kato’s inequality shows |φ| ∈ D(P )
for any φ ∈ D(P −A) and the diamagnetic inequality [15, 31] yields

|((P −A)2 + λ)−1φ| ≤ (P 2 + λ)−1|φ| (2.4)

for all λ > 0 and φ ∈ L2(Rd). It is well-know that

qA,0(φ) := ⟨(P −A)φ, (P −A)φ⟩ = ∥(P −A)φ∥22 (2.5)

is a closed quadratic form on H1(Rd) for any magnetic vector potential A ∈ L2
loc(Rd,Rd), and that C∞

0 (Rd)
is dense in D(P − A), see [33, Thm. 2.2]. Since every closed positive quadratic form on a Hilbert space
corresponds to a unique self-adjoint positive operators, the quadratic form qA,0 defines an operator, which
we denote by HA,0 = (P −A)2.

A potential V is a locally integrable, measurable function V : Rd → R. Hence its quadratic form domain
Q(V ) = D(|V |1/2) contains C∞

0 (Rd). The quadratic form qV corresponding to V is given by

qV (φ,φ) =
〈
|V |1/2φ, sgn(V )|V |1/2φ

〉
. (2.6)

With a slight abuse of notation, we will often write qV (φ,φ) =
〈
φ, V φ

〉
.

The potential V is form bounded w.r.t (P −A)2 if its form domain Q(V ) contains D(P −A) and there
exists α, β <∞ such that

|⟨φ, V φ⟩| ≤ α∥(P −A)φ∥22 + β∥φ∥22 for allφ ∈ D(P −A) . (2.7)
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The infimum

α0 = inf{α > 0 : there exists β <∞ such that (2.7) holds for all φ ∈ D(P −A)}

is called the relative form bound of V− with respect to (P − A)2, and similar for other pairs of positive
operators and their quadratic forms.

We say that V is relative form small w.r.t (P−A)2 if the relative bound α0 < 1, i.e., the bound (2.7) hols
for some 0 ≤ α < 1 and β <∞ and if α0 = 0 one says that V is infinitesimally form small w.r.t. (P −A)2.

It is well–known, see [30] and [36], that V is relatively form bounded w.r.t. (P − A)2 if and only if the
operator

Cλ := ((P −A)2 + λ)−1/2V ((P −A)2 + λ)−1/2 (2.8)

is bounded on L2(Rd) for some (and then all) λ > 0. More precisely, Cλ is the operator given by the
quadratic form 〈

φ,Cλφ
〉
:= qV

(
((P −A)2 + λ)−1/2φ, ((P −A)2 + λ)−1/2φ

)
(2.9)

and one can choose

α = ∥Cλ∥2→2 and β = λ ∥Cλ∥2→2

for any λ > 0 and

α0 = lim
λ→∞

∥Cλ∥2→2

If the potential V is relatively form small with respect to (P − A)2, the KLMN Theorem, see e.g. [36,
Theorem 6.24], [30], shows that

qA,V (φ,φ) := ∥(P −A)φ∥22 + qV (φ,φ) =
〈
(P −A)φ, (P −A)φ

〉
+
〈
φ, V φ

〉
(2.10)

with domain D(qA,V ) := D(P −A) is a closed quadratic form which is bounded from below. It corresponds
to a unique self-adjoint operator, which we denote by HA,V = (P −A)2 + V . We will sometimes drop the
dependence of HA,V and simply write H for the full magnetic Schrödinger operator.

The diamagnetic inequality implies that if V is form bounded, respectively form small w.r.t P 2, then it
is also form bounded, respectively form small w.r.t (P −A)2 with the same constants, see [3].

One could extend the above setting by allowing a splitting V = V+−V−, where the positive and negative
parts of V are given by V± = max(±V, 0). The discussion in [33] shows that for arbitrary V+ ∈ L1

loc, the
quadratic form

qA,V+(φ,φ) := ∥(P −A)φ∥22 +
〈
φ, V+φ

〉
= ∥(P −A)φ∥22 + ∥

√
V+φ∥22 (2.11)

is well defined and closed on the form domain D(QA,V+) = D((P −A)) ∩Q(V+), where Q(V+) = D(
√
V+)

and that C∞
0 is still dense in D(QA,V+) in the graph norm ∥φ∥A,V+ = (QA,V+(φ)+∥φ∥22)1/2. Again this closed

quadratic form corresponds to a unique self–adjoint operator HA,V+ and in order to define a self–adjoint
operator HA,V via the KLMN theorem. it is enough to assume that V− is form small w.r.t. HA,V+ .

More important for us is the observation due to Combescure and Ginibre [4] that rather singular poten-
tials V can be form bounded with respect to P 2, and by the diamagnetic inequality then also with respect
to (P − A)2. Assume that V = ∇ · Σ +W , where Σ is a locally square integrable vector field on Rd and
W is locally integrable. For φ ∈ C∞

0 , an integration by parts shows〈
φ, (∇ · Σ)φ

〉
= − Im

〈
Σφ, Pφ

〉
= −2 Im

〈
Σφ, (P −A)φ

〉
Thus

|
〈
φ, (∇ · Σ)φ

〉
| ≤ ∥Σφ∥ ∥Pφ∥ and |

〈
φ, (∇ · Σ)φ

〉
| ≤ ∥Σφ∥ ∥(P −A)φ∥



10 SILVANA AVRAMSKA-LUKARSKA, DIRK HUNDERTMARK, AND HYNEK KOVAŘÍK

and this shows that if Σ2 and W are form bounded w.r.t. (P − A)2, respectively P 2, then the quadratic
form 〈

φ, V φ
〉
:= −2 Im

〈
Σφ, (P −A)φ

〉
+
〈
φ,Wφ (2.12)

is also form bounded w.r.t. (P − A)2, respectively P 2. Using Cauchy–Schwarz with epsilon, one can also
relate the coefficients in the quadratic form bounds. This allows to treat singular potentials.

Moreover, at least in the non–magnetic case, the beautiful work of Maz’ya and Verbitsky [27] shows that
all potential V which are relatively form bounded w.r.t. P 2 are of this form.

2.2. The Poincaré gauge. The magnetic field at the point x ∈ Rd is given by an antisymmetric two-form
B(x) : Rd × Rd → R, which we identify with a matrix valued function B given by

B(x) = (Bj,m(x))dj,m=1,

which is antisymmetric, Bj,m(x) = −Bm,j(x) for all 1 ≤ j,m ≤ d, x ∈ Rd.
Any vector potential A, or more precisely a one form, generates a magnetic fields via the exterior

derivative B = dA, in the distributional sense. In matrix notation, Bj,m = ∂jAm − ∂mAj . In three space
dimensions, one can identify the two form B with a vector valued function B = curlA.

For a given magnetic field B and a point z ∈ Rd we define the vector field B̃w by equation (1.9), and put

Aw(x) :=

∫ 1

0
B̃(tx) dt =

∫ 1

0
B(tx)[tx] dt , (2.13)

which is the vector potential in the Poincaré gauge. Using translations, it is no loss of generality to assume
w = 0, in which case we will simply write A for the vector potential given by (2.13). By going to spherical
coordinates, one easily checks at least for nice, say continuous or even smooth, magnetic fields B, that the
above vector potential is well defined and that dA = B in the sense of distributions.

Since B is antisymmetric the vector B̃(x) = B(x)[x] is orthogonal to x. Hence, when w = 0 the vector
potential A given by (2.13) satisfies the transversal, or Poincaré, gauge

x ·A(x) = 0 ∀ x ∈ Rd, (2.14)

which will be very important in our discussion of dilations and the virial theorem for magnetic Schrödinger
operators in Section 3. It is easy to see that for A given by (2.13) one has A ∈ L2

loc(Rd,Rd) for bounded
magnetic fields B and this extends to a large class of singular magnetic fields, see Lemma 2.9 below.
Except otherwise noted, we will always use the Poincaré gauge in the following. For a nice discussion of
the Poincaré gauge from a physics point of vies see [17] and from a more mathematical point of view, but
still for rather regular magnetic fields, see [35].

2.3. Hypotheses. We will use the following hypotheses on B and V :

Assumption 2.1. The magnetic field B is such that for some w ∈ Rd and with B̃w(x) := B(x+ w)[x]

Rd ∋ x 7→ |x− w|2−d log2+

( R

|x− w|

)
B̃w(x)

2 ∈ L1
loc(Rd) (2.15)

for all R > 0.

As already remarked, there is no loss of generality assuming w = 0 by using translations. Together with
Lemma 2.9 the above mild integrability condition then assures that the corresponding vector potential in
the Poincaré gauge is locally square integrable, which is essential in order to define the magnetic Schrödinger
operator. The magnetic field B can have severe local singularities, while Assumption 2.1 still holds.
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Assumption 2.2. The scalar field |B̃|2 is relatively form bounded w.r.t. (P −A)2, where A is the Poincaré
gauge vector potential corresponding to B, That is,〈

φ, |B̃|2φ
〉

= ∥B̃φ∥22 ≲ ∥(P −A)φ∥22 + ∥φ∥22 ∀φ ∈ D(P −A). (2.16)

Assumption 2.3. The potential V is relatively form small w.r.t. (P − A)2, that is, there exist constants
α < 1 and γ > 0 such that

|
〈
φ, V φ

〉
∥ ≤ α ∥(P −A)φ∥22 + γ∥φ∥22 ∀φ ∈ H1(Rd). (2.17)

We also need similar conditions on the virial x·∇V of the potential. Since we don’t want to impose strong
differentiability conditions on V , one has to be a bit careful: The virial x · ∇V is, at first, a distribution
given by the quadratic form 〈

φ, x · ∇V φ
〉
= −d

〈
φ, V φ

〉
− 2Re

〈
V φ, x · ∇φ

〉
when φ ∈ C∞

0 (Rd). We assume that this form extends to all φ ∈ D(P −A). A careful discussion when this
is the case, is given in Lemma 3.7 and in Section 3.3.
For the assumptions which give us control of virial x · ∇V , we decompose the potential V = V1 + V2 How
one splits V = V1 + V2 is quite arbitrary, as long as the conditions below are met.

Assumption 2.4. If the potential is split as V = V1 + V2, then V1, x
2V 2

1 and x · ∇V2 are are relatively
form bounded w.r.t. (P −A)2.

It will turn out that under this condition the virial x ·∇V is also relatively form bounded w.r.t. (P −A)2.
See the discussion in Section 3.3.

These above assumptions are all we need to prove a quadratic form version of the virial theorem, which
allows us to treat rather singular magnetic fields and potentials V and to avoid having explicit conditions
on the magnetic vector potential A which are not gauge invariant.

Behaviour at infinity. We need to quantify the notion that the magnetic field B, the potential V and
the virial x · ∇V are bounded, or even vanish, at infinity.

From physical heuristics, one expect that that ‘smallness’ should not be measured pointwise, but only
relative to the kinetic energy (P −A)2. The following conditions make this physical intuition precise.

Assumption 2.5. (Vanishing at infinity) The potential V vanishes at infinity w.r.t. (P − A)2 in the
sense of Definition 1.4. Moreover, if we split V = V1 + V2 as in assumption 2.4, then also V1 vanishes at
infinity w.r.t. (P −A)2 in the sense of Definition 1.4.

The precise notion of being bounded at infinity w.r.t. (P −A)2 is given by

Assumption 2.6. (Boundedness of the magnetic field and the virial at infinity) There exist
positive sequences (εj)j , (βj)j and (Rj)j with εj → 0 and Rj → ∞ as j → ∞, such that for all φ ∈ D(P−A)
with supp(φ) ⊂ U c

j = {x ∈ Rd : |x| ≥ Rj}

∥B̃φ∥22 ≤ εj ∥(P −A)φ∥22 + β2j ∥φ∥22 (2.18)

For the decomposition V = V1 + V2 of the potential, we also assume that there exist positive sequences
(ω1,j)j and (ω2,j)j such that for all φ ∈ D(P −A) with supp(φ) ⊂ U c

j

∥xV1φ∥22 ≤ εj ∥(P −A)φ∥22 + ω 2
1,j ∥φ∥22 (2.19)〈

φ, x · ∇V2φ
〉

≤ εj ∥(P −A)φ∥22 + ω2,j ∥φ∥22 (2.20)
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By monotonicity we may assume, without loss of generality, that the sequences βj , ω1,j , and ω2,j in
assumption 2.6 are decreasing. We define

β := lim
j→∞

βj , ωk := lim
j→∞

ωk,j , k = 1, 2. (2.21)

the relative bounds of B̃, etc., at infinity, which give a precise quantitative notion on how large, relative
to (P − A)2, the magnetic field B, respectively the virial x · ∇V , are at infinity w.r.t. (P − A)2. These
assumptions above are inspired by Section 3 in [19] and allow us to effectively treat magnetic fields and
potentials which can have severe singularities even close to infinity.

Unique continuation at infinity. For a unique continuation type argument at infinity, we also need a
quantitative version of relative form bondedness.

Assumption 2.7. If V = V1 + V2, then we assume

∥B̃φ∥22 + ∥xV1φ∥22 ≤
α2
1

4
∥(P −A)φ∥22 + C1∥φ∥22, (2.22)〈

φ, x · ∇V2 φ
〉

≤ α2 ∥(P −A)φ∥22 + C2∥φ∥22, (2.23)

|
〈
φ, V1 φ

〉
| ≤ α3 ∥(P −A)u∥22 + C3∥φ∥22 (2.24)

for some αj , Cj > 0, j = 1, 2, 3, all φ ∈ D(P −A), and

α1 + α2 + dα3 < 2. (2.25)

Remarks 2.8. (i) In the conditions above, one can use the diamagnetic inequality in order to replace
P −A by the nonmagnetic momentum operator P in all relative form boundedness conditions, see [3].

(ii) In Section 5 we show that the above assumptions are satisfied under some mild and, more importantly,
easily verifiable regularity and decay conditions on B and V , see Corollaries 5.5 and 5.6.

2.4. Regularity of the Poincaré gauge map. Note that the Poincaré gauge map (2.13) is a–priori only
well-defined when the magnetic field B is sufficiently regular, say, continuous. Our first result shows that
the map (2.13) can be continuously extended to all magnetic field satisfying Assumption 2.1.

Lemma 2.9. Let B be the vector space of vector fields B̃ satisfying∫
UR

|x|2−d
(
log

R

|x|

)2
|B̃(x)|2 dx <∞

for all R > 0. The continuous vector fields are dense in B and the map B̃ 7→ A := T (B̃) given by

A(x) = T (B̃)(x) :=

∫ 1

0
B̃(tx) dt for x ∈ Rd ,

extends to map from B into L2
loc(Rd,Rd). In particular, the Poincaré gauge map given in (2.13) is well

defined for all magnetic fields satisfying assumption 2.1. Moreover,∫
UR

|x|2−d |A(x)|2 dx ≤ 4

∫
UR

|x|2−d
(
log

R

|x|

)2
|B̃(x)|2 dx , (2.26)

for any R > 0.

Proof. Given B ∈ B and R > 0 let

∥B̃∥B,R :=

(∫
UR

|x|2−d
(
log

R

|x|

)2
|B̃(x)|2 dx

)1/2

.
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Also let A be the space of vector potentials A for which

∥|A∥A,R :=

(∫
UR

|x|2−d |A(x)|2 dx
)1/2

is finite for all R > 0. This makes A and B locally convex metric spaces and by construction, A ⊂
L2
loc(Rd,Rd). The metrics consistent with the topologies on A and B are, for example,

dA(A1, A2) =
∞∑
n=0

2−n ∥|A1 −A2∥A,2n

1 + ∥A1 −A2∥A,2n
and dB(B̃1, B̃2) =

∞∑
n=0

2−n 2∥B̃1 − B̃2∥B,2n
1 + 2∥B̃1 − B̃2∥B,2n

The usual arguments show that A and B are complete metric spaces. Moreover, the usual cutting and

mollifying arguments show that the continuous functions are dense in B. In addition, T (B̃) is well defined

and locally bounded when B̃ is continuous, so T (B̃) ∈ A, when B̃ is continuous. The bound (2.26) then
gives

dA(T (̃(B)1), T (B̃2)) =

∞∑
n=0

2−n ∥|T (B̃1 − B̃2)∥A,2n

1 + ∥T (B̃1 − B̃2)∥A,2n
≤ dB(B̃1, B̃2)

so T is uniformly continuous, thus it extend to a map from B into A which we continue to denote by
T . This shows that the Poincaré gauge map (2.13) is well defined for all magnetic fields B satisfying
assumption 2.1.

Hence it is enough to prove the bound (2.26) and by density, it is enough to prove it for continuous

vector fields B̃. Let g be a radial function, which is positive and finite for almost all |x| < R. Since

A(x) =
∫ 1
0 B̃(tx) dt, we have using symmetry∫
UR

g(|x|)|A(x)|2 dx =

∫ 1

0

∫ 1

0

∫
UR

g(|x|)B̃(t1x)B̃(t2x) dxdt1dt2

= 2

∫∫
0≤t1<t2≤1

∫
|x|≤R

g(|x|)B̃(t1x)B̃(t2x) dxdt1dt2

= 2

∫ 1

0

∫ 1

0

∫
UtR

g(|y|/t)t1−dB̃(uy)B̃(y) dydudt

= 2

∫
UR

(∫ 1

|y|/R
g(|y|/t)t1−d dt

)
A(y)B̃(y) dy

≤ 2

(∫
UR

g(|y|)|A(y)|2 dy
)1/2

∫
UR

g(|y|)−1

(∫ 1

|y|/R
g(|y|/t)t1−d dt

)2

|B̃(y)|2 dy

1/2

where we also used the substitution t1 = ut2 and y = t2x and then Cauchy-Schwarz inequality. Thus as
soon as

∫
|x|≤R g(|x|)|A(x)|

2 dx is finite, we arrive at the a-priori bound∫
UR

g(|x|)|A(x)|2 dx ≤ 4

∫
UR

g(|x|)−1

(∫ 1

|x|/R
g(|x|/t)t1−d dt

)2

|B̃(x)|2 dx . (2.27)

Choosing g(s) = s2−d, one easily calculates

g(|x|)−1

(∫ 1

|x|/R
g(|x|/t)t1−d dt

)2

= |x|2−d
(
log

R

|x|

)2
.
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Plugging this into (2.27) gives (2.26). We note that A(x) =
∫ 1
0 B̃(tx) dt is locally bounded as long as B̃ is

locally bounded. Thus for the above choice of g∫
UR

|x|2−d |A(x)|2 dx

is, as required, finite for all continuous B̃. Hence the a-priori bound (2.26) holds for all continuous B̃ and
extend by density to all of B.

Together with the quadratic form QA,V we will also need the associated sesqui-linear form

qA,V (u, v) =
〈
(P −A)u, (P −A) v

〉
+
〈
u, V v

〉
= qA,0(u, v) +

〈
u, V v

〉
, u, v ∈ H1(Rd). (2.28)

and denote by H = HA,V the self-adjoint operator associated with QA,V .

3. Dilations and the magnetic virial theorem

We will write HA,V = (P − A)2 + V , even though, strictly speaking, the operator is only defined via the
sum of the corresponding quadratic forms.

3.1. Dilations and the Poincaré gauge. In this subsection we will study the behavior of the magnetic
Schrödinger form QA,V under the action of the dilation group.

Let D0 be the operator defined on C∞
0 (Rd) by

D0 =
1

2
(P · x+ x · P ) , D(D0) = C∞

0 (Rd). (3.1)

Remark 3.1. Note that D0 =
1
2 ((P −A) · x+ x · (P −A)), when A is in the Poincaré gauge (2.14), since

then x ·A(x) = 0 for all x ∈ Rd. This is one of the reasons why dilations and the Poincaré gauge work well
together. A deeper reason is the representation (3.14) which connects the Poincaré gauge with dilations.

Lemma 3.2. D0 is essentially self-adjoint.

Proof. For t ∈ R define the unitary dilation operator Ut by

(Utf)(x) = etd/2f(etx) x ∈ Rd. (3.2)

It is easy to see that Ut is unitary on L2(Rd) and forms a group, UtUs = U(t + s), for all t, s ∈ R. In
particular, the adjoint is given by U∗

t = U−t. Moreover, each Ut leaves C∞
0 (Rd) invariant and a direct

calculation shows that t 7→ Ut is strongly differentiable on C∞
0 (Rd) with( d

dt
Utf

)∣∣∣
t=0

= iD0f, ∀ f ∈ C∞
0 (Rd). (3.3)

The claim now follows from [29, Thm. VIII.10].

We denote by D the closure of D0, which is self-adjoint, and by Dt the operator given by

iDt =
Ut − U−t

2t
. (3.4)

Dt is bounded and symmetric. We will use it to approximate D in the limit t→ 0.

Let φ ∈ D(P ). It is easy to check the commutation formula

PUt = etUtP , (3.5)

since (PUtφ)(x) = −i∇(etd/2φ(etx)) = −ietetd/2(∇φ)(etx) = et(Ut(Pφ))(x). In a similar way, one checks
that for a multiplication operator V the commutation formula

V (·)Ut = UtV−t(·) := UtV (e−t·) (3.6)
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holds on its domain, i.e., for all φ ∈ D(V ) we have (V (Utφ))(x) = etd/2V (x)φ(etx) = (Ut(V−tφ))(x) for
almost all x ∈ Rd. A similar result also holds for vector valued multiplication operators, for example,

A(·)Ut = UtA−t(·) := UtA(e
−t·) (3.7)

For the virial theorem, we want to define the commutator [HA,V , iD], where D is the generator of
dilations. Since the two operators involved are unbounded, this usually leads to involved domain consider-
ations. Even worse, in our case we do not know the domain D(HA,V ) exactly, nor do we intend to know it,
since we prefer to work only with quadratic forms. This seems to make a usable virial theorem impossible
to achieve, however, a quadratic form approach turns out to be feasable.

Assume that u ∈ D(HA,V ) and we approximate the unbounded generator of dilations D by the bounded
approximations Dt. A slightly formal calculation, for u ∈ D(HA,V ) ∩ C∞

0 which might be empty, however,
gives

⟨u, [HA,V , iDt]u⟩ = ⟨HA,V u, iDtu⟩+ ⟨iDtu,HA,V u⟩ = 2Re(⟨HA,V u, iDtu⟩) (3.8)

since iDt is antisymmetric. Assume that D(P − A) is invariant under dilations. Then, since D(HA,V ) ⊂
D(qA,V ) ⊂ D(P − A), we have iDtu ∈ D(P − A). So the right hand side of (3.8) can be written as
2Re(qA,V (u, iDtu)) and this extends, since D(HA,V ) is dense in D(qA,V ) = Q(HA,V ), to all of Q(HA,V ),
the quadratic form domain of HA,V . So we simply define the commutator [HA,V , iDt] as the quadratic
form

⟨u, [HA,V , iDt]u⟩ := 2Re
(
qA,V (u, iDtu)

)
(3.9)

on Q(HA,V ). Moreover, we can define the commutator [H, iD], again in the sense of quadratic forms, by〈
u, i [H,D]u

〉
:= lim

t→0
⟨u, [HA,V , iDt]u⟩ := lim

t→0
2Re

(
qA,V (u, iDtu)

)
, (3.10)

provided the limit on the right hand side exists. In the remaining part of this section, we will deal with
the calculation of the right hand side of (3.10) and, in particular, the claim that D(P − A) is invariant
under dilations under a natural condition on the magnetic field.

By (3.5), the Sobolev space D(P ) is invariant under dilations. To see how one can also get this for the
magnetic Sobolev space D(P −A) let φ ∈ D(P −A). Then, as distributions,

(P −A)Utφ = etUtPφ− UtAtφ = etUt(P −A)φ+ Ut(e
tA−A−t)φ . (3.11)

Since Ut : L
2(Rd) → L2(Rd) is unitary and (P − A)φ ∈ L2(Rd), we have etUt(P − A)φ ∈ L2(Rd) for all

t ∈ R. So in order that Utφ ∈ D(P − A) we have to check if (etA − A−t)φ ∈ L2(Rd). This is the content
of the next proposition.

Proposition 3.3. Suppose that the magnetic field B satisfies assumption 2.1, the vector potential A cor-

responding to B is in the Poincaré gauge, and B̃ 2 is relatively form bounded w.r.t. (P −A)2.
If φ ∈ D(P −A) = H1(Rd), then (etA−A−t)φ ∈ L2(Rd) for all t ∈ R and the map R ∋ t 7→ (etA−A−t)φ
is continuous. In particular, D(P −A) is invariant under dilations.

The main tool for the proof of Proposition 3.3 is the following

Lemma 3.4. Under the assumptions of Proposition 3.3, if φ ∈ D(P −A) = H1(Rd), then

∥(etA−A−t)φ∥ ≤ et
(
eCz |t| − 1

)
∥(P −A)φ∥+ z Cz

Cz ± 1

(
e(Cz±1)|t| − 1

)
∥φ∥ (3.12)

for all t ∈ R and z > 0, where the + sign holds for t ≥ 0 and the − sign for t < 0 and the constant Cz is
given by

Cz =
√
d
∥∥B̃((P −A)2 + z2

)− 1
2
∥∥
2→2

.

Remark 3.5. In the above bound we use the convention Cz
Cz−1

(
e(Cz−1)|t| − 1

)
= |t| when Cz = 1.
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Given Lemma 3.4, the proof of Proposition 3.3 is simple.

Proof of Proposition 3.3: Given φ ∈ D(P −A), Lemma 3.4 shows that (etA−A−t)φ ∈ L2(Rd) for all t ∈ R
and then (3.11) shows that Utφ ∈ D(P −A) for all t ∈ R. Thus D(P −A) is invariant under dilations.

Moreover, the bound (3.12) shows that the map t 7→ (etA−A−t)φ is continuous at t = 0. Since, for any
s, t ∈ R,

et+sA−A−(t+s) = es
(
etA−A−t

)
+ esA−t − (A−s)−t = es

(
etA−A−t

)
+ U∗

t

(
esA− (A−s)

)
Ut (3.13)

and Utφ ∈ D(P −A) for any φ ∈ D(P −A), continuity of t 7→
(
etA−A−t

)
φ at t = 0 implies continuity at

all t ∈ R.

Proof of Lemma 3.4: First of all, it is enough to prove (3.12) for φ ∈ C∞
0 (Rd), since this is dense in

D(P −A) in the graph norm: If (3.12) holds for φ ∈ C∞
0 (Rd), then given φ ∈ D(P −A), choose a sequence

φn ∈ C∞
0 (Rd) such that (P −A)φn → (P −A)φ and φn → φ. By taking a subsequence, if necessary, we can

also assume that φn → φ almost everywhere, hence (etA − A−t)φn → (etA − A−t)φ almost everywhere,
in particular, |(etA−A−t)φ| = limn→∞ |(etA−A−t)φn| = lim infn→∞ |(etA−A−t)φn| almost everywhere.
Then Fatou’s Lemma and (3.12) imply

∥(etA−A−t)φ∥ = ∥ lim inf
n→∞

|(etA−A−t)φn|∥ ≤ lim inf
n→∞

∥(etA−A−t)φn∥

≤ et
(
eCz |t| − 1

)
∥(P −A)φ∥+ z Cz

Cz ± 1

(
e(Cz±1)|t| − 1

)
∥φ∥

for all φ ∈ D(P −A).
Let t ∈ R. Since A is in the Poincaré gauge, using the change of variables t = e−s, we have

A =

∫ ∞

0
e−sB̃(e−s·) ds =

∫ ∞

0
e−sU∗

s B̃ Us ds . (3.14)

From the definition of A−t and (3.14) we get

etA−A−t = et
∫ ∞

0
e−sU∗

s B̃ Us ds−
∫ ∞

0
e−s U∗

t U
∗
s B̃ UsUt ds

= et
∫ ∞

0
e−s U∗

s B̃ Us ds− et
∫ ∞

t
et−sU∗

s B̃ Us ds

= et
∫ t

0
e−s U∗

s B̃ Us ds. (3.15)

Let φ ∈ C∞
0 (Rd). The above identity then gives

vt := (etA−A−t)φ = et
∫ t

0
e−s U∗

s B̃ Us φds. (3.16)

Define the operator Rz : D(P −A) → D(H0) by

Rz := ((P −A)2 + dz2)−1 (P −A− iz). (3.17)

Here ((P −A− iz)) is a vector operator, which maps φ ∈ D(P −A) to the vector function (P −A− iz)φ =(
(Pj −Aj − iz)φ)j=1,...,d. Then Rz(P −A+ iz)φ = φ, so

B̃ Us φ = B̃ Rz(P −A+ iz)Us φ = B̃ Rz Us

[
es(P −A)φ+ (esA−A−s)φ+ izφ

]
= B̃ Rz Us

[
es(P −A)φ+ vs + izφ

]
,
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which in view of (3.16) implies

vt =

∫ t

0
et−s U∗

s B̃ Rz Us

(
es(P −A)φ+ vs + izφ

)
ds. (3.18)

Hence, if t ≥ 0,

w(t) := ∥vt∥ ≤ Kz

∫ t

0
et−s

(
es∥(P −A)φ∥2 + w(s) + z∥φ∥

)
ds

= E(t) +Kz

∫ t

0
et−sw(s) ds,

where

Kz := ∥B̃ Rz∥2→2 , (3.19)

and

E(t) = Kz

∫ t

0
et−s

(
es∥(P −A)φ∥2 + z∥φ∥2

)
ds .

Of course, any upper bound on Kz can be used, we will derive a suitable bound on Kz at the end of this
proof. The Gronwall–type Lemma A.1 in the Appendix yields

w(t) ≤ E(t) +Kz

∫ t

0
e(1+Kz)(t−s)E(s) ds . (3.20)

Note ∫ t

0
e(1+Kz)(t−s)E(s) ds =

= Kz

∫∫
0<s<s′<t

e(1+Kz)(t−s′)es
′
dsds′ ∥(P −A)φ∥2 + zKz

∫∫
0<s<s′<t

e(1+Kz)(t−s′)es
′−s dsds′ ∥φ∥2

=
( et
Kz

(
eKzt − 1)− tet

)
∥(P −A)φ∥2 + z

( 1

Kz + 1

(
e(Kz+1)t − 1

)
−
(
et − 1

))
∥φ∥2

and a straightforward calculation gives

E(t) = Kzte
t∥(P −A)φ∥2 + zKz

(
et − 1

)
∥φ∥2

Inserting this into (3.20) gives

∥(etA−A−t)φ∥ = w(t) ≤ et
(
eKzt − 1

)
∥(P −A)φ∥2 +

zKz

Kz + 1

(
e(Kz+1)t − 1

)
∥φ∥2

which is , at least for φ ∈ C∞
0 (Rd).

If t < 0, then setting τ = −t > 0, we get from (3.18)

w̃(τ) := ∥v−τ∥2 ≤ Kz

∫ τ

0
es−τ

(
e−s∥(P −A)φ∥2 + w(s) + z∥φ∥2

)
ds

= Ẽ(τ) +Kz

∫ τ

0
es−τ w̃(s) ds,

with

Ẽ(τ) := Kz

∫ τ

0
es−τ

(
e−s∥(P −A)φ∥2 + z∥φ∥2

)
ds

and the second Gronwall–type bound from Lemma A.1 now gives

w̃(τ) ≤ Ẽ(τ) +Kz

∫ τ

0
e(Kz−1)(τ−s) Ẽ(s) ds . (3.21)
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Similarly as above one calculates∫ τ

0
e(Kz−1)(τ−s) Ẽ(s) ds =

= Kz

∫∫
0<s<s′<τ

e(Kz−1)τ−Kzs′ dsds′ ∥(P −A)φ∥2 + zKz

∫∫
0<s<s′<t

e(Kz−1)τ−Kzs′+s dsds′ ∥φ∥2

=
(e−τ

Kz

(
eKzτ − 1)− τe−τ

)
∥(P −A)φ∥2 + z

( 1

Kz − 1

(
e(Kz−1)τ − 1

)
−
(
1− e−τ

))
∥φ∥2

and

Ẽ(τ) = Kzτe
−τ∥(P −A)φ∥2 + zKz(1− e−τ )∥φ∥2 ,

and plugging this back into (3.21), using t = −τ < 0 we arrive at

∥(etA−A−t)φ∥2 = w̃(τ) ≤ et
(
eKz |t| − 1) ∥(P −A)φ∥2 +

zKz

Kz − 1

(
e(Kz−1)|t| − 1

)
∥φ∥2 .

Recalling that we can replace Kz by any upper bound in the above arguments, this proves (3.12), we only
have to bound Kz. Let ψ ∈ C∞

0 (Rd). From the definition (3.19) one easily gets

Kz = ∥B̃ Rz∥2→2 ≤ ∥B̃ ((P −A)2 + dz2)−
1
2 ∥2→2 ∥((P −A)2 + dz2)−

1
2 (P −A− iz)∥2→2.

On the other hand, letting T = ((P −A)2 + dz2)−
1
2 (P −A− iz) one sees

TT ∗ = ((P −A)2 + dz2)−
1
2 (P −A− iz) · (P −A+ iz)((P −A)2 + dz2)−

1
2

= ((P −A)2 + dz2)−
1
2 ((P −A)2 + dz2)((P −A)2 + dz2)−

1
2 = 1 .

(3.22)

Hence by duality ∥((P −A)2 + dz2)−
1
2 (P −A− iz)∥2→2 = ∥T∥2→2 = 1 and thus

Kz ≤ ∥B̃(H0 + z2)−
1
2 ∥2→2 =: Cz . (3.23)

The next result concerns the calculation of d
dt

(
etA − A−t

)
φ
∣∣∣
t=0

for φ ∈ D(P − A). Recall that given a

magnetic field B, the vector field B̃ is given by equation (1.9).

Proposition 3.6. Suppose that the magnetic field B satisfies assumption 2.1, the vector potential A cor-

responding to B is in the Poincaré gauge, and B̃ 2 is relatively form bounded w.r.t. (P −A)2. Then for all
φ ∈ D(P −A) the map R ∋ t 7→ (etA−A−t)φ is differentiable and

d

dt

(
etA−A−t

)
φ
∣∣∣
t=0

= lim
t→0

1

t
(etA−A−t)φ = B̃ φ (3.24)

where the limit is taken in L2(Rd).

Proof. Assume that for φ ∈ D(P −A) the map t 7→
(
etA−A−t

)
φ is differentiable in t = 0 with derivative

given by (3.24). Then (3.13) shows that it is also differentiable in any point t ∈ R with derivative

d

dt

(
etA−A−t

)
φ =

(
etA−A−t

)
φ+ U∗

t B̃Utφ (3.25)

By assumption, B̃2 is relatively form bounded with respect to (P − A)2, that is, B̃ : D(P − A) → L2(Rd)
is bounded. Thus the right hand side of (3.25) is in L2(Rd) by Proposition 3.3.
Hence it is enough to show differentiability at t = 0. We will prove, for all φ ∈ D(P −A),

lim
t→0

1

|et − 1|

∥∥∥etA−A−t − (et − 1) B̃
∥∥∥φ = 0 in L2(Rd), (3.26)
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which is equivalent to (3.24). First assume that φ ∈ C∞
0 (Rd). Using (3.15) we have

vt : =
(
etA−A−t − (et − 1) B̃

)
φ =

∫ t

0
et−s U∗

s B̃ Usφds− (et − 1) B̃ φ

=

∫ t

0
et−s

(
U∗
s B̃ Us − B̃

)
φds. (3.27)

Using (3.11) we rewrite the integrand as(
U∗
s B̃ Us − B̃

)
φ = U∗

s B̃(Us − 1)φ+ (U∗
s − 1)B̃φ

= U∗
s B̃Rz

(
(P −A+ iz)Us − (P −A+ iz)

)
φ+ (U∗

s − 1)B̃φ

= U∗
s B̃Rz

[
Us

(
es(P −A) + esA−A−s + iz

)
φ− (P −A+ iz)φ

]
+ (U∗

s − 1)B̃φ

= U∗
s B̃Rz

[
Us

(
(es − 1)(P −A)φ+ (es − 1)B̃φ+ vs

)
+ (Us − 1)(P −A+ iz)φ

]
− U∗

s (Us − 1)B̃φ .

Setting w(s) := ∥vs∥2, and recalling ∥B̃Rz∥2→2 ≤
√
d∥B̃((P −A)2 + z2)−1/2∥ =: Cz, see (3.23), we get

∥
(
U∗
s B̃ Us − B̃

)
φ∥2 ≤ Cz

[
|es − 1|

(
∥(P −A)φ∥2 + ∥B̃φ∥2

)
+ w(s) + ∥(Us − 1)(P −A+ iz)φ∥2

]
+ ∥(Us − 1)B̃φ∥2

This implies the integral inequalities

w(t) ≤ E(t) + Cz

∫ t

0
et−sw(s) ds for t ≥ 0

and

w(t) ≤ E(t) + Cz

∫ |t|

0
et+sw(−s) ds for t ≤ 0,

where now

E(t) =

∫ t

0
et−s

[
Cz∥(Us − 1)(P −A+ iz)φ∥2 + ∥(Us − 1)B̃φ∥2

]
ds

+

∫ t

0
et−s (es − 1)Cz

(
∥(P −A)φ∥2 + ∥B̃φ∥2

)
ds ,

for t ≥ 0, and

E(t) =

∫ |t|

0
et+s

[
Cz∥(Us − 1)(P −A+ iz)φ∥2 + ∥(Us − 1)B̃φ∥2

]
ds

+

∫ |t|

0
et+s (1− e−s)Cz

(
∥(P −A)φ∥2 + ∥B̃φ∥2

)
ds ,

for t ≤ 0. Lemma A.1 then yields the upper bounds

w(t) ≤ E(t) + Cz

∫ t

0
e(1+Cz)(t−s)E(s) ds for t ≥ 0 (3.28)

and

w(t) ≤ E(t) + Cz

∫ |t|

0
e(Cz−1)(t−s)E(−s) ds for t ≤ 0 . (3.29)
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To continue it is convenient to use, for τ ≥ 0,

κ(τ) := sup
|s|≤τ

∥(Us − 1)B̃φ∥2 + Cz sup
|s|≤τ

∥(Us − 1)(P −A+ iz)φ∥2,

so that for t ≥ 0

E(t) ≤
∫ t

0
et−s κ(s) ds+

(
∥(P −A)φ∥2 + ∥B̃φ∥2

) ∫ t

0
et−s (es − 1) ds

≤ κ(t)(et − 1) +
(
∥(P −A)φ∥2 + ∥B̃φ∥2

)
(et − 1)2,

since κ is increasing. Analogously, for t ≤ 0 we have

E(t) =

∫ |t|

0
et+sκ(s) ds+

(
∥(P −A)φ∥2 + ∥B̃φ∥2

) ∫ |t|

0
et+s (1− e−s) ds

≤ κ(|t|)(1− et) +
(
∥(P −A)φ∥2 + ∥B̃φ∥2

)
(1− et)2 .

So by monotonicity, for t ≥ 0,∫ t

0
e(1+Cz)(t−s)E(s) ds ≤

(
κ(t)(et − 1) +

(
∥(P −A)φ∥2 + ∥B̃φ∥2

)
(et − 1)2

)∫ t

0
e(1+Cz)(t−s) ds

=
(e(1+Cz)t − 1)(et − 1)

1 + Cz

[
κ(t) + (et − 1)

(
∥(P −A)φ∥2 + ∥B̃φ∥2

)]
and, similarly, for t ≤ 0 we have∫ |t|

0
e(Cz−1)(t−s)E(−s) ds ≤ (1− e(Cz−1)t)(1− et)

Cz − 1

[
κ(|t|) + (1− et)

(
∥(P −A)φ∥2 + ∥B̃φ∥2

)]
which in combination with (3.28) and (3.29) implies

w(t)

|et − 1|
=
∥∥∥etA−A−t

et − 1
φ− B̃φ

∥∥∥
≤
(
1 +

Cz|e(Cz±1)t − 1|
Cz ± 1

)[
κ(|t|) + |et − 1|

(
∥(P −A)φ∥2 + ∥B̃φ∥2

)]
, (3.30)

where the + sign holds when t ≥ 0 and the − sign when t < 0. Since P − A : D(P − A) → L2(Rd) and

B̃ : D(P − A) → L2(Rd) are bounded, (3.30) extends to all φ ∈ D(P − A), by density. Since κ(t) → 0 as
t→ 0, this proves (3.26).

We will need a similar version for the electric potentials. Recall that iDt = (Ut − U−t)/(2t).

Lemma 3.7. Let A, B, and B̃ satisfy the same assumptions as in Proposition 3.6 and let V be any electric
potential, with form domain D(P − A) ⊂ Q(V ), such that the distribution x · ∇V extends to a quadratic
form which is form bounded with respect to (P −A)2. Then with V−t = U∗

t V Ut = V (e−t·),

lim
t→0

1

t
⟨φ, (V − V−t)ψ⟩ = ⟨φ, x · ∇V ψ⟩ (3.31)

and

lim
t→0

2Re⟨φ, V iDtφ⟩ = −⟨φ, x · ∇V φ⟩ (3.32)

for all φ,ψ ∈ D(P −A).

Remark 3.8. By a slight abuse of notation, we use the symbol ⟨φ, V ψ⟩ for the sesqui–linear form

⟨|V |1/2φ, sgnV |V |1/2ψ⟩ with domain D(qV ) = D(|V |1/2) and ⟨φ, x · ∇V φ⟩ for the (extension of the) form
corresponding to the distribution x · ∇V .



ABSENCE OF POSITIVE EIGENVALUES OF MAGNETIC SCHRÖDINGER OPERATORS 21

Proof. We always have V ∈ L1
loc(Rd). Given ψ ∈ C∞

0 (Rd) we denote by V ψ the distribution

C∞
0 (Rd) ∋ φ 7→ ⟨φ, V ψ⟩ :=

∫
Rd

φ(x)V (x)ψ(x) dx.

Then the distributional derivative Ws :=
d
dsV−s is given by

⟨φ,Wsψ⟩ =
d

ds
⟨φ, V−sψ⟩ =: −q(Usφ,Usψ) = −⟨Usφ, x · ∇V Usψ⟩ .

and, by assumption, the sesqui–linear form q extends to sesqui–linear form with a domain containing
D(P −A) and which is relatively form bounded with respect to (P −A)2. With a slight abuse of notation,
we will write also q for this extension.

We claim that for any φ,ψ ∈ D(P −A) the map

R ∋ s 7→ q(Usφ,Usψ) is continuous. (3.33)

Assuming this for the moment, the fundamental theorem of calculous shows〈
φ, (V − V−t)ψ

〉
=

∫ t

0

d

ds

〈
φ, V−sψ

〉
ds =

∫ t

0
q(Usφ,Usψ) ds (3.34)

for any φ,ψ ∈ C∞
0 (Rd) ⊂ D(P − A) and, by density, this extend to all φ,ψ ∈ D(P − A). But then (3.34)

implies

d

dt

〈
φ, V−tψ⟩

∣∣
t=0

= lim
t→0

1

t
⟨φ, (V − V−t)ψ⟩ = q(φ,ψ)

which proves (3.31). For (3.32) we note

2tRe⟨φ, V iDt⟩ = Re
(
⟨φ, V Utφ⟩ − ⟨U∗

t φ, V φ⟩
)

and

⟨φ, V Utφ⟩ − ⟨U∗
t φ, V φ⟩ = ⟨U∗

t φ, (V−t − V )φ⟩ =
∫ t

0
q(UsU

∗
t φ,Usφ) ds

again by (3.34). By a simple continuity argument this shows

2Re⟨φ, V iDtφ⟩ =
1

t

∫ t

0
Re q(UsU

∗
t φ,Usφ) ds→ q(φ,φ) = −⟨φ, x · ∇V φ⟩

as t→ 0, which yields (3.32).

It remains to prove (3.33): The sesqui–linear form q being relatively (P −A)2 form bounded is equivalent
to

φ,ψ 7→ q(
(
(P −A)2 + dz2

)−1/2
φ,
(
(P −A)2 + dz2

)−1/2
ψ)

extending, for z > 0, to a bounded sesqui–linear form to all φ,ψ ∈ L2(Rd). Recalling the definition (3.17)
for Rz and (3.22), this is equivalent to

φ,ψ 7→ q(
(
Rzφ,Rzψ) =: q̃(φ,ψ)

being a bounded quadratic form, more precisely, extending to a bounded quadratic form on all of L2(Rd),
for all z > 0. Using sesqui–linearity, it is easy to see that for all continuous maps s 7→ φs, s 7→ ψs ∈ L2(Rd)
the map s 7→ q̃(φs, ψs) is continuous for any bounded sesqui–linear form q̃ on L2(Rd).

For φ,ψ ∈ D(P −A) we have

q(Usφ,Usψ) = q̃((P −A− iz)Usφ, (P −A− iz)Usψ)
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and

Usφ = Rz(P −A− iz)Usφ = RzUs

(
es(P −A) + (esA−A−s)− iz)

)
φ .

The map s 7→ es(P − A)φ is clearly continuous for all φ ∈ D(P − A) and so is the map s → (esA− As)φ
by Proposition 3.3. Thus s 7→ φ̃s :=

(
es(P −A) + (esA−A−s)− iz)

)
φ is continuous for all φ ∈ D(P −A).

Using s 7→ Us being strongly continuous and unitary, and

Utφ̃t − Usφ̃s = (Ut − Us)φ̃t + Us(φ̃t − φ̃s)

one sees that the map s 7→ φs := Usφ̃s is continuous. Similarly when φ is replaced by ψ ∈ D(P −A). Thus

R ∋ s 7→ q(Usφ,Usψ) = q̃(φs, ψs)

is continuous, since q̃ is a bounded sesqui–linear form. This proves (3.33) and hence the lemma.

3.2. The commutator as a quadratic form. This section deals with one of our main results, the
rigorous identification of the right hand side of (3.10).

Theorem 3.9 (Magnetic virial theorem). Let B and V satisfy assumptions 2.1- 2.3 and A be the vector
potential in the Poincaré gauge corresponding to the magnetic field B. Assume also that the distribution
x · ∇V extends to a quadratic form which is form bounded with respect to (P − A)2. Then for all φ ∈
D(P −A), the limit limt→0 2Re

(
qA,V (φ, iDtφ)

)
exists. Moreover,〈

φ, [H, iD]φ
〉
:= lim

t→0
2Re

(
qA,V (φ, iDtφ)

)
= 2∥(P −A)φ∥22 + 2 Re

〈
B̃φ, (P −A)φ

〉
−
〈
φ, x · ∇V φ

〉
.

(3.35)

Remark 3.10. See Remark 3.8 and the proof of Lemma 3.7 for the precise meaning of the quadratic form
⟨φ, x · ∇V φ⟩.

Proof. Recall that, as a quadratic form, we defined ⟨φ, [HA,V , iDt]φ⟩ := 2Re qA,V (φ, iDtφ), using the
notation from (2.28). See (3.9) and the discussion before it. We show that the limit exists for all u ∈
D(P −A) and is given by the right hand side of (3.35). By (3.11)

(P −A)Ut u = etUt(P −A)u+Xt u, (3.36)

where

Xt u = Ut(e
tA−A−t)u , (3.37)

where we recall A−t = U∗
t AUt = A(e−t·). Since

2tRe
(
qA,V (φ, iDtφ)

)
= Re

(
qA,V (φ,Utφ)− qA,V (U−t φ,φ)

)
,

and

qA,0(φ,Utφ) = ⟨(P −A)φ,Ute
t(P −A)φ⟩+ ⟨(P −A)φ,Xtφ⟩ ,

qA,0(U−tφ,φ) = ⟨(P −A)φ,Ute
−t(P −A)φ⟩+ ⟨X−tφ, (P −A)φ⟩ ,

we get

2Re qA,0(φ, iDtφ) =
et − e−t

t
⟨(P −A)φ,Ut(P −A)φ⟩+ ⟨(P −A)φ,

1

t
Xtφ⟩ − ⟨1

t
X−tφ, (P −A)φ⟩

→ 2⟨(P −A)φ, (P −A)φ⟩+ 2Re⟨B̃φ, (P −A)φ⟩

as t→ 0, because by Proposition 3.6 we have

lim
t→0

1

t
X±t u = ±B̃u in L2(Rd).
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Lemma 3.7 gives limt→0Re⟨φ, V iDtφ⟩ = −⟨φ, x · ∇V φ⟩ and since

qA,V (φ, iDtφ) = qA,0(φ, iDtφ) + ⟨φ, V iDtφ⟩ ,

this finishes the proof.

An immediate consequence of our magnetic virial theorem is

Corollary 3.11. Let the assumptions of the magnetic virial Theorem 3.9 above be satisfied. If ψ ∈ D(P−A)
is a weak eigenfunction of the magnetic Schrödinger operator HA,V corresponding to the energy E ∈ R, in
the sense that

E⟨φ,ψ⟩ = qA,V (φ,ψ) (3.38)

for all φ ∈ D(P −A), or all φ ∈ C∞
0 (Rd), then

0 = 2E + 2Re
〈
(P −A)ψ, B̃ ψ

〉
+ d

〈
ψ, V1ψ

〉
− 2 −

〈
ψ, (2V + x · ∇V )ψ

〉
(3.39)

Now, of course, the question is for what class of potentials V one can calculate the virial x · ∇V in
a simple way. If x · ∇V is given by a function which yields a nice quadratic form, then ⟨φ, x · ∇V φ⟩ is
given by the classical expression. On the other hand, the virial ⟨φ, x · ∇V φ

〉
exists even if V is not at all

classically differentiable. A typical example is given in the next section.

3.3. The Kato form of the virial.

Lemma 3.12. Assume that the magnetic field B satisfies assumptions 2.1 and 2.2, A is the magnetic
vector-potential in the Poincaré gauge, and V and |x|2V 2 are relatively form bounded with respect to
(P − A)2. Then for all φ ∈ D(P − A) the virial of V , i.e., the quadratic form corresponding to the
distribution x · ∇V , is given by

−
〈
φ, x · ∇V φ

〉
= −2 Im

〈
xV φ, (P −A)φ

〉
+ d
〈
φ, V φ

〉
(3.40)

for all φ ∈ D(P −A).

Remark 3.13. We call (3.40) the Kato form of the virial. Kato did not consider magnetic fields and used
the pointwise conditions V bounded and limx→∞ |x|V (x) = 0 to conclude absence of positive eigenvalues for
non-magnetic Schrödinger operators. Lemma 3.12 allows us not only to extend this to magnetic Schrödinger
operators but to replace Kato’s pointwise condition by a rather weak and natural smallness condition on
the quadratic form ⟨φ, |x|2V 2φ⟩ at infinity.

Of course, since the vector potential is in the Poincaré gauge x · A(x) = 0, so
〈
xV φ, (P − A)φ

〉
=〈

V φ, x · Pφ
〉
, hence the right hand side of (3.40) does not depend on vector potential A. This form is

useful, however, see the proof of Lemma 4.4, in particular, the proof of (4.16).

Proof. By definition, the virial is given by −⟨φ, x · ∇V φ⟩ = limt→0Re⟨φ, V iDtφ⟩. We will calculate this
limit slightly differently than in Lemma 3.7. As distributions

2itDtφ =

∫ t

−t
UsiDφds =

∫ t

−t
Usix · Pφds+ d

2

∫ t

−t
Usφds

and

1

|x|

∫ t

−t
Usix · Pφds = i

∫ t

−t
esUs

(
x
|x| · Pφ

)
ds = i

∫ t

−t
esUs

(
x
|x| · (P −A)φ

)
ds
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since any vector potential in the Poincaré gauge is transversal, that is, x · A(x) = 0 for all x ∈ Rd.
Altogether, we have

iDtφ =
i

2t
|x|
∫ t

−t
esUs

(
x
|x| · (P −A)φ

)
ds +

d

4t

∫ t

−t
Usφds

at least when φ ∈ C∞
0 (Rd). Thus, in this case,

⟨φ, V iDtφ⟩ = i
〈
|x|V φ, 1

2t

∫ t

−t
esUs

(
x
|x| · (P −A)φ

)
ds
〉
+
d

2
⟨V φ, 1

2t

∫ t

−t
Usφds⟩ . (3.41)

Since x
|x| · (P − A)φ ∈ L2(Rd) for all φ ∈ D(P − A), the maps s 7→ Us(

x
|x|(P − A)φ) and s 7→ Usφ are

continuous. Moreover, the map s 7→ Usφ is continuous in the graph norm corresponding to P − A for
any φ ∈ D(P − A) by a similar argument as in the proof of Lemma 3.7. Also |x|V φ ∈ L2(Rd) for any
φ ∈ D(P −A), since xV is relatively P −A bounded, that is, |x|2V 2 is relatively (P −A)2 form bounded,
by assumption. But then (3.41) also extends to all φ ∈ D(P −A) by continuity.

Since for φ ∈ D(P − A) the map s 7→ Us is continuous in the graph norm of P − A, we also have
1
2t

∫ t
−t Usφds→ φ in the graph norm. In addition, 1

2t

∫ t
−t e

sUs

(
x
|x| · (P −A)φ

)
ds→ x

|x| · (P −A)φ in L2(Rd)

as t→ 0. Then (3.41) yields

lim
t→0

⟨φ, V iDtφ⟩ = i⟨|x|V φ, x
|x| · (P −A)φ

〉
+
d

2
⟨V φ, φ⟩ = i⟨xV φ, (P −A)φ

〉
+
d

2
⟨V φ, φ⟩

which, taking real parts, finishes the proof of Lemma 3.12.

Remark 3.14. Slightly informally, an alternatively way to derive (3.40) is as follows: For u,w ∈ C∞
0 (Rd),

which is dense in the domain of P −A, the quadratic form
〈
u, x · ∇V w

〉
is given as a distribution by〈

u, x · ∇V w
〉
=
〈
u, x · ∇(V w)− V x · ∇w

〉
= −

〈
∇ · (xu), V w

〉
−
〈
V u, x · ∇w

〉
= −d

〈
u, V w

〉
−
〈
V u, x · ∇w

〉
−
〈
x · ∇u, V w

〉
= −d

〈
u, V w

〉
− i
(〈
xV u, (P −A)w

〉
−
〈
(P −A)u, xV w

〉) (3.42)

since the vector potential A is in the Poincaré gauge and P = −i∇. Under the conditions on V this extends
to all φ ∈ D(P −A).

Corollary 3.15. Assume that the magnetic field B satisfies assumptions 2.1 and 2.2, A is the magnetic
vector-potential in the Poincaré gauge, and the potential V splits as V = V1 + V2 where V1 and |x|2V 2

1 are
relatively form bounded with respect to (P − A)2 and the distribution x · ∇V2 extend to a quadratic form
which is form bounded with respect to (P −A)2. Then the virial of V is given by

−
〈
φ, x · ∇V φ

〉
= −2 Im

〈
xV1φ, (P −A)φ

〉
+ d
〈
φ, V1φ

〉
−
〈
φ, x · ∇V2 φ

〉
(3.43)

for all φ ∈ D(P −A).

Proof. Simply combine Lemma 3.7 and Lemma 3.12.

3.4. The exponentially weighted magnetic virial. The proof of our main result, see Theorem 4.8
below, is based on finding two different expressions for the commutator ⟨eFψ, [H,D]eFψ⟩, when F is a
suitable weight function and ψ is a weak eigenfunction. This is done in

Lemma 3.16. Assume that the magnetic field B and the electric potential V satisfy assumptions 2.1, 2.2,
and 2.3, and A is the vector potential corresponding to B in the Poincaré gauge. Moreover assume that
the distribution x · ∇V extend to a quadratic form, which is fom bounded with respect to (P − A)2. Let
F : Rd → R be a smooth and bounded radial function, such that ∇F (x) = g(x)x, and assume that g ≥ 0
and that the functions ∇(|∇F |2), (1+ | · |2)g, x ·∇g and (x ·∇)2g are bounded. Let ψ ∈ D(P −A) be a weak
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eigenfunction of the magnetic Schrödinger operator HA,V , i.e., E⟨φ,ψ⟩ = qA,V (φ,ψ) for some E ∈ R and
all φ ∈ D(P −A), where qA,V is the sesqui–linear form corresponding to the magnetic Schrödiner operator

HA,V and set ψF = eF ψ. Then〈
ψF , i [H,D]ψF

〉
=
〈
ψF ,

(
E + |∇F |2

)
ψF

〉
+ 2Re

〈
(P −A)ψF , B̃ ψF

〉
− 2 Im

〈
(P −A)ψF , xV1 ψF

〉
+ ∥(P −A)ψF ∥22 +

〈
ψF , (d V1 − V )ψF

〉
−
〈
ψF , x · ∇V2 ψF

〉
, (3.44)

and 〈
ψF , i [H,D]ψF

〉
= −4 ∥√g DψF ∥22 +

〈
ψF ,

(
(x · ∇)2g − x · ∇|∇F |2

)
ψF

〉
. (3.45)

Remark 3.17. This is a quadratic form version of the bounds of [13], who considered only the nonmagnetic
case. Also note that the conditions in [13] are stronger, since they work with operators and not with forms.
To get an idea why the bounds from Lemma 3.16 are useful for excluding eigenfunctions for positive energies
E > 0, think of

〈
ψF ,

(
E+ |∇F |2

)
ψF

〉
, respectively −4 ∥√g DψF ∥, as the main terms in (3.44) and (3.45),

and the other terms as lower order. Then (3.44) and (3.45) contradict each other when E > 0 unless ψ = 0.

Before we prove Lemma 3.16 we first collect some auxiliary results, to simplify the calculations. First
note that as distributions,

(P −A)ψF = eF (P −A)ψ − ieF∇Fψ . (3.46)

Hence since F and ∇F are bounded we have ψF ∈ D(P − A) for any ψ ∈ D(P − A), so
〈
ψF , i [H,D]ψF

〉
is well-defined.

Secondly, note that the operators ∇F · P and P · ∇F are well defined on D(P − A). Indeed, since F
is radial we have ∇F = gx for some function g depending only on |x|. This implies ∇F · A = 0, see also
(2.14). Hence, as distributions,

∇F · Pu = gx · Pu = gx · (P −A)u ∈ L2(Rd) (3.47)

for all u ∈ D(P −A). Similarly,

P · ∇F u = P · (gx)u = gP · xu− i(x · ∇g)u = gx · (P −A)u− igdu− i(x · ∇g)u ∈ L2(Rd) ,

⟨x⟩−1Du =
1

2⟨x⟩
(
x · P + P · x

)
u =

x

⟨x⟩
· P u− i

2⟨x⟩
u = ⟨x⟩−1x · (P −A)u− i

2⟨x⟩
u ∈ L2(Rd),

gD u =
g

2

(
x · P + P · x

)
u = gx · P u− ig

2
u = gx · (P −A)u− ig

2
u ∈ L2(Rd),

√
gD u =

√
gx · (P −A)u−

i
√
g

2
u ∈ L2(Rd),

⟨x⟩gD u = ⟨x⟩gx · (P −A)u− i⟨x⟩g
2

u ∈ L2(Rd),

(3.48)

and

D∇F u :=
1

2

(
∇F · P + P · ∇F

)
u = gDu− i

2
(x · ∇g)u ∈ L2(Rd) (3.49)

for all u ∈ D(P −A), by the assumptions on g. Note also that D∇F is symmetric.

The next result is needed also later, so we single it out.

Lemma 3.18. Under the conditions of Lemma 3.16 we have

qA,V (u, v) = qA,V (e
−Fu, eF v) + 2i⟨D∇F u, v⟩+

〈
∇F u,∇F v

〉
(3.50)

for all u, v ∈ D(P − A). In particular, if ψ is a weak eigenfunction corresponding to the energy E of the
magnetic Schrödinger operator HA,V , then

qA,V (ψF , ψF ) =
〈
ψF , (E + |∇F |2)ψF

〉
(3.51)
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Proof. A straightforward calculation using the above equations and (3.46) yields

qA,0(e
−Fu, eF v) =

〈
(P −A+ i∇F )u, (P −A− i∇F )v

〉
= qA,0(u, v)− i

(〈
∇Fu, (P −A)v

〉
+
〈
(P −A)u,∇Fv

〉)
−
〈
∇Fu,∇Fv

〉
= qA,0(u, v)− 2i

〈
D∇F u, v

〉
−
〈
∇Fu,∇Fv

〉
.

(3.52)

In particular, since
〈
e−F u, V eF v

〉
=
〈
u, V v

〉
and qA,0(u, v) = qA,0(u, v) +

〈
u, V v

〉
this gives (3.50).

If ψ is a weak eigenfunction of HA,V then qA,V (ψ, v) = E
〈
ψ, v

〉
for all v ∈ D(P − A). Since D∇F is

symmetric,
〈
D∇FψF , ψF

〉
s real and (3.50) implies

qA,V (ψF , ψF ) = Re qA,V (ψF , ψF ) = Re qA,V (ψ, e
FψF ) + Re

〈
∇FψF ,∇FψF

〉
= ReE

〈
ψ, eFψF

〉
+Re

〈
∇FψF ,∇FψF

〉
= Re

〈
ψF , (E + |∇F |2)ψF

〉
Proof of Lemma 3.16. From (3.46) we know that ψF ∈ D(P −A) = Q(HA,V ). Thus for any ψ ∈ Q(HA,V )
our magnetic virial Theorem 3.9 shows〈

ψF , i [H,D]ψF

〉
= 2qA,0(ψF , ψF ) + 2 Re

〈
B̃ψF , (P −A)u

〉
−
〈
ψF , x · ∇V ψF

〉
.

with qA,0(ψF , ψF ) =
〈
(P −A)ψF , (P −A)ψF

〉
. If ψ is a weak eigenfunction of HA,V with energy E, then〈

ψF , i [H,D]ψF

〉
= 2qA,V (ψF , ψF )− 2

〈
ψF , V ψF

〉
+ 2 Re

〈
B̃ψF iF , (P −A)u

〉
−
〈
ψF , x · ∇V ψF

〉
= 2
〈
ψF , (E + |∇F |2)ψF )− 2

〈
ψF , V ψF

〉
+ 2 Re

〈
B̃ψF iF , (P −A)u

〉
−
〈
ψF , x · ∇V ψF

〉
by (3.51). This proves the first claim of Lemma 3.16.

Applying (3.50) with u = ψF and v = iDtψF one sees

q(ψF , iDtψF ) = q(ψ, eF iDtψF ) + 2i⟨D∇FψF , iDtψF ⟩+
〈
∇F ψF ,∇F iDtψF

〉
= E

〈
ψF , iDtψ

〉
− 2⟨D∇FψF , DtψF ⟩+

〈
ψF , |∇F |2iDtψF

〉
,

where we again used qA,V (ψ, v) = E⟨ψ, v⟩ for all v ∈ D(P −A) and any weak eigenfunction ψ with energy
E. Notice that ⟨ψF , iDtψF ⟩ = i⟨ψF , DtψF ⟩ is purely imaginary since Dt is symmetric, so taking the real
part above shows

2Re q(ψF , iDtψF ) = −4Re⟨D∇F ψF , DtψF ⟩+ 2Re⟨ψF , |∇F |2iDtψF ⟩. (3.53)

Lemma 3.7 gives 2Re⟨ψF , |∇F |2iDtψF ⟩ → −⟨ψF , x · ∇(|∇F |2)ψF ⟩ as t → 0. Hence (3.53) implies (3.45)
as long as

lim
t→0

Re⟨D∇F ψF , DtψF ⟩ = ∥√gDψF ∥22 −
1

4
⟨ψF , ((x · ∇)2g)ψF ⟩. (3.54)

Using D∇Fu = gDu− i
2(x · ∇g)u for all u ∈ D(P −A), we get

⟨D∇F u,Dtu⟩ =
〈
gD u,Dtu

〉
+

1

2

〈
(x · ∇g)u, iDtu

〉
and we already know from Lemma 3.7 that 1

2 Re
〈
(x·∇g)u, iDtu

〉
→ −1

4

〈
u, ((x·∇)2g)u

〉
as t→ 0. Moreover,

⟨x⟩−1Dtu =
1

2t

∫ t

−t
⟨x⟩−1Us

(
Du
)
ds =

1

2t

∫ t

−t

⟨esx⟩
⟨x⟩

Us

(
⟨x⟩−1Du

)
ds

initially for u ∈ C∞
0 (Rd), but by density and since ⟨x⟩−1D : D(P − A) → L2(Rd) is bounded, this extends

to all u ∈ D(P −A). Thus, by continuity, ⟨x⟩−1Dtu→ ⟨x⟩−1Du in L2(Rd) as t→ 0 and

⟨gD u,Dtu⟩ = ⟨⟨x⟩gD u, ⟨x⟩−1Dtu⟩ → ⟨⟨x⟩gD u, ⟨x⟩−1Du⟩ = ∥√gDu∥22
as t→ 0 for all u ∈ D(P −A). This completes the proof of (3.54) and of the Lemma.
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For a type of unique continuation at infinity argument, we will also need the follwing

Lemma 3.19. Let B and V satisfy assumptions 2.1, 2.3, and 2.7. Assume that ψ and F satisfy conditions
of Lemma 3.16. Then there exists κ > 0 and cκ > 0 such that〈

ψF , i [H,D]ψF

〉
≥ κ

〈
ψF , |∇F |2 ψF

〉
− cκ∥ψF ∥22 . (3.55)

Proof. In what follows the value of a constant c might change from line to line. Since ψF ∈ H1(Rd), Lemma
3.16, the Cauchy-Schwarz inequality and assumption 2.4give〈

ψF , i [H,D]ψF

〉
≥ 2∥(P −A)ψF ∥22 − 2∥(P −A)ψF ∥2

(
∥B̃ψF ∥2 + ∥xV1ψF ∥2

)
− (α2 + dα3)∥(P −A)ψF ∥22 − c∥ψF ∥22 .

Therefore using (3.46) and assumption 2.3 we find that for any κ > 0〈
ψF , i [H,D]ψF

〉
≥ (2− κ)∥(P −A)ψF ∥22 + κ

〈
ψF , |∇F |2 ψF

〉
− (α2 + κα0) ∥(P −A)ψF ∥22

− 2∥(P −A)ψF ∥2
(
∥B̃ψF ∥2 + ∥xV1ψF ∥2

)
− c∥ψF ∥22.

On the other hand assumption 2.4implies that

2∥(P −A)ψF ∥2
(
∥B̃ψF ∥2 + ∥xV1ψF ∥2

)
≤ α1∥(P −A)ψF ∥22 + 2 c1∥(P −A)ψF ∥2 ∥ψF ∥2

≤ (α1 + κ) ∥(P −A)ψF ∥22 +
c1
κ
∥ψF ∥22.

Hence 〈
ψF , i [H,D]ψF

〉
≥ (2− 2κ− κα0 − α1 − α2 − dα3) ∥(P −A)ψF ∥22 + κ

〈
ψF , |∇F |2 ψF

〉
− (c+ κ−1c1) ∥ψF ∥22,

and the result follows upon setting

κ =
2− α1 − α2 − dα3

2 + α0
> 0,

see (2.25).

4. Absence of positive eigenvalues

We will give the prove of absence of positive eigenvalues in two steps. The first is that putative eigen-
functions corresponding to positive energies have to decay faster than exponentially. In a second step, we
prove that any such eigenfunction has to be zero.

4.1. Ridiculously fast decay. We set ⟨x⟩λ :=
√
λ+ |x|2 for x ∈ Rd, λ > 0. For λ = 1, we write simply

⟨x⟩1 = ⟨x⟩. We have

Proposition 4.1 (Fast decay). Assume that B and V satisfy assumptions 2.1- 2.6 and that the magnetic
field A corresponding to B is in the Poincaré gauge. Furthermore, assume that ψ is a weak eigenfunction
of the magnetic Schrödinger operator HA,V corresponding to the energy E ∈ R, and that there exist µ ≥ 0

and λ > 0 such that x 7→ eµ ⟨x⟩λ ψ(x) ∈ L2(Rd). If E + µ2 > Λ with Λ given by (1.13), then

x 7→ eµ⟨x⟩λ ψ(x) ∈ L2(Rd) ∀µ > 0, ∀λ > 0. (4.1)

Before we start with the proof, we make some preparations. Obviously it suffices to prove the statement
for λ = 1. We will first consider the case µ = 0, i.e., we only know that ψ ∈ D(P − A) ⊂ L2(Rd). The
choice

Fµ,ε(x) =
µ

ε

(
1− e−ε ⟨x⟩

)
, (4.2)
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for the weight function, for some µ ≥ 0 and ε > 0, will be convenient. We have Fµ,ε(x) → µ⟨x⟩ as ε → 0.
Also, since

∇Fµ,ε = µ⟨x⟩−1e−ε⟨x⟩x (4.3)

we have

gµ,ε(x) = µ⟨x⟩−1e−ε⟨x⟩ . (4.4)

Moreover, let

µ∗ = sup
{
µ ≥ 0 : eµ⟨x⟩ψ ∈ L2(Rd)

}
,

the maximal exponential decay rate of the weak eigenfunction ψ. The bound (4.1) is equivalent to µ∗ = ∞,
so we have to exclude 0 ≤ µ∗ <∞. If 0 ≤ µ∗ <∞, then there exist sequences µn ↘ µ∗, εn ↘ 0 as n→ ∞,
i.e., both sequences are decreasing and µn → µ∗, εn → 0, as n→ ∞, with

an := ∥eFn ψ∥2 → ∞ as n→ ∞, (4.5)

where we put Fn := Fµn,εn . Moreover, we let gn(x) := gµn,εn and define φn by

φn =
eFn ψ

∥eFn ψ∥
. (4.6)

Since

Fn(x) ≤ µn⟨x⟩ , (4.7)

the function eFn is bounded uniformly in n ∈ N on compact subsets of Rd. So for each compact set K ⊂ Rd

we have 〈
φn,1K φn

〉
→ 0 as n→ ∞ . (4.8)

This also implies that for any bounded function W with W (x) → 0 as x→ ∞ one has〈
φn,Wφn

〉
→ 0 as n→ ∞. (4.9)

In order to use Lemma 3.16 to derive a contradiction, the following is useful.

Lemma 4.2. Let Fn, gn, ψ, and φn be given as above. If 0 < µ∗ <∞, then

lim
n→∞

⟨eFnψ, εn⟨x⟩eFnψ⟩ = 0 . (4.10)

Moreover, if 0 ≤ µ∗ <∞, then

lim
n→∞

〈
∇Fnφn,∇Fnφn

〉
= µ2∗ (4.11)

and

lim
n→∞

〈
φn, x,

(
(x · ∇)2gn − x · ∇|∇F |2

)
φn

〉
= 0 (4.12)

Remark 4.3. If µ∗ > 0, then ψ decays exponentially and since Fn is bounded for fixed n ∈ N we have
⟨eFnψ, ⟨x⟩eFnψ⟩ <∞ for all n.

Lemma 4.4. Let 0 ≤ µ∗ < ∞ and Fn, gn, and φn be given as above. If the potential V is relative form
small and vanishes at infinity w.r.t (P −A)2, i.e satisfies assumptions 2.3 and 2.5, then

lim
n→∞

⟨φn, V φn⟩ = 0 (4.13)

lim
n→∞

⟨(P −A)φn, (P −A)φn⟩ = E + µ2∗ . (4.14)

Moreover, if the magnetic field B satisfy assumptions 2.2, and 2.6, then

lim sup
n→∞

|
〈
B̃ φn, (P −A)φn

〉
| ≤ β(E + µ2∗)

1/2 . (4.15)
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and if one splits V = V1 + V2, with V1 and V2 satisfying assumptions 2.4 and 2.6 then

lim sup
n→∞

〈
φn, x · ∇V φn

〉
≤ 2ω1(E + µ2∗)

1/2 + ω2 (4.16)

Remark 4.5. For the proof of similar results in [13], the assumption that V and x · ∇V are relatively
form compact with respect to P 2 is made. Thus they only deal with potentials which are relatively form
bounded with relative bound zero. They also do not consider conditions on the Kato form of the virial
x · ∇V .

We will prove these two Lemmata later in this section.

Proof of Proposition 4.1. Assume that 0 ≤ µ2∗ < ∞. It is easy to check that Fn and gn satisfy the
assumptions of the exponentially weighted magnetic virial Lemma 3.16. Thus Lemma 3.16 and Lemma
4.2 show

lim sup
n→∞

〈
φn, i [H,D]φn

〉
≤ 0 . (4.17)

On the other hand the first equality from Lemma 3.16 together with Lemma 4.4 shows

lim inf
n→∞

〈
φn, i [H,D]φn

〉
≥ 2(E + µ2∗)− 2(β + ω1)(E + µ2∗)

1/2 − ω2

= 2

[(√
E + µ2∗ −

β + ω1

2

)2

−
(
β + ω1

2

)2

− ω2

2

]
> 0

(4.18)

if
√
E + µ2∗ >

1
2

(
β+ω1+

√
(β + ω1)2 + 2ω2

)
=

√
Λ. Clearly, (4.17) and (4.18) contradict each other. Thus

µ∗ = ∞, which is equivalent to (4.1).

It remains to prove Lemma 4.2 and 4.4.

Proof of Lemma 4.2. Clearly, for any δ > 0〈
φn, εn⟨x⟩φn

〉
=
〈
φn,1{εn⟨x⟩<δ} φn

〉
+
〈
φn,1{εn⟨x⟩≥δ} εn⟨x⟩φn

〉
≤ δ +

〈
φn,1{εn⟨x⟩>δ} εn⟨x⟩φn

〉
One easily checks that 0 ≤ t 7→ 1−e−t

t is decreasing. Thus

γδ := sup
t≥δ

1− e−t

t
=

1− e−δ

δ
< 1 (4.19)

which shows

Fn =
µn⟨x⟩
εn⟨x⟩

(1− e−ε⟨x⟩) ≤ µnγδ⟨x⟩ for all x with εn⟨x⟩ ≥ δ .

Choose any γδ < κ < 1. If 0 < µ∗ <∞ then ψ decays exponentially with rate κµ∗ < µ∗, by the definition
of µ∗. Thus

lim sup
n→∞

〈
eFnψ,1{εn⟨x⟩>δ} ⟨x⟩eFnψ

〉
≤ lim sup

n→∞

〈
eµnγδ⟨x⟩ψ, ⟨x⟩eµnγδ⟨x⟩ψ

〉
<∞

since, µnγn → γδµ∗ < κµ∗ as n→ ∞. This implies (4.10).

For the proof of the remaining part of Lemma 4.2, we note that from (4.3) one gets

|∇Fn|2 = µ2n
(
1− ⟨x⟩−2

)
e−2εn⟨x⟩ . (4.20)

Since φn is normalized this gives

µ2n −
〈
∇Fnφn,∇Fnφn

〉
=
〈
φn,

(
µ2n − |∇Fn|2

)
φn

〉
= µ2n

(〈
φn,

(
1− e−2εn⟨x⟩)φn

〉
+
〈
φn, ⟨x⟩−2e−2εn⟨x⟩φn

〉) (4.21)
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Recall that µn ↘ µ∗. If µ∗ = 0, then (4.21) shows∣∣µ2n −
〈
∇Fnφn,∇Fnφn

〉∣∣ ≤ 2µ2n → 0 as n→ ∞ .

If 0 < µ∗ <∞, then using 0 ≤ 1− e−2εn⟨x⟩ ≤ 2εn⟨x⟩ in (4.21) gives∣∣µ2n −
〈
∇Fnφn,∇Fnφn

〉∣∣ ≤ µ2n
(
2
〈
φn, εn⟨x⟩φn

〉
+
〈
φn, ⟨x⟩−2φn

〉)
→ 0 as n→ ∞

due to (4.10) and (4.9). This proves (4.11).

Using the definitions of Fn and gn a relatively short calculation shows∣∣(x · ∇)2gn − x · ∇|∇F |2
∣∣ ≲ µn(µn + 1)

[
⟨x⟩−2 + ⟨x⟩−1 + εn⟨x⟩+ ε2n⟨x⟩

]
e−εn⟨x⟩ (4.22)

Since 0 ≤ t 7→ te−t is bounded, (4.22) implies, if µ∗ = 0,∣∣〈φn,
(
(x · ∇)2gn − x · ∇|∇F |2

)
φn

〉∣∣ ≲ µn(µn + 1) → 0 as n→ ∞

If 0 < µ∗ <∞, then (4.22) shows∣∣〈φn,
(
(x · ∇)2gn − x · ∇|∇F |2

)
φn

〉∣∣ ≲ 〈φn,
(
⟨x⟩−2 + ⟨x⟩−1

)
φn

〉
+
〈
φn, εn⟨x⟩φn

〉
→ 0 as n→ ∞

using again (4.10) and (4.9). This proves (4.12).

In the proof of Lemma 4.4 we need the following auxiliary tool.

Lemma 4.6. Assume that the potential V is relatively form bounded w.r.t (P −A)2. Then for any family
of real-valued bounded function ξj ∈ C∞

0 (Rd), j ∈ I, for which supj∈I ∥ξj∥∞ and supj∈I ∥∇ξj∥∞ are finite,
we have

sup
j∈I

sup
n∈N

∥(P −A)ξjφn∥ <∞ . (4.23)

where φn is the sequence defined in (4.6). Moreover, if ξ ∈ C∞
0 (Rd) is a real-valued function with compact

support, then

lim sup
n→∞

∥(P −A)ξφn∥ = 0 . (4.24)

We give the proof of this Lemma after the

Proof of Lemma 4.4. One easily checks that if ξ is an infinitely often differentiable cut–off function with
bounded derivative, then ξφ ∈ D(P −A) for any φ ∈ D(P −A).

Let χl : [0,∞) → R+, l = 1, 2, be infinitely often differentiable on (0,∞) with χ1(r) = 1 for 0 ≤ r ≤ 1,
χ1(r) > 0 for r ≤ 3/2, χ1(r) = 0 for r ≥ 7/4, and χ2(r) = 0 for r ≤ 5/4, χ2(r) > 0 for r ≥ 3/2, χ2(r) = 1
for r ≥ 2. Then infr≥0(χ

2
1(r) + χ2

2(r)) > 0 and thus

ξ1 :=
χ1√
χ2
1 + χ2

2

, ξ2 :=
χ2√
χ2
1 + χ2

2

are infinitely often differentiable with bounded derivatives and ξ21 + ξ22 = 1. Given R ≥ 1 we set

ξ<R(x) := ξ1(|x|/R), ξ≥R(x) := ξ2(|x|/R)

which yields a family of infinitely often differentiable real-valued localization functions on Rd with bounded
derivatives. Note that ξ<R has compact support and supp(ξ≥R) ⊂ U c

j = {x ∈ Rd : |x| ≥ R}
By construction, we have 〈

φn, V φn

〉
=
〈
ξ2<Rφn, V φn

〉
+
〈
ξ2≥Rφn, V φn

〉
and, recalling that V is form bounded with respect to (P −A)2, we have for fixed R ≥ 1

|
〈
ξ2<Rφn, V φ

〉
| = |

〈
ξ<Rφn, V ξ<Rφn

〉
| ≲ ∥(P −A)ξ<Rφn∥22 + ∥ξ<Rφn∥22 → 0 , as n→ ∞
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by Lemma 4.6 and (4.9), since ξ<R has compact support.
Moreover, since V vanishes at infinity w.r.t. (P − A)2, there exist αR, γR with εR, βR → 0 as R → ∞

such that

|
〈
ξ2≥Rφn, V φn

〉
| = |

〈
ξ≥Rφn, V ξ≥Rφn

〉
| ≤ αR∥(P −A)ξ≥Rφn∥22 + γR∥ξ≥Rφn∥22 .

Lemma 4.6 then shows

lim sup
n→∞

|
〈
ξ2≥Rφn, V φn

〉
| ≲ αR + γR → 0 , as R→ ∞ ,

which proves (4.13).
Moreover, from Lemma 3.18, we get〈

(P −A)φn, (P −A)φn

〉
= E +

〈
∇Fnφn,∇Fnφn

〉
−
〈
φn, V φn

〉
→ E + µ2∗ as n→ ∞

using also (4.13) and (4.10). This proves (4.14).

For B̃2 one can argue exactly the same way as above for V to see that for fixed j ∈ N

lim sup
n→∞

〈
φn, |B̃|2φn

〉
≤ lim sup

n→∞

〈
ξ2,jφn|B̃|2ξ2,jφn

〉
≤ Cεj + β2j

where we also used assumption 2.6 and put C = supj∈N lim supn→∞ ∥(P −A)ξjφn∥22, which due to Lemma
4.6 is finite. Since εj → 0 and βj → β, as n→ ∞, we get

lim sup
n→∞

∥B̃φn∥ ≤ β ,

Because of |
〈
B̃ φn, (P −A)φn

〉
| ≤ ∥B̃ φn∥∥(P −A)φn∥ and (4.14) this proves (4.15).

If the potential splits as V = V1 + V2 with V1, V2 satisfying assumptions 2.4 and 2.6, then one can argue
exactly as above to see

lim sup
n→∞

|
〈
xV1φn, (P −A)φn

〉
| ≤ ω1

and

lim sup
n→∞

|
〈
φn, x · ∇V2φn

〉
| ≤ ω2 .

Moreover, if V1 and (xV1)
2 are form bounded w.r.t. (P −A)2 and φ ∈ D(P −A) with supp(φ) ⊂ {|x| ≥ R},

then

|
〈
φ, V1 φ

〉
| = |

〈
|x|−1φ, |x|V1φ

〉
| ≤ ∥|x|−1φ∥∥|x|V1φ∥ ≲ R−1∥φ∥

(
∥(P −A)φ∥22 + ∥φ∥22

)1/2
,

so V1 vanishes at infinity w.r.t. (P − A)2. Thus limn→∞
〈
φn, V1 φn

〉
= 0 and using the mixed form of the

virial from Corollary 3.15 yields

lim sup
n→∞

〈
φ, x · ∇V φ

〉
≤ 2ω1(E + µ2∗)

1/2 + ω2 .

Remark 4.7. Note that Λ < β + ω as soon as ω > 0.

Now we give the

Proof of Lemma 4.6. Let ψ ∈ D(P − A) be a weak eigenfunction of the magnetic Schrödinger operator
HA,V with eigenvalue E and Fn, ψn = eFnψ and φn = ψn/∥ψn∥ as in (4.6). In particular, we have
supn ∥∇Fn∥ ≤ supn µn <∞. Since V is relatively form bounded with respect to (P −A)2

∥(P −A)φ∥22 = qA,V (φ,φ)−
〈
φ, V φ

〉
≤ qA,V (φ,φ) + α0∥(P −A)φ∥22 + C∥φ∥22
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for some 0 ≤ α0 < 1, C > 0, and all φ ∈ D(P −A). Thus

∥(P −A)φ∥22 ≤ (1− α0)
−1
(
qA,V (φ,φ) + C∥φ∥22

)
From the IMS localization formula (C.1) we get

qA,V (ξψn, ξψn) = Re qA,V (ξ
2e2Fnψ,ψ) +

〈
ψ, |∇(ξeFn)|2ψ

〉
≤ E∥ξψn∥22 + 2∥(∇ξ)ψn∥22 + 2∥(∇Fn)ξψn∥22

since ψ is a weak eigenfunction with energy E. Thus

∥(P −A)ξjφn∥22 ≲ ∥ξjφn∥22 + ∥(∇ξj)φn∥22
where the implicit constant is independent of j ∈ I and n ∈ N. Since φn is normalized, this proves the
first claim.

On the other hand, if ξ has compact support then so does ∇ξ. Thus, from (4.9) we get ∥ξφn∥ → 0 and
∥(∇ξ)φn∥ → 0, as n→ ∞. Hence,

∥(P −A)ξφn∥22 ≲ ∥ξφn∥22 + ∥(∇ξ)φn∥22 → 0 ,

as n→ ∞.

4.2. Absence of positive eigenvalues. Now we can prove our main result.

Theorem 4.8. Let B and V satisfy assumptions 2.1- 2.6. Then the magnetic Schrödinger operator HA,V

has no eigenvalues in the interval (Λ,∞), where Λ is given by (1.13).
Moreover, if E ≤ Λ is an eigenvalue of HA,V then any weak eigenfunction ψ with energy E cannot decay

faster than ee
√
λ−E|x|, in the sense that if x 7→ eµ|x|ψ(x) ∈ L2(Rd) for some µ >

√
Λ− E, then ψ is the

zero function.

Proof. Let qA,V be the quadratic from corresponding to HA,V and assume that E
〈
φ,ψ

〉
= qA,V (φ,ψ) for

all φ ∈ D(qA,V ) = D(P − A). Furthermore, assume that either E > Λ or E + µ2 > Λ for some µ > 0 and

x 7→ eµ|x|ψ(x) ∈ L2(Rd). Then from Proposition 4.1 we know that

x 7→ eµ⟨x⟩λ ψ(x) ∈ L2(Rd) ∀µ > 0, ∀λ > 0.

where ⟨x⟩λ = (λ+ x2)1/2.
Let µ > 0, ε > 0, λ > 0, and define

F (x) = Fµ,ε,λ(x) =
µ

ε

(
1− e−ε ⟨x⟩λ

)
,

so that

∇Fµ,ε,λ(x) = xgµ,ε,λ(x), gµ,ε,λ(x) =
µ e−ε ⟨x⟩λ√
λ+ |x|2

.

Denote ψµ,ε,λ = eFµ,ε,λ ψ. Lemma 3.19 and equation (3.45) then give

κ
〈
ψµ,ε,λ, |∇Fµ,ε,λ|2 ψµ,ε,λ

〉
≤
〈
ψµ,ε,λ,

(
(x · ∇)2gµ,ε,λ − x · ∇|∇Fµ,ε,λ|2

)
ψµ,ε,λ

〉
+ C ∥ψµ,ε,λ∥22 (4.25)

for all µ, ε, λ > 0 and some constant C independent of µ, λ and ε. Moreover, a direct calculation shows

lim
ε→0

x · ∇|∇Fµ,ε,λ(x)|2 = 2λµ2⟨x⟩−1
λ (1 − ⟨x⟩−2

λ ) > 0 (4.26)

and

lim
ε→0

(x · ∇)2gµ,ε,λ(x) = −2λµ⟨x⟩−3
λ |x|2 < 0 . (4.27)

Since

lim
ε→0

Fµ,ε,λ(x) := Fµ,λ(x) = µ⟨x⟩λ ,
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in view of Proposition 4.1 we can pass to limit ε→ 0 in (4.25) to obtain

κµ2
〈
ψµ,λ,

|x|2

λ+ |x|2
ψµ,λ

〉
≤ C ∥ψµ,λ∥22 ∀µ, λ > 0, (4.28)

where

ψµ,λ(x) := eµ⟨x⟩λ ψ(x) .

Using Proposition 4.1 again and the monotone convergence theorem we finally obtain, by letting λ→ 0,

κµ2 ∥ψµ∥22 ≤ C ∥ψµ∥22 ∀µ > 0, (4.29)

where ψµ(x) = eµ|x| ψ(x). This is of course impossible for µ large enough. Hence ψµ = 0 and the claim
follows.

Remark 4.9. Notice that in view of Corollary 7.7 we have (Λ,∞) ⊆ σess(H). Hence Theorem 4.8 excludes
the presence of all embedded eigenvalues of H strictly larger than Λ.

On the other hand, the possibility of Λ being an eigenvalue of H cannot be in general excluded. Indeed,
if B is continuous and compactly supported with |

∫
R2 B| > 2π, and if V = −B, then by the Aharonov-

Casher theorem, see e.g. [7, Sec. 6.4], Λ = 0 is an eigenvalue of H = (P − A)2 − B. Sufficient conditions
for the absence of positive eigenvalues of the Pauli operator are proved in section 6.4 , see 6.5.

Remark 4.10. In [5] it was proved that if the magnetic fields has the form

B(x) =
b(θ)

r
, x = (r cos θ, r sin θ), b ∈ L∞(S1),

then the operator HA, has no eigenvalues above ∥b∥2L∞(S1). Note that in this particular setting Λ =

∥b∥2L∞(S1).

Remark 4.11. One of the authors of the present paper established in [22] dispersive estimates for the
propagator e−itH in weighted L2−spaces under the condition that H has no positive eigenvalues, see [22,
Assumption 2.2]. Theorem 4.8 implies that the latter assumption can be omitted. This was, in fact, one
of the main motivations for the present work.

5. Kato–class, local Lp, and pointwise conditions

Below we show that Assumptions 2.1-2.6 are satisfied under mild explicit regularity and decay conditions
on the magnetic field B and the potential V . In particular, we give local Lp conditions, which in a natural
way extend the pointwise bounds on the potential from in [1, 31].

5.1. Potentials vanishing at infinity. Recall the Definitions 1.4, respectively 1.8, for a potential V to
vanish, respectively being bounded, at infinity w.r.t. (P −A)2. We have

Proposition 5.1. a) If V =W1+W2 and W1 and W2 vanish at infinity w.r.t. (P−A)2, then V vanishes
at infinity w.r.t. (P −A)2.

b) If V =W1+W2 and W1 and W2 are bounded from above at infinity w.r.t. (P −A)2, then V is bounded
from above at infinity w.r.t. (P −A)2. Moreover, γ+∞(V ) ≤ γ+∞(W1) + γ+∞(W2).

c) If V = ∇ · Σ +W for some real-valued vector field Σ and some potential W and Σ2 and W are form
bounded with respect to (P −A)2, then V is form bounded with respect to (P −A)2.

d) If V = ∇ ·Σ+W for some real-valued vector field Σ and some potential W and Σ2 and W vanish at
infinity w.r.t. (P −A)2 then V vanishes at infinity w.r.t. (P −A)2.
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Remarks 5.2. (i) Again, the diamagnetic inequality implies that one only has to check form boundedness
and vanishing w.r.t. P 2.

(ii) The second result is already observed in the work of Combescure and Ginibre [4]. The beautiful
work of Maz’ya and Verbitsky [26] shows that V is form bounded w.r.t P 2 if and only if one can split
V = ∇ · Σ+W such that Σ2 and W are form bounded w.r.t P 2.

(iii) It is not true, in general, that Σ2 bounded at infinity implies that ∇ · Σ is bounded at infinity
w.r.t (P −A)2.

(iv) The choice Σ(x) = x⟨x⟩−ε sin(e1/|x|) = O(⟨x⟩)−ε, for some ε > 0, yields a potential V = ∇ · Σ with

V (x) = −|x|−1e1/|x|⟨x⟩−ε cos(e1/|x|) +O(⟨x⟩−ε) (5.1)

which has a severe singularity at zero. Since Σ2 is infinitesimally for bound and vanishing at infinity w.r.t
P 2, the above result shows that so does V . That V vanishes at infinity w.r.t. P 2, which might not be too
surprising, since the singularity is local.

(v) The choice Σ(x) = x⟨x⟩−ε sin(e|x|) = O(⟨x⟩)−ε, for some ε > 0, yields a potential V = ∇ · Σ with

V (x) = |x|e|x|⟨x⟩−ε cos(e|x|) +O(⟨x⟩−ε) (5.2)

which has again severe oscillations, now at infinity. Nevertheless, it is infinitesimally form bounded and
vanishes at infinity w.r.t. P 2 since Σ2 does. In particular, despite the severe oscillations of V at infinity,
our Theorem 7.8 below shows that the perturbation V does not change the essential spectrum.

Proof. The first two claims follows directly from Definitions 1.4 and 1.8.
For the third claim let φ ∈ C∞

0 , which is dense in D(P −A) for any real–valued locally square integrable
vector potential A and note that by an integration by parts the distribution ∇ · Σ is given by〈

φ,∇ · Σφ
〉
= −2 Im

〈
Σφ, Pφ

〉
= −2 Im

〈
Σφ, (P −A)φ

〉
since

〈
Σφ,Aφ

〉
is real. Thus the right hans side above extend to all φ ∈ D(P − A) if Σ2 is form bounded

w.r.t. (P −A)2 and |
〈
φ,∇ · Σφ

〉
| ≤ ∥Σφ∥∥(P −A)φ∥. So if ∥Σφ∥22 ≤ α∥(P −A)φ∥22 + γ∥φ∥22, then

|
〈
φ,∇ · Σφ

〉
| ≤ 2(α∥(P −A)φ∥22 + γ∥φ∥22)1/2∥(P −A)φ∥
≤ (ε−1α+ ε)∥(P −A)φ∥22 + ε−1γ∥φ∥22

(5.3)

for all ε > 0, which proves that ∇ · Σ is form bounded w.r.t. (P − A)2. If W is also form bounded w.r.t
(P −A)2, then so is their sum V = ∇ · Σ+W .

Lastly, because of the first part, we only have to show that ∇ · Σ vanishes at infinity as soons as Σ2

vanishes at infinity w.r.t (P − A)2. So assume that there exist αR and γR decreasing with αR, γR → 0 as
R→ ∞ and

∥Σφ∥22 ≤ αR∥(P −A)φ∥22 + γR∥φ∥22

for all φ ∈ D(P −A) with supp(φ) ∈ U c
R. Setting ε = max(αR, γR)

1/2 in (5.3) yields

|
〈
φ,∇ · Σφ

〉
| ≤ max(αR, γR)

1/2
(
2∥(P −A)φ∥22 + ∥φ∥22

)
for all φ ∈ D(P − A) with supp(φ) ⊂ U c

R and large enough R. This shows that ∇ · Σ vanishes at infinity
w.r.t. (P −A)2.
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5.2. Local Lp conditions for vanishing at infinity. An efficient route to local Lp conditions is via the
so–called Kato–class, which we recall.

Definition 5.3 (Kato–class). A real-valued and measurable function V on Rd is in the Kato–class Kd if

lim
α→0

sup
x∈Rd

∫
|x−y|≤α

gd(x− y)|V (y)| dy = 0 (5.4)

where

gd(x) :=

{
|x|2−d if d ≥ 3
| ln |x|| if d = 2

(5.5)

One also defines the Kato–norm

∥V ∥Kd
:=

{
supx∈Rd

∫
|x−y|≤1 |x− y|d−2|V (y)| dy , if d ≥ 3

supx∈R2

∫
|x−y|≤1/2 | ln(|x− y|)||V (y)| dy , if d = 2

. (5.6)

There is also a definition for the Kato–class in dimension one, but we do not need it. It is well-known
that any Kato–class potential is infinitesimally form bounded with respect to P 2, thus also with respect
to (P − A)2 for any vector potential A ∈ L2

loc(Rd,Rd). It is also clear that Kd ⊂ L1
loc,unif(Rd) and using

Hölder’s inequality one easily sees Lp
loc,unif(R

d) ⊂ Kd for all p > d/2.

Lastly, we say that a potential V is in the Kato–class outside a compact set, if there exists a compact
set K ⊂ Rd such that 1KcV ∈ Kd. Here 1Kc is the characteristic function of the complement of K.

For potentials which are in the Kato–class outside of a compact set, we have a simple criterium for
vanishing.

Proposition 5.4. Let 1≥R be the characteristic function of {x ∈ Rd : |x| ≥ R}. Given a potential W
assume that it is in the Kato–class outside a compact set and that it vanishes at infinity locally uniformly
in L1, that is,

lim
R→∞

∥1≥RW∥L1
loc,unif

= 0 . (5.7)

Then W vanishes at infinity w.r.t. P 2 in the sense of Definition 1.4.
Moreover, if V = ∇ · Σ +W for some vector field Σ ∈ L2

loc and a potential W ∈ L1
loc and Σ2 and W

satisfy the above assumptions, then V also vanishes at infinity w.r.t. P 2 in the sense of Definition 1.4.

We prove it later in this section. Useful corollaries are

Corollary 5.5 (Pointwise asymptotic bounds). Given a magnetic field B and potential V = V1+V2 assume

that B̃2, V, V1, xV1, and x·∇V2 are bounded outside of a compact set and lim|x|→∞ V (x) = lim|x|→∞ V1(x) =
0. Then assumption 2.5 and 2.6 are satisfied and we can take

β ≤ lim sup
|x|→∞

|B̃(x)|, ω1 ≤ lim sup
|x|→∞

|xV1(x)|, and ω2 ≤ lim sup
|x|→∞

(x · ∇V2(x))+. (5.8)

Of course, the above pointwise conditions are way too strong, in general. Assuming V ∈ L1
loc,unif let

Z(V ) := {W ∈ L∞ : V −W vanishes at infinity locally uniformly in L1} (5.9)

Z+(V ) := {W ∈ L∞ : (U −W )+ vanishes at infinity locally uniformly in L1} (5.10)

γ̃R(V ) := inf{∥1≥RW∥∞ : W ∈ Z(V )} , γ̃+R (U) := inf{∥1≥RW+∥∞ : W ∈ Z+(V )} (5.11)

γ̃∞((V ) := lim
R→∞

γ̃R(V ) = inf
R≳1

γ̃R(V ) , γ̃+∞(V ) := lim
R→∞

γ̃+R (v) = inf
R≳1

γ̃+R (V ) (5.12)
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Corollary 5.6. Given a magnetic field B and a potential V = V1 + V2 assume that B̃2, (xV1)
2, and

(x ·∇V2)+ ∈ Kd are in the Kato–class outside a compact set. Then the asymptotic bounds from assumption
2.6 are bounded by

β2 ≤ γ̃∞
(
B̃2
)
, ω2

1 ≤ γ̃∞
(
(xV1)

2
)
, and ω2 ≤ γ̃+∞

(
x · ∇V2

)
. (5.13)

Proofs of Corollaries 5.5 and 5.6: IfW is bounded, then γ∞(W ) ≤ limR→∞ ∥1≥RWb∥∞ = infR≳1 ∥1≥RWbWb∥∞
and γ+∞(W ) ≤ infR≳1 ∥1≥RW

+
b ∥∞. Thus, for any Wb ∈ Z(W ) Propositions 5.1 and 5.4 show

γ∞(W ) ≤ γ∞(W −Wb) + γ∞(Wb) = γ∞(Wb) ≤ inf
R≳1

∥Wb∥∞

Since W −Wb vanishes at infinity w.r.t. (P −A)2, i.e., γ∞(W −Wb) = 0. Thus

γ∞(W ) ≤ inf
Wb∈Z(V )

inf
R≳1

∥Wb∥∞ = inf
R≳1

γ̃R(Wb) = γ̃∞(W )

and similarly for γ+∞(W ), which proves Corollary 5.6.
For Corollary 5.5, note that if C = lim sup|x|→∞W (x) <∞, respectively C = lim sup|x|→∞W+(x) <∞,

then for any ε > 0 the functions (|W | − C − ε)+, respectively (W − C − ε)+, have compact support, so
γ∞(W ) ≤ γ∞(|W |) ≤ +C + ε, respectively γ+∞(W ) ≤ C + ε for any ε > 0, which proves Corollary 5.5.

In the proof of Proposition 5.4 we need

Lemma 5.7. Given a potential W assume that there exist R0 > 0 and αR,λ, γR,λ ≥ 0 for R0 > 0 and
R ≥ R0, λ > 0 such that 〈

φ,Wφ
〉
≤ αR,λ∥(P −A)φ∥22 + γR,λ∥φ∥22 (5.14)

for all φ ∈ D(P − A) with supp(φ) ∈ Uc
R. Moreover, assume that R0 ≤ R 7→ αR,λ, γR,λ are decreasing for

fixed λ > 0 and limλ→∞ αR,λ = 0 for fixed R ≥ R0.
Then W is bounded from above at infinity w.r.t (P −A)2 with asymptotic bound

γ+∞(W ) ≤ lim inf
λ→∞

lim
R→∞

γR,λ . (5.15)

Remark 5.8. The order of the limits in (5.15) is important, since typically one has lim infλ→∞ γR,λ = ∞
for any fixed R.

Given any αR,λ, γR,λ for which (5.14) holds, one can, by a simple monotonicity argument, replace them
with α′

R,λ := infR0≤L≤R αL,λ and γ′R,λ := infR0≤L≤R, γL,λ, i.e., the required monotonicity in R in Lemma
5.7 is not a restriction.

Proof. Let γ̃λ = limR→∞ γR,λ. Pick any λ0 > 0 and given Rn, λn for n ∈ N0 choose inductively λn+1 ≥
λn + 1 with αRn,λn+1 ≤ 1

n+1 and then Rn+1 ≥ Rn + 1 with γRn+1,λn+1 ≤ 1
n+1 + γ̃λn+1 .

Take a subsequence nj with γ̃j := γ̃nj → lim infn→∞ γ̃λ as j → ∞ and set αR := 1
nj+1 and γR := 1

nj+1+γ̃j

for R ∈ [Rnj , Rnj+1). With this choice Definition 1.8 is satisfied, soW is asymptotically bounded at infinity

w.r.t. (P −A)2 and γ∞(W ) = limR→∞ γR = limj→∞ γ̃j = lim infλ→∞ limR→∞ γR,λ.

Proof of Proposition 5.4. Given a locally square integrable magnetic vector potential A we abbreviate
H0 = (P − A)2 for the free magnetic Schrödinger operator defined by quadratic form methods. Given a

potential W in the Kato–class, φ ∈ D(P −A) = Q(H0), and λ > 0 let f = (H0 + λ)1/2φ ∈ L2. Then

|
〈
φ,Wφ

〉
| ≤

〈
φ, |W |φ

〉
=
〈
f, (H0 + λ)−1/2|W |(H0 + λ)−1/2f

〉
≤ ∥(H0 + λ)−1/2|W |(H0 + λ)−1/2∥2→2∥f∥22

= ∥(H0 + λ)−1/2|W |(H0 + λ)−1/2∥2→2

(
∥((P −A)2φ∥22 + λ∥φ∥22

)
By duality, ∥(H0 + λ)−1/2|W |(H0 + λ)−1/2∥2→2 = ∥|W |1/2(H0 + λ)−1|W |1/2∥2→2. Assume that |W | is
bounded, then for 0 ≤ Re(z) ≤ 1 the operator family Tz = |W |z(H0+λ)

−1|W |1−z is analytic and bounded.
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Using the diamagnetic inequality and duality we have

∥|W |(H0 + λ)−1∥1→1 = ∥(H0 + λ)−1|W |∥∞→∞ = ∥(H0 + λ)−1|W |∥∞ ≤ ∥(P 2 + λ)−1|W |∥∞ ,

which is finite for any λ > 0 and bounded W . Thus Tz is bounded from L1 → L1 for Re(z)(z) = 0 and
from L∞ → L∞ for Re(z) = 1 and as in [7] one can use the Stein interpolation theorem [29] to see

∥(H0 + λ)−1/2|W |(H0 + λ)−1/2∥2→2 ≤ ∥(P 2 + λ)−1|W |∥∞ .

at least for bounded W . If supp(φ) ⊂ Uc
R, one can replace W by WR = 1≥RW . Thus

|
〈
φ,Wφ

〉
| = |

〈
φ,WRφ

〉
| ≤ αR,λ∥(P −A)φ∥22 + γR,λ∥φ∥22

for all φ ∈ D(P −A) with supp(φ) ⊂ Uc
R, choosing

αR,λ = ∥(P 2 + λ)−1|WR|∥∞ ,

γR,λ = λ∥(P 2 + λ)−1|WR|∥∞
(5.16)

If WR is unbounded, replace WR by min(|WR|, n) and take the limit n→ ∞ to see that the above bounds
work also for unbounded W , as long as the right hand side of (5.16) is finite.

Clearly, αR,λ and γR,λ are decreasing in R for fixed λ > 0. One even has limλ→∞ ∥(P 2+λ)−1|W |∥∞ = 0
if and only if W is in the Kato–class, which is well–known, see [7, 34]. However, we also clearly have
limλ→∞ γR,λ = ∥WR∥∞, which is finite, if and only if WR is bounded. Nevertheless, if WR is in the Kato
class for some, hence all, large enough R and limR→∞ ∥WR∥L1

loc,unif
= 0 then

lim
R→∞

∥(P 2 + λ)−1|WR|∥∞ = 0 , (5.17)

which together with Lemma 5.7 shows γ∞(W ) = 0. This proves the first part of Proposition 5.4. The other
claim of Proposition 5.4 follows from the above since by Proposition 5.1 W = ∇·Σ vanishes w.r.t (P −A)2
as soon as Σ2 does.

For the proof of 5.17, we claim that for any potential W and any 0 < α ≤ 1

∥(P 2 + λ)−1|W |∥∞ ≲ sup
x∈Rd

∫
|x−y|≤α

gd(x− y)|W (y)| dy + e−
√
λα/4

√
λα

∥W∥L1
loc,unif

(5.18)

where the implicit constant depend only on d. This clearly proves (5.17), since replacingW byWR = 1≥RW
it yields

lim sup
R→∞

∥(P 2 + λ)−1|WR|∥∞ ≤ Cλ,d sup
x∈Rd

∫
|x−y|≤α

gd(x− y)|WR0(y)|

for any fixed R0, λ > 0 and all 0 ≤ α ≤ 1 as soon as limR→∞ ∥WR∥L1
loc,unif

= 0. Since WR0 is in the

Kato–class, we can then take the limit α→ 0 to get (5.17).
It remains to prove (5.18). Note

∥(P 2 + λ)−1|W |∥∞ = sup
x∈Rd

∫
Rd

G(x, y, λ)|W (y)| dy

where G(x, y), λ = (P 2 + λ)−1(x, y) is the Green’s function, i.e., the kernel of (P 2 + λ)−1. We split the
integral above in the two regions |x− y| ≤ α and |x− y| > α. The bounds

G(x, y, λ) ≲ λ−1|x− y|−de−
√
λ|x−y|/2 (5.19)

and for |x− y| ≤ 1/2 and λ ≥ 1

G(x, y, λ) ≲

{
|x− y|2−d if d ≥ 3
| ln |x− y|| if d = 2

(5.20)
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are well-know. The second bound immediately gives

sup
x∈Rd

∫
|x−y|≤α

G(x, y, λ)|W (y)| dy ≲ sup
x∈Rd

∫
|x−y|≤α

gd(x− y)|W (y)| dy

at least for all 0 < α ≤ 1/2 and the first one shows∫
|x−y|>α

G(x, y, λ)|W (y)| dy ≲ λ−1

∫
|x−y|≥α

|x− y|−de−
√
λ|x−y|/2|W (y)| dy .

Integrating over shells αn ≤ |x− y| < α(n+ 1) leads to

sup
x∈Rd

∫
|x−y|>α

G(x, y, λ)|W (y)| dy ≲ λ−1
∞∑
n=1

e−
√
λαn/2 (α(n+ 1))d − (αn)d

(αn)d
∥W∥L1

loc,unif

≲ λ−1
∞∑
n=1

e−
√
λαn/2∥W∥L1

loc,unif
=

e−
√
λα/2

λ(1− e−
√
λα/2)

∥W∥L1
loc,unif

≲
e−

√
λα/4

√
λα

∥W∥L1
loc,unif

since 0 < t 7→ te−t/2

1−e−t is bounded. This proves (5.18).

We sketch the proof of the bounds (5.19) and (5.20), for the convenience of the reader: The kernel of

the heat semigroup is e−P 2t(x, y) = (4πt)−d/2e−
|x−y|2

4t . Since (P 2 + λ)−1 =
∫∞
0 e−P 2s−λs ds we have

G(x, y, λ) =

∫ ∞

0
(4πs)−d/2e−

|x−y|2
4s e−λs ds = |x− y|2−d

∫ ∞

0
(4πu)−d/2e−

1
4u e−λ|x−y|2u du

Moreover, 1
4u + λ|x− y|2u ≥

√
λ|x− y| for all u > 0, so

G(x, y, λ) ≤ |x− y|2−de−
√
λ|x−y|/2

∫ ∞

0
(4πu)−d/2e−

1
8u e−λ|x−y|2u/2 du

=
|x− y|−de−

√
λ|x−y|/2

λ

∫ ∞

0
(4πu)−d/2e−

1
8uλ|x− y|2ue−λ|x−y|2u/2 du

u
≲

|x− y|−de−
√
λ|x−y|/2

λ

since 0 < t 7→ te−t is bounded and cd =
∫∞
0 (4πu)−d/2e−

1
4u

du
u <∞ for all d ≥ 1. This proves (5.19).

On the other hand,

G(x, y, λ) = |x− y|2−d

∫ ∞

0
(4πu)−d/2e−

1
4u e−λ|x−y|2u du ≤ c̃d|x− y|2−d

where c̃d =
∫∞
0 (4πu)−d/2e−

1
4u du <∞ if d ≥ 3, which proves (5.20) when d ≥ 3.

If d = 2, then for 0 < |x− y| ≤ 1/2, one has

G(x, y, λ) = (4π)−1

∫ ∞

0
e

1
4u e−λ|x−y|2u du

u
≲
∫ 1

0
e

1
4u
du

u
+

∫ |x−y|−2

1

du

u
+

∫ ∞

|x−y|−2

e−λ|x−y|2u du

u

Since
∫ 1
0 e

1
4u

du
u ≲ 1 and

∫∞
|x−y|−2 e

−λ|x−y|2u du
u =

∫∞
1 e−λu du

u ≤ 1 for λ ≥ 1, this proves (5.20) when

d = 2.

6. Examples

We recall a couple of examples which show that the decay assumptions on B and V stated in Theorems
1.2, 1.6, and 4.8, and Corollary 5.5 cannot be improved.
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6.1. Miller-Simon revisited. In [27] Miller and Simon considered, in dimension two, the case V = 0 and
radial magnetic field B(x) = b(r), r = |x|. They proved that

1) If b(r) = r−α +O(r−1−ε) with 0 < α < 1 and ε > 0 then the spectrum of H is dense pure point,
2) If b(r) = b0 r

−1 + O(r−1−ε) for some ε > 0 then the spectrum of H is dense pure point in [0, b20) and
absolutely continuous in [b20,∞),

3) If b(r) = O(r−α) with α > 1 then the spectrum of H is purely absolutely continuous in (0,∞).

Remark 6.1. Note that β = lim sup|x|→∞ |B̃(x)| +∞ in the case (1). On the other hand, Theorem 4.8

guarantees the absence of eigenvalues in the interval (β2,∞) for the case (2), and in the interval (0,∞) for
the case (3), even for non–radial magnetic fields. In particular, the Miller–Simon examples show that our
result on absence of eigenvalues is sharp. These examples even have dense point spectrum in [0, β2].

Since there is a calculation error in the original Miller-Simon paper and also in the book [7], we sketch their
argument: Assume that the radial magnetic field b is reasonable, e.g., bounded and use x, y as coordinates
in R2 and r = (x2 + y2)1/2.

The first observation of Miller and Simon is that if the magnetic field, radial or not, B goes pointwise
to zero at infinity, then σess((P −A)2) = [0,∞) (this is sharpened in Theorem 7.5).

For radial magnetic fields B̃(x) = (−y, x)b(r), so the Poincaré gauge the magnetic vector potential is

A(x, y) = (−y, x)
∫ 1

0
b(tr)t dt =

(−y, x)
r

h(r)

with h(r) = r−1
∫ r
0 b(s)s ds. Expanding (P −A)2 one sees

(P −A)2 = (Px −Ax)
2 + (Py −Ay)

2 = P 2 + h(r)2 − 2
h(r)

r
L

where L = xPy − yPx is the angular momentum in the plane. It is well-known that L has eigenvalues
(0,±1,±2, . . .) and it commutes with P 2 and with the radial potential h(r)2. So restricted to the angular
momentum channel {L = m}, the operator (P −A)2 is given by

Hm := (P −A)2
∣∣
{L=m} =

(
P 2 + Vm

)
|{L=m} with Vm(r) = h(r)2 − 2mh(r)

r

Due to the angular momentum barrier the divergence of Vm for small r when m ̸= 0 is irrelevant.
If b0 = limr→∞ r−1b(r) = ∞, then h(r) → ∞, so Vm is trapping and all operators Hm have discrete

spectrum. But if also b(r) → 0 as r → ∞, then σess(HA) = [0,∞), so (P −A)2 has necessarily dense point
spectrum in [0,∞), proving the first claim (1) above.

If b0 = limr→∞ r−1b(r) < ∞, then h(r) → b0 and Vm(r) → b20 as r → ∞, so Hm has only discrete
spectrum below b20 for any m ∈ Z. Since b(r) → 0 for r → ∞, the operator has essential spectrum [0,∞],
which must be dense point spectrum in [0, b20]. (or any reasonable choice of radial magnetic field b, the
effective potential Vm is smooth with decaying derivatives for large r, so the spectrum of Hm above b20 is
absolutely continuous for all m ∈ Z. Thus (P −A)2 has absolutely continuous spectrum in (b20,∞), which
proves the last two claims.

Remark 6.2. In [27] the choice of the vector potential contains a wrong factor of 1/2 and in the example
in [7] there is a mistake in the calculation of the magnetic field. Thus in their examples they concluded
incorrectly that the effective potential has the asymptotic Vm(r) → b20/4 for large r.
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6.2. Wigner-von Neumann potential. Suppose that B = 0. Wigner and von Neumann showed that
the operator −∆+ V in L2(R3) with the radial potential

V (r) = −
32 sin r

[
g(r)3 cos r − 3g2(r) sin3 r + g(r) cos r + sin3(r)

]
(1 + g(r)2)2

, g(r) = 2r − sin(2r), (6.1)

has eigenvalue +1, see [31, 37] and [30, Ex. VIII.13.1]. As pointed out in [31] for large r

V (r) = −8 sin(2r)

r
+O(r−2). (6.2)

Theorem 4.8 implies that −∆+ V = −∆+ V1 + V2 has no eigenvalues larger than

Λ =
1

2

(
ω1 + ω2 +

√
ω2
1 + 2ω1ω2

)
,

with ω1 and ω2 defined by equation (1.14). We can thus optimize the splitting V = V1 + V2 in order
to minimize Λ. A quick calculation using (6.2) shows that the optimal choices are V1 = V, V2 = 0 and
V1 = 0, V2 = V . In both cases we get Λ = 8 which coincides with [1, Thm. 4]. Note that [31, Thm. 2]
implies absence of eigenvalues in the interval (16,∞).

For each |k| > 2 Arai and Uchiyama constructed in [2] bounded radial potentials which are asymptotically
of the form

V (x) =
k sin(2|x|)

|x|
+O(|x|−1−ε) as |x| → ∞ (6.3)

for some ε > 0 such that P 2 + V has eigenvalue 1. In these examples also x · ∇V is bounded and
ω1 = lim sup|x|→∞(x · ∇V (x))+ = 2|k|. Thus we can conclude that P 2 + V has no eivenvalues E > |k|2/2.

6.3. Aharonov Bohm vector potentials. In two dimensions the prototypical Aharonov Bohm magnetic
vector potential is given by

Aab(x, y) =
(−y, x)
r2

B0 , r = −(x2 + y2)1/2 (6.4)

for some B0 ∈ R. This yields a locally square integrable on R2 \ {0}, it corresponds to a singular magnetic
field, which is concentrated in zero, i.e., B∂xA

ab
y − ∂yA

ab
x = 0 outside zero, but for any smooth curve S

circling once around zero, the line integral along S is given by∫
S
(Axdx+Aydy) = 2πB0

that is, the ‘magnetic field’ corresponding toA has total flux 2πB0. The corresponding magnetic Schrödinger
operator Hab

0 is now defined as the closure of the quadratic form qab,0 defined first on C∞
0 (R2 \ {0}) as

qab,0(φ,φ) =
〈
(P −Aab)φ, (P −Aab)φ)

〉
and for any potential V which is form small w.r.t. Hab

0 , the operator Hab
V is defined as the form sum

qab,V (φ,φ) := qab,0(φ,φ) +
〈
φ, V φ

〉
.

For such type of singular magnetic Schrödinger operators we still have a virial theorem and a result on
absence of positive eigenvalues for the follwing simple reasons:

For dilation, it makes no difference of one works on R2 or on R2 \ {0}. Thus we can still use dilations
to derive a virial theorem. In fact, this is easy.

The first thing one has to check if D(P −Aab) is invariant under dilations. Recall equation (3.11), which
for the Aharonov Bohm vector potential reads

(P −Aab)Utφ = etUtPφ− UtA
ab
t φ = etUt(P −Aab)φ+ Ut(e

tAab −Aab
−t)φ = etUt(P −Aab)φ (6.5)
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since, the Aharonov Bohm vector potential is homogeneous of degree −1, we have etAab −Aab
−t = 0 for all

t > 0. That is, the Aharonov Bohm magnetic momentum operator P − Aab has the same commutation
properties with dilations as the free momentum P , which drastically simplifies the analysis!

Theorem 6.3 (Aharonov Bohm magnetic virial theorem). Let Aab be the Aharonov Bohm vector potential
and V satisfy assumptions 2.3. Assume also that the distribution x ·∇V extends to a quadratic form which
is form bounded with respect to (P−Aab)2. Then for all φ ∈ D(P−Aab), the limit limt→0 2Re

(
qab(φ, iDtφ)

)
exists. Moreover,〈

φ, [Hab
V , iD]φ

〉
:= lim

t→0
2Re

(
qab,V (φ, iDtφ)

)
= 2∥(P −Aab)φ∥22 −

〈
φ, x · ∇V φ

〉
. (6.6)

This is proven exactly as Theorem 3.9, the extra term from the magnetic field disappears because of the
scaling of the Aharonov Bohm vector potential.

Of course, this theorem then also implies absence of positive eigenvalues under the same conditions
on the potential V as in Theorem 4.8, now with β = 0. For the Aharonov–Bohm Hamiltonian Hab

V no
eigenvalues E with

E >
1

4

(
ω1 +

√
ω2
1 + 2ω2

)2

(6.7)

exist.

Remarks 6.4. (i) One can also allow for an angular dependence in the Aharonov–Bohm type potential
as in [24].

(ii) In addition to the Aharonov–Bohm potential, one can also allow for an additional regular magnetic
field B satisfying assumptions 2.1 and 2.2. One has to modify the right hand sides of (6.6) and of (6.7)
accordingly.

(iii) On can also consider the Aharonov–Bohm effect in R3 where the magnetic field is singular along a
line l through the origin.

We leave the straightforward modifications of the technical details to the interested reader.

6.4. Pauli and magnetic Dirac operators. In this section we state two consequences of Theorem 4.8
and Corollary 5.5. Let B : R2 → R be given and consider the Pauli operator

P (A) =

(
(i∇+A)2 +B 0

0 (i∇+A)2 −B

)
in L2(R2,C2). It is well-known that the operator P (B) is non-negative, and that if |

∫
R2 B| > 2π, then zero

is an eigenvalue of P (B), see also Remark 4.9.

Corollary 6.5. Assume that B ∈ Lp
loc(R

2) for some p > 2 and that B(x) = O(|x|−1) as |x| → ∞. Let
A ∈ L2

loc(R2) be such that curlA = B. Then the operator P (A) has no eigenvalues in the interval (4β2,∞),
with β given by (1.14).

If moreover there exists a compact set K ⊂ R2 such that B ∈ C1(R2 \K), then the operator P (A) has no
eigenvalues in the interval

(
ΛP ,∞

)
, with

ΛP := min{4β2, 1
4
(β + ω +

√
(β + ω)2 + 2ω)2} (6.8)

and

ω = max
{
lim sup
|x|→∞

x · ∇B(x), − lim inf
|x|→∞

x · ∇B(x)
}
.
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Proof. The first part of the statement follows from Theorem 4.8 and Proposition 5.5, respectively 5.6
applied to the components of the Pauli operator with the splitting V1 = ±B, V2 = 0. The second part
follows from the first part and from the application of Theorem 4.8 and Corollary 5.5 with the splitting
V1 = 0, V2 = ±B.

Remark 6.6. A couple of comments are in order: (i) The example of Miller and Simon [27], see Section
6.1, applies to two-dimensional Pauli operators as well. In particular, a quick inspection shows that if
B(r) = b0 r

−1+O(r−2), then the spectrum of P (A) is dense pure point in [0, b20) and absolutely continuous
in [b20,∞). Note that in this case Corollary 6.5 guarantees the absence of eigenvalues for P (A) in the
interval (b20,∞), so this result is sharp.

(ii) Under the hypotheses of Corollary 6.5 the essential spectrum of P (A) coincides with [0,∞), see
Corollary 7.7 below.

(iii) Absence of positive eigenvalues of the Pauli operator in R3 will be treated elsewhere.

The second application of Theorem 4.8 concerns magnetic Dirac operators in L2(R2,C2) which in the
standard representation have the form

D =

(
m Q
Q∗ −m

)
, Q = (P1 −A1) + i(P2 −A2) , (6.9)

where m is the mass of the particle. We have

Corollary 6.7. Let B satisfy the assumptions of Corollary 6.5 and let A ∈ L2
loc(R2) be such that curlA =

B. Then the Dirac operator D defined on D(P −A) has no eigenvalues in(
−∞,−

√
ΛP +m2

)
∪
(√

ΛP +m2, ∞
)
.

Proof. Note that

D2 = P (A) +m21 (6.10)

in the sense of sesqui-linear forms on D(P −A)⊕D(P −A). Hence if Dψ = Eψ for some ψ ∈ D(P −A)⊕
D(P −A), then ψ is a weak eigenfunction of P (A) relative to eigenvalue E2−m2. In view of Corollary 6.5
we thus have E2 −m2 ≤ ΛP .

Remark 6.8. Sufficient conditions for the absence of the entire point spectrum of Pauli and Dirac operators
with electromagnetic fields where recently found in [6], see also Remark 1.7.(v).

7. The essential spectrum

We have the following dichotomy.

Lemma 7.1 (Dichotomy). Let A ∈ L2
loc(Rd,Rd). Then either inf σ((P −A)2) > 0 or σ((P −A)2) = [0,∞).

Remark 7.2. The Landau Hamiltonian, where the vector potential A corresponds to a constant magnetic
field, provides an example where inf σ((P −A)2) > 0, see [23].

Proof. Write H0 = (P −A)2. It suffices to prove the implication

0 ∈ σ(H0) ⇒ σ(H0) = [0,∞). (7.1)

Let D(H0) denote the domain of H0. To prove (7.1) suppose that 0 ∈ σ(H0). Hence there exits a sequence
{φ̃}n∈N ⊂ D(H0) such that ∥φ̃n∥2 = 1 for all n ∈ N and

∥H0 φ̃n∥2 → 0 n→ ∞. (7.2)
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Now we define

ϕn(x) = eik·x φ̃n(x), (7.3)

where k ∈ Rd is arbitrary. Then in the sense of distributions

(P −A)ϕn(x) = eik·x (P −A+ k) φ̃n(x),

and

H0 ϕn(x) = (P −A)2 ϕn(x) = eik·xH0 φ̃n(x) + 2eik·xk · (P −A)φ̃n(x) + |k|2ϕn(x).

Since ∥φ̃n∥2 = 1, it follows that H0 ϕn ∈ L2(Rd). Hence ϕn ∈ D(H0). Moreover the above calculations and
the Cauchy-Schwarz inequality show that

∥(H0 − |k|2)ϕn∥2 ≤ ∥H0 φ̃n∥2 + 2|k| ∥(P −A)φ̃n∥2 = ∥H0 φ̃n∥2 + 2|k|
√〈

φ̃n, H0 φ̃n

〉
≤ ∥H0 φ̃n∥2 + 2|k| ∥H0 φ̃n∥1/22 .

By (7.2) we thus have ∥(H0 − |k|2)ϕn∥2 → 0 for any k ∈ Rd. Hence [0,∞) ⊆ σess(H0) and since H0 ≥ 0,
we conclude that σ(H0) = σess(H0) = [0,∞).

Next we formulate a condition on B under which σ((P − A)2) = [0,∞) for any locally square integrable
vector potential A with B = dA.

Definition 7.3 (Vanishing somewhere at infinity). We say that that the magnetic field B vanishes some-
where at infinity if there exist sequences {Rn}n∈N ⊂ R and {xn}n∈N ⊂ Rd such that Rn → ∞, |xn| → ∞
as n→ ∞, and

lim
n→∞

R−d
n

∫
|y−xn|<Rn

(
|y|
Rn

)2−d (
log

Rn

|y|

)2 ∣∣B(xn + y)[y]
∣∣2 dy = 0. (7.4)

Remark 7.4. This vanishing condition is quite weak. For example, if one has the pointwise bound
|B(x)| ≤ dn for |x− xn| < Rn and dn/Rn → 0 as n→ ∞, then B vanishes somewhere at infinity, since

R−d
n

∫
|y−xn|<Rn

(
|y|
Rn

)2−d (
log

Rn

|y|

)2 ∣∣B(xn + y)[y]
∣∣2 dy ≤ d2n

R2
n

∫
|y|<1

|y|4−d (log |y|)2 dy → 0

as n→ ∞. Also, we do not require that the magnetic field B = dA exists as a classical vector field outside
the sequence of balls URn(xn).

Theorem 7.5. Suppose that A is a locally square integrable magnetic vector potential such that the mag-
netic field B = dA vanishes somewhere at infinity in the sense of Definition 7.3. Then

σ((P −A)2) = σess((P −A)2) = [0,∞).

Remark 7.6. In case that the magnetic field goes to zero pointwise at infinity, the above result was already
shown by Miller and Simon, [27, 7]. As pointed out in [27] the invariance of the essential spectrum is quite
remarkable, since the the vector potential A corresponding to the magnetic field B might not have any
decay at infinity, i.e., the magnetic kinetic energy (P −A)2 is not a small perturbation of the non–magnetic
kinetic energy P 2, in general.

Proof. Let Rn and xn be the sequences defined in Definition 7.3 and let

An(x) =

∫ 1

0
B(xn + t(x− xn)) [t(x− xn)] dt (7.5)
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be the vector potential related to B via the Poincaré gauge centred at xn. Then curlAn = curlA = B for
all n ∈ N, at least on Un = URn(xn), and therefore there exits, at least locally on Un, a scalar gauge field
χn : Un → R with ∇χn ∈ L2(Un) such that

An = A−∇χn on Un (7.6)

and for all φ with supp(φ) ⊂ Un and (P − AN )φ ∈ L2 we have eiχφ ∈ D(P − A) and (PA)e
iχφ =

eiχ(P −An)φ, see [25].
Due to the Dichotomy Lemma 7.1 we only have to show that 0 ∈ σ((P − A)2). To this end we will

construct a sequence {ϕn}n ⊂ D(P −A) with supp(ϕn ∈ Un) and ∥ϕn∥2 = 1 such that

∥(P −A)ϕn∥22 → 0 n→ ∞. (7.7)

We choose ϕn = eiχn φn, where

φn(x) = CdR
− d

2
n

(
1− |x− xn|

Rn

)
+

,

where the constant Cd depends only on d and is chosen such that ∥ϕn∥ = ∥φn∥ = 1. Then by the above
gauge invariance

∥(P −A)ϕn∥22 = ∥(P −An)φn∥22 ≤
(
∥Pφn∥+ ∥Anφn∥

)2
. (7.8)

We have

∥Pvn∥22 ≲ R−2
n → 0 n→ ∞.

Moreover, using the fact that (1 − t)2 ≤ 1 ≤ t2−d for all 0 < t < 1, inequality (2.26) and equations (1.9)
and (7.5), we obtain

∥Anvn∥22 ≲ R−d
n

∫
URn (xn)

(
1− |x− xn|

Rn

)2

|An(x)|2 dx

= R−d
n

∫
URn

(
1− |y|

Rn

)2

|An(xn + y)|2 dy ≲ R−d
n

∫
URn

(
|y|
Rn

)2−d

|An(xn + y)|2 dy

≤ 4R−d
n

∫
URn

(
|y|
Rn

)2−d

log2(Rn/|y|)
∣∣B(xn + y)[y]

∣∣2 dy. (7.9)

Thus the assumption that B vanishes somewhere at infinity implies ∥Anvn∥2 → 0 as n → ∞. By (7.8)
this shows

∥(P −A)ϕn∥22 → 0

as n → ∞, which proves (7.7). Since ∥ϕn∥2 = ∥vn∥2 = 1 for all n ∈ N, it follows that 0 ∈ σ(H0) and
applying Lemma 7.1 then shows σess((P −A)2) = [0,∞).

Corollary 7.7. Suppose that the magnetic field satisfies assumptions 2.1 and 2.2. Then for any locall;y
square integrable magnetic vector potential A with dA = B we have

σess((P −A)2) = [0,∞) . (7.10)

Proof. We apply Theorem 7.5. Let Rn → ∞ as n→ ∞, and let {xn}n ⊂ Rd be a sequence with coordinates
given by

xnl = (n+ 1)Rn ∀ l = 1, . . . d, ∀n ∈ N (7.11)

and let

Cn := R−d
n

∫
Un

(
|y|
Rn

)2−d (
log

Rn

|y|

)2 ∣∣B(xn + y)[y]
∣∣2 dy.
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We have to show that Cn → 0 as n → ∞. If we write x = y + xn, then for every y ∈ URn we get, in view
of (1.9) and the Cauchy-Schwarz inequality,

(
B(xn + y)[y]

)2
j
=

(
d∑

m=1

Bj,m(x)xm
ym
xm

)2

≤ max
1≤m≤d

1

x2m

(
B̃(x)[x])

)2
j
|y|2 = 1

n2R2
n

(
B̃(x)[x])

)2
j
|y|2 .

Hence

Cn ≤ 1

n2R4
n

〈
un, |B̃|2 un

〉
, (7.12)

where

un(x) := |x− xn|2−
d
2

(
log

Rn

|x− xn|

)
+

.

A quick calculation now shows that ∥un∥22 + ∥∇un∥22 ≲ R4
n , which together with (2.16) and (7.12) further

implies

Cn ≲
1

n2
+

1

n2R4
n

〈
un, |A|2 un

〉
. (7.13)

We now estimate the last term on the right hand side as follows

〈
un, |A|2 un

〉
=

∫
URn (xn)

|x− xn|4−d

(
log

Rn

|x− xn|

)2

|A(x)|2 dx

= R4−d
n

∫
URn (xn)

(
|x− xn|
Rn

)4−d (
log

Rn

|x− xn|

)2

|A(x)|2 dx

≲ R4−d
n

∫
URn

(
|y|
Rn

)2−d

|A(y + xn)|2 dy ≲ R4
nCn,

where in the last step we have used again inequality (2.26) and equation (1.9). Plugging this estimate into
(7.13) gives Cn → 0 as n→ N, and therefore, by Theorem 7.5, σess((P −A)2) = [0,∞).

Theorem 7.8. Suppose that A is a locally square integrable magnetic vector potential and the potential V
is form small and vanishes at infinity w.r.t (P −A)2. Then

σess(HA,V ) = σess((P −A)2). (7.14)

Remark 7.9. We do not assume that V is form compact w.r.t (P −A)2!

Proof. Since V is form small with respect to (P − A)2, the quadratic form qA,V is closed and bounded
from below on the form domain D(P −A). Hence there exists s ≥ 1 such that the operators HA,0 + s and

HA,V + s are invertible in L2(Rd). We are going to prove that the resolvent difference

(HA,0 + s)−1 − (HA,V + s)−1 is compact in L2(Rd). (7.15)

for some large enough s ≥ 1, which by Weyls theorem implies that the essential spectra of HA,V and
(P −A)2 coincide.

In the following, we will abbreviate H0 = HA,0. Let Cs := (H0 + s)−1/2V (H0 + s), more precisely, Cs is
the bounded operator associated with the bounded form〈

φ,Csφ
〉
:=
〈
(H0 + s)−1/2φ, V (H0 + s)−1/2φ

〉
= qV ((H0 + dλ)−1/2φ, (H0 + s)−1/2φ) ,
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and the relative form bound of V w.r.t (P −A)2 is given by lims→∞ ∥Cs∥2→2 < 1, see [36, Theorem 6.24],
[30]. Choose λ large enough, such that ∥Cλ∥ < 1. Then Tiktopoulos’ formula, [32, Chapter II.3], [36,
Theorem 6.25] shows

(HA,V + s)−1 = (H0 + s)−1/2(1− Cs)
−1(H0 + s)−1/2 .

Hence

(H0 + s)−1 − (HA,V + s)−1 = (H0 + s)−1/2(1− Cs)
−1Cs(H0 + s)−1/2

so we only have to show that

Cs(H0 + s)−1/2 = (H0 + s)−1/2V (H0 + s)−1

is a compact operator. For this let ξ<R, ξ≥R the smooth partition from the proof of Lemma 4.4 with
ξ2<R + ξ2≥R = 1, supp(ξ<R) ⊂ U2R, supp(ξ≥R) ⊂ U c

R, and ∥∇ξ<R∥∞, ∥∇ξ≥R∥∞ ≲ R−1. With

J<R := (H0 + s)−1/2ξ2<RV (H0 + s)−1 (7.16)

J≥R := (H0 + s)−1/2ξ2≥RV (H0 + s)−1 (7.17)

we obviously have (H0 + s)−1/2V (H0 + s)−1 = J<R + J≥R .

We will show that limR→∞ ∥J≥R∥2→2 = 0. So (H0 + dλ)−1/2V (H0 + dλ)−1 is the norm limit of J<R as
R→ ∞, in particular, it is a compact operators if J<R is compact for all large R. Since

∥J≥R∥2→2 = sup
∥f∥=1

|
〈
f, J≥Rf

〉
| (7.18)

and with φ = (H0 + s)−1/2f

|
〈
f, J≥Rf

〉
| = |

〈
ξ≥Rφ, V ξ≥Rφ

〉
| ≤ αR∥(P −A)ξ≥Rφ∥22 + γR∥ξ≥Rφ∥22

≤ αR

(
∥(P −A)φ∥+ ∥∇ξ≥R∥∥φ∥

)2
+ γR∥φ∥22 ≲

(
αR(1 +R−1)2 + γR

)
∥f∥22

since (P − A)ξ≥Rφ = ξ≥R(P − A)φ − i(∇ξ≥R)φ, ∥(P − A)φ∥ ≤ ∥f∥ and ∥φ∥ ≤ s−1∥f∥. From this and
(7.18) one immediately gets ∥J≥R∥2→2 ≲ αR(1 +R−1)2 + γR → 0 for R→ ∞.

To prove that J<R is compact, we first note that the domain ofH0 = (P−A)2 is given by all φ ∈ D(P−A)
for which with ψ = (P −A) the distribution (P −A)ψ is also in L2. Thus for all φ ∈ D((P −A)2) we have

(H0 + s)−1(P −A+ iλ) · (P −A− iλ)φ = (H0 + s)−1(H0 + dλ2)φ = φ

when s = dλ2. Moreover, when φ ∈ D((P − A)2) and χ is a bounded C2 function such that ∇χ and ∆χ
are bounded, then

(P −A− iλ)χφ = χ(P −A− iλ)φ− i(∇χ)φ ∈ L2 ,

(P −A+ iλ) · (P −A− iλ)χφ = χ(P −A+ iλ) · (P −A− iλ)φ− 2i(∇χ) · (P −A)φ− (∆χ)φ

= χ(H0 + dλ2)φ− 2i(∇χ) · (P −A)φ− (∆χ)φ ∈ L2

so also χφ ∈ D((P −A)2).
Use φ = (H0 + s)−1f with f ∈ L2 and choose dλ2 = s. Then the last equality yields

χ(H0 + s)−1f = χφ = (H0 + s)−1(P −A+ iλ) · (P −A− iλ)χφ

= (H0 + s)−1χf − 2i(H0 + s)−1(∇χ) · (P −A)(H0 + s)−1f − (H0 + s)−1(∆χ)(H0 + s)−1f .

Setting χ = ξ2<R one sees that J<R can be written as

J<R = Cs

(
J1 − 2iJ2 · (P −A)(H0 + s)−1 − J3(H0 + s)−1

)
. (7.19)
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where we abbreviated J1 = (H0 + s)−1/2χ, J2 = (H0 + s)−1/2(∇χ), and J3 = (H0 + s)−1/2(∆χ).
Note that Cs is bounded and so are (P − A)(H0 + s)−1 and (H0 + s)−1. Moreover, since χ = ξ2<R has

compact support, it is well–know that the operators χ(P 2+s)−1/2, (∇χ)(P 2+s)−1/2, and (∆χ)(P 2+s)−1/2

are compact operators on L2, see [8, Thm. 5.7.3], for example. The diamagnetic inequality and the

Dodds–Fremlin–Pitt theorem [9, 28] then imply that the operators χ(H0 + s)−1/2, (∇χ)(H0 + s)−1/2, and

(∆χ)(H0+ s)−1/2 are also compact, and by duality so are J1, J2, and J3. Thus by (7.19) the operator J<R

is a compact operator for all R > 0.

Corollary 7.10. Suppose that B satisfies assumptions 2.1, 2.2, and that V is satisfies assumptions 2.3
and 2.6. Then

σess(HA,V ) = [0,∞). (7.20)

Proof. Combine Theorem 7.5 and Corollary 7.7.

Appendix A. Gronwall type bounds

Lemma A.1. Let T > 0 and let w,E : [0, T ] → [0,∞). If for some c > 0

w(t) ≤ E(t) + c

∫ t

0
et−sw(s) ds, (A.1)

for all t ∈ [0, T ], then

w(t) ≤ E(t) + c

∫ t

0
e(1+c)(t−s)E(s) ds ∀ t ∈ [0, T ]. (A.2)

Moreover, if

w(t) ≤ E(t) + c

∫ t

0
es−tw(s) ds, (A.3)

for all t ∈ [0, T ], then

w(t) ≤ E(t) + c

∫ t

0
e(c−1)(t−s)E(s) ds ∀ t ∈ [0, T ]. (A.4)

Proof. Put v(t) :=
∫ t
0 e

t−sw(s) ds. Then v(0) = 0 and, assuming (A.1),

v′(t) = v(t) + w(t) ≤ E(t) + (1 + c0)v(t)

Hence

d

dt

(
e−(1+c0)t v(t)

)
= e−(1+c0)t(v′(t)− (1 + c0)v(t)) ≤ e−(1+c0)tE(t).

It follows that

e−(1+c0)t v(t) =

∫ t

0

d

ds

(
e−(1+c0)s v(s)

)
ds ≤

∫ t

0
e−(1+c0)sE(s) ds .

This implies

v(t) ≤
∫ t

0
e(1+c0)(t−s)E(s) ds,

and (A.2) follows.
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Appendix B. Optimizing the threshold

It is tempting to split the potential V = V1 + V2 at infinity in order to optimize the threshold above
which one can exclude existence of eigenvalues. Using V1 = sV and V2 = (1− s)V , Theorem 4.8 shows the
non–existence of eigenvalues with

E >
1

4

(
β + ω1s+

√
(β + ω1s)2 + 2ω2(1− s)

)2
=
ω2
1

4
(g(s))2

where for 0 ≤ s ≤ 1 we set

g(s) := b+ s+
√

(b+ s)2 + 2c(1− s) (B.1)

with b = β/ω1 and c = ω2/ω
2
1. The goal is to minimize g over s ∈ [0, 1].

Lemma B.1 (Bang–Bang type Lemma). For g given in (B.1) we have min0≤s≤1 g(s) ≥ min(g(0), g(1)).
More precisely,

min
0≤s≤1

g(s) =

{
g(0) if c < 2b+ 2
g(1) if c > 2b+ 2

(B.2)

and g is constant if c = 2b+ 2.

Proof. Write c = 2b+ 2 + r. Then (b+ s)2 + 2c(1− s) = (b+ 2− s)2 + 2r(1− s), hence

g(s) = b+ s+
√
(b+ 2− s)2 + 2r(1− s)

for all 0 ≤ s ≤ 1. Note that g is clerly constant on [0, 1] if r = 0. On [0, 1] the derivative of g is given by

g′(s) = 1 + ((b+ 2− s)2 + 2r(1− s))−1/2
(
s− (b+ 2 + r)

)
.

Fix 0 ≤ s ≤ 1. A calculation shows(
((b+ 2− s)2 + 2r(1− s))−1/2

(
s− (b+ 2 + r)

))2
> 1

if and only if 0 < r(r+ 2b+ 2) = rc. Since c ≥ 0, this implies that if r < 0, i.e., c < 2b+ 2, we have g′ > 0
on [0, 1], i.e., g is strictly increasing on [0, 1].

On the other hand, if c > 2b + 2, then also c − b > b + 2 ≥ 2 and r < 0, so g′ < 0 on [0, 1], i.e., g is
strictly decreasing on [0, 1]. This proves the lemma.

Corollary B.2. Setting

β2 := γ∞
(
B̃2
)
, ω2

1 := γ∞
(
(xV )2

)
, ω2 := γ+∞

(
x · ∇V

)
(B.3)

the threshold Λ(B, V ) defined in (1.13) optimized for splitting the potential as V = V1 + V2 with V1 = sV ,
V2 = (1− s)V and 0 ≤ s ≤ 1 is given by

Λ̃(B, V ) =

{
1
2

(
β2 + ω2 + β

√
β + 2ω2

)
if ω2 ≤ 2ω1(β + ω1)

(β + ω1)
2 if ω2 > 2ω1(β + ω1)

(B.4)

Proof. Given Lemma B.1 this is just a simple calculation.

Appendix C. IMS localization formula

In one step in the proof of Lemma 4.6 we need a quadratic form version of the well-known IMS localization
formula under minimal assumptions on the quadratic form of the magnetic Schrödinger operator. This
should be well–known, but we could not find the version we need in the literature.
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Theorem C.1 (IMS localization formula). Let A be a locally square integrable magnetic vector potential
and V form small w.r.t. (P − A)2. Then for all bounded real–valued ξ ∈ C∞(Rd) such that ∇ξ is also
bounded and all φ ∈ D(P −A), also ξφ and ξ2φ ∈ D(P −A) and

Re qA,V (ξ
2φ,φ) = qA,V (ξφ, ξφ)−

〈
φ, |∇ξ|2φ

〉
(C.1)

Proof. As before, one easily checks that ξφ and ξ2φ are in the domain of P −A when φ is. Moreover, the
potential V commutes with the multiplication operator ξ, so as quadratic forms

〈
ξ2φ, V φ

〉
=
〈
ξφ, V ξφ

〉
and we only have to check the kinetic energy term. Since (P −A)(ξ2φ) = ξ(P −A)(ξφ) + (Pξ)ξφ a short
calculation reveals〈

(P −A)(ξ2φ), (P −A)φ
〉
=
〈
(P −A)(ξφ), (P −A)(ξφ)

〉
+
〈
(Pξ)φ, (P −A)(ξφ)

〉
−
〈
(P −A)(ξφ), (Pξ)φ)

〉
−
〈
φ, |∇ξ|2φ

〉
,

so

Re qA,0(ξ
2 φ,φ) = Re

〈
(P −A)(ξ2φ), (P −A)φ

〉
=
〈
(P −A)(ξφ), (P −A)(ξφ)

〉
+
〈
φ, |∇ξ|2φ

〉
which proves (C.1).
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[10] L. Fanelli, D. Krejčǐŕık. L. Vega, Absence of eigenvalues of two-dimensional magnetic Schrödinger operators.

J. Funct. Anal., 275 (2018), 2453–2472.
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Email address: hynek.kovarik@unibs.it


	1. Introduction and description of main results
	2. Magnetic Schrödinger operators and the Poincaré gauge
	3. Dilations and the magnetic virial theorem
	4. Absence of positive eigenvalues
	5. Kato–class, local Lp, and pointwise conditions
	6. Examples
	7. The essential spectrum
	Appendix A. Gronwall type bounds
	Appendix B. Optimizing the threshold
	Appendix C. IMS localization formula
	References

