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Abstract

To exploit the full performance potential of instruction-level parallelism in modern pro-

cessors, the properties of their architecture must be considered. Although optimizing

compilers do their best to produce machine code that uses the target’s resources e�ciently,

they are constrained by the programs presented to them. While algorithmic design for

e�cient memory access is widespread, recent experimental results have also highlighted

the importance of optimizations that reduce control hazards – thus further improving

pipeline e�ciency. We present a comparison-based priority queue that is cache-e�cient,

avoids branch mispredictions and supports operations insert and deleteMin in amortized

expected time O(log# ) and an amortized expected number of O(1/� log"/� # /") mem-

ory accesses on queues of size # , where " is the cache size and � the cache line size. In

various experiments run on two x86-64 machines our implementation outperforms our

strongest competitor – Sanders’ Sequence Heap – by a factor of up to 2. We also show

that transforming a single conditional branch into a data dependency improves the latter’s

performance by an average factor of 1.2.
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Zusammenfassung

Um das Leistungspotential des Instruktionsebenenparallelismus moderner Prozessoren

voll auszuschöpfen, müssen deren Architekturgegebenheiten berücksichtigt werden. Ob-

wohl optimierende Compiler ihr Bestes geben um Maschinen-Code zu generieren, welcher

die Ressourcen der Zielplattform e�zient nutzt, sind sie in ihren Möglichkeiten doch

beschränkt durch die Eingabeprogramme die sie übersetzen. Während Speichere�zienz

beim Algorithmenentwurf meist berücksichtigt wird, haben neuere experimentelle Ergeb-

nisse auch die Wichtigkeit von Optimierungen hervorgehoben, welche Steuerkon�ikte

reduzieren und dadurch die Pipeline-E�zienz noch weiter steigern. Wir präsentieren

eine cache-e�ziente vergleichsbasierte Vorrangwarteschlange die, wo möglich, falsch

vorhergesagte Sprünge vermeidet und die Operationen insert und deleteMin bei einer

Warteschlangengröße von # in amortisiert erwarteter Zeit O(log# ), sowie amortisiert

erwarteter Anzahl von O(1/� log"/� # /") Speicherzugri�en unterstützt – wobei " die

Cache-Kapazität und � die Cache-Zeilengröße darstellen. In diversen Experimenten auf

zwei x86-64 Computern konnte unsere Implementierung unseren stärksten Mitbewerber –

Sanders’ Sequence Heap – um einen Faktor von mehr als zwei schlagen.
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1 Introduction

There are numerous applications for priority queues: the shortest path problem, discrete-

event simulation, coding and compression, job scheduling, maximum �ow computation

and branch-and-bound [16, Section 6.6]. Since priority queues are often used as building

blocks of more complex algorithms, their practical performance is of particular interest.

However, the performance characteristics of modern processors with their multi-tier

memory hierarchies and instruction-level parallelism enabled by pipelining [8, 7] cannot

be captured by counting instructions in the simplistic von Neumann model [12].

There is a considerable amount of theoretical work on priority queues that tries to give

more realistic performance guarantees by providing theoretical bounds for the number

of expensive memory accesses in the external-memory and cache-oblivious models [4,

Section 10]. However, we could �nd no experimental results that suggest there exists

a strong competitor to Sanders’ Sequence Heap [14] when it comes to cached-memory

performance. In fact, at least for the application in Dijkstra’s Algorithm the contrary

seems to be true [5].

To rectify this, we present the Superscalar Sample Queue (S
3
Q), a comparison-based

priority queue that is cache-e�cient and avoids branch mispredictions wherever feasible.

Our theoretical analysis shows that it supports operations insert and deleteMin in amor-

tized expected time O(log# ) and an amortized expected number of O(1/� log"/� # /")
memory accesses on queues of size # , where " is the cache size and � the cache line size.

To verify that our results translate to actual performance on real hardware, we subjected

our implementation to various benchmarks on di�erent x86-64 machines. We compare

our results with those of well-tuned versions of implicit binary heaps [19] and Sanders’

Sequence Heap. Our results show that S
3
Q is able to outperform all its competitors by a

comfortable margin. As a side note, we also present a simple optimization that improves

the performance of Sanders’ Sequence Heap by an average factor of 1.2, thus narrowing

the gap to our solution.

One way to look at S
3
Q is as being the :-way distribution counterpart to Sanders’ k-way

merge based Sequence Heap. The advantage of the merge-based approach is that it is

relatively indi�erent to the distribution of the element keys. With our distribution-based

approach we have to constantly make sure that the element partitions we maintain stay

balanced, e.g. by subdividing key intervals that receive too many elements. However, our

approach is implementable with few branch-mispredictions and furthermore o�ers several

opportunities for parallelization.

S
3
Q bears a certain similarity to Arge’s cache-oblivious priority queue [1] from which

we indeed drew some inspiration. Both share a multi-level distribution-based approach

where elements are inserted into and removed from the �nest-grained partitioning levels.

They di�er in the fact that our approach is cache-aware instead of cache-oblivious, the

1



1 Introduction

size of our levels grows slower, and most importantly, we use sample-based splitting and

k-way classi�cation instead of sorting to distribute the elements.

To perform aforementioned operations e�ciently, we borrowed concepts and imple-

mentation from In-place Parallel Super Scalar Samplesort (IPS
4
o) [2], hence the name of

our algorithm. Arguably the most important part we adopted is its extremely e�cient

:-way classi�cation scheme and the implementation thereof.

Chapter 2 formally de�nes priority queues, presents the model we use to analyze our

cache e�ciency and gives a short overview of CPU pipelining and branch prediction.

Chapter 3 proceeds with a detailed description of the algorithm we devised as well as a

proof of its correctness. In chapter 4 we provide an analysis of the internal work that the

algorithm performs and bound the number of expensive memory accesses. After that,

chapter 5 gives an overview of our implementation and discusses interesting details as well

as notable di�erences to the theoretical algorithm. Chapter 6 describes the methodology

of our experiments, presents the choice of competitors and concludes by discussing our

experimental results. Finally, in chapter 7 we explore possible ways to further improve the

performance of S
3
Q, close the remaining gap between theory and implementation and

outline how to support additional operations.
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2 Preliminaries

This chapter starts by formally de�ning priority queues, then presents the model we use

to analyze our cache e�ciency and concludes with a short overview of CPU pipelining

and branch prediction.

2.1 Priority Queue

We de�ne a priority queue (PQ) as a set of elements or items, each of which is identi�ed by

a unique key. The keys represent priorities and there exists a strict total order on them,

which we also extend to their associated items. A priority queue provides at least the

following operations on its elements:

insert insert an element into the queue

min get the element with the smallest key

deleteMin delete the element with the smallest key

We also use the concept of a batched priority queue. It provides the same semantics as a

regular priority queue, but its operations always work in sets of elements. Given a batch

size of ( , insert inserts ( elements at once, whereas min returns and deleteMin deletes the

elements associated with the ( smallest keys.

2.2 Memory Model

To analyze the cache-e�ciency of our algorithms, we use the single-disk single-processor

variant of the parallel disk model (PDM) [17, Chapter 2]. In this model, we count how

often we need to transfer a block of size � between the fast memory of size " and the

slow but unbounded external memory. In our case, the latter shall be the computer’s main

memory, while the former shall be the L1 data cache. Thus, " denotes the L1 data cache’s

capacity and � its cache line size. The model further prescribes that 1 ≤ � ≤ "/2 and

" < # , where # is the problem size. All parameters are given in units of items. We will

refer to the transfer of cache lines as "memory accesses" or "I/Os".

Note that both placement as well as replacement policies of hardware caches are usually

�xed, neither of which is modeled by the PDM [17, Section 2.3]. We will largely ignore

this fact, with an exception being the consideration of cache associativity by reducing the

e�ective size of " where applicable [13].

Moreover, the relative di�erence in speed between caches and main memory is orders

of magnitude smaller than the relative di�erence in latencies between main memory and

hard disks [17, Section 2.3]. Thus, we cannot simply disregard the work performed by the

3



2 Preliminaries

CPU but instead analyze the number of processing instructions required by our algorithms

as well. We will also refer to this metric as "time" or "internal work".

Finally, we will give bounds – both in terms of memory accesses and processor instruc-

tions – for two fundamental problems. The complexity of sequentially reading or writing

(also scanning or streaming) # data items is bounded by [17, Chapter 3]

Scan(# ) =
{
Θ(# ) time

Θ(# /�) I/Os,
(2.1)

whereas the complexity of the comparison-based sorting of # elements is bounded by [17,

Chapter 3, 16, Theorem 5.4]

Sort (# ) =
{
Θ(# log# ) time

Θ(# /� log"/� # /�) I/Os.
(2.2)

Finally, note that the base of all logarithms in this work is 2 unless explicitly speci�ed.

2.3 Pipelining

The following section is based on [7, Appendix C]. In it, Hennesey and Patterson give a

concise synopsis of pipelining:

Pipelining is an implementation technique whereby multiple instructions are

overlapped in execution; it takes advantage of parallelism that exists among

the actions needed to execute an instruction. Today, pipelining is the key

implementation technique used to make fast CPUs.

While theoretically, the speedup provided by a pipeline is linear in the number of its

stages, interdependencies between instructions can lessen that e�ect. Situations where

these interdependencies prevent the execution of an instruction during its scheduled clock

cycle are called hazards. For example, when an instruction wants to use the result of a

preceding instruction but that result is not yet available, this would be called a data hazard
(more speci�cally a read-after-write hazard). The reading instruction, and all others that

come after it, might then have to wait until the result is ready. This is called a pipeline

stall. The class of hazards which will be of prime interest to us are control hazards. They

arise for example when the result on which a conditional branch depends is not yet ready

and it is consequently unclear which instructions should be processed next.

There are many techniques that try to reduce the impact of the uncertainty introduced

into programs by control logic. One such concept, of which at least a basic understanding

is necessary to adequately gauge the impact of control �ow optimizations, is the dynamic

branch prediction that is performed by the CPU. While there are various schemes and

associated parameters, the general idea is that the processor records some information

about each conditional branch instruction in the program – e.g. if it was taken or not.

Then, the CPU can refer to this information the next time that same conditional branch is

encountered and can, for example, speculate that the outcome will be identical to before. If

4



2.3 Pipelining

the prediction is correct, the pipeline’s e�ciency is not a�ected by the conditional branch.

If the prediction is incorrect, the speculatively executed instructions have to be removed

from the pipeline and any of their results reverted.

This approach works well for conditional branches that mostly have the same outcome

– which indeed applies to many common cases like loop control statements and error

handling. However, the outcome of some conditional branches is not that easy to predict

in general – like the decision whether to continue left or right during a binary search. This

is where the need for clever algorithm engineering and careful evaluation arises.

5





3 Algorithm

We �rst give an informal overview of our data structure and then proceed to formally

de�ne its structure and operations theron.

3.1 Overview

The core of S
3
Q is a batched priority queue that we call its backend. On top of that sits the

frontend, a bu�ering adapter that provides the single-element priority queue interface.

The backend stores the contained items in multiple levels. The �rst level, through which

all elements enter and leave the queue, holds the smallest items in the whole backend.

Since the level size is limited, the biggest elements will have to move to the next level at

some point. When that level runs full, the biggest items will move to a third level and

so on. Each level partitions the contained items into subsets that we call buckets. These

buckets are again ordered, such that all elements in a given bucket have smaller keys than

any elements in any bucket following it. The elements inside the buckets on the other

hand, are kept in no particular order. See Figure 3.1 for an illustration. If a bucket exceeds

its size limit, its elements are partitioned into a number of smaller buckets. To limit the

number of levels, the bucket capacity and thus the level capacity increases exponentially.

−∞ < 10 ≤ ?0 < 11 ≤ ?1 < · · · < 1max < ∞

Figure 3.1: Structure of the ordered partitions managed by the queue levels.

The frontend contains all elements that are even smaller than those in the �rst level

of the backend. To be able to provide e�cient priority queue operations, it stores those

elements as an implicit binary heap. When it runs out of elements it gets a new batch

from the backend. When it grows too large to �t into fast memory it moves a fraction of

its items to the backend. See Figure 3.2 for an overview of S
3
Q’s structure and data �ow.

Before we can describe backend and frontend in more detail we need to de�ne some

parameters. First, let 2 ∈ Θ(") be the maximum size of the binary heap in the frontend

and the buckets in the �rst backend level. Moreover, let : = 2
28 ∈ Θ("/�1+Y) where

8 ∈ N \ {1} and 0 ≤ Y ≤ 1 be the maximum number of buckets on any level. Finally, let

U = 2
8 =
√
: be the split factor, i.e. the number of new buckets into which an over�owing

bucket is split.

7



3 Algorithm

deleteMin

insert

FE

<

push

ℓ0

<

push

ℓ1

<

push

ℓ2

pull
pull

pull

Figure 3.2: A S
3
Q instance with frontend, three backend levels and a bucket growth factor

of :/2 = 4 (not valid in practice). The arrows show how data �ows through the

levels. Except for the elements in the dotted max-bu�ers, all elements follow

the order relation depicted by the < signs.

3.2 Backend

3.2.1 Structure

The backend of a PQ holding # elements consists of Θ(log: # /2) levels which are ordered

from smallest (with regards to capacity) to largest and shall be denoted by ℓ0, . . . , ℓℎ−1.
With each level, the capacity increases by a factor of Θ(:). Items enter and leave the PQ

via the �rst level ℓ0. In a multi-level PQ, ℓ0 contains the Θ(2:) minimally keyed items as

well as the Θ(2) most recently inserted items with larger keys. Items whose keys have

rank beyond Θ(2:) will eventually be pushed to the next larger level. We call all levels

except the last one regular.
Each level manages an ordered partition of the items it contains. That is, it consists

of Θ(:) (or less, in case of the last level) buckets or bu�ers, referred to as 10, 11, . . . , that

partition the elements in that level such that the ordering of the buckets is consistent with

the ordering of the elements. More formally, for any regular bucket 18 , 18 × 18+1 is a subset

of the order relation over the elements in the PQ. The number of elements contained in

any two buckets of a level can di�er by a factor of up to O(U). This allows us to split an

over�owing bucket into U smaller ones.

The last bucket of a level has a special role. It collects the elements that are too large

for its level – until there are enough to e�ciently push them to the next level. We also

call that bucket max-bu�er or 1max and the other buckets regular. The elements in the

max-bu�ers are still in transit to their �nal location. Eventually, they could end up in any

level past their current one.

For any level ℓ , we will refer to the number of buckets in that level as its degree or

deg(ℓ). For any level or bucket G , we de�ne its size as the number of elements it contains

and its capacity as the maximum number of elements it is able to contain. For any regular

8



3.2 Backend

bucket 1 9 , let ? (1 9 ) = ? 9 refer to its pivot – the largest key of all elements contained in it.

Furthermore, let ? ({}) = ? (1max) = ∞.

An empty backend is initialized with a single level that contains a single empty bucket.

All operations we de�ne below will maintain the following invariants:

1. Level degrees are limited

a) each level has a degree of at most :

b) each regular level has degree greater than :/3 + 1
2. Bucket sizes are limited

a) a bucket at level 8 has size at most 28 := 2 (:/2)8
b) a bucket at level 8 with deg(ℓ8) > 1 has size at least 28/2U

3. Bucket and level ordering is consistent with element ordering

a) items in a regular bucket 18 have smaller keys than those in bucket 18+1
b) items in regular buckets of a regular level ℓ8 have smaller keys than those in ℓ8+1

3.2.2 Balancing rules

To maintain above invariants, we employ the following balancing rules:

A) Split overflowing buckets If a regular bucket or the last bucket of the last level exceeds

its size limit then split it into a sorted U-partition. The resulting buckets replace the original

bucket. May trigger rule B.

B) Retire buckets intomax-bu�erwhen degree overflows If the degree 3 of a level exceeds

: , join its last 3 − : + 1 buckets. May trigger rule C.

C) Emptymax-bu�er into next level when it overflows If max-bu�er’s size on ℓ8 exceeds its

capacity, push all but 28/U items to the next level. If this happens on the last level, create a

new level �rst. May trigger a pre�x of rules A, B, C on the following level.

D) Handle degree underflow If the degree of regular level 8 is decreased to :/3 + 1, �ush

the max-bu�er of ℓ8 into ℓ8+1 and then pull the �rst bucket from ℓ8+1 into ℓ8 . If that bucket’s

size exceeds 28 , split it into as many buckets as possible without violating invariants 1a

and 2b. May trigger either a pre�x of rules A, B, C or rule D on the following level.

3.2.3 Operations

We de�ne the following operations on the backend.

push Given a level index 8 and a set of incoming elements ( with |( | = 2 if 8 = 0 else

28−1/2U ≤ |( | ≤ 228 . First classify all items from ( into their respective bucket. That is,

insert each item in ( into the �rst bucket whose pivot compares greater or equal to the

item’s key. After that, apply balancing rules A, B and C as necessary.

9



3 Algorithm

pull Given a level index 8 , remove the �rst bucket from ℓ8 and return it. Subsequently,

apply balancing rule D if necessary.

insert/deleteMin To insert a batch of elements into the PQ, call push on the �rst level.

Similarly, to remove a batch of smallest elements, call pull on the �rst level.

The minimality of the returned elements is guaranteed, since we removed either a

regular bucket, in which case the items are minimal by invariant 3. Or we removed a

max-bu�er, in which case by invariant 1 we can conclude that the �rst level must be the

last and we removed the last elements from the queue, making them minimal as well.

3.2.4 Invariant Maintenance

This sections shows that all operations on the levels and the priority queue as a whole

maintain each of the invariants listed above.

3.2.4.1 Invariant 1: Level degrees

There are two situations in which a level’s degree grows. The �rst is by application of

balancing rule A (split over�owing buckets). But if that causes a degree over�ow, we apply

balancing rule B right after it, reducing the degree to exactly : . The other situation is

during application of balancing rule D (re�ll level from next one). However, in this case

we choose the split degree in a way that the level’s degree does not over�ow afterwards.

Thus part (a) of the invariant holds.

We guarantee part (b) by applying balancing rule D whenever a pull has reduced the

degree of a regular level ℓ8 to :/3 + 1. We �rst push our max-bu�er to the next level ℓ8+1,
reducing the degree further to :/3. Then we pull a bucket from ℓ8+1 and split it into as

many buckets as possible. If the pulled bucket was the last bucket of ℓ8+1, then ℓ8+1 will be

removed as well, making ℓ8 the last level and thus exempt from invariant 1b. Otherwise,

invariant 2b guarantees that the split will yield at least 28+1/228 = :/4 > 2 new buckets.

Therefore ℓ8 has degree greater than :/3 + 1 after applying balancing rule D and part (b) of

the invariant is maintained.

3.2.4.2 Intermission: Sample splits

The easiest way to implement a 3-way Split of # distinct elements is by sorting the input

and then writing the �rst # /3 elements into the �rst new bucket, the next # /3 elements

into the second bucket and so on.

Since we only need a sorted 3-way partition of the input, our implementation of Split
uses random sampling to estimate the 3-quantiles of the input. We then classify and

distribute the input just as we do when pushing items into a level. We will now quantify

the probability of a good split.

Lemma 1. Consider splitting a bucket of size # into 3 parts, using a sample of size 3( with
( ∈ Ω(log# ). Let A8 be the ratio between the actual size of the 8-th resulting bucket and the
target bucket size # /3 . The probability that ∀8 : 1/2 ≤ A8 ≤ 4/3 is greater than 1 − 2/# .

10
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Proof. The upper bound for A8 can be proven similarly to [16, Lemma 5.11]. For our result,

we actually use tighter bounds like those in [16, Exercise 5.50]. The lower bound of A8 can

be proven analogously by reversing some inequalities and applying a di�erent Cherno�

bound in the end. Since, given an adequate sample size, the probability of violating either

bound is at most 1/=, the �nal result can be obtained by applying the union bound. �

If after a few tries we cannot produce a good split as de�ned above, we fall back to

sorting. This should �nally explain why invariant 2b allows buckets that are only half the

size of a perfectly split max-size bucket.

3.2.4.3 Invariant 2: Bucket sizes are limited

Whenever a bucket over�ows after an insertion, we apply balancing rule A to split it into

a sorted U-partition. Since buckets resulting from a split are at most
4

3U
≤ 1

3
times the size

of the bucket being split, we can guarantee the resulting buckets on ℓ8 to be at most 28 if

an over�owing bucket can have at most 328 elements.

Lemma 2. Let B8 be the maximum number of elements that a PQ level will receive during a
push, with B0 ≤ 2 . Then ∀8 ∈ N0 : B8+1 < 228+1.

Proof. Consider a push of B8 elements into ℓ8 . In the most extreme case, when all buckets

are already full, only : − 1 items are necessary to let them all over�ow. However, at least

the (
√
: − 1)28 items contained in the �rst

√
: − 1 buckets will remain in the level – since

even splitting all of them will result in less than : buckets. Subtracting these remaining

items from the :28 items that originally resided in the level, as well as the B8 incoming

items, gives the following recursive upper bound for the number of items pushed to ℓ8+1:

B8+1 ≤ B8 + :28 − (
√
: − 1)28 = B8 + (: −

√
: + 1)28

which can easily be transformed to the closed form of

B8+1 ≤ 2 + (: −
√
: + 1)

8∑
9=0

2 9 .

To focus on the constant factor, we divide B8+1 by 28+1 = 2 (:/2)8+1:

B8+1/28+1 ≤ (2/:)8+1 + (: −
√
: + 1) (2/:)8+1

8∑
9=0

(:/2) 9 .

We use the geometric series with @ := :/2 to provide a constant bound for the part of the

last summand that is dependent on 8:∑8
9=0 @

9

@8+1
=

@8+1 − 1
(@ − 1)@8+1 =

1 − 1/@8+1
@ − 1 ≤ 1

@ − 1 =
2

: − 2 .

11
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Together with (2/:)8+1 ≤ 2/: , this gives us

B8+1/28+1 ≤
2

:
+ 2(: −

√
: + 1)

: − 2 = 2

(
: −
√
:

: − 2 +
1

: − 2 +
1

:

)
.

Since : ≥ 16 this �nally yields the desired upper bound

B8+1/28+1 ≤ 2

(
12

14

+ 1

14

+ 1

16

)
< 2.

�

So even if an already full bucket on level 8 receives all the elements during a push, it

will contain less than 328 elements after the push.

Another violation of invariant 2 might arise during application of balancing rule D,

when we split a bucket from ℓ8+1 into as many buckets as possible. Note that for any level

we can �nd some successor (still existing or not) which never has pulled any buckets.

Since we have just established that invariant 2a is maintained locally, we can use that level

for the beginning of an inductive argument. So suppose invariant 2a holds for ℓ8+1, i.e. the

incoming bucket’s size is at most 28+1 =
:
2
28 . Rule D is only applied if we have enough free

bucket slots for a 2:/3-way split. So even considering that we want to allow our sample

split to produce buckets of up to 4/3 the target size, we can guarantee that the resulting

bucket size does not exceed
4

3

3

2:
:
2
28 = 28 . Thus, invariant 2a holds for ℓ8 and inductively for

the whole queue.

For part (b) we examine all situations in which bucket sizes are reduced. When we apply

rule A, we split buckets containing at least 28 elements with unique keys into a sorted

U-partition. This gives bucket sizes of at least 28/2U as desired.

When we apply rule C because ℓ8 ’s max-bu�er over�ows, the latter contains more than

28 elements. By de�nition, we retain enough elements to satisfy the lower bound of the

max-bu�er size on level 8 . The items that we push will either go into existing buckets that

already satisfy invariant 2b or into the �rst bucket of the last level which is exempt from

the minimum-size requirement.

Finally, for rule D we must again consider two cases for the bucket we pull from the

next level. If it is not the last bucket of the last level, it is guaranteed to have size at least

28+1/2U = U28/4 which is at least :/2 times the receiving level’s lower bu�er size bound. If

instead we pull the last level’s last bucket, then invariant 2 gives no direct lower bound

for its size. However, there are only two possibilities how that bucket came to be. Either

it is the result of a split on the next level, in which case above bounds hold. Or it is the

initial bucket of that level, in which case it contains at least the items from the initial push

from level 8 . These in turn are guaranteed to be at least (U − 1)28/U ≥ 28/U items, which is

enough to satisfy part (b) of the invariant.

3.2.4.4 Invariant 3: Consistent ordering

Initially a level contains no elements, so naturally the invariant holds.

During push, we classify every element G into a bucket 18 such that G ≤ ? (18) and 8 is

minimal. Since the pivots are the bucket maxima, this maintains the local part (a) of the

12
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invariant. It should be easy to see that balancing during push – i.e. replacing a bucket with

a sorted partition of itself, joining adjacent buckets and removing a bucket from the end

of the level – also maintain part (a) of the invariant.

During pull, we remove a bucket from the front of the level. This a�ects neither part of

the invariant. When we apply balancing rule D, we push the max-bu�er to the next level,

which does not a�ect the bucket ordering on the current level either.

However, it remains to be shown that the inter-level movement of items maintains

the desired invariants as well. For that, �rst note that in a regular level ℓ8 , the pivot of

the second to last bucket 1 never changes unless the max-bu�er is completely emptied.

Starting from the moment ℓ8 pushes the �rst batch of items to its new successor ℓ8+1, we do

not split the max-bu�er of that level anymore. While a split of 1 results in a new bucket

1′ preceding the max-bu�er, it holds that ? (1′) = ? (1). Finally, there will always be a

preceding bucket, since invariant 2b guarantees that the degree will always stay above

:/3 + 1 > 2. Thus, of all elements pushed to ℓ8 , exactly those with greater keys than ? (1)
end up in the max-bu�er. They either remain there until the level becomes irregular again

or until they are pushed on to the next level. By part (a) of the invariant, all items in

regular buckets of ℓ8 have keys of at most ? (1). Thus part (b) of the invariant is maintained

when pushing items between levels.

Consequently, when we pull items into a regular level ℓ8 , we know that they are greater

than those in any regular bucket in ℓ8 . Since we push our entire max-bu�er before pulling,

we even know they are greater than all items in ℓ8 , which maintains part (a) of the invariant.

Moreover, since we always pull the entire �rst bucket from the successor, we know that all

pulled items have smaller keys than the ones remaining in ℓ8+1. Finally, if the pulled bucket

is split, then this operation resets the pivot between regular buckets and the max-bu�er of

the pulling level to the key of one of the pulled elements. Since this pivot is less than any

elements in ℓ8+1, further pushes will continue to maintain part (b) of the invariant by the

same argument as above.

3.3 Frontend

As mentioned above, the frontend provides a priority queue interface by acting as a

bu�ering adapter on top of the batched priority queue described in the previous section. It

does so by following the same principles as the backend. The elements which it contains

are kept in an ordered partition 1min
¤∪ 1max also called min-bu�er and max-bu�er. 1min is

kept in min-heap order and always contains the smallest items in the whole PQ – frontend

as well as backend. That also means it is only empty when the whole PQ is. Both bu�ers

are guaranteed to contain at most 2 elements and are initially empty. The frontend’s pivot

? marks the upper bound of 1min and is initialized to∞.

3.3.1 Operations

insert Given an incoming element G , we �rst classify it into the appropriate bu�er based

on the pivot. If that bu�er has reached its maximum size 2 , we �ush it into the backend. For

1max this simply means pushing all items contained in it to the �rst level of the backend.

13
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For 1min we perform a ordered U-way split, keep the �rst of the resulting buckets and

insert the others in front of all other buckets in the �rst backend level. Furthermore we

set ? to the maximum key of the new 1min. Finally, if G was inserted into 1min, we restore

heap order in it.

min Return the �rst element in 1min. The minimality of that element follows directly

from the fact that 1min contains the smallest elements and is kept in min-heap order.

deleteMin We �rst remove the �rst item from 1min. Then, if the queue still contains

elements but 1min is empty, we have to re�ll it. If the backend is empty as well, all

remaining items must be in 1max and we simply swap the two bu�ers and reset ? to ∞
to do that. If however the backend still has elements left, we pull its �rst bucket and use

that as the new 1min and the bucket’s pivot as the new frontend pivot. To ensure that 1min

contains all elements with keys less than or equal to ? , we split 1max using the new pivot

and add all items with smaller keys to 1min. If that causes 1min to over�ow, we �ush all but

a fraction of 1/U of its elements to the backend, just as we do during push. In any case, we

restore heap-order for the elements in 1min.
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4 Analysis

In this chapter we will show that the amortized expected complexity of our algorithm is

optimal in the external memory as well as the RAM model.

4.1 Backend

We will �rst bound the number of levels in the PQ and analyze the complexity of the basic

building blocks Classify, Split and Retire. We will then proceed to use these results to

bound the complexity of recursive push and pull operations.

4.1.1 Height

We call the number of levels in the PQ its height. We furthermore will refer to it as ℎ. Since,

due to invariants 1b and 2b, a regular level 8 contains at least
:
3

28
2U

= 2
3U
(:/2)8+1 items, a

PQ consisting of ℎ levels has size at least

# ≥ 2

3U

ℎ−2∑
8=0

(
:

2

)8+1
>

2

3U

(
:

2

)ℎ−1
which means we can equivalently specify the upper bound for the number of levels in

terms of items as follows:

ℎ < 1 + log:/2 3U# /2 ∈ O(log: # /"). (4.1)

4.1.2 Classify

Whenever we push elements to a level or split an existing bucket into several new ones,

we need to classify each of # ∈ Ω(") items as belonging to exactly one of 3 ∈ O("/�)
classes. The classes are de�ned by a sorted sequence of keys – the bucket pivots. We �rst

use the pivots to build an implicit classi�cation tree, if we not already have one from a

prior classi�cation that used the same pivots. This can be done in time O(3). We can then

use the implicit classi�cation tree to determine the class of an item in time O(log3).
During this process, we require one block of memory as a read bu�er, O(3/�) blocks for

the implicit classi�cation tree as well as O(3) blocks of memory that act as write bu�ers –

one for each class. This adds up to a memory requirement of O("), which means that we

can keep everything in fast memory if the constant factors are chosen carefully. Thus, the

# input elements can be e�ciently streamed through the classi�er. This yields a worst case

bound of (20=(# ) I/Os for the streaming of the elements plus another O(3) = O("/�)
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I/Os to write any incomplete write bu�ers. Thus we can classify # ∈ Ω(") elements with

worst-case costs of

Classify3 (# ) =
{
Θ(# log3) time

Θ(# /�) I/Os.
(4.2)

4.1.3 Split

To split a bucket of # ∈ Ω(") items into 3 new buckets, we �rst draw a random sample

of size 3( with ( ∈ Θ(log# ). This requires internal work and memory accesses linear in

the sample size. After that, we sort the sample for costs Sort (3() to estimate the input’s

3-quantiles which we will use as the pivots for the new buckets. Finally, we classify the

input elements according to those pivots and distribute them to their respective new

buckets for a cost of Classify3 (# ) which also dominated the total cost of the sample split.

To ensure the bucket size invariants we declared in the previous chapter, we fall back

to sorting the input if the resulting bucket sizes are not all within the bounds that are

used in Lemma 1. Thanks to that event’s low probability, this only adds an asymptotically

insigni�cant Sort (# )/# to the expected costs which thus remain at Classify3 (# ) while

limiting the worst-case costs to Sort (# ). We will refer to this variant as Split3 and use it

henceforth.

4.1.4 Retire

When the level degree over�ows we retire buckets, i.e. we join them with the max-bu�er.

Since we implement bu�ers as contiguous segments of memory, retiring a bucket simply

means copying its entire contents into the max-bu�er. Thus, retiring a bucket of size #

incurs a cost of Retire(# ) = Scan(# ). Since only items from regular buckets can be retired,

and elements only enter regular buckets by means of classi�cation, we can cover all retire

costs by charging an extra Retire(# )/# for each element classi�cation.

4.1.5 push

When pushing a batch of #̂ ∈ Ω(") items into some level 8 , each item is �rst classi�ed

into the appropriate bucket for a cost of at most Classify: (#̂ )/#̂ per item. We then apply

balancing rules A, B and C as necessary.

It follows directly from Lemma 2 that, when we apply rule A to split an over�owing

bucket into U new buckets, the over�owing bucket has size at most 328 . Consequently, to

let all of the U new buckets over�ow again, at least U28 − 328 elements have to be inserted

into them after the split. Since existing regular buckets only receive newly pushed items,

we can conclude that one split occurs at most for every 28 (U − 3)/U ≥ 28/4 items that are

pushed into a level. Thus, the amortized split costs during pushes to level 8 amounts to

O(Split (328)/28) per element.

The costs for any retirements caused by rule B are already covered, as we discussed

above. Thus, before application of balancing rule C, the amortized expected cost of pushing
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an item into level 8 is

E [push] =
{
O(log:) time

O(1/�) I/Os.
(4.3)

Rule C simply pushes items on to the next level. Since any item is pushed at most once

into each level, the backend has a total amortized expected push cost per item of

O(log: # /2) · E [push] =
{
O(log# /2) time

O(1/� log: # /2) I/Os.
(4.4)

The amortized worst-case costs can be obtained in the same manner. Like the expected

costs, they are dominated by the term Split (328)/28 which has worst-case bounds of

push8 = Sort (328)/28 =
{
O(log 28) = O(8 log 2) time

O( 1
�
log"/�

28
�
) = O(8/�) I/Os.

(4.5)

By the same argument as above, we arrive at a total amortized worst-case push cost per

item of

ℎ−1∑
8=0

push8 =

{
O(log 2 · log2

:
# /2) time

O( 1
�
log

2

:
# /2) I/Os.

(4.6)

Note that we the time bound is deliberately coarser than it could be to keep it simple.

4.1.6 pull

When we remove the �rst bucket from a level, we have to update the list of buckets for

that level. Assuming we are using contiguous memory to store references to bu�ers, the

cost per pull is O(Scan(:)). This is easily amortized for levels beyond the �rst, where

at least Ω(U2) = Ω(:
√
"�) items are pulled at a time. If we have " ∈ O(�3) then the

costs are also amortized constant on the �rst level. Alternatively a linked list can be used

instead to get worst-case constant costs for removal of a bucket reference. Consequently,

everything we do during a pull from a given level (not considering a potential re�ll from

the next level) can be done with constant costs per item if implemented appropriately.

Re�lls from the next level occur at most every Ω(2:/3) pulls. Let us �rst consider

recursive pulls only. Any item that we pull from the �rst level of the queue has been pulled

from at most ℎ levels in total. In fact, as we have used before,

∑ℎ−1
8=0 28/2ℎ ≤ 2/(: − 2)

for all ℎ. So only a small fraction of all items is not contained in the last levels. Thus,

charging all items to be pulled through all levels only introduces a negligible error. Since

the dominating costs for pulling items from level 8 is splitting the pulled bucket into smaller

ones, the costs per item are given by pull8 = Split (28)/28 = push8 . Consequently, the cost

for pulling an item through all levels is asymptotically the same as for pushing it through

all levels. Adding the cost of another recursive push before every re�ll (i.e. every Ω(2:/3)
pulls) does not change the asymptotic bound.
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4.2 Frontend

The whole frontend has size Θ(") and thus �ts into memory if the parameters are

chosen appropriately. Communication with the backend only happens at most every

Ω(") operations, so even if we evict the entire frontend for that, we only incur another

Scan(")/" = 1/� per element. Thus, usage of the frontend does not change the amortized

asymptotic I/O bound, even if it only barely �ts into memory.

4.2.1 insert

The cost for classifying each incoming item into the min- or max-bu�er is constant. If we

insert into the min-bu�er of size at most 2 ∈ Θ("), we pay another O(log") for pushing

to the binary heap.

Flushing to the backend incurs the push costs per item given above. When �ushing

the max-bu�er this is obvious. When �ushing the min-bu�er, we split it into a sorted

U-partition and then prepend all but the �rst bucket to the �rst level. The cost for this

is less than a regular push to the �rst level. Thus the total amortized expected time of

inserting an element into a queue of size # is

O(log# /") + O(log") = O(log# ) (4.7)

4.2.2 deleteMin

We pull each item from the backend, add constant costs for it being part of a makeHeap
and �nally O(log") for being pulled from a heap of size at most 2 ∈ Θ("). The costs for

classifying the items in the max-bu�er when we re�ll the min-bu�er is also constant per

item. Finally, the over�ow handling for the min-bu�er during deletion is identical to that

during insertions and thus incurs at most the cost of a regular push to the backend. For a

queue containing # elements, this gives a total amortized expected deleteMin time of

O(log# /") + O(log") = O(log# ) (4.8)
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In this chapter we will give a rough overview of the most important aspects of our

implementation. After that we will discuss deviations from the theoretical algorithm and

their implications. And �nally we will examine some key points of the implementation

that are responsible for greatly reducing hard-to-predict conditional branches.

5.1 Overview

Our implementation consists of several portable C++17 class templates which allow for

�exible con�guration of key and value type as well as the various tuning parameters. Where

at all possible, all parameters are made available at compile time to provide maximum

information to the optimizing compiler.

Our implementation tries to avoid hard-to-predict conditional branches wherever fea-

sible. To that end, it also makes use of sentinel values for keys in several places, so the

smallest as well as the largest value of the chosen key type cannot be used as item keys.

For example, items using IEEE �oating point keys may have neither positive nor negative

in�nity as their key value.

The Bucket class is essentially a std::vector of elements accompanied by the bucket’s

pivot. All buckets on a single level are again kept in a std::vector. The list of levels is

kept as a std::deque. All data structures use the default std::allocator. The frontend

uses vectors for its bu�ers as well. The source code of our implementation and evaluation

is available at github.com/raphinesse/s3q.

5.2 Di�erences to analyzed algorithm

In this section we describe various instances where our implementation deviates from the

algorithm as described and analyzed in the previous chapters.

5.2.1 Relaxed unique-key requirement

In the previous proofs and analyses we strictly required all items to be uniquely keyed.

This is convenient for the theoretical analysis but impractical for real-world usage. In fact

we experienced this �rst-hand during our evaluation with monotonous queue workloads,

where keys were drawn from an exponential distribution.

To address this practical issue, our implementation allows some duplicity among the

keys of the items in a queue. More speci�cally, we only require over�owing buckets to

contain enough unique keys to be able to properly split them without any special handling.

19

https://github.com/raphinesse/s3q


5 Implementation

Of course, duplicate element keys are actually a blessing in disguise, since they are always

sorted among themselves. See chapter 7 for a potential way of harnessing this.

5.2.2 Fixing failed sample splits

Our implementation does not fall back to sorting the input bucket after a failed sample

split. Instead it makes a single pass over the split result to join any undersized bucket onto

any of its neighbors. After that, it recursively splits any of the new buckets which might

be over�owing.

This approach might be able to yield better constant factors than falling back to a sort,

but we have no data to back that conjecture. Unfortunately, it is harder to reason about

the number of buckets resulting from a split. It could be both less as well as more than U .

Thus it would be desirable to implement the sort-fallback variant as well to compare both

approaches in practice. The reason we did not do so is simply that – for a fair comparison

– various other changes would have to be made to the current implementation.

5.2.3 Order of bucket splits & joins

In the algorithm described in the previous sections, we �rst split any regular bucket that

over�ows. Afterwards, if the level contains too many buckets, the last few are retired into

the max-bu�er. This approach is conceptually simple but it has downsides.

First of all, when we split a bucket 18 with 8 > : − U (we say 8 is in the dead zone) into U

new buckets, we immediately have to retire some of the new buckets right after creating

them since there are just not enough bucket slots in the level after 8 . This is obviously

wasteful and should be avoided. Secondly, each level has to be able to hold not : but : + U
buckets in memory – at least until the over�ow has been �xed.

To mitigate these issues our implementation reverses the order of splits and joins. If it

is known that performing a split and thus increasing the level degree by U will make the

level over�ow, then we retire as many buckets as necessary before actually performing

the split. For over�owing buckets in the dead zone this means we do not split them at all

but retire them and any following buckets into the max-bu�er instead.

This way we neither need extra space to accommodate over�ow buckets nor do we

invest valuable resources in creating item partitions that will be discarded right after their

creation. However, this approach also has a minor drawback that we need to consider. We

might actually reduce our degree to below : when we retire over�owing buckets in the

dead zone. Consequently, we have to �ush the max-bu�er more often and such a �ush

can contain more items than with the split-then-join variant. However, the analysis we

performed in the previous chapter considers these facts and our results hold either way.

5.3 Classification

For fast and predictable classi�cation of elements into their respective buckets we use the

same approach as (In-Place Parallel) Super Scalar Samplesort [15, 2]. In fact, we actually

use the Classifier class from the IPS
4
oimplementation.
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The basic idea is to build an implicit binary search tree from the sorted list of splitters.

Much like an implicit binary heap, this tree resides in contiguous memory where index

1 is the root and the children of the node at index 8 are at indices 28 and 28 + 1. When

the tree is small enough to �t into fast memory – which it is in our case – its traversal

is extremely performant. Furthermore, when determining the next child during a key

lookup, we do not use any conditional branches but instead perform index arithmetic

involving the result bit from the key comparison. Together with other optimizations

like loop unrolling and interleaved classi�cation of multiple elements to stagger data

dependencies, this approach provides a very high classi�cation throughput. For further

details, we refer to the respective publications and implementations [15, 2].

The drawback is that we need extra memory for the search tree and that we have to

rebuild it anytime buckets are added to or removed from a level. To avoid doing this

more often than we have to, we mark the classi�cator instance as invalid whenever

the pivots change and rebuild it only when it is used the next time. This way we keep

the implementation simple and still avoid multiple rebuilds between classi�cations. The

additional conditional branch before each classi�cation is easily amortized since we always

classify Ω(") elements at once.

5.4 Frontend Priority Queue

Every element that is removed from a S
3
Q instance passes through the priority queue

bu�er in the frontend. Since this is an inherently non-linear operation, it should be obvious

that the implementation quality of this priority queue is paramount.

5.4.1 Predictability

Katajainen’s experimental survey in search of the best priority queue [10] suggests that

for small queue sizes, branch-optimized versions of Williams’ implicit binary heap [19]

provide the best performance on current hardware.

Sanders’ Sequence Heap publication [14] includes a very detailed analysis of his implicit

binary heap implementation which is used for solving a problem that is virtually identical to

ours. This implementation makes use of the bottom-up heuristic [18] which – compared to

a textbook implementation – already reduces the number of branches based on the outcome

of key comparisons considerably. According to [6, 10], another worthwhile branch-

reduction optimization is replacing the remaining branch in the body of the siftDown
loop, which is part of deleteMin, by address arithmetic involving the comparison result –

just as we do for traversing our classi�cation tree. Our implementation largely borrows

from Sanders’ but also applies that additional optimization. This indeed eliminated the

conditional jump instruction jl in the loop body and replaced it with the setl instruction

– which loads the last comparison result into a regular register – followed by some address

arithmetic. See Figure 5.1 for a comparison of both siftDown implementations. On top

of that we also included the best performing makeHeap variant from [6] which helped

us to further reduce branch mispredictions but did not have a signi�cant impact on the

algorithm’s overall performance.
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1 int hole = 1;

2 int succ = 2;

3 while (succ < size) {

4 Key key1 = data[succ].key;

5 Key key2 = data[succ+1].key;

6 if (key1 > key2) {

7 succ++;

8 data[hole].key = key2;

9 data[hole].val = data[succ].val;

10 } else {

11 data[hole].key = key1;

12 data[hole].val = data[succ].val;

13 }

14 hole = succ;

15 succ <<= 1;

16 }

Sanders’ version

1 Idx hole = 1;

2 Idx succ = 2;

3 while (succ < size) {

4 // Set succ to the index of the

5 // successor with the smaller key

6 // without conditional jumps

7 succ += data[succ+1] < data[succ];

8

9 // Move the smaller of the

10 // successors up by one level

11 data[hole] = data[succ];

12

13 // Update hole & succ indices

14 hole = succ;

15 succ <<= 1;

16 }

Our version

Figure 5.1: Comparison of the siftDown loop from the binary heap used in Sanders’ Se-

quence Heap on the left and our optimized and simpli�ed version on the right.

Since data is 1-indexed, size is also the index of the last element. The < operator

used to compare heap elements compares the keys of those elements.

5.4.2 Details

Sanders reported about the inability of the compilers that were available at the time to

properly optimize expressions involving member variables. Fortunately, in the last 20

years optimizing compilers apparently matured enough so that we do not have to worry

about that anymore. This allowed us to simplify and shorten the code in some places.

Nevertheless, careful examination of the generated assembly code for our programs can

of course still reveal optimization opportunities. This is especially true for performance-

critical parts as the following example demonstrates.

One very subtle yet interesting performance bug we uncovered this way was related

to the integer type used for array indices – int in case of the original implementation.

Being written before the advent of 64-bit mainstream machines, this probably was no

issue then. On the x64 machines we used for benchmarking however, int is mapped to

a signed 32-bit integer. To use this type as an o�set in 64-bit address arithmetic a sign

extension has to be performed �rst. It should be obvious that adding constant costs to

every index calculation is undesirable when they are at the heart of the heap traversal that

is an integral part of our hot path. Removing either the signedness or the size restriction

of the index type is enough to resolve this issue. For our implementation this was an

important step in leveraging the performance potential of the additional branch-reduction

optimization described above.
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5.4 Frontend Priority Queue

Figure 5.2 shows the impact of the index type on the optimized assembly generated

by our compiler for the loop body of siftUp. The additional sign extension necessary

when using double-word signed integer semantics not only doubles the instructions per

iteration used for address calculation, it also wastes an additional register and introduces

an additional read-after-write hazard. Of course, the same principle holds for the other

heap traversal loops.

1 Idx pred = hole >> 1; // Idx is a type alias to an integer type

2 while (el < data[pred]) { // must terminate due to sentinel at 0

3 data[hole] = data[pred];

4 hole = pred;

5 pred >>= 1;

6 }

C++ source code

1 .loop:

2 ; data[hole] = data[pred]

3 mov rdx, qword ptr [rdx]

4 mov qword ptr [rcx], rdx

5

6 ; update pointers & index

7 lea rcx, [8*rdi + data]

8 sar rdi

9 lea rdx, [8*rdi + data]

10

11

12

13 ; if data[rdi] > el: repeat loop

14 cmp dword ptr [8*rdi + data], eax

15 jg .loop

Assembly generated for 64-bit signed Idx

1 .loop:

2 ; data[hole] = data[pred]

3 mov rdx, qword ptr [rdx]

4 mov qword ptr [rcx], rdx

5

6 ; update pointers & index

7 movsxd rcx, edi

8 sar edi

9 movsxd rsi, edi

10 lea rdx, [8*rsi + data]

11 lea rcx, [8*rcx + data]

12

13 ; if data[rsi] > el: repeat loop

14 cmp dword ptr [8*rsi + data], eax

15 jg .loop

Assembly generated for 32-bit signed Idx

Figure 5.2: Optimized assembly code generated by clang 11 for the loop of siftUp (shown

at the top). Note the additional sign extension instructions (movsxd) and register

(rsi) required by the 32-bit index version on lines 8–12. Registers contents: rcx:

address of hole, rdx: address of predecessor, {e,r}di: index of predecessor.
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6 Evaluation

This chapter discusses in detail the methodology employed in the evaluation of our

implementation and the results thereof.

6.1 Benchmark Suite

We benchmarked our implementation along with several other competitors using a com-

mon benchmark suite of di�erent workloads. The combination of competitor and workload

is known at compile time to allow for adequate optimization by the compiler. We compile

each combination to a separate binary, so that the benchmarks are completely isolated

and memory leaks from one cannot in�uence another.

The resulting binary runs the benchmark for input sizes # close to the powers of two

from 2
7

up to 2
27

and prints the results to stdout. For each # , the results include execution

duration (measured via std::chrono::steady_clock) of the benchmark, as well as various

metrics collected via Linux’ perf. The latter are obtained from the CPU’s performance

counters and include metrics such as number of cycles, instructions, branch-mispredictions

or cache misses. It should be noted that these metrics are inherently imprecise since they

are obtained via sampling. On the other hand, they represent what is happening on real

hardware – in contrast to simulating pro�ling solutions like Cachegrind.

Our priority queue as well as our benchmarks are all single-threaded. Consequently,

when running such a benchmark on an otherwise unloaded modern multi-core processor,

the processing core can use all shared resources, most notably a potentially huge L3 cache,

all by itself. This could mask the performance impact of di�erent memory access strategies

and does most likely not represent the usual state of a system that runs high-performance

applications. Thus, when running a certain benchmark, we spawn as many copies as there

are physical cores in the system. This way, all cores are similarly loaded most of the time

and have to share their resources like they would in a real-world high-load scenario.

Each benchmark con�guration (competitor, workload and # ) is repeated until the total

execution time exceeds one second, but at least once per physical CPU core. The results

we report below are the arithmetic means over all runs of a con�guration.

6.2 Benchmark Environment

All benchmark binaries were compiled using GCC 9.3.0-17ubuntu1~20.04 using -O3 and

run under Ubuntu 20.04.2 LTS using Linux 5.4.0-72-generic on otherwise unloaded ma-

chines. We decided against using -march=native for the sake of simplicity and because

in early experiments we found that the 0.9-quantile of the speedup across all benchmark

con�gurations was only 1.05.
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6 Evaluation

We include benchmark results from two machines, both of which use a x86-64 CPU.

The table in Figure 6.1 compares their most important hardware parameters. We will refer

to the machines by their CPU vendor and microarchitecture from here on.

Intel Xeon E5-2650 v2 AMD Athlon II X4 635

Microarchitecture Ivy Bridge EP K10

Launch Year 2013 2010

Clock Frequency 2.6 GHz–3.4 GHz 2.9 GHz

Cores (Threads) 8(16) 4(4)

L1D Cache 32 KiB, 8-way 64 KiB, 2-way

L2 Cache 256 KiB, 8-way 512 KiB, 16-way

L3 Cache 20 MiB, 20-way –

Cache Line Size 64 B 64 B

Main Memory 128 GiB 12 GiB

Figure 6.1: Characteristics of the hardware used in our experiments. For the caches, the

table shows size and associativity. The L3 cache is shared among all cores while

the others are exclusive per core.

6.3 Workloads

The workloads we used for our benchmarks can be characterized in two dimensions.

One is the key distribution of the elements inserted into the priority queue. The other is

the access pattern, i.e. the sequence of operations performed on the priority queue. All

con�gurations use 32-bit keys and 32-bit values for a total element size of 8 Byte.

Our most simple workload is Random Sort, where we �rst insert # elements and then

call deleteMin # times to obtain the sorted input sequence. The element keys are 32-bit

integer keys which are drawn uniformly at random from the entire available key space

(except minimal and maximum values, because they are used as sentinels).

The other two workloads use the Wiggle access pattern: # sequences of insert (deleteMin
insert)B followed by # runs of deleteMin (insert deleteMin)

B
. In early development we

regularly benchmarked wiggle workloads for multiple values of B . However, we found

that the e�ects which can be observed for e.g. B = 4 already occur for B = 1 albeit less

pronounced. Thus we only include results for B = 1.

In logical succession of above sort workload, which can be seen as having a Wiggle

access pattern with B = 0, we include Random Wiggle with B = 1 which uses the same key

distribution as Random Sort. Note that the Random Wiggle workload has properties that

make it arguably easier than the sort workload. For every step of the �lling process, we

insert two random keys into the queue and then remove the minimum key from the queue.

As # increases, the distribution of the keys in the queue becomes is skewed towards larger

keys. In turn, the probability of a deleteMin operation removing a recently inserted key

becomes higher. This temporal locality property can be used to process the problem more

e�ciently. See [11] for more details.
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6.4 Competitors

The last workload, Monotone Wiggle, is one that could be processed by a monotonic

priority queue. It has the same access pattern as Random Wiggle but its keys are single-

precision �oating-point numbers with a non-uniform distribution. When a new element

is to be inserted, its key is determined by adding a random o�set - to the largest key that

has been removed from the queue so far. - is exponentially distributed with rate 1. The

motivation for including this workload is to model access patterns that might occur in

discrete-event simulation applications.

6.4 Competitors

We include results for a limited number of well-tuned algorithms only. The reason is

simply that this work is not an experimental survey and �nding or even producing well

tuned implementations of published articles is a very time-intensive task.

S3QandS3QBH For the parameters: and 2 of our implementation of S
3
Q we experimented

with multiple values in the neighborhood of their theoretical optima for the respective

machines. Across both machines, the best results could be obtained with a maximum level

degree of : = 64 and a base bu�er size of 2 = 2
15

elements.

The tuned implicit binary heap implementation that we described in the previous chapter

and also use in the frontend of S
3
Q is included in the experiments as S3QBH. It operates

on a dynamically growing std::vector.

StdQueue Aside from our own tuned binary heap, the std::priority_queue that comes

with our version of GCC was an obvious choice for inclusion. Like S
3
QBH, it implements

an implicit binary heap in a std::vector using the bottom-up heuristic [18]. Unlike our

implementation it uses neither a sentinel at index 0 nor the branch reduction optimization

in the body of the siftDown loop.

SeqHeap Another obvious choice is Sanders’ original implementation of his Sequence

Heap algorithm. We used the code from algo2.iti.kit.edu/sanders/programs/spq with

the preset parameter settings: deletion bu�er size<′ = 32, insertion bu�er size< = 512

and maximum merge arity : = 64. These parameter choices were con�rmed to us as

sensible choices by the code’s author and the few parameter variations we tested did not

lead to obvious improvements in our experiments.

SeqHeap+ Since the insertion bu�er employed by the Sequence Heap greatly in�uences

the latter’s performance [14] we also include a Sequence Heap variant that has the opti-

mizations from S
3
QBH applied to its binary heap implementation.

Omissions Our initial experiment setup also included a 4-ary heap implementation.

However, our experiments con�rmed what Sanders’ experiments already suggested: when

the input is large enough for 4-ary heaps to beat binary heaps, they are both outclassed by

Sequence Heaps. We also very brie�y experimented on an implementation of B-Heaps [9],

but we could not produce satisfactory results in the limited time we alloted.
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Figure 6.2: Performance on Intel Ivy Bridge EP. The dashed vertical lines signify the L1,

L2 and L3 cache capacity in elements available to each core.
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Figure 6.3: Performance on AMD K10. The dashed vertical lines signify the L1 and L2

cache capacity in elements available to each core.

29



6 Evaluation

6.5 Results

Figures 6.2 and 6.3 display the execution time for all of the workloads and competitors

described above. The average time per operation ()8=B4AC + )34;4C4"8=)/2 is scaled by the

expected number of comparisons needed per operation, which is log# for all included

algorithms. Consequently, if an algorithm operates e�ciently its curves should remain

vaguely horizontal for the most part.

6.5.1 Superscalar Sample Queue vs Sequence Heap

It can be seen that our implementation of S
3
Q – much like SeqHeap – shows exactly

this behavior. Moreover, it is able to outperform SeqHeap for all input sizes beyond 256

elements across all workloads and machines. Compared to the original Sequence Heap

implementation, S
3
Q provides a speedup between 1.2 and 2 with a mean of 1.5 for input

sizes greater than 2
10

elements.
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Figure 6.4: Branch mispredictions per element during sorting of # elements on an Intel

Ivy Bridge EP. The dashed vertical lines signify the L1, L2 and L3 cache capacity

in elements available to each core.

We attribute this largely to the reduced number of branch mispredictions – and related

pipeline stalls – caused by S
3
Q. This is backed by our measurements which are depicted in

Figure 6.4. While on average, each operation of SeqHeap causes mispredictions logarithmic

in the number of elements, S
3
Q only causes a low constant number of mispredictions per

operation.
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6.5 Results

What emphasizes the impact of reducing branch mispredictions even more is the fact

that S
3
Q exhibits less e�cient cache usage than SeqHeap as can be seen in Figure 6.5. For

inputs greater than or equal to 2
18

elements, S
3
Q causes between 0.9 and 2 times (average

1.4) as many cache faults as Sequence Heap implementations on the AMD processor. On

the Intel CPU that value is even higher with values between 2.8 to 5 and a mean of 3.7.
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Figure 6.5: L1 data cache read e�ciency during sorting of # elements on Intel Ivy Bridge

EP expressed as the quotient of Sort (# ), the lower bound of I/Os required for

sorting in the external memory model, and ', the number of L1 data cache

read misses we observed. The dashed vertical lines signify the L2 and L3 cache

capacity in elements available to each core. Note that only input sizes that are

larger than the L1 data cache are depicted.

6.5.2 Binary Heaps and Branch Prediction

Compared to min

{
S
3
QBH, Std�eue

}
our S

3
Q implementation obtains speedups that are

roughly logarithmic in # for # ∈ [213, 227], �nally reaching values between 4.6 and 7 for

the largest instances. For smaller instances that �t into the cache, we can see that S
3
Q

only incurs little overhead over S
3
QBH since their performance is very similar.

For inputs larger than the �rst level cache, and even more after crossing the last level

cache boundary, the performance of both binary heaps quickly deteriorates. In line with

the observations from [10], the branch reduced binary heap is more e�cient for small

inputs but as its size grows beyond the cache capacity its performance drops even faster

than that of its counterpart. As [10] states, this e�ect is most curious. Especially since –
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6 Evaluation

according to our measurements – the optimized version uses less instructions, causes 4 to

8 times less branch mispredictions and also incurs less cache misses than StdQueue. We

suppose that, while the number of cache faults is lower for S
3
QBH, they have a higher

penalty since the optimization we applied transformed a conditional branch – which even

a static branch predictor would predict correctly half of the time in the average case – into

a data dependency that causes a pipeline stall for every cache miss.

Nevertheless, applications which only use heaps that �t into fast memory can still pro�t

from the speedup that is provided by applying the simple conditional-branch reduction in

the siftDown loop. By doing just this (plus changing the index type; see subsection 5.4.2)

we could achieve an average speedup of 1.2 for the Sequence Heap implementation.
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7 Future Work

In this chapter we list potential ways to further improve and extend S
3
Q.

7.1 Memory Management

As our evaluation has shown, S
3
Q cannot yet match the I/O e�ciency of Sanders’ Sequence

Heap implementation. One way to reduce the performed I/Os by a constant factor would

be to implement buckets not as contiguous pieces of memory, but instead as linked lists of

memory chunks of some uniform size in Θ("). If we ensure that any bucket has at most

one non-full chunk, this would reduce the I/O complexity of joining two buckets toΘ("/�)
while also improving the average space utilization. Furthermore, the copying of elements

involved when resizing dynamically growing arrays can be avoided as well. Finally, this

should reduce memory fragmentation and enables us to reduce our usage of relatively

slow, general-purpose memory allocation routines provided by the operating system

in favor of more specialized and e�cient means like free-lists. While this change also

somewhat increases the implementation complexity of various operations like sampling,

classi�cation and partitioning, we believe that a careful implementation would result in

an overall performance gain.

7.2 Optimizations from IPS4o

Due to the conceptual similarity between S
3
Q and IPS

4
o[2], many of the methods that are

key to the latter’s performance should be applicable to S
3
Q as well. First and foremost,

the parallel classi�cation and partitioning schemes of IPS
4
oare directly applicable to our

use-case and should yield a considerable speedup for applications where the priority queue

is the performance bottleneck.

By using a contiguous block of memory for the class write bu�ers during the partitioning

of a bucket, we should be able to increase : to Θ("/�) without falling victim to con�ict

misses when using caches with low associativity [13].

As mentioned before, a bucket consisting entirely of elements that share a single key is

always sorted. This fact can be used to reduce the e�ective number of items that have to

be processed. IPS
4
ouses so-called equality buckets [3] for that. However, it is unclear if

this concept can be e�ciently transferred from the problem of sorting, where all elements

are known in advance, to the more dynamic problem of maintaining a priority queue.
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7 Future Work

7.3 Handling of Invalid Splits

As already mentioned in chapter 5, the handling of invalid splits (ones where the resulting

buckets violate the size constraints) in our current implementation does not match the

theoretical algorithm analyzed by us. Thus, an e�cient implementation of the fallback-to-

sorting variant we analyzed should be evaluated to see how it compares to our current

implementation. Such an implementation should be able to determine the validity of a split

without having to distribute all elements to their new buckets �rst. This can be achieved

with the oracle approach also employed by IPS
4
o[2].

7.4 Extensions

Finally, we outline how S
3
Q can be extended to support additional operations. We can

e�ciently build a S
3
Q by performing :/2-way splits on the input and recursively on

the leftmost resulting bucket until the base bucket size is reached. For an input size of

# ∈ Ω(") elements this operation requires expected time Θ(# log:) with an expected

number of Θ(# /�) memory accesses which is a factor of Θ(log# ) less than constructing

an empty backend and performing # /� sequential pushes.

We also de�ne a restricted delete operation for the case where a speci�c key is only

deleted once and not re-inserted afterwards. To this end, we apply the same principle

as Arge’s Bu�er Tree: when an element with key G shall be deleted, we insert a special

marker element into our queue that also has key G . This element is treated like any other

element, except by the deleteMin logic in the frontend. Here, we ensure that the special

elements always compare smaller to their deletion targets. After any deletion from the

min-bu�er, we check if the next element is a marker element. If so, we apply deleteMin to

the min-bu�er two more times, removing the marker and the element it was supposed to

delete. Under the given restrictions, this approach increases existing bounds only by a

constant factor and the complexity of delete is the same as that of insert.
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8 Conclusion

Our experiments suggest that Superscalar Sample Queues (S
3
Q) are among the fastest

comparison based priority queue implementations for cached memory. For input sizes

greater than 2
10

elements, we measured speedups between 1.2 and 2 compared to Sanders’

Sequence Heap [14]. The main reason for this advantage is a better utilization of the

instruction pipeline that is employed in modern superscalar processors. This is made

possible by our careful avoidance of hard-to-predict conditional branches which reduces

the average number of branch mispredictions caused by a call to insert or deleteMin in our

experiments to less than 1/5. In fact, we could even speed-up Sanders’ Sequence Heap

implementation by an average factor of 1.2 just by transforming a conditional branch into

a data dependency.

Still, there are quite a few opportunities to further improve upon the present version of

S
3
Q. Most notably, the current memory management leaves some room for improvement.

While our experiments con�rm the asymptotically optimal memory e�ciency that our

analysis predicted, the constant factors could probably be improved by employing more

sophisticated data structures and allocation schemes. Furthermore, several techniques

from IPS
4
oshould be easily transferrable to S

3
Q and further improve its performance. The

most promising among those are parallel element classi�cation and bucket partitioning as

well as cache-aligned, contiguous write bu�ers to allow higher level degrees regardless

of cache associativity. Finally, there is some disparity in how the theoretically analyzed

algorithm and our implementation handle invalid sample splits. To be able to give de�nitive

performance guarantees, this gap should be closed from either side.

If above items are addressed and our �ndings can be reproduced over a wider range of

real-world load scenarios, we believe that S
3
Q has the potential to be a good addition to

performance-oriented general-purpose libraries – or maybe even standard libraries.
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