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Abstract

In this thesis, we introduce a novel approach to scalable high-quality parallel hyper-
graph partitioning. The balanced k-way hypergraph partitioning problem consists
of partitioning the vertices of a hypergraph into k blocks of almost equal size s.t.
an objective function is optimized (usually the sum of the number of blocks that
each hyperedge spans should be minimized). In the n-level variant of the popular
multilevel scheme, ~ n vertex contractions are performed on the hypergraph before
finding an initial partitioning and then reverting the contractions. In the uncoars-
ening phase, after every uncontraction, localized refinement is applied around the
region of the uncontraction, which leads to partitions of very high quality. In this
work, we present asynchronous uncoarsening, a highly scalable parallelization of the
n-level uncoarsening phase in which uncontractions and localized refinement happen
concurrently. We introduce a framework that requires no global synchronization
during the uncoarsening phase and allows fine-grained control of cross-dependencies
between concurrent uncontractions and refinement. We implement asynchronous un-
coarsening in the Mt-KaHyPar framework and experimentally compare our approach
with Mt-KaHyPar’s previous batch synchronous uncoarsening phase. Our extensive
experiments on more than 500 real-world hypergraphs with up to 190 million vertices
and 2 billion pins (sum of hyperedge sizes) show that our approach scales better on
large hypergraphs with only a small loss of quality. We find that Mt-KaHyPar with
asynchronous uncoarsening is on average 26% faster than Mt-KaHyPar with batch
uncoarsening for large instances using 64 threads. Our uncoarsening phase reaches
average self-relative speedups of 39 for 64 threads on difficult instances for which the
average speedups of Mt-KaHyPar’s batch uncoarsening are limited to less than 24.

Deutsche Zusammenfassung

Wir stellen eine neue Technik fiir skalierbare, parallele Hypergraph-Partitionierung
fiir Partitionen hoher Qualitidt vor. Das Problem balancierter k-Wege Hypergraph-
Partitionierung besteht aus der Verteilung der Knoten eines Hypergraphen auf
k disjunkte Blocke etwa gleicher Grofle, so dass eine Zielfunktion optimiert wird
(iiblicherweise soll die Summe der Anzahl Blocke, die jede Kante bertihrt, minimiert
werden). In der n-Level Variante des Multilevel-Schemas werden ~ n Knotenkontrak-
tionen ausgefiihrt bevor eine initiale Partition gefunden wird und die Kontraktionen
riickgangig gemacht werden. In der Uncoarsening-Phase, wird dann lokalisiertes
Refinement um jede Entkontraktion angewendet, was zu Partitionen sehr hoher
Qualitat fithrt. In dieser Arbeit fithren wir Asynchronous Uncoarsening ein, eine
skalierbare Parallelisierung der n-Level Uncoarsening-Phase, in der Entkontraktio-
nen und Refinement gleichzeitig ausgefiihrt werden. Wir stellen ein Framework fiir
Asynchronous Uncoarsening vor, das keine Synchronisierung benétigt, und eine klein-
schrittige Kontrolle von Abhéngigkeiten zwischen Entkontraktionen und Refinement
ermoglicht. Wir implementieren unseren Algorithmus im Mt-KaHyPar Framework
und vergleichen unsere Uncoarsening-Phase mit der vorherigen n-Level Uncoarsening
Phase von Mt-KaHyPar, welche auf Batches von Entkontraktionen basiert. Unsere
Experimente an mehr als 500 Hypergraphen aus echten Anwendungen zeigen, dass
Asynchronous Uncoarsening mit nur geringem Qualitdtsverlust die Skalierbarkeit
paralleler Hypergraph-Partitionierung fiir groffe Hypergraphen erhéhen kann. Mit
64 Threads ist Mt-KaHyPar mit Asynchronous Uncoarsening auf grofien Instanzen
durchschnittlich 26% schneller als Mt-KaHyPar mit Batches. Asynchronous Un-
coarsening erreicht mit 64 Threads durchschnittliche Speedups von 39 auf groflen
Instanzen, fiir die Mt-KaHyPar’s Batch Uncoarsening durchschnittliche Speedups
von weniger als 24 erreicht.
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1. Introduction

Graphs are a well-known abstraction used to model objects (vertices) and binary relations
between objects (edges). Hypergraphs generalize graphs by allowing hyperedges or nets that
connect any number of vertices. A fundamental problem and an important pre-processing
step for many high-perfomance computing applications is hypergraph partitioning (HGP).
The problem consists of partitioning the vertex set into k disjoint blocks s.t. the number
of cut hyperedges is minimized while all blocks have the same size (with a given tolerance).
Often, each cut hyperedge is additionally weighted by the number of different blocks the
hyperedge connects.

Hypergraphs express object groupings effectively in many areas of computer science and have
become increasingly important with the recent big data revolution. High-quality partitions
of hypergraphs are required for applications in domains such as VLSI design [4], scientific
computing [8], tensor network contraction for quantum circuit simulation [19], hypergraph
processing frameworks for network analysis and storage sharding in distributed database
management systems 49].

Thus, HGP is an important pre-processing step for many parallel computing applications
so it is crucial to parallelize HGP algorithms efficiently.

The HGP problem is known to be NP-hard and hard to approximate [6]. Therefore,
heuristic algorithms are used in practice. In particular, multilevel algorithms have received
a lot of attention in this field in the last decades as they have proven to
find good trade-offs between running time and solution quality. Multilevel partitioning
is separated into three phases: In the coarsening phase, pairs or clusters of vertices are
contracted to obtain a sequence of hypergraphs with decreasing size and similar structural
properties. Once the hypergraph is small enough, it is initially partitioned into k£ blocks
(initial partitioning). Finally, in the refinement or uncoarsening phase, the contractions of
the coarsening phase are undone and the current partition is projected onto successively
finer hypergraphs. After each uncontraction, local search heuristics are used to improve
the quality of the partition.

The number of levels used in the multilevel hierarchy offers a trade-off between running
time and solution quality. Traditional multilevel partitioners contract matchings or clusters
during the coarsening phase [8] [26] [45], which usually leads to a small number of levels
(= O(logn)). The partitioner KaHyPar [21], [16] [40] implements the multilevel scheme in its
most extreme version, the n-level variant [34]. In n-level partitioning the coarsening phase
contracts only a single pair of vertices in each step leading to a hierarchy with almost n
levels. That way, local search heuristics are applied after every single uncontraction, i.e.
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after every minimal change to the underlying hypergraph. This constitutes a very fine-
grained search for improvements which has been shown to currently outperform any other
hypergraph partitioners regarding solution quality [16]. The key ingredients for an efficient
implementation of the n-level scheme are highly-localized refinement algorithms that only
expand around a small region of the uncontracted nodes and an adaptive stopping rule [34]
that terminates local searches early if they are unlikely to find further improvements.

Sequential high-quality partitioners are too slow to reasonably partition large hypergraphs.
Therefore, various parallel approaches have been proposed. Until recently, however, the work
on parallel HGP algorithms had been focusing on distributed-memory systems 24].
The distributed-memory approach makes it difficult to parallelize some of the features
of modern partitioners required for partitions of high quality. Therefore, distributed-
memory parallel partitioners find partitions of inferior quality compared to sequential
partitioners [17] [40, [18].

Mt-KaHyPar [17, [18] is the first shared-memory partitioner that finds partitions that
compete with the best sequential partitioners regarding quality while being an order of
magnitude faster. The partitioner manages to parallelize core features of high-quality
hypergraph partitioners. Mt-KaHyPar offers both a multilevel and an n-level configuration
for varying trade-offs between quality and running time. The n-level variant is the slower
configuration but concerning quality it achieves solutions that are on par with those found
by a comparable configuration of the currently best sequential partitioner KaHyPar [17].
This makes n-level Mt-KaHyPar particularly interesting as it is fast itself and provides
high-quality partitions that factor into the efficiency of the subsequent application that
uses the partition in its computational model.

However, we believe that the scalability of the uncoarsening phase of n-level Mt-KaHyPar
can be improved further. In the uncoarsening phase, the partitioner constructs batches of
uncontractions and only works in parallel within each batch. In particular, it performs all
uncontractions in a batch in parallel and then applies localized refinement based on those
uncontractions in parallel. With a constant number b of uncontractions per batch, this
leads to O(n/b) global synchronization points between uncontractions and refinement that
inhibit the parallelism of the uncoarsening phase for large numbers of threads.

1.1. Problem Statement

In this thesis, we aim to increase the scalability of parallel n-level hypergraph partitioning
by removing global synchronization points using asynchronous uncoarsening in which
uncontractions and localized refinement happen concurrently. It is to be analyzed whether
n-level partitioning using asynchronous uncoarsening is capable of partitioning a hypergraph
faster and more scalably than using a batch synchronous approach to uncoarsening as
applied by n-level Mt-KaHyPar. Furthermore, the effect of asynchronous uncoarsening on
the solution quality needs to be evaluated.

As all existing hypergraph partitioners separate uncontractions and refinement, several im-
plications of the asynchronous paradigm have to be explored: A framework for asynchronous
uncoarsening with minimal global synchronization needs to be established. Moreover, con-
currently accessed data structures may need to be adapted and potentially additional
synchronization measures may need to be introduced. Also, the efficacy of localized refine-
ment in the presence of concurrent uncontractions must be evaluated.

Asynchronous uncoarsening should be implemented in the shared-memory parallel HGP
framework Mt-KaHyPar. The goal of the implementation is a parallel code with better
scalability and equivalent solution quality in comparison to the existing n-level Mt-KaHyPar
variant. The resulting partitioner should be experimentally compared with existing variants
of Mt-KaHyPar and other state-of-the-art parallel and sequential partitioners regarding
running times and partition quality.
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1.2. Contribution

We present the first n-level hypergraph partitioning algorithm using asynchronous uncoars-
ening which encompasses concurrent uncontractions and localized refinement. We introduce
a framework for asynchronous uncoarsening that reverts a forest of contractions generated
in an n-level coarsening phase without requiring any global synchronization. We adapt
the gain cache of Mt-KaHyPar for asynchronous uncoarsening to provide correct move
gains for refinement heuristics in the presence of concurrent gain cache updates caused by
uncontractions and node moves. Additionally, we describe how lock contention for costly
gain cache updates can be reduced using snapshots of optimized size. Furthermore, we
discuss the negative effects of asynchronous uncoarsening on the effectiveness of localized
refinement. To that end, we propose a mechanism to reduce interference with localized
refinement by explicitly diversifying the active regions of the worker threads.

We implement our asynchronous uncoarsening phase in the Mt-KaHyPar partitioning
framework and demonstrate the viability of our approach in rigorous experiments on
more than 500 real world hypergraphs. We find that asynchronous uncoarsening suitably
increases the scalability of n-level partitioning for long running instances compared to
batch synchronous Mt-KaHyPar. For the longest running instances, we observe an average
self-relative speedup of 39.72 using 64 threads for our asynchronous uncoarsening phase. In
comparison, the uncoarsening phase of batch synchronous Mt-KaHyPar reaches an average
speedup of 23.69 with 64 threads on the same set of instances. We report a small loss of
quality compared to batch synchronous uncoarsening and decreasing quality with larger
numbers of threads caused by additional interference.

1.3. Outline

The structure of this thesis is as follows: In we introduce necessary notation.
In we give a more detailed overview of related work with a focus on Mt-
KaHyPar which serves as the basis of our approach. describes our framework
for asynchronous uncoarsening. deals with the intricacies of a gain cache in
the asynchronous context while discusses cross-dependencies and interference
patterns that arise with this new paradigm. In we present our experimental
results that confirm the superior scalability of asynchronous uncoarsening at the cost of
a small loss in quality. summarizes our results and presents ideas for future
research into asynchronous uncoarsening.



2. Preliminaries

In the following, we introduce some definitions and notation necessary for n-level hypergraph
partitioning. These definitions are in large part adopted from Gottesbiiren et al. while
some definitions are tweaked for the description of our partitioner in later chapters.

Hypergraph. A weighted hypergraph H = (V,E, c,w) is defined as a set of wver-
tices/ (hyper-)nodes V with associated vertex weights ¢ : V' — Rxo and a set of hyper-
edges/nets E with associated net weights w : E — R>o. A net e € E is a subset of V', where
the vertices v € e are called the pins of e. We define the weight of sets of vertices/nets
via the sum of weights of their elements, i.e. ¢(U) =3, oy c(u) and w(F) =Y cpw(e) for
UCV,FCE. Ifvee, wesay v and e are incident to each other. I(v) denotes the set of
all nets incident to a vertex v. Thus, the degree of v € V' is d(v) = |I(v)|. The size of a
net e is the number of its pins |e|. We call two nets e, e’ € E parallel or identical if they
constitute the same set of pins. Two pins u,v € e for any e € F are called neighbors.

Contraction, Uncontraction. A contraction (u,v) consists of contracting a node v onto a
node u. The contracted vertex v is removed from all nets e € I(v)NI(u) and replaced by the
representative u in all nets e € I(v)\I(u). After the contraction, u, thus, represents a merged
node which also assumes the merged weight c(u) := c¢(u) 4+ ¢(v). An uncontraction (u,v) is
the reverse operation of the contraction (u,v). In the context of reverting contractions, the
terms contraction and uncontraction may be used interchangeably when meant to address
the partaking vertices u and v. In this case, v may also be called the uncontracted vertex.

Contraction Forest. An undirected graph is called a forest if it does not contain any cycles
and a forest is called a tree if it is connected. A rooted forest is a directed graph for
which the underlying undirected graph is a forest with a set of root nodes s.t. all maximal
directed paths end in a root node. A set C' of contractions is compatible with a hypergraph
H = (V,E) if the directed graph F = (V,{(v,u) | (u,v) € C}) with edges pointing from
contracted vertex to representative is a rooted forest. F is called the contraction forest.
In this work, we only discuss methods that find contraction forests guaranteed to be
compatible with the given hypergraph. We describe the contraction forest using the array
rep where rep[v] = u for a node v contracted onto v and rep[v] = v for a node v that is not
contracted. Thus, {v € V' | rep[v] = v} denotes the roots of F. The ancestors of v are the
vertices on the unique path from v to the root of the tree. A vertex w # v with rep[w] = v
is called a child of v and all vertices in the subtree rooted at v are called descendants of v.
Vertices wy, ws are siblings if w # replwi] = rep[ws]| # wa.



Partition. Let [k] := {1,...,k}. A k-way partition of a hypergraph H = (V, E, c,w) is a
function IT : V — [k]. The blocks V; := II71(i) of II are the inverse images, i.e. sets of
vertices assigned the same value i € [k]. We call II e-balanced if each block V; satisfies
the balance constraint ¢(V;) < Lpax := (1 + e)% for some parameter € € (0,1). A 2-way
partition is also called a bipartition.

For each net e € E the set A(e) := {V; | ViNe # 0} denotes the connectivity set of e. The
connectivity A(e) of a net e is the cardinality of its connectivity set, i.e. A(e) = |A(e)|. A
net is called a cut net if A(e) > 1 or an internal net otherwise. A vertex that is incident to
a cut net is called a boundary or border vertex. The number of pins of a net e in block V;
is denoted by ®(e,7) := |V; Nel.

Connectivity Metric. To measure the quality of a partition we use the connectivity metric
A=1)II) := > .cp(A(e) — 1)w(e). Given a k-way partition II, moving u from its block Vj
with s := II(u) to V; improves the connectivity metric by the move gain:

gs—t(u) == b(u,s) — pu,t)
with b(u, s) := w({e € I(u) | ®(e,s) =1}),
and p(u,t) :=w({e € I(u) | P(e,t) = 0})

We call the term b(u, s) the (move-from) benefit for moving u out of block V; and the term
p(u,t) the (move-to) penalty for moving u to block V;. We sometimes denote a move m
as a triple m = (u, s,t) with the moved vertex u, the origin block Vi and the target block
Vi. Then g(m) := gs—¢(u), b(m) := b(u, s) and p(m) := p(u,t) mean the associated gain,
benefit and penalty respectively. Note that only moves of boundary vertices can ever have
a positive gain.



3. Related Work

In this section, we give an overview of related work in the field of hypergraph partitioning.
First, we summarize the multilevel paradigm and established techniques for hypergraph
partition refinement that are relevant to our work. Then, we look at related sequential and
parallel hypergraph partitioning algorithms with emphasis on the Mt-KaHyPar shared-
memory parallel partitioning framework.

3.1. The Multilevel Paradigm

Input Hypergraph

v
cluster e
~
contract ~GF” «d. uncontract
~ P N
N P N

Qinitial partitioning O
—_—

Figure 3.1.: An overview of the multilevel partitioning scheme with the three phases
coarsening (left), initial partitioning (bottom) and uncoarsening (right).

As hypergraph partitioning is an NP-complete optimization problem [30], many different
heuristics for the problem have been found. Each heuristic offers a different trade-off
between partition quality and partitioning time. The most interest has been put into
multilevel partitioning algorithms, which consist of three phases that we depict in
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First, in the coarsening phase, nodes are contracted in stages, where, typically, in each
stage matchings or clusterings of nodes are each contracted onto one representative coarse
node. Coarsening terminates when a sufficiently small coarsened hypergraph is reached,
usually after ~ O(logn) levels of contractions. Second, in the initial partitioning phase, an
initial partition of the coarsened hypergraph is found, usually using a portfolio of initial
partitioners. Third, in the uncoarsening (also known as refinement) phase, the contractions
from the coarsening phase are undone in reverse order with intermediate refinement of
the partition at each stage. In recursive bipartitioning, the multilevel scheme is applied
recursively for k£ = 2 to eventually generate a partition with any number of blocks using only
2-way refinement. In direct k-way partitioning, an initial partition with k£ parts is found
that is then refined using k-way refinement algorithms. Traditional multilevel approaches
use matchings or clusterings to find suitable contractions resulting in O(logn) levels. The
n-level partitioning scheme [34] [41] [20] aims to contract single nodes individually onto a
representative which leads to O(n) levels. Thus, during n-level uncoarsening, the partition
is refined after every uncontraction, leading to partitions of very high quality.

3.2. k-way Partition Refinement

In multilevel partitioning, refinement is the main factor deciding the solution quality and
often comprises a large part of the total running time. Thus, the choice of which refinement
heuristics to apply during the uncoarsening phase and their optimization are critical. In
the following, we discuss two essential heuristics for the refinement of hypergraph partitions
that are often used during the uncoarsening phase of multilevel hypergraph partitioners.

3.2.1. Label Propagation Refinement

Algorithm Outline. In label propagation (LP) [26], the hypernodes of the current hypergraph
are traversed in random order. For each node, the gain regarding the partition objective
function of any possible move for the node is calculated. If a move with positive gain that
does not break the balance constraint is possible, the heuristic acts greedily, performing such
a move with the highest possible gain. Label propagation may also be used to rebalance the
partition. For that purpose, LP prefers moves that improve the partition balance the most
while not worsening the solution quality. As only moves with positive gain are performed,
label propagation is not capable of escaping local minima. Therefore, LP refinement may
get stuck early on. Thus, label propagation alone cannot be relied upon to find high quality
partitions.

Localized LP. In n-level hypergraph partitioning, the hypergraph and its partition change
only minimally between two refinement runs caused by a single uncontraction. Therefore,
variants of refinement heuristics that are localized around an uncontraction are of particular
interest for n-level partitioners. Localized LP variants for n-level partitioning [20] restrict
their search to boundary nodes considered active for the search. After an uncontraction,
initially, a maximum of two nodes (the uncontracted node and the representative) are
active. When the localized LP heuristic moves a node, it activates all neighbors of the
moved node. A localized LP search expands in that way until no more eligible moves with
positive gain are found in one pass of the active nodes.

Parallelization. Label propagation has a simple parallelization by iterating through the
nodes in random order in parallel. This approach also works for parallel localized LP. With
that parallelization, threads only interfere with each other because the gains of possible
moves change during their examination due to concurrent moves.

Attributed Gains. A possible safeguard against this interference are attributed gains [18].
Attributed gains work by recording the actual changes to the partition caused by a move.
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Those changes determine the effect of the move on the partition quality. Therefore, the
actual changes serve to find out the actual gain of a move as applied to the partition.
Assume that a thread in parallel LP performs a move m = (u, s,t) based on an expected
gain of g(m). The thread will perform a synchronized write to the partition when executing
the move. This allows us to record if and how the connectivity of hyperedges incident to u
changes at the synchronized point in time when m is performed. If the gain increases or
decreases the connectivity of an incident hyperedge, we attribute the according gain to
m. By summing up the attributed gains for all incident hyperedges, we observe the actual
gain of m. Then, if the actual gain is worse than the expected g(m) or m even worsens
the solution quality, we can decide to revert the move. Thus, attributed gains work to
double-check the merit of a move in parallel LP. Attributed gains are also applicable in
other parallel refinement heuristics.

3.2.2. Fiduccia-Mattheyses Refinement

Algorithm Outline. The other important refinement heuristic is the Fiduccia-Mattheyses
(FM) heuristic [14]. Much like label propagation, it also works by individually moving
nodes between partitions. However, in order to decide which move to perform next, it does
not only compare between the possible moves of the same node but between the possible
moves of all nodes. To achieve this, the algorithm first examines all possible moves for
each node. Then, among all examined moves, the move with the highest gain that does
not break the balancing constraint is performed. When a node u is moved, the partition
changes and the gains for moving any neighbor of u© may change. Consequently, those gains
have to be recalculated before the next best move can be chosen. Every node is moved
only once and the FM heuristic stops when every node has been moved once. After a
complete sequence of moves has been constructed, the prefix of that sequence with the
best total gain is found. The prefix is kept while the rest of the moves are reverted. Note
that moves with negative gain are explicitly allowed. That way, the best prefix represents
a move sequence not restricted by local minima. Moves with negative gain in the prefix
may allow the heuristic to climb “hills” of the objective function to find better minima.

Implementation Techniques. The calculation and recalculation of move gains for all possible
moves is slow. Therefore, many techniques for efficient FM local search have been established.
An important measure is the use of priority queues (PQs) for the next move to perform,
ordering moves by their expected gain. The moves in the PQs are reordered if their gains
change. Alternatively, the heuristic can lazily verify that a move taken from the PQ has at
least positive gain without reordering moves whose expected gain changed. Partitioners
may use one PQ per move direction, i.e. for each pair of blocks [37], one PQ per block
storing moves from the block [28], one PQ per block storing moves to the block [34] [40]
or simply one global PQ of moves [39]. Gain (re-)calculation can be sped up further by
using a gain cache [41] 1] and delta-gain-updates that may exclude nets according to
past moves [1].

Localized FM. Different variations of a localized variant of the FM heuristic have been
explored for n-level partitioning 41] [1]. As with localized LP, localized FM variants
only examine and move active nodes. After a move, neighbors of the moved node are
activated and inserted into the PQs of the FM search. However, as FM is allowed to
perform negative gain moves, a localized FM search cannot simply run until no more eligible
moves are available like localized LP. Instead, stochastic stopping criteria are used to limit
the search to the region around the uncontraction. The stopping rules prevent the search
from expanding to nodes that are not likely to offer any further improvements [34] [I].

Parallelization. Parallelizing the FM heuristic is non-trivial for several reasons. Firstly,
a parallelized FM suffers from the same interferences as parallel label propagation, i.e.
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concurrent moves affecting each others’ gains. Secondly, an inherently serial global move
sequence has to be constructed by threads working in parallel. It cannot be relied upon
that moves are committed to the global sequence in the same order that they are examined
and chosen in. More precisely, a thread bases its decision for the next best move m
on the partition created by the current global move sequence my,...,m; (with j < n).
In a sequential setting, this would mean that m becomes the next move m;y; in the
sequence, improving the partition objective by the gain calculated for m. In the parallel
setting, however, any number of concurrent moves mji1,...,mj4; (with ¢ > 1) may be
executed first. This means m is actually applied to the partition created by the global move
sequence mf, ..., m;y; instead. Then, the actual gain of performing m on that partition
may vary from the expected gain that was initially calculated for m. Thus, parallel FM
implementations are unable to create global sequences of best possible moves with certainty
and instead approximate sequences found by sequential FM.

A possible parallelization of k-way FM is to execute parallel localized FM searches around
small subsets of active refinement nodes [2] [18]. Each localized FM search, then, constructs
a local sequence of moves by performing moves that are initially not visible to concurrent
searches. For that purpose, local changes can be stored as deltas to the global partition in
a thread-local hash table data structure.

The local sequences can be applied to the global partition in different manners: The
authors of Mt-KaHiP propose storing the local sequences until all localized searches
have terminated. Then, the local sequences can be written to the global partition one after
another, recalculating gains and choosing the best prefix for every sequence.

In Mt-KaHyPar [18] threads instead commit the best prefix of a local sequence to the
global partition immediately when a localized search finishes. Thus, using time stamping, a
global move sequence develops. However, not all gains in the global move sequence may be
as expected due to moves being performed on the global partition concurrently. Therefore,
when all localized searches terminate, the gains of all moves in the global sequence are
recalculated in parallel and the global sequence is rolled back to the best prefix. This
method can be optimized by writing any local sequence with expected positive total gain
to the global partition as soon as it is found. In effect, shorter local sequences are applied
to the global partition, which limits the divergence of expected and actual gains.

This parallelization of the FM heuristic has been shown to be scalable and is able to
produce partitions of quality comparable to those found by sequential partitioners [17].

3.3. Sequential Hypergraph Partitioners

Sequential hypergraph partitioners are well researched and employ a variety of sophisticated

techniques to achieve good efficiency or the best possible partition quality. We give a short

overview here and refer to Ref. [40] for a comprehensive history of hypergraph partitioning.

Due to the complex nature of direct k-way partitioning [9] 4], especially k-way FM

refinement 1], recursive bipartition algorithms have seen wide success being able

to utilize 2-way FM to find k-way partitions 26]. The partitioner PatoH

is notable for using fast 2-way FM refinement on boundary vertices during recursive

bipartitioning to achieve reasonable partition quality with great time efficiency. The first

direct k-way partitioner to compete with recursive bipartition algorithms in both time and

quality was hMetis using k-way label propagation refinement. Later, [Akhremtsev et al.
improved on previous approaches to direct k-way FM refinement [37] [38) (34 20] in the

hypergraph partitioning framework KaHyPar [1], establishing direct k-way partitioning as

the state of the art for the highest possible partition quality. The direct k-way, n-level,
sequential KaHyPar has subsequently seen further improvement to solution quality using
flow-based refinement and to our knowledge now outperforms any other partitioner
regarding partition quality [42].
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3.4. Parallel Hypergraph Partitioners

The parallelization of hypergraph partitioning is not trivial because hypergraph data does
not naturally decompose well (which is part of the reason why hypergraph partitioning is
important as pre-processing for other problems in the first place). Refining a hypergraph
partition in parallel is particularly difficult as data that different threads work on may be
highly interdependent, leading to threads interfering with each others’ gains and balance
considerations as described in In this section we give an overview over the
parallelization techniques employed by the shared-memory hypergraph partitioner Mt-
KaHyPar that this work is based on. Additionally, we give a quick summary of the
approaches chosen by other parallel partitioners.

3.4.1. Mt-KaHyPar

Mt-KaHyPar was the first shared-memory hypergraph partitioner. Its initial version [18§],
now known within the Mt-KaHyPar framework as Mt-KaHyPar-D, is a O(logn)-level, direct
k-way partitioner. Later, the authors published an n-level version of Mt-KaHyPar [17], aka
Mt-KaHyPar-(@Q, which, while less time efficient, is geared towards the best possible solution
quality in a parallel setting. The quality of partitions found by this parallel partitioner has
been shown to compete with the quality of the sequential KaHyPar partitioner, only falling
behind due to KaHyPar’s optimization using flows . The approach to asynchronous
uncoarsening presented in this paper is integrated into Mt-KaHyPar-Q and bases its
refinement on techniques used therein. Moreover, this work utilizes in large parts the same
underlying data structures and uses the coarsening and initial partitioning phase of Mt-
KaHyPar-Q without change. Therefore, the rest of this section is concerned predominantly
with an outline of the Mt-KaHyPar-Q variant. In the rest of this thesis we assume “(batch
synchronous) Mt-KaHyPar” to mean the Mt-KaHyPar-Q variant, unless stated otherwise.

Coarsening. The coarsening phase of Mt-KaHyPar proceeds in passes. A pass consists of
a parallel iteration over all hypernodes of the current hypergraph. For every node v the
algorithm finds the best node to contract v onto using the heavy-edge rating function [8] [21],
inspired by the clustering algorithm used for coarsening in Mt-KaHyPar-D [18]. For the
sake of using a clustering quality function, Mt-KaHyPar can be understood to treat every
node as its own cluster at any point. For that purpose, legal contractions are performed
immediately once the contraction partner is found. A contraction (u,v) is considered legal
if it does not impair with the correctness of the global contraction forest being constructed.
More specifically, (u,v) must not create a cycle in the forest and the contraction of u cannot
have started yet. The pass attempts to contract every node onto another but obviously
not all nodes can be contracted in one pass. The safety mechanisms in place to prevent
illegal contractions establish those nodes that will not be contracted. These nodes only act
as representatives of contractions during the pass.

In the later uncoarsening phase, the order of uncontractions will depend on the order of
contractions in the coarsening phase. Therefore, during the coarsening phase, Mt-KaHyPar
increases an atomic counter at the beginning and at the end of each contraction. Thus,
each contraction is assigned a time interval that can be used to order uncontractions later.
After each contraction pass, nets with only a single pin are removed as they cannot
contribute to the objective. Also, parallel nets, i.e. nets containing the exact same set of
pins, are merged, leaving one representative net with the accumulated net weight. The
coarsening phase ends when the coarsened hypergraph contains fewer than 160 - £ nodes
after a pass. The contraction phase is truly n-level as the contraction partner is individually
chosen for each node. Nevertheless, the coarsening phase contains O(logn) synchronization
points in which single-pin and parallel nets are removed.

LA yet unpublished version of Mt-KaHyPar that uses flows for better refinement is in the works.
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Initial Partitioning. Mt-KaHyPar employs n-level recursive bipartitioning to find an initial
partition. The coarsening and uncoarsening phases for the bipartitioning are parallelized
as in the main partitioner. A 2-way partition of the coarsest hypergraph is found using a
portfolio of 9 flat partitioners. At least 5 runs of each flat partitioner are performed. After
that, a particular flat algorithm is run again (up to a maximum of 20 times) only if after a
run it promises a better solution than the current best according to a stochastic model.

Uncoarsening: Batches. At the beginning of the uncoarsening phase, Mt-KaHyPar creates
a sequence of batches B = (Bj,...,B;) of contractions comprising a partition of all
contractions performed in the coarsening phase. The goal is to be able to safely revert all
contractions within a batch in parallel, allowing the uncoarsening phase to proceed through
the sequence batch by batch, applying refinement in between batches. The size of any batch
is restricted by an input parameter b,,q, that interpolates between scalability and solution
quality. Ensuring VB € B : | B| & bjyq, maximizes parallelism within these restraints. To
guarantee that contractions within the same batch can be reverted in parallel safely, certain
rules apply based on the coarsening phase. These rules require that some contractions must
be or cannot be placed in the same batch. Suppose two contractions (u,v) and (u,v") with
v # v’ were performed in the coarsening phase. We say, the contractions have time overlap
if their time intervals, as determined in the coarsening phase, intersect. The authors discern
three rules:

1. Revert contraction (-,u) before reverting any contraction (u, -)

2. If (u,v) and (u,v") were contracted with time overlap, then revert them without
intermittent refinement

3. If (u,v) was contracted strictly before (u,v’), then revert (u,v) after (u,v’)

Because of rule (1.), any contraction (u,-) has to be placed in a later batch than the
contraction (-,u). Rule (2.) dictates that any contractions onto the same representative
with time overlap have to be placed in the same batch. Via rule (3.), contractions onto the
same representative without overlap cannot be placed in the same batch. Instead, they
need to be placed in different batches in the reverse order of their contraction.

Uncoarsening: Localized Refinement. After uncontracting a batch, Mt-KaHyPar performs
parallel localized LP refinement followed by parallel localized FM refinement (see
tion 3.2.1] and [Section 3.2.2). With this approach, the LP refinement serves to find easy
improvements quickly so the subsequent FM refinement converges faster. Both refinement
heuristics are executed repeatedly until neither finds an improvement to the partition
quality in one run. Initially, all border nodes in the batch, i.e. all uncontracted nodes and
representatives in the batch that are incident to a net spanning more than one block, are
considered seed nodes for the refinement. For gain calculation, Mt-KaHyPar uses a gain
cache. For every node this cache stores the benefit to the objective function for moving the
node out of its current block as well as the penalty for moving it to any of the other blocks.
This gain cache allows examination of the best possible move of a node in O(k) and is
updated when the partition changes due to moves and uncontractions (see also .

Uncoarsening: Remarks on Parallel Localized FM. Mt-KaHyPar uses parallel localized FM
searches. Each localized FM search acquires a small number of border nodes in the batch
as its refinement seeds (five seeds per search by default). Additionally, when an FM search
expands, it acquires exclusive ownership of all activated nodes. That way, the localized FM
searches are prevented from overlapping. New localized FM searches are started until all
border nodes in the batch have been moved by a search. Whenever a localized FM search
terminates or finds a local move sequence with net positive gain, Mt-KaHyPar immediately
writes the local move sequence to the global partition and appends it to a global move

sequence as described in [Section 3.2.2. Additionally, attributed gains (see [Section 3.2.1)
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track the actual gains of moves applied to the global partition. These actual gains, then,
allow Mt-KaHyPar to revert to the best prefix of the local sequence on the global partition.

Uncoarsening: Global Refinement. The single-pin and parallel nets removed in the coarsening
phase have to be restored in the uncoarsening phase. All nets that have been removed
together at a specific synchronization point of the coarsening phase are restored collectively
once a specific batch is uncontracted. Whenever single-pin and parallel nets are restored,
an additional global refinement pass is performed before continuing with the next batch.
Eventually, when the original hypergraph is restored, a global rebalancer may fix the
partition balance. This may become necessary because the global rollback is allowed to
accept prefixes that break the balancing constraint by a small constant factor. Usually,
such imbalances are sorted out by subsequent label propagation runs as they attempt to
execute moves that improve the partition balance if none that improve the partition quality
can be found.

Uncoarsening: Data Structures for Gain Calculation. For each hyperedge e, Mt-KaHyPar
explicitly stores the connectivity set A(e) as well as the number of pins ®(e, ) in every
block i € [k]. As proposed in Mt-KaHyPar-D [1§], the memory representations for both A
and ® use a format optimizing the number of bits needed per entry. Writes to the data
structures are synchronized using a separate spin-lock per hyperedge. Atomic fetch-and-add
operations are not feasible due to the optimized memory format. Each thread holds at
most one hyperedge lock at the same time. When a thread moves or uncontracts a node u,
the thread updates the A(e) and ®(e, ) values of hyperedges e € I(u) one after another.
It acquires the lock for one hyperedge, performs the update, releases the lock and only
then acquires the lock for the next hyperedge. Reads from the data structures are not
synchronized.

3.4.2. Other Parallel Partitioners

Various approaches to parallel partitioning have been explored. The shared-memory, direct
k-way parallel graph partitioner Mt-KaHiP aims to find high quality partitions. Some
core aspects of Mt-KaHiP like parallel localized searches inspired features of Mt-KaHyPar.
Other parallel partitioners are mostly only tangentially related to this work. Here, we
merely give a summary by listing their high-level properties: ParHiP [33] (complex graph
networks, distributed-memory, direct k-way), Mt-Metis (graphs, shared-memory, direct
k-way), BiPart (hypergraphs, deterministic, shared-memory, recursive bipartitioning),
Parkway [44] (hypergraphs, distributed-memory, direct k-way), Zoltan (hypergraphs,
2D memory distribution, recursive bipartitioning). Furthermore, two yet unpublished
versions of Mt-KaHyPar exist: One variant uses flow-based refinement to find high-quality
partitions and the other variant makes the parallel partitioner deterministic. All parallel
partitioners mentioned here follow the multilevel scheme.
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4. A Framework for Asynchronous
n-Level Hypergraph Partitioning

The uncoarsening phase in n-level hypergraph partitioning consists of reverting almost n con-
traction operations. The initial partition is projected onto uncontracted nodes and refined
by applying local search algorithms on each level of the multilevel hierarchy. Refinement
strives to optimize the objective function while adhering to the balance constraint.

Optimally, with each new piece of information the partition should be reevaluated. This
would entail localized refinement around the uncontracted node after each uncontraction.
For parallel computing that idea is, however, not scalable as it induces one global syn-
chronization point per uncontraction. Yet, only applying localized refinement algorithms
after a set number of uncontractions can deliver partitions that have comparable quality to
sequential partitioners as batch synchronous Mt-KaHyPar shows (see .
The idea is to revert b contraction operations in parallel and afterwards apply parallel
localized refinement around the uncontracted nodes. This scheme reduces the number of
synchronization points by a factor of b. However, that approach still leaves us with O(n/b)
synchronization points for the uncoarsening phase. These synchronization points afflict the
possible scalability of the partitioner.

The goal of this thesis is to minimize the number of synchronization points further to
improve scalability and potentially reduce running times. For that reason, we strive to
achieve fully asynchronous uncoarsening wherein uncontractions of nodes and refinement
are executed concurrently. Our asynchronous uncoarsening approximates a parallelization
of the original n-level idea: Each thread uncontracts a node and, afterwards, employs
localized refinement around the uncontracted node while other threads concurrently also
perform uncontractions and localized refinement.

In this chapter, we present an outline of our shared-memory partitioner with asynchronous
uncoarsening. Our algorithm is integrated into the shared-memory hypergraph partitioning

framework Mt-KaHyPar (see [Section 3.4.1). We give a top-level overview of our

partitioner in |Algorithm 4.1, Our algorithm follows the direct k-way, n-level hypergraph
partitioner scheme: First, the input hypergraph is coarsened (line 1) using the coarsening

phase of Mt-KaHyPar described in Then, we obtain an initial partition
IT (line 2) using the initial partitioning phase of Mt-KaHyPar explained in
Our contribution lies in the subsequent asynchronous parallel uncoarsening phase (line 3).
Eventually, we apply top-level global refinement and rebalance the partition if necessary
(lines 4-5).
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4. A Framework for Asynchronous n-Level Hypergraph Partitioning

Algorithm 4.1: Algorithm Outline
Input: H = (V,E,c,w); k: Ny
Result: II: V — []

1 (Hcoarse, F) < coarsen(H, k) // |Section 3.4.1
2 I < initialPartitioning(H coarse, k) // |Section 3.4.1
3 II < uncoarsen(H coarse, 11, F) // [Chapter 4
4 refine 11 globally using parallel FM

5 rebalance I if necessary

9o = (0,00}
|

[5.6) T
[0, 1)/‘ @[JN?’ 1) 91 = {Im)}
ONO,
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Figure 4.1.: Left: An example contraction tree with time intervals for each contraction.
Right: The resulting uncontraction group hierarchy.

In the following, we discuss our main contribution: an asynchronous parallel uncoarsening
scheme, that performs uncontractions and refinement concurrently. First, we reiterate and
contextualize the rules for ordering uncontractions in parallel uncoarsening found by the
authors of synchronous Mt-KaHyPar [17]. Then, we go into detail about how we implement
parallel asynchronous uncoarsening using that order of uncontractions. Afterwards, we
discuss how localized refinement can be applied effectively in asynchronous uncoarsening.
Finally, we explain how some remaining necessary synchronization points comprise a
limitation to the asynchronous approach.

This chapter only illustrates our base idea of realizing asynchronous uncoarsening,.
deals with the intricacies of gain calculation in an asynchronous setting. explains
challenging cross-dependencies arising with concurrent uncontractions and refinement.

4.1. Order of Uncontractions

Uncontraction Order. Any valid sequence of contractions form a so-called contraction forest.
One can revert the contractions by uncontracting the nodes in the contraction forest in a
top-down fashion in parallel. Once we uncontract a node wu, its children in the contraction
forest, i.e. the nodes contracted onto u, become eligible for uncontraction. However, the
authors of Mt-KaHyPar showed that there remain some dependencies defining in
which order siblings in the contraction forest must be uncontracted (see [Section 3.4.1).
They found that sibling nodes in the forest must be uncontracted in reverse order of their
contraction to ensure correctness. However, since contractions are performed in parallel
some sibling contractions may happen concurrently. Therefore, in Mt-KaHyPar an atomic
counter is incremented before and after each contraction to obtain a specific time interval
for each contraction. Siblings with intersecting time intervals then have to be uncontracted
without intermittent refinement.

Synchronous Mt-KaHyPar embeds the uncontractions in a sequence of batches such that
the nodes within each batch can be uncontracted independently in parallel. The batches
are also constructed in such a manner that the uncontraction of a batch resolves the last
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dependencies required to uncontract the next batch. Localized refinement is only applied
between the uncontraction of batches.

Uncontraction Groups. In asynchronous uncoarsening, however, our goal is to apply
localized refinement immediately after each uncontraction. As stated above, though,
siblings in the contraction forest with intersecting time intervals disallow intermedi-
ate refinement. Therefore, we group such siblings together, only applying localized
refinement after all of their uncontractions are finished. More specifically, let S :=
{((u,v), (u,w)) € V? x V2| (u,v) and (u,w) have intersecting time intervals}. We call an
equivalence class of the transitive closure of S an uncontraction group. Then, we have
to uncontract all contractions in an uncontraction group before we can apply localized
refinement around all border nodes contained in the group. Note that all uncontractions in
the same group have the same representative which we also call the representative of the

group.

Order of Uncontraction Groups. The order of uncontractions put forth by the authors of Mt-
KaHyPar [17] also defines the order in which uncontraction groups have to be uncontracted.
Firstly, groups with the same representative contain sibling uncontractions and, therefore,
have to be uncontracted in reverse order of the contraction of the siblings. Secondly, a
group with representative v may only be uncontracted once the group containing the
contraction of v has been uncontracted.

In we depict an example contraction forest with contraction time intervals on
the left. The forest of uncontraction groups shown on the right originates as follows. Node
v1 has no siblings in the contraction forest. Therefore, we find an uncontraction group
go = {(vg,v1)}. Node v4 does have siblings but their contractions have no time overlap with
the contraction of vy. Thus, we get an uncontraction group g; = {(v1,v4)}. The sibling
nodes v2 and vs have been contracted with time overlap which means they comprise a group
g2 = {(v1,v2), (v1,v3)}. As vy is the parent of nodes va, v3 and vy in the contraction forest,
the group go containing the uncontraction of v; has to be uncontracted first. Furthermore,
v4 has been contracted strictly later than vy and vz so group g; has to be uncontracted
next. Finally, go can be uncontracted.

4.2. Asynchronous Uncoarsening Scheme

In the following, we explain our asynchronous uncoarsening scheme based on uncontraction
groups. A summary is provided in [Algorithm 4.2

Group Traversal Order. Initially, we have to construct the forest F,qyp of uncontraction
groups (line 1). For that purpose, we iterate through the contraction forest F that was
constructed in the coarsening phase from roots to leaves. We consult the time intervals of
sibling contractions to find uncontraction groups and the ordering among sibling groups.
We parallelize this by iterating over the different trees of F in parallel.

Once the group forest is completed, we want to traverse the uncontractions in parallel.
Different trees of Fyroup contain uncontractions in different regions of the hypergraph.
Therefore, we want different threads to work in different trees of Fy.0yp to reduce the
likelihood of concurrent localized refinement searches interfering with each others’ gains. To
achieve that behavior, we favor performing the uncontractions in the forest in a breadth-first
style order. The BFS traversal is facilitated by a relaxed parallel priority queue of groups
ordered by their depth in ]-"gmu This priority queue represents a pool of currently eligible
or active uncontraction groups. We insert a group into the priority queue when we mark it
as active. We start by marking the roots of Fy,oup as active (line 2).

We find that MultiQueues work well for this approach as they provide fast access and additionally
inherently randomize the order of groups among groups with the same depth.
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Algorithm 4.2: uncoarsen
Input: H = (V,E,c,w); I1: V — [k]; F : Contraction Forest
Result: I1: V — [k]
1 Fgroup < constructGroupForest(F)
2 mark 1oots of Fyroup aS active
3 start parallel worker threads, each performing:

4 seeds < ()
5 loop:
6 g < try to pick active group
7 if no active group found then
8 if all groups in Fgroup uncontracted already then
9 ‘ join thread
10 else
11 L go to loop
12 uncontract(g, H, IT)
13 seeds < seeds U border vertices of I1 contained in g
14 if |seeds| > minSeeds then
15 localizedRefine(seeds, H, 1)
16 L seeds < ()
17 mark children of g in Fgroup as active
18 go to loop
19 wait for all worker threads

Uncoarsening Tasks. The asynchronously parallel uncoarsening begins by spawning worker
threads (line 3). A worker thread works on an uncoarsening task which consists of the
following steps: First, the thread tries to pick an active group from the priority queue (line
6). If no active group is available, the thread retries picking a group until an active group
becomes available (lines 7-11). While waiting, the thread intermittently checks whether in
the meantime a different thread has uncontracted the last group in Fg,oup. In that case
the thread terminates (line 8-9).

If an active group has been found, the thread performs all uncontractions in the group
(line 12). Also, it collects all border nodes contained in the group which we use as seed
nodes for our localized refinement algorithms (line 13).

Subsequently, if a sufficient number of seeds is available, the worker thread applies localized
refinement (lines 14-16). Our asynchronous localized refinement is presented in more detail
in A worker thread only applies localized refinement after having collected a
small minimum number of refinement seeds, possibly from multiple groups (line 14). This
minimum number of seeds is necessary for localized FM refinement. Generally, only few
localized FM searches will yield an improvement with most FM moves having to be reverted.
With too few refinement seeds, a localized FM search would initially likely be forced to
perform a move that increases the connectivity of incident hyperedges. Such a move triggers
many costly delta gain cache updates. By using several seeds for localized refinement, we
are more likely to be able to move a seed with positive gain. Thus, we reduce the running
time as costly unpromising moves are pruned. For our purposes, even a minimum of five
seeds is enough for a large improvement in running time compared with always refining after
uncontracting a group. Localized FM searches in batch synchronous Mt-KaHyPar also
acquire five seeds each. There, this value has proven to have negligible effect on partition
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quality compared with one seed per search. We consider the minimum number of seeds as
a configuration parameter in our parameter tuning experiments (see |Appendix A)).

When the localized refinement search concludes, all children of the group in Fgroup are
marked as active and, thus, inserted into the priority queue (line 17). Afterwards, the
worker thread continues by attempting to pick a new active group (line 18).

As the number of groups is known in advance, a check for termination does not depend on
emptiness of the priority queue. Instead, the number of uncontracted groups is tracked
and each thread simply terminates when no more uncoarsening tasks are due (lines 8-9).

4.3. Asynchronous Localized Refinement

In this section, we describe in more detail how localized refinement heuristics can be
applied effectively in the asynchronous context, i.e. concurrently to each other and to
uncontractions. The method localizedRefine in line 15 of is comprised as fol-
lows: Inspired by the localized refinement used in synchronous Mt-KaHyPar [17], a worker
thread applies localized LP first as this heuristic inexpensively finds obvious improvements.
Then, the subsequent localized FM refinement that uses the same seeds converges faster.
The worker thread repeatedly applies an LP search followed by an FM search on the
same seeds until neither finds an improvement to the partition objective. However, due
to the small number of seeds per call to localizedRefine, only a small fraction of calls will
find an improvement and perform multiple iterations of LP and FM. It is notable that
parallelization is only achieved through asynchronously concurrent refinement on different
sets of seeds. Every thread only ever works on the seeds it collected in uncontractions that
it performed itself.

We disallow overlapping localized FM searches by requiring FM searches to acquire ex-
clusive ownership over their active nodes as proposed by the authors of synchronous
Mt-KaHyPar (see . Additionally, a single localized FM search may only
move each node at most once. However, when an FM search terminates, the nodes moved
by that search may immediately be moved again. Parallel localized FM in synchronous
Mt-KaHyPar uses gain recalculation on a global move sequence as a sanity check with
global perspective. In asynchronous uncoarsening, we omit global gain recalculation for
the sake of avoiding global synchronization. Instead, we can only assume that the move
decisions made using only local information collectively result in a good global partition
without any global perspective.

For asynchronous localized refinement, it is important that FM searches take priority over
LP searches. More specifically, suppose an LP search and an FM search concurrently work
in the same hypergraph region, i.e. on overlapping or neighboring node sets. The FM
search is able to navigate out of a local minimum of the objective function using negative
gain moves. At the same time, the LP search always performs moves steering towards the
nearest local minimum. Thus, if we allow the LP and FM search to work on overlapping
sets of nodes, the FM search will attempt to climb a hill in the objective function while
the LP search pulls it back down. Therefore, we disallow LP searches moving nodes that
are considered active by a concurrent FM search. We implement this by utilizing the fact
that FM searches already acquire exclusive ownership of every node they consider active in
order to keep the FM searches non-overlapping. We simply require LP searches to acquire
ownership of a node using the same acquisition mechanism before being allowed to move
it. If an LP search is not able to move a node because it is held by an FM search, the
LP search reexamines the move at the end of the LP pass. Note that an LP search only
acquires ownership of a node when it tries to move it, not when it activates it during
expansion. That way, an FM search may still expand into the active region of an LP search.
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Among localized LP searches, a different node acquisition mechanism prevents multiple
LP searches from working on overlapping sets of active nodes. That way, nodes are not
unnecessarily examined by multiple LP searches simultaneously. This is purely a matter of
increasing the efficiency of parallel LP searches.

4.4. Remaining Synchronization Points

With the asynchronous uncoarsening algorithm described in [Section 4.2} no synchronization
points between the worker threads are needed for uncontractions or refinement. However,
the coarsening phase that we adopt from synchronous Mt-KaHyPar removes single-pin and
parallel nets during its inherent O(log n) synchronization points as described in
Each contraction is performed between two such synchronization points that define which
nets are incident to the contracted node at the time of the contraction. Exactly those
incident nets are affected by the contraction but also later by the associated uncontraction.
Thereby, all nets that were removed after a contraction during the coarsening phase have
to be restored in the uncoarsening phase before the contraction can be reverted.

Thus, even in asynchronous uncoarsening we are left with O(logn) synchronization points
in which parallel and single-pin nets have to be restored. Consequently, we apply stretches
of fully asynchronous uncoarsening only between those synchronization points. We compute
an uncontraction group forest for each such stretch instead of one forest for the whole
uncoarsening phase. Furthermore, after restoring single-pin and parallel nets at a syn-
chronization point, we utilize the synchronization to apply a pass of global parallel FM
refinement.
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5. Gain Cache for Asynchronous
Uncoarsening

Recall that we define the gain gs—¢(u) of moving a node u from Vy to V; using the
move-from-benefit b(u, s) and the move-to-penalty p(u,t) as follows:

gs—t(u) == b(u, s) — p(u,t)
with b(u, s) := w({e € I(u) | ®(e,s) =1}),
and p(u,t) :=w({e € I(u) | P(e,t) = 0})

w
w

Synchronous Mt-KaHyPar uses a gain cache to compute the gain of moving a node to a
different block in its refinement algorithms. For each node u € V' the gain cache used in
synchronous Mt-KaHyPar stores the benefit b(u, II(u)) for moving u out of its current block
II(u). Additionally, the gain cache stores the penalty p(u,i) for moving u to block i for all
i € [k]. Then, the gain for a move (u, s,t) is calculated as gs—¢(u) = b(u, II(u)) — p(u, t).
This gain cache allows constant time access to the gain of any given move. Thus, the LP
and FM algorithms use the gain cache to determine the best possible move of a node in
O(k). Whenever a node v is moved or uncontracted, the gain cache entries for any adjacent
node u may need to be updated as described in detail in Ref. and [17]. As synchronous
Mt-KaHyPar stores only one benefit entry b(u, II(u)) per node u, the term can no longer
be correctly updated after u is moved without extensive locking overhead. However, the
refinement algorithms in synchronous Mt-KaHyPar work in rounds where each node is only
moved once per round. That way, the benefits of moved nodes can safely be recalculated
after each round [18].

Asynchronous uncoarsening lacks such a concept of refinement rounds. Therefore, we use a
slightly modified version of the gain cache where for each node u € V' we store b(u, i) for
all i € [k]. This means that a hyperedge e € I(v) contributes w(e) to b(v, j) if ®(e, j) =1,
i.e. if exactly one pin of e is in block V}, without regarding whether v is that one pin in
eNVj. In effect, the gain cache can tell us the benefit for moving v from any block at any
time, not only for moving it from II(v). That way, we correctly cache the current benefit
of a node irrespective of any moves of the node.

However, using k benefit entries per node introduces additional complexity regarding gain
cache updates. In the following sections, we address updates to our modified gain cache for
uncontractions and node moves.
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5. Gain Cache for Asynchronous Uncoarsening

5.1. Uncontraction Gain Cache Update

An uncontraction demands a different update to the gain cache in two cases per hyperedge
incident to the uncontracted node as identified by Gottesbiiren et al. [17]: Consider a
contraction (u,v) and a hyperedge e that was incident to v before the contraction. At that
point in time, either (i) u was not a pin of e which means u replaced v as a pin of e or (ii)
u was already a pin of e.

Benefit Update. In case (i) the uncontraction of (u,v) replaces u with v as a pin of e.
Thus, the benefits associated with e are transferred from u to v by decreasing b(u, i) and
increasing b(v, ) by w(e) for all blocks for which e currently contributes a benefit, i.e. for
all blocks i € A(e) with ®(e,i) = 1.

In case (ii) both u and v are pins of e after the uncontraction. If u was previously the
only pin of e in II(u), then e contributed w(e) to the benefits b(w,II(u)) of every pin w € e
before the uncontraction. Now, however, there is more than one pin of e in block II(u)
which means e no longer contributes to the benefits of w € e in that way. Consequently, we
have to reduce the benefits b(w,II(u)) by w(e) for all w € e except v as it was previously
inactive. Additionally, to initialize the benefit entries of v, we have to increase b(v, ) by
w(e) for every block i € A(e) with ®(e,i) = 1.

Penalty Update. In both cases, v becomes a pin of e so we have to add w(e) to its penalty
p(v, j) for any blocks that are not connected to e, i.e. to blocks j € [k] \ A(e). If after the
uncontraction u ¢ e (case (i)), then we also subtract w(e) from p(u,j) for those blocks
j € [k] \ A(e) as u is no longer a pin of e.

Summary. To summarize, the uncontraction (u,v) affects the gain cache entries of pins of
any hyperedge e € I(v) as follows (® values represent the state after the uncontraction):

(i.) If v € e and u ¢ e (v replaces u as pin), then
(i.a.) Vi€ Ale) : If ®(e,i) = 1, then b(u,?) —=w(e),
b(v,1) += w(e)

(i.b.) Vi € [K]\ Ale) : {iévj; o w((e))’ 51)
(i7.) If u,v € e (v is added as pin), then

(ti.a.) Vi € Ae) : If ®(e,i) =1, then b(v,i) += w(e)

(73.b.) If ®(e,II(u)) = 2, then Vw € e\ {v} : b(w,(u)) —= w(e)

(ii.c.) Vi e [k]\ Ae) : p(v,7) += w(e)

Differences to Synchronous Mt-KaHyPar. In synchronous Mt-KaHyPar, the gain cache
update for an uncontraction (u,v) is less complex [17]: The benefit update (i.a.) only takes
O(1) instead of O(k) work as the gain cache stores one benefit entry per node. Similarly,
the benefit entries for v do not need to be initialized if v is added as a pin, i.e. (ii.a.) is
not necessary. In the synchronous case, u may be replaced as a pin of e by a different node
v' # v by a concurrent uncontraction (u, v’ ) Therefore, (ii.b.) still takes up to work of
le] to find v’ in the pin list of e. However, in practice finding v’ is still faster than in the
asynchronous context where we update |e| — 1 benefit entries.

'In asynchronous uncoarsening, a lock is held on the representative u during an uncontraction (see
also [Section 6.1), which means no two concurrent uncontractions from v are possible and this issue does
not arise.
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5.2. Node Move Gain Cache Update

When a node is moved from one block of the partition to another during refinement, the
move-to-penalties and move-from-benefits of all pins of every hyperedge incident to the
moved node may be affected. An uncontraction always triggers a gain cache update at
least to initialize the gain cache entries for the uncontracted node. A node move, however,
only requires a gain cache update if the pin count of a hyperedge within a block decreases
to zero or one or increases to one or two.

Benefit Update. A hyperedge e € I(u) contributes w(e) to b(u,II(u)) exactly if u is the
only pin of e in the block II(u). Therefore, moving a node v’ from V; to V; with e € I(u)
affects the benefits of pins of e in four cases as follows: First, if the move decreases the
pin count of e in block Vs to zero, all pins of e lose the benefit for being moved out of V.
Second, if the move decreases the pin count of e in block Vi to one, all pins of e gain a
benefit for being moved out of V. Third, similarly, if the move increases the pin count
of e in block V; to one, all pins of e gain a benefit for being moved out of V;. Fourth, if
the move increases the pin count of e in block V; to two, all pins of e lose the benefit for
being moved out of V;. It may seem counter-intuitive to talk about all pins of a hyperedge
e gaining or losing a benefit for being moved out of Vs or V; when not all pins are in those
blocks. However, updating the benefits of all pins in that way is important to correctly
track the benefits of all pins in the presence of concurrent moves as any pin may be moved
to Vs or V; concurrently.

Penalty Update. A hyperedge e € I(u) contributes w(e) to p(u,i) exactly if ®(e,i) = 0.
Consider moving a node u’ from V; to V;. If the move decreases the pin count of e in block
Vs to zero, all pins of e gain a penalty for being moved to V;. Conversely, if the move
increases the pin count of e in block V; to one, all pins of e lose the penalty for being moved
to V4.

Summary. To summarize, a move (u, s,t) affects the gain cache entries in the gain cache of
pins of any hyperedge e € I(u) as follows (® values after the move):

b(v,5) == w(e),

(i.) If ®(e,s) =0, then Vv € e: {

p(v, s) += w(e)
(ii.) If ®(e,s) =1, then Vv € e: b(?;(s) | (ez s (5.2)
+=w(e
iii.) If ®(e,t) =1, then Vv € e : ’
(i4i.) If ®(e,t) = 1, then Vo € {p(,) B
(iv.) If ®(e,t) =2, then Yv € e :b(v,t) —= w(e)

Differences to Synchronous Mt-KaHyPar. In synchronous Mt-KaHyPar, the gain cache
update for a move (u, s,t) is less complex [18]: In case (7i.) and (7v.) only the benefit entries
for the pins of e in block Vi and V;, respectively, need to be updated as only one benefit
entry per node is stored. Also, benefit entries of moved nodes are allowed to be invalidated
so in cases (i.) and (¢4i.) no benefits need to be updated. Consequently, in each of the four
cases, the gain cache update takes ©(|e|) less work than in asynchronous uncoarsening.

5.3. Implementation Details

As in synchronous Mt-KaHyPar [18] [17], all updates to gain cache entries use atomic fetch-
and-add operations as changes to any entry can be caused by concurrent uncontractions
and refinement at any time. Also, we store the underlying A and ® values in the same data

structures used in synchronous Mt-KaHyPar (see [Section 3.4.1). Writes to the A and ®
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5. Gain Cache for Asynchronous Uncoarsening

values for a gain cache update are synchronized via one spin lock per hyperedge. Reads
are not synchronized.

It is notable that, as in synchronous Mt-KaHyPar, our implementation does not explicitly
store [k] \ A but only A. Therefore, we utilize p(u,j) = w(I(u)) — p'(u,j) with p'(u, j) =
w({e € I(u) | ®(e,j) > 0}). With this, our gain cache actually stores w(I(u)) and p'(u, j)
instead of p(u, j) for every j € [k]. Then, we can update the penalty of a node by changing
the stored p'(u, ) and w(I(u)) values using just A. In practice |A(e)| < |[k] \ A(e)| for each
e € FE, so we accelerate updates to penalty entries for uncontractions by storing p’ instead
of p.

5.4. Evaluation of the Gain Cache

The gain cache in asynchronous uncoarsening is less efficient than in batch synchronous Mt-
KaHyPar, requiring additional memory for (k — 1) - |V/| benefit entries and more expensive
updates per move and uncontraction. As in other versions of Mt-KaHyPar and
sequential KaHyPar [1], the advantage of finding the best possible move for a node in
O(k) still outweighs the disadvantages of extra memory and time for gain cache updates.
In preliminary experiments, attempts to compute the gains on-the-fly in asynchronous
uncoarsening have consistently been outperformed by using the gain cache. This may be
explained by refinement algorithms like Fiduccia-Mattheyses evaluating and re-evaluating
best possible moves often and for all nodes in the scope of the refinement, not only those that
end up being moved. This requires fast access to move gains when using such refinement
algorithms.
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6. Cross-Dependencies in Asynchronous
Refinement

The notion of asynchronous uncoarsening introduces cross-dependencies between nodes
being concurrently uncontracted and moved from one block to another during refinement.
In this section, we will examine these dependencies and our measures against interference
in more detail. First, we consider how to ensure correct refinement by prohibiting moves
of nodes that are in an intermediate inconsistent state due to concurrent uncontractions.
Then, we describe how changes to the connectivity information A and ® can lead to
incorrect concurrent gain cache updates. Afterwards, we explain how the correctness of
gain cache updates is, additionally, afflicted by concurrent changes to hyperedge pin lists.
Further, we argue how the effectiveness of localized FM searches may be reduced in the
asynchronous uncoarsening context. Finally, we discuss why these dependencies do not
occur in batch synchronous Mt-KaHyPar.

6.1. Intermediate Inconsistent States Caused By Uncontrac-
tions

In asynchronous uncoarsening, we would like to allow any worker thread to move any node
at any time during localized refinement. However, as explained in we have
to disallow moving nodes contained in an uncontraction group while that uncontraction
group is being uncontracted. In this section, we will quickly describe how we enforce this
in asynchronous uncoarsening.

Consider an uncontraction group g = {(u,v), (u,w)}. Assume a thread t; is currently
uncontracting ¢ and has already performed the uncontraction (u,v) but not (u,w). Then,
a different thread to # t; may not move the nodes v or u as v and w were contracted onto
u at the same time. As stated in [Section 4.1} |Gottesbiiren et al.| explain that v and
v are in an inconsistent intermediate state. Refinement algorithms on these nodes would
then yield incorrect results. Thus, we must prohibit moving the representative and the
already uncontracted nodes in this case which we accomplish as follows.

Firstly, we prevent moving representatives during uncontractions using one spin lock per
node. We require threads to acquire the lock on the representative for each uncontraction
and to acquire the lock on the moved node for each move. In our example, ¢ acquires the
lock on u before the uncontraction of g and releases the lock once all uncontractions in g
are finished. Additionally, we require t2 to acquire the lock when trying to move u which
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Algorithm 6.1: Algorithm 6.2:
Uncontraction w/o Snapshots Uncontraction w/ Snapshots
Input: u e Vv e V,e € I(u) Input: u e Vv e V,e € I(u)

acquire lock on e

update pin list of e and ®(e,I(u))

Asnap < A(e)

Vi € [k] : Pspap(i) < (e, 1)

€snap < €

release lock on e

update gain cache using Aspap,
q)snap and €snap

1 acquire lock on e

2 update pin list of e and ®(e,II(u))

3 update gain cache using A(e),
d(e,-) and e

4 release lock on e

B =L S N VR R

fails as t1 is holding on to the lock.

Secondly, we need to prevent moving uncontracted nodes until all uncontractions in their
group are finished. In the above case, we do not want to let o move v until ¢; completes
the uncontraction (u,w). For that purpose, recall that a node is considered active if it is
not currently contracted onto another node. Only active nodes are allowed to be moved.
We delay the activation of sibling nodes in the same group until after all uncontractions in
the group are finished. In the given example, t; activates both v and w when it is done
uncontracting g, allowing o to move the uncontracted nodes afterwards.

6.2. Changes to Connectivity Information Affecting Gain Cache
Updates

Assume a thread t; is currently performing an uncontraction (u,v). For each hyperedge
e € I(u), t1 needs to update the pin list of e as well as ®(e, II(u)) accordingly and perform
an associated gain cache update as described in Consider now a specific
hyperedge e € I(u). As described in t1 may require the values of A(e) and
®(e,7) with i € A(e) for the gain cache update. For an accurate gain cache update, these
values need to represent the partition at the moment when t; performs the synchronized
update to the pin list of e. In synchronous Mt-KaHyPar [18], ¢; achieves this by performing
the gain cache update synchronously with the changes to the pin list of e, thus preventing
intermittent changes to A(e) and ®(e,-). Synchronous Mt-KaHyPar synchronizes these

steps using one lock per hyperedge, as explained in [Section 3.4.1, We illustrate this

approach in [Algorithm 6.1: First, ¢; acquires the lock for e (line 1) and then updates the
pin list of e and ®(e,II(w)) if necessary (line 2). Then, t; performs the gain cache update

(line 3) before releasing the lock on e (line 4). That way, ¢; can safely use the global values
of A(e) and ®(e, ) because the values could not have been changed since ¢; had updated
the pin list of e.

In asynchronous uncoarsening, the gain cache update for an uncontraction is more expensive
than in synchronous Mt-KaHyPar (see . Consequently, performing the gain
cache update while holding the lock on e possibly introduces lock contention, especially for
large hyperedges. Therefore, in our asynchronous approach, t; performs the gain cache
update after releasing the lock on e to reduce lock contention.

Then, any concurrent thread ty may perform a move (w, s,t) after ¢; releases the lock on
e but before t; updates the gain cache. With the move of w, t2 may change the globally
stored values of A(e), (¢, s) and ®(€',t) for ¢’ € I(w). Then, the global values of A and
® represent the partition after the move of w. If I(v) N I(w) # 0, t2 may also have changed
the values of A(e) and ®(e, i) with i € A(e) for a hyperedge e € I(v) which is relevant for
the gain cache update performed by ¢1. In that case, the global values of A(e) and ®(e, 1)
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now differ from the partition state at the moment when ¢; updated the pin list of e for the
uncontraction (u,v). Thus, if ¢; uses the global values for the gain cache update, it may
update the gain cache incorrectly.

Therefore, we require ¢; to explicitly capture the state of A(e) and ®(e, i) for i € [k] as
snapshots while still holding the lock on e. We present the approach using snapshots
in|Algorithm 6.2 As before, first ¢; acquires the lock on hyperedge e (line 1) and updates the
pin list of e and ®(e, II(u)) if necessary (line 2). Then, ¢; takes a snapshot Agyqp by copying
A(e) (line 3) and a snapshot ®gpqp(i) of ®(e,q) for each i € [k] (line 4). Subsequently, t;
releases the lock on e (line 6) and uses the snapshots Agpqp and Pgpq, for a safe gain cache
update afterwards (line 7). We also need to take a snapshot of the pin list of e in certain

cases (line 5). This is explained in Section 6.3

6.3. Changes to Pin Lists Affecting Gain Cache Updates

In we explained how moves can change the partition and, thus, affect the
gain cache updates for concurrent uncontractions. In this section we consider a similar
dependency: Consider a thread t; performing a move m := (u,s,t) and a hyperedge
e € I(u). The thread synchronously updates the values of ®(e, s) and ®(e,t) for m and
reads the resulting values for a possible gain cache update (see (5.2)). The access to ®(e, -)
is synchronized with the same hyperedge locks used for the updates of pin lists and ® in
uncontractions (see|Algorithm 6.1 and [Algorithm 6.2). Much like the gain cache update for
an uncontraction, we aim to have t; perform the gain cache update for m after releasing
the lock on e. For this gain cache update caused by the changes to ®(e,-), t; needs to
iterate through the pin list of e (see (5.2)).

However, a different thread ¢ may perform an uncontraction (u,v) of a pin u € e after ¢;
released the lock on e but before t; performs the gain cache update. In the course of this
uncontraction, to changes the stored pin list of e, either adding v as a pin or replacing u by
v as a pin. Then, the stored pin list of e represents e after the uncontraction. The pin list
notably now differs from its state at the moment when ¢; synchronously updated and read
the values of ®(e, s) and ®(e,t). Therefore, if ¢; uses the stored pin list for e for the gain
cache update caused by m, it may update the gain cache incorrectly. More precisely, 1
may change the gain cache entry of the node v which was not a pin of e at the time when
t1 applied m. Additionally, if u is no longer in the pin list of e, t; may miss a necessary
update to the gain cache entry of u as it was a pin at the time the pin counts were read.

Again, we solve this issue with snapshots by requiring ¢; to explicitly capture the pin list
of e while holding the lock on e. Then, ¢; can safely use the snapshot of the pin list of e
taken at the time of updating ®(e, s) and ®(e,t) to update the gain cache after releasing
the lock.

Stable and Volatile Pins. Whereas the size of snapshots of A and ® described in
is in O(k), the size of pin list snapshots is only bounded by max.cg |e|. This means taking
a pin snapshot is asymptotically as slow as performing the gain cache update entirely
synchronized. Thus, taking snapshots of pin lists may cause lock contention nevertheless.
To decrease the number of pins that need to be copied for a pin list snapshot, we separate
the pin lists of all hyperedges into stable and volatile pins:

Definition 6.1. A pin u € e is stable if it can safely be assumed that u will not be replaced
as a pin of e by another node due to an uncontraction.

Thus, every node u for which there is no uncontraction (u, -) remaining is a stable pin in all
its incident hyperedges. The uncontraction group forest defines which uncontraction (u,v)
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is the last uncontraction from u. When that uncontraction (u,v) is finished, u becomes
stable in all of its incident hyperedges. Leaves of the contraction forest are initially stable,
i.e. stable in all incident hyperedges without any uncontractions.

We never have to take snapshots of the stable pins of any hyperedge for a move or
uncontraction. We achieve this by keeping the stable pins at the beginning of the pin list of
every hyperedge. Then, for a gain cache update associated with a hyperedge e, it suffices
to store the number of stable pins ¢ while holding the lock for the pin count update of
e caused by the move or uncontraction. Those ¢ pins of e will no longer change due to
uncontractions. Therefore, at the time of the gain cache update, the first ¢ pins of the
pin list of e can be safely queried directly from the current stored pin list of e without
synchronization or a snapshot.

We maintain the range of stable pins at the beginning of the pin list of each hyperedge as
follows: Before the asynchronous uncoarsening phase, we iterate over each hyperedge e in
parallel, identifying the root nodes that are initially stable pins for e. We, then, sort the
initially stable pins for e that are also root nodes to the beginning of the pin list of e. When
a pin becomes stable or an initially stable pin is activated when it is uncontracted, it is
swapped to the end of the range of stable pins and the number of stable pins is atomically
increased by one.

A pin u of e is called wolatile if it may still be replaced by another node v due to an
uncontraction (u,v) within the remaining uncontractions. We situate volatile active pins
after the stable pins in the pin list of each hyperedge to restrict changes of the pin list
to its tail. Volatile pins may still change due to uncontractions activating and replacing
pins. Therefore, we still have to take snapshots of volatile active pins while holding the
hyperedge lock.

Pin Snapshots for Uncontractions. The problem of changing pin lists can also occur for gain
cache updates caused by uncontractions as we explain in the following. Consider a thread
t; performing an uncontraction (u,v) and a hyperedge e € I(u). If the uncontraction (u,v)
causes v to be added as a pin of e, t; may require the pin list of e for the associated gain
cache update (see case (ii.b.) in (5.1)). As stated in t1 updates the gain cache
after releasing the lock on e. Therefore, a different thread ¢o can perform a concurrent
uncontraction that changes the stored pin list of e after ¢; releases the lock on e but before ¢;
can execute the gain cache update for (u,v). That way, concurrent uncontractions can also
impede with each others’ gain cache updates. We solve this variant of the problem using
pin list snapshots, too: When t; performs the changes to e caused by the uncontraction

(u,v), the thread takes a snapshot of the volatile pins of e (Algorithm 6.2} line 5) while

holding the lock. Subsequently, ¢; can use the pin list snapshot for a safe gain cache update
after releasing the lock on e (Algorithm 6.2, line 7).

Pin Snapshot Remarks. Taking snapshots of pin lists reduces the work performed while
holding the spin lock for a hyperedge in practice but it still demands iterating over the pins
of a hyperedge twice: once to take the snapshot and once to perform the gain cache update
after releasing the lock on the hyperedge. Moreover, the management of stable and volatile
pins introduces some additional work during uncontractions. Due to these overheads, we
observe that it is beneficial to perform gain cache updates while still holding the spin lock
for small hyperedges instead of taking pin list snapshots and managing stable/volatile pins
for those hyperedges. The minimum hyperedge size required for snapshots is a configuration
parameter of our implementation. Our parameter tuning experiments (see
showed that no snapshots should be taken for hyperedges smaller than 1000 pins to optimize
running time.

Also, for a hyperedge e incident to a moved or uncontracted node, the ®(e, -) values decide
whether the gain cache update will even use the pin list of e (see (5.1) and (5.2))). Importantly,

26



6.4. Effectiveness of Localized FM Refinement in Asynchronous Uncoarsening

these ®(e, ) values are known before the pin list snapshot is taken. Consequently, we only
take a pin list snapshot if it is necessary for the gain cache update. Furthermore, in the
case of an uncontraction (u,v), we only need to take a pin list snapshot of e € I(u) if v is
added as a pin to e. Otherwise, if v replaces u as a pin of e, the gain cache update does
not need to iterate through the pin list of e at all (see case (i.) in (5.1)).

6.4. Effectiveness of Localized FM Refinement in Asynchronous
Uncoarsening

local move (t1)

\
4

®

@local move (t1)>
© o

@L replaces

uncontraction (t2)

Figure 6.1.: An uncontraction invalidates gain deltas of a concurrent localized FM search:
Left: t; locally moves pin u to V} so v gains a benefit delta of w(e).
Right: ¢9 uncontracts (v, w); w replaces v as pin of e. Deltas of v, w incorrect.

So far, we have considered the effects of asynchronous uncoarsening on uncontractions
and global moves. A localized FM search, though, relies not only on correctness of the
global partition but also on correct tracking of the changes that the FM search has made
only locally. In particular, the changes to the gains of neighbors of locally moved nodes
are stored as deltas to the global partition in hash tables kept in thread-local storage
(see . Although we disallow global moves and uncontractions of locally moved
nodes, concurrent threads may still change the global partition around the nodes that an
FM search has already moved locally. These changes may interfere with the localized FM
search. The authors of Mt-KaHyPar already identify this as a problem for synchronous
Mt-KaHyPar where concurrent localized FM searches can interfere with each other in that
way [L7) sec. 5.4]. However, in asynchronous uncoarsening, this issue is exacerbated by
concurrent uncontractions and LP searches that change the global partition more frequently
than other localized FM searches. In this section, we explore the effects of changes of the
global partition in the vicinity of a localized FM search on that FM search. Furthermore,
we explain how synchronous Mt-KaHyPar deals with the problem and how we counteract
the interference in asynchronous uncoarsening.

Global Changes Affecting Local FM Information. To start with, we describe how a localized
FM search is affected by concurrent global changes in its proximity. Concurrent changes to
the global partition may cause two issues for the FM search:

Firstly, the overall gain of the current local move sequence may change. This could diminish
the efforts of the FM search and result in a move sequence that worsens the solution quality
if applied to the global partition. However, using attributed gains, at least bad global
moves can be prevented.

The second, more important problem is that concurrent changes to the surrounding partition
irreparably invalidate the gain cache deltas of a localized FM search. Thus, the FM search
may choose to perform local moves that are actually bad for the global partition. More
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pressingly, though, the FM search may miss moves that would make a good move sequence
because of invalidated gain deltas.

As an example for invalidated gain cache deltas, consider the situation depicted in|Figure 6.1}
The left picture represents the initial situation: Pins u,v € e are both in block V, and
thread 1 has locally moved u to V; as part of a localized FM search. The local move of u
causes a delta gain cache update in which v gains a benefit delta of w(e) as it is now the
only pin of e in block V; in the local partition state. The right picture depicts the situation
after a concurrent thread ts has performed an uncontraction (v, w) that has replaced v
with w as a pin of e. Then, the benefit deltas for v and w are wrong: v has an additional
benefit delta of w(e) that it should not have and w is missing that delta. Similar situations
occur if t5 performs a concurrent node move or an uncontraction in which w is added as a
pin to e instead of replacing v.

Consequently, with many close concurrent changes of the partition, the gain deltas of a
localized FM search may diverge from the deltas that would be correct for the changed
global partition. In that case, the FM search uses its incorrect deltas to compute gains
that do not represent the gains of the moves when applied to the global partition.

Effects on Synchronous Mt-KaHyPar. We will now quickly explain how synchronous
Mt-KaHyPar handles this interference pattern. Synchronous Mt-KaHyPar uses attributed
gains when writing FM moves to the global partition. That way, the partitioner ensures
not to globally apply moves that worsen the solution quality. Additionally, all localized FM
searches in synchronous Mt-KaHyPar globally move each node at most once until the next
synchronization point. Therefore, the synchronous partitioner is not affected by invalidated
gain cache deltas for nodes that have already been moved. Most importantly, in synchronous
Mt-KaHyPar, only a localized FM search can cause global changes that are concurrent with
another localized FM search. When FM refinement is applied in synchronous Mt-KaHyPar,
preliminary LP refinement has already performed simple improvements, though. Thus,
we do not expect a lot of FM searches to find further, more difficult improvements. This
means that only few global changes occur during FM refinement. In conclusion, the effect
of the interference in synchronous Mt-KaHyPar is small and no further countermeasures
are needed.

Locality Sensitive Asynchronous Uncoarsening. In asynchronous uncoarsening, we execute
LP refinement and uncontractions concurrently to localized FM searches. Thus, we observe
that changes to the global partition are more frequent than in synchronous Mt-KaHyPar.
Therefore, in the asynchronous case, interference with localized FM searches is a serious
problem for the effectiveness of parallel FM refinement. We cannot feasibly solve the issue
by keeping the deltas of all concurrent FM searches up to date for every global change. To
achieve this, when working with t threads, we would have to update up to t — 1 delta gain
caches in addition to the global gain cache for every global move or uncontraction.

Our solution instead revolves around reducing the number of changes of the global partition
in the proximity of localized FM searches. Our goal is to have different threads perform
uncontractions (and subsequent refinement based on those uncontractions) in different
regions of the hypergraph.

For that purpose, we give a more precise definition of the region that a thread is working
in. As we treat uncontraction groups as atomic units of work, a thread can be working on
one or more uncontraction groups at a time. The groups that a thread is currently working
on then define the active region of the thread. Therefore, first, we define which groups
a thread is working on. Assume there are p worker threads partaking in asynchronous
uncoarsening, each defined by a unique identifier in 7' = {1,...,p}.
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Definition 6.2. We denote the set of groups a thread t € T is (currently) working on with
A(t). Then, t is working on a group g, i.e. g € A(t), if one of the following conditions
applies:

1. t is currently uncontracting g.

2. t has already uncontracted g and has extracted at least one border node from g as a
refinement seed but t has not yet started a localized refinement search using that seed
(because the minimum number of refinement seeds has not been reached).

3. t is currently performing localized refinement based on a set of seeds that includes at
least one seed extracted from g.

We then define the region of a group and the active region of a thread as follows:

Definition 6.3. The region I(g) of an uncontraction group g is the set of hyperedges I(u)
incident to the representative u of g. The active region I(t) of a thread t € T is the union
of the regions of all groups that t is currently working on, i.e. I(t) = Ugeac I(g).

Now, consider a thread ¢ € T" that needs to pick a new uncontraction group to work on from
the PQ of eligible groups. We strive to achieve the following behavior: ¢ always picks an
eligible group g s.t. the similarity between the region of g and the active regions of all other
threads 7'\ {t} is minimized. As a coefficient for the similarity, we use the Jaccard-Index
J between the region of g and the union of the active regions of other threads:

Definition 6.4. Let I(t) := Uver\guy I(t) fort € T. We define the similarity sim(t, g)
between the region of a group g and the active regions of all threads except t € T as:

_ (g ni)

sim{t,g) == JU9) IO) = 7 Y570,

The thread t proceeds as follows to pick a new group to work on: First, ¢ picks a group
g from the PQ of eligible groups. Afterwards, ¢ computes sim(t,g). Then, the similarity
is compared against a maximum permissible similarity $y,q.. If sim(t, g) < Smaz, t will
begin working on g by uncontracting it. If sim(t,g) > Smaz, t picks a new group and
checks the similarity for that one. After retrying and failing for a set number of groups,
t starts uncontracting the group with the smallest similarity among the ones examined.
When t starts working on a group, all other examined groups are reinserted into the PQ of
eligible groups. The number of retries and the maximum similarity $,,,, are configuration
parameters.

Computing Region Similarities. We compute sim(t, g) for a thread ¢ and a group g in one
pass over I(g). For that purpose, we need a data structure that represents the active region
of every worker thread. More specifically, for each hyperedge e € E and each thread ¢’ € T
we need to be able to query if at the moment e € I(t'). We accomplish this using a bit
set containing one bit per worker thread for each hyperedge. The j-th bit in the bit set
of hyperedge e serves as a flag indicating whether currently e € I(j) for a thread j € T.
We store the bit set for each hyperedge as one or more integer values. If p is small enough
to store the entire bit set in one integer value, we can use atomic bit-logic operations to
synchronize reads and writes to the flags. Otherwise, we use one spin lock per hyperedge
to synchronize access. We store the bit sets of all hyperedges in a contiguous array to
optimize cache efficiency.

With that data structure, t can easily compute |I(g) N I(t)| for a group g in one pass over
I(g): For each hyperedge e € I(g), the thread ¢ collectively checks whether e € I(t') for
any t' € T\ {t} using synchronized bit-logic operations.
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6. Cross-Dependencies in Asynchronous Refinement

However, computing |I(g) U I(t)| is more difficult. We aim to use

[1(g) UI(0)] = [1(9)| + |I(t)] = () N I(t)]

but we cannot easily track ]:f (t)| for each t € T. Therefore, we need to calculate |I(t)|
without explicitly knowing I(t). We accomplish this as follows: Let Iy = Uper I(t).
Then:

1) = (L \ 1() U (Z(t) N 1(1))]

= Lt \ T+ 11(t) N T(8)] = | (T \ I(£)) NI () N ()]
= Lol = | Lot 0 I() |+ [1(#) N I(@)] = | (T \ I(1)) N I(t) N (1) | (6.1)
o )

= Ll = ()] + [1(t) N I(2))]

Thereby, to accurately determine |I(t)|, we keep track of |I;| as well as |I(t)|. Additionally,
we explicitly compute |I(t) N I(t)| by iterating over I(¢) much like we do for I(g). When ¢
picks a new group to work on, it has to calculate |I(¢)| in this way only once for all groups
it examines.

Limitations. Our approach of locality sensitive asynchronous uncoarsening works reasonably
well in improving the quality of local move sequences generated by asynchronous localized
FM searches. We attribute this to the fact that our method diminishes the likelihood of
different threads working on neighboring groups. However, our definition of the active
region of a thread only approximates the area of the hypergraph that the thread affects.
For refinement searches, only the hyperedges incident to the seeds are considered to be part
of the active region of the thread that performs the search. Localized searches can expand,
though. Thus, threads may still end up working on neighboring nodes even if the similarity
according to our definition of active regions disallows it. This issue could be solved by
dynamically expanding the active region of a thread as its local refinement search expands.
However, refinement searches would then cause a lot of changes to the data structure that
represents the active region of each thread. With our data structure described above,
the time overhead for these changes is too large. Future approaches to locality sensitive
asynchronous uncoarsening may use different definitions of an active region of a thread or
a different mechanism for separating threads entirely. That way, these approaches may be
able to better deal with expanding refinement searches.

In addition, our method of determining a group with permissible similarity to the active
regions of other threads is arguably quite crude. By examining a set number of groups
and only accepting one, we calculate a large number of similarity values that end up being
simply discarded. It would be beneficial to have prior indication of how likely each eligible
group is to be a good choice for a thread. Optimally, for each thread we would want a
priority queue of eligible groups that orders the groups by increasing similarity between
the region of the group and the active regions of other threads. As the active regions of
all threads rapidly change, though, such an ordering by similarity would hardly ever be
accurate for a long time.

6.5. Differences to Mt-KaHyPar

The dependencies described in [Section 6.1 and [Section 6.2 are inherently caused by moves
and uncontractions being performed concurrently. As such, those problems can never
occur in synchronous parallel partitioners like Mt-KaHyPar where phases of parallel
uncontractions and phases of parallel refinement are isolated from one another.
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Yet, also deals with concurrent uncontractions interfering with each other
without the presence of concurrent moves. However, the gain cache update for (u,v) is
only performed after releasing the lock on e because gain cache updates in asynchronous
uncoarsening are more expensive than in the synchronous partitioner. As stated in
synchronous Mt-KaHyPar simply performs the gain cache update while holding
the lock on e. Thus, concurrent changes to pin lists do not pose a problem for synchronous
Mt-KaHyPar and no mechanism like pin snapshots is necessary for correct gain cache
updates.

As discussed in global changes invalidating gain cache deltas in localized
FM searches are not a central issue in synchronous Mt-KaHyPar. The authors of the
synchronous partitioner observe that even without any methods to reduce the amount
of interference itself the solution quality decreases only slightly with greater numbers of
threads [17]. To further reduce the interference in synchronous Mt-KaHyPar, it may be
interesting to construct batches with respect to node regions and perform locality sensitive
parallel FM. Managing locality sensitive uncoarsening does come with a time overhead for
region comparisons, though.
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7. Experiments

We integrate our asynchronous uncoarsening in the hypergraph partitioning framework
Mt—KaHyPa The framework is implemented in C+4++17, parallelized using the TBB
library and compiled using g++ version 9.2 with the flags -03, -mtune=native and
-march=native. We refer to the synchronous O(log(n))-level version of Mt-KaHyPar [18] as
Mt-KaHyPar-D and the synchronous n-level version of Mt-KaHyPar as Mt-KaHyPar-Q.
Additionally, we refer to our asynchronous n-level version as Mt-KaHyPar-Async. For
parallel partitioners we add a suffix to their name to indicate the number of threads used,
e.g. Mt-KaHyPar-Async 64 for 64 threads. We omit the suffix for sequential partitioners.
In the following, we give the values for the configuration parameters related to asynchronous
uncoarsening that we used in our experiments. These values are based on our parameter
tuning experiments which we describe in more detail in We take snapshots
only for gain cache updates affecting hyperedges of at least 1000 pins (see .

Furthermore, when choosing a group to uncontract, a thread only accepts a group with
a region similarity of 0 to the active regions of other threads (see [Section 6.4). A thread
examines a maximum of 10 eligible groups to find a group with similarity 0 before resorting
to accepting the group with the lowest similarity (see . Lastly, a thread collects

a minimum of 5 seed nodes before applying localized refinement (see [Section 4.2)).

7.1. Instances

We run our experiments on the extensive collection of benchmark instances that Gottesbiiren
et al. use to evaluate Mt-KaHyPar-Q and Mt-KaHyPar-D. The instances are derived
from four sources encompassing three application domains: the ISPD98 VLSI Circuit
Benchmark Suite [3], the DAC 2012 Routability-Driven Placement Contest [46], the
SuiteSparse Matrix Collection [I1] and the 2014 SAT Competition [5]. VLSI instances
are converted into hypergraphs by transforming the netlist of each instance into a set of
hyperedges. Sparse matrices are translated to hypergraphs using the row-net model [§].
SAT instances are transformed to three different hypergraph representations: literal, primal
and dual (see Ref. for details). All hypergraphs have unit node and hyperedge weights.
The benchmark instances are separated into two sets: Firstly, set A, originally used by Heuer
[21], contains 488 hypergraphs. We use set A to compare our algorithm with
other versions of Mt-KaHyPar and sequential partitioners. Secondly, set B, originally used
in Ref. [18], contains 94 large hypergraph instances. We use set B to examine the scalability

!The Mt-KaHyPar framework is available at https://github.com/kahypar/mt-kahypar

32


https://github.com/kahypar/mt-kahypar

7.2. Algorithms

1B+
100M +
10M H
1M A
100K 1
10K 1
1K A

100 A
10

Vi el IPL el A dv) Ay

Set A B9 Set B

Figure 7.1.: Statistics for the hypergraph benchmark instances in set A and set B. The plot
shows a dot for each hypergraph for the number of vertices |V|, hyperedges
|E| and pins |P| as well as the median and maximum hyperedge size (|,g| and
A.) and vertex degree (d/(;) and Ay).

of our algorithm and to compare our algorithm against other parallel partitioners. The
hypergraphs in set B are an order of magnitude larger on average than those in set A. We
give an overview of important hypergraph metrics for set A and set B in [Figure 7.1

7.2. Algorithms

On set A, we compare Mt-KaHyPar-Async with Mt-KaHyPar-QQ and Mt-KaHyPar-D as
well as the sequential partitioners KaHyPar-CA [21], KaHyPar-HFC [16], PaToH-D and
PaToH-Q [§]. We do not consider the sequential partitioner hMetis as KaHyPar-CA
outperforms hMetis regarding solution quality while also being faster on average [21].

On set B we compare Mt-KaHyPar-Async with Mt-KaHyPar-Q and Mt-KaHyPar-D. We
do not consider the deterministic shared-memory parallel partitioner BiPart [31], the
distributed-memory parallel partitioner Zoltan or the sequential partitioners PaToH-
D [8] and HYPE [32] as they have been shown to be dominated by Mt-KaHyPar-D on set
B [18]. Furthermore, we do not consider any other sequential partitioners (KaHyPar-CA,
KaHyPar-HFC, PaToH-Q) on set B as they cannot partition the large hypergraphs in a
reasonable time frame.

7.3. System and Methodology

We adapt our experimental setup from ]Gottesbﬁren et al.\ [17]. We run our experiments on
two different types of machines.

Machines of type A are nodes of a cluster with Intel Xeon Gold 6230 processors (2 sockets
with 20 cores each) running at 2.1 GHz with 96 GB RAM. We use machines of type A for
the comparison with sequential partitioners on benchmark set A. For these experiments, we
use k € {2,4,8,16,32,64,128}, ¢ = 0.03, ten different seeds and a time limit of eight hours.
As in Ref. [17], we run Mt-KaHyPar-Async on set A with ten threads for the comparison
with sequential partitioners. Ten threads are chosen by |Gottesbiiren et al.]to resemble
workload scenarios on commodity multi-core machines.

Machine B is an AMD EPYC Rome 7702P (1 socket with 64 cores) running at 2.0-3.35
GHz with 1024 GB RAM. For the comparison with other parallel partitioners, we run
Mt-KaHyPar-Async 64 on benchmark set B using machine B with k£ € {2,8,16,64},

33
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e = 0.03, five seeds and a time limit of two hours. Additionally, we conduct experiments
for the self-relative speedup of Mt-KaHyPar-Async on a subset of benchmark set B (82
out of 94 hypergraph using machine B with k € {2,8,16,64}, ¢ = 0.03, three seeds and
p € {1,4,16,64} threads.

All partitioners optimize the connectivity metric (A —1) which we also refer to as the quality
of the partition. We consider a partition IT to have better quality than a partition IT" of the
same hypergraph if (A — 1)(IT) < (A — 1)(IT"). For each instance, i.e. a hypergraph with a
desired number of blocks k, we aggregate running times using the arithmetic mean over all
seeds. To further aggregate over multiple instances, we use the harmonic mean for relative
speedups and the geometric mean for absolute running times. Runs with imbalanced
partitions are not excluded from aggregated running times. For runs that exceed the time
limit, we use the time limit itself as the running time in aggregates. In plots, we mark
these instances with © if all runs of that algorithm timed out. Similarly, we use X to mark
instances for which all runs produced imbalanced partitions.

We compare the solution quality of different algorithms with performance profiles [13]: Let
A be the set of all algorithms we want to compare, Z the set of instances and ga(I) the
average quality of algorithm A € A on instance I € Z. For each algorithm A € A, we plot a
line depicting the fraction of instances (y-axis) for which g4(I) < 7-mingrc 4 qa(I) where
T is on the z-axis. Achieving higher fractions at lower 7-values is considered better. For
7 =1, the y-value indicates the percentage of instances for which an algorithm performs
best. Note that these plots relate the quality of an algorithm to the best solution. Thus,
they do not permit a full ranking of more than two algorithms.

Additionally, we perform Wilcoxon signed rank tests to determine whether or not the
differences between two partitioners with similar quality or running time are statistically
significant. At a 1% significance level (p < 0.01), a Z-score of |Z| > 2.576 is considered
significant [7, p. 180]. Higher p-values admit higher thresholds of |Z].

7.4. Comparison with Other Algorithms
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Figure 7.2.: Performance profiles comparing the solution quality of Mt-KaHyPar-Async 10
with Mt-KaHyPar-D 10 (left) and with Mt-KaHyPar-Q 10 (right) on set A.

Quality Comparison on Set A. shows two performance profile plots that directly
compare the quality of Mt-KaHyPar-Async 10 with Mt-KaHyPar-D 10 as well as Mt-
KaHyPar-Q 10 on set A. Mt-KaHyPar-Q finds better solutions than Mt-KaHyPar-Async
but Mt-KaHyPar-Async finds better solutions than Mt-KaHyPar-D. A Wilcoxon signed
rank test demonstrates that the difference in quality between Mt-KaHyPar-Async 10 and

2The subset contains all hypergraphs on which Mt-KaHyPar-Async 64 was able to finish in under 800
seconds for all k € {2,8,16,64}. This experiment still took more than 5 weeks on machine B.
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Figure 7.3.: Performance profile comparing the solution quality of Mt-KaHyPar-Async with
the other evaluated sequential and parallel partitioners on set A.

e

ta
S
~
o
.
i 1 1 1 1 1 1

ractio
11 1 1

1 1.05 L1 15 2101020 1 1.05 11 15 2101020
Quality relative to best Quality relative to best

=— Mt-KaHyPar-D 64=— Mt-KaHyPar-Async 64 = Mt-KaHyPar-Q 64— Mt-KaHyPar-Async 64

Figure 7.4.: Performance profiles comparing the solution quality of Mt-KaHyPar-Async 64
with Mt-KaHyPar-D 64 (left) and with Mt-KaHyPar-Q 64 (right) on set B.

Mt-KaHyPar-Q 10 is statistically significant (Z = 13.42 with p < 2.2e — 16). The plot in
depicts a performance profile comparing the quality of Mt-KaHyPar-Async 10
with both other Mt-KaHyPar versions as well as the sequential partitioners on set A. Due
to the additional flow-based refinement, KaHyPar-HFC greatly outperforms KaHyPar-CA,
Mt-KaHyPar-Q 10 and Mt-KaHyPar-Async 10 in terms of solution quality. In turn, those
three partitioners find better solutions than Mt-KaHyPar-D 10 and both PaToH variants.
In an individual comparison, Mt-KaHyPar-Async 10 finds better partitions than PaToH-D,
Mt-KaHyPar-D 10, PaToH-Q, Mt-KaHyPar-Q 10, KaHyPar-CA and KaHyPar-HFC on
86.39%, 83.96%, 68.79%, 39.67%, 35.74% and 11.01% of instances in set A, respectively.

Quality Comparison on Set B. In [Figure 7.4] we depict two performance profile plots
comparing Mt-KaHyPar-D 64 and Mt-KaHyPar-QQ 64 with Mt-KaHyPar-Async 64 on set
B. Similarly to set A, Mt-KaHyPar-Q 64 produces partitions with better quality than
Mt-KaHyPar-Async 64 on set B while Mt-KaHyPar-Async 64, in turn, finds better solutions
than Mt-KaHyPar-D 64. According to Wilcoxon signed rank tests, these differences are
statistically significant (Z = 5.83 with p = 5.59¢ — 9 and Z = —7.23 with p = 4.69¢ — 13,
respectively). In an individual comparison, Mt-KaHyPar-Async 64 finds better partitions
than Mt-KaHyPar-D 64 and Mt-KaHyPar-Q 64 on 72.34% and 36.76% of instances in set

B, respectivel

3These percentages exclude any instances for which both partitioners timed out in all runs.
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Figure 7.5.: Running times of all evaluated algorithms relative to Mt-KaHyPar-Async 10
on set A (left) and to Mt-KaHyPar-Async 64 on set B (right). The X and
symbols mark instances for which Mt-KaHyPar-Async (bottom) or a different
partitioner (top) produced imbalanced partitions or timed out.

Set A Set B
Partitioner t[s] Partitioner t[s]
Mt-KaHyPar-D 10 0.95 Mt-KaHyPar-D 64 4.89
PaToH-D 1.17 Zoltan 64 12.63
Mt-KaHyPar-Async 10  2.66 Mt-KaHyPar-Async 64 22.60
Mt-KaHyPar-Q 10 3.19 HYPE 25.56
PaToH-Q 5.86 BiPart 64 29.19
KaHyPar-CA 28.14 Mt-KaHyPar-Q 64 30.70
KaHyPar-HFC 48.98 PaToH-D 51.20

Table 7.1.: Geometric mean running times on set A (left) and set B (right).

Running Times. In we give two plots comparing the running times of other
algorithms relative to Mt-KaHyPar-Async 10 on set A (left) and to Mt-KaHyPar-Async 64
on set B (right).

On set A, Mt-KaHyPar-Async 10 is faster than the sequential partitioners KaHyPar-HFC,
KaHyPar-CA and PaToH-Q, and slightly faster than Mt-KaHyPar-Q 10. Furthermore,
Mt-KaHyPar-Async 10 is slower than Mt-KaHyPar-D 10 and PaToH-D on set A.

On set B, Mt-KaHyPar-Async 64 is faster than Mt-KaHyPar-Q 64 and slower than Mt-
KaHyPar-D 64.

In we additionally report the geometric mean running times over all instances
for each algorithm on set A (left) and set B (right).

7.5. Scalability

Self-Relative Speedups. In we present plots describing the self-relative speedups
of Mt-KaHyPar-Async on the 82 hypergraph subset of set B (see with
p € {4,16,64} threads. We separately consider total running time, the initial partitioning
phase and the refinement phase. For an instance with a sequential running time z, the plot
contains a dot at point (z,y) with the speedup y for each evaluated number of threads
p. The line represents the cumulative harmonic mean speedup over all instances with a
single-threaded running time > =z.

Additionally, Table 7.2 shows the harmonic mean speed ups for each of the considered
phases. The overall harmonic mean speedup for Mt-KaHyPar-Async is 3.69 for p = 4,
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Figure 7.6.: Self-relative speedups for the components of Mt-KaHyPar-Async affected by
asynchronous uncoarsening on the 82 hypergraph subset of set B.

Num. Threads T 1P R

41 3.69 390 3.75

All 16 | 12.38  9.92 12.28
64 | 21.81 6.96 21.60

4| 3.69 387 3.71

> 100s 16 | 13.37 13.18 13.48
64 | 29.14 23.77 32.51

4| 3.69 4.15 3.66

> 1000s 16 | 13.63 15.24 14.23
64 | 32.32 32.24 39.46

Inst. > 100s [%] | 62.20 12.80 50.30
Inst. > 1000s [%] | 28.66  2.44 23.17

Table 7.2.: Harmonic mean speedups of Mt-KaHyPar-Async on our 82 hypergraph subset of
set B for different components: Total Computation (T), Initial Partitioning (IP)
and Refinement (R). The row marked > 100s (> 1000s) shows the speedups for
instances on which the component has a single-threaded running time greater
than 100 (1000) seconds. The last two rows show the percentage of instances
for which each component took longer than those thresholds using one thread.

12.38 for p = 16 and 21.81 for p = 64. If we only consider instances with a single-threaded
running time > 100s or > 1000s, we observe harmonic mean speedups of 29.14 and 32.32,
respectively, for p = 64.

Our main goal with asynchronous uncoarsening is to improve the scalability of the refinement
phase. The refinement phase makes up a significant part of the total running time: With
one thread, refinement accounts for more than a third of the running time in 91.46%
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of the instances and for more than half of the running time in 62.80% of the instances.
Asynchronous refinement scales slightly worse than the total computation on all instances
(speedup of 21.60 compared to 21.81 for p = 64). However, on instances with single-threaded
running times > 100s and > 1000s, refinement scales better than the total computation
(speedups of 32.51 and 39.46 compared to 29.14 and 32.32, respectively, for p = 64).

The initial partitioning phase scales worse than the refinement phase but mostly does not
contribute a large part of the total running time. The single-threaded running time for
this component exceeds 100 seconds in only 12.80% of instances. Similar values have been
observed for Mt-KaHyPar-Q [17].

As in Mt-KaHyPar-Q, we achieve some super-linear speedups. This can be attributed
to the non-determinism of our partitioner. In the coarsening and refinement phases, the
non-deterministic choice and order of contractions and uncontractions contribute to extreme
outliers in speedups.

M-Async M-Q
Num. Threads T R T R
41 371 380 | 3.71 3.86
All 16 | 12.28 12.24 | 11.73 11.79
64 | 21.03 20.87 | 22.60 23.08
41 373 380 | 3.7 3.84
> 100s 16 | 13.31 13.59 | 12.37 12.29
64 | 28.06 31.62 | 25.30 24.85
41 378 390 | 3.78 3.86
> 1000s 16 | 13.54 14.99 | 12.24 11.85
64 | 30.13 39.72 | 25.07 23.69

Inst. > 100s [%] | 59.21 46.38
Inst. > 1000s [%] | 23.02 17.11

Table 7.3.: Harmonic mean speedups of Mt-KaHyPar-Async (“M-Async”) and Mt-KaHyPar-
Q (“M-Q”) on the shared 76 hypergraph subset of set B for the total
computation (T) and the refinement phase (R). The row marked > 100s
(> 1000s) shows the speedups for instances on which the component of Mt-
KaHyPar-Async 1 takes at least 100 (1000) seconds. The last two rows show
the percentage of instances for which each component of Mt-KaHyPar-Async 1
took longer than those thresholds.

Comparison with Speedups of Mt-KaHyPar-@Q. For a comparison with the speedups of
Mt-KaHyPar-Q we use the results of the authors’ original experiments [17]. We used the
same method as the authors of Mt-KaHyPar-Q to derive a suitable subset of set B for our
scalability experiments but ended up with a different subset (82 vs. 77 hypergraphs with
76 hypergraphs contained in both subsets). Therefore, for a fairer comparison, in W
we report the speedups for Mt-KaHyPar-Async and Mt-KaHyPar-QQ on only the shared 76
hypergraph subse We omit the initial partitioning phase here.

Mt-KaHyPar-Q scales slightly better overall with a harmonic mean speedup for all instances
of 22.60 with p = 64 compared to 21.03 for Mt-KaHyPar-Async. However, considering
only instances with a large single-threaded running time, Mt-KaHyPar-Q scales worse than
Mt-KaHyPar-Async: Mt-KaHyPar-Q achieves a harmonic mean speedup of 25.30 (25.07)
with p = 64 compared to 28.06 (30.13) for Mt-KaHyPar-Async for instances on which
Mt-KaHyPar-Async takes > 100 (1000) seconds with one thread.

“Note that the numbers given in|Tables 7.2/ and differ as they are based on different subsets.
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Figure 7.7.: Fraction of running time that each component of asynchronous uncoarsening
takes for Mt-KaHyPar-Async 64 on five different hypergraphs (see
for hypergraph metrics). Arithmetic mean for 5 seeds and k € {2,8} (left) and
for 5 seeds and k € {16,64} (right).

These differences are exacerbated if we consider only the refinement phase: The harmonic
mean speedup of the refinement phase of Mt-KaHyPar-Q decreases for longer running
instances from 24.85 for instances on which Mt-KaHyPar-Async 1 takes > 100 to 23.69
for instances on which Mt-KaHyPar-Async 1 takes > 1000 seconds. Conversely, the mean
speedup of the refinement phase of Mt-KaHyPar-Async increases with larger instances
from 31.62 for instances on which Mt-KaHyPar-Async 1 takes > 100 to 39.72 for instances
on which Mt-KaHyPar-Async 1 takes > 1000 seconds.

Speedups for Short Running Instances. Mt-KaHyPar-Async scales better than Mt-KaHyPar-
Q on instances with long single-threaded running times but on all instances the average
speedups of Mt-KaHyPar-Async are worse than those of Mt-KaHyPar-Q. In particular,
considering only instances with a single-threaded running time of less than 100 seconds,
we observe that Mt-KaHyPar-Async only reaches an average speedup of 16.13 with 64
threads compared to 21.73 for Mt-KaHyPar-Q. We believe that these bad speedups for
short running instances are related to time overheads caused by our approach to locality
sensitive uncoarsening (see . Therefore, in the following, we analyze these time
overheads in more detail.

In we show the running times of each individual component of asynchronous
uncoarsening in Mt-KaHyPar-Async 64 for five example hypergraphs (for hypergraph
metrics see The “Picking Group” component entails examining uncontraction
groups with regard to the similarity of their region to the active regions of other threads
(see Section 6.4). The component “Region Tracking” describes the work that a thread
performs to update its active region in the shared bit set data structure described in

The bar charts show that these measures needed for locality sensitive uncoarsening con-
tribute a considerable fraction of the total running time with 64 threads for most hy-
pergraphs, particularly ones with a small total partitioning time. We observe that the

5We collected the times per component on each individual worker thread and then accumulated the times
of all worker threads for an instance.
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Type 14 E| [Pl Je|  Ae  d(v
(1) | DAC46] | 1.3M 13M  48M 2 85K
(2) | SPM 9.8M 6.9M 57.2M 5 38K
(3) | Primal 9.6M 46.6M 1425M 3 11K
(4) 3
(5) 6

Ay t1 12
1.0K 4 8
25.7TK | 25 33
197.8K | 308 361
193.8K | 376 530
1.1K | 673 1119

~—

N =

N

Literal [5] | 191.6M 46.6M 142.5M 1.1K
Dual [5] 46.6M  9.6M 142.5M 197.8K

W W O N

t

Table 7.4.: Table with metrics of the hypergraphs used for tracking running times for each
component of asynchronous uncoarsening (see . We state the type
of the hypergraph, the number of vertices |V|, hyperedges |E| and pins |P| as
well as the median and maximum hyperedge size (|e| and A.) and vertex degree

(d(v) and A,). The last two columns give the average total partitioning time
for k € {2,8} (¢t1) and for k € {16,64} (f2) across 5 seeds in seconds.

fraction of the total running time that is put into picking groups and tracking active regions
decreases with a longer total running time caused by both larger hypergraphs and larger
k values on the same hypergraph (for the partitioning times see Table 7.4). This implies
that locality sensitive uncoarsening constitutes a major time overhead but also that this
overhead does not grow proportionally to the total running time for long running instances.
Thus, we deem this time overhead a reason for the discrepancy between the scalability of
Mt-KaHyPar-Async on instances with small single-threaded running times and on instances
with large single-threaded running times.

Based on these results, we reconsidered the definition of the uncontraction groups that a
thread is working on (see . We found that a lot of time for tracking active
regions is spent on groups that contain no boundary vertices, i.e. no refinement seeds. For
these groups, a thread marks the hyperedges in the region of the group as active in the
shared bit set data structure before uncontracting the group and then as inactive again right
after uncontracting the group. At the same time, considering a group ¢ active for a thread
t while t is uncontracting g does not serve the purpose of preventing interference with
refinement searches. Consequently, ¢ should not mark the hyperedges of g as active before
the uncontraction. Instead, ¢ can mark the hyperedges as active after the uncontraction if
g contains at least one refinement seed.

In experiments on our five example graphs, we ob-

served that this measure significantly reduces the ke {2,8} k € {16,64}
time overhead for locality sensitive uncoarsening. PG RT PG RT
In [Table 7.5 we show the reduction in running time (1) | 43.99 83.74 | 10.12 40.29
for the “Picking Group” (PG) and “Region Tracking”  (2) | 55.02 82.02 | 46.36 77.11

(RT) components for our five example hypergraphs
with k € {2,8} and k € {16,64}, On average across
all five hypergraphs, the times for these components
decreased by 32.41% and 45.65%, respectively, for
k € {2.8} and by 20.42% and 28.93%, respectively,
for k € {16,64}. Particularly for instances with a Table 7.5.: Improvements to compo-
small overall running time, we reduced the fraction nent times in percent.

of the running time required for the relevant compo-

nents by up to 83%. Furthermore, instances with smaller k values are affected stronger.
We believe this is due to the smaller number of boundary vertices and consequently larger

14.97 26.20 | 4.29 5.73
17.21 2231 | 6.76 15.16
30.89 14.00 | 34.55 6.35
32.41 45.65 | 20.42 28.93

—~~
e~ W
— — — — —

—
ot

>

SFor a visual representation of the improvements, we show the bar plots of the component times after the

optimization in |Figure B.1|in the appendix.
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Figure 7.8.: Performance profile comparing the quality of Mt-KaHyPar-Async with 1, 4, 16
and 64 threads on the 82 hypergraph subset of set B for all instances (left) and
only instances with a single-threaded running time of > 1000 seconds (right).

number of groups that contain no boundary vertices. Then, more time is saved by no
longer unnecessarily activating and deactivating hyperedges for those groups.

These improvements suggest that threads treating groups as active during their uncon-
traction hindered the scalability of asynchronous uncoarsening for instances with a small
running time in our previous experiments.

With our optimization, we believe that we will see better speedups for small instances in
future scalability experiments.

Quality with Increasing Number of Threads. The left plot in [Figure 7.8 shows a performance
profile that compares the quality of Mt-KaHyPar-Async with p € {1,4, 16,64} threads on
the entire 82 hypergraph subset of set B. The right plot compares the solution quality only
on those instances with a single-threaded running time of at least 1000 seconds. We can
see that, overall, the quality of Mt-KaHyPar-Async decreases with increasing numbers of
threads. The difference in quality between 1 and 64 threads on all instances is statistically
significant according to a Wilcoxon signed rank test (Z = —5.3912 with p = 6.997e — 08).
This behavior intensifies for instances with a single-threaded running time of > 1000
seconds.

7.6. Detailed Discussion

In this section, we evaluate and interpret the results of our experiments with respect to the
original goal of asynchronous uncoarsening: increasing the scalability of Mt-KaHyPar-Q
whilst not affecting the solution quality. Additionally, we give some conclusive remarks
and ideas for possible future experiments based on the lessons we have learned.

Running Time and Scalability of Mt-KaHyPar-Async. Generally, we can say that we
reached the goal of making Mt-KaHyPar-Q more scalable with asynchronous uncoarsening.
Given the scalability data of Mt-KaHyPar-Async in and the comparison with
Mt-KaHyPar-Q in we can see that Mt-KaHyPar-Async is generally faster than
Mt-KaHyPar-Q and scales better for long-running instances. We believe that the cause for
these improvements is the optimized parallelism that we achieved by reducing the number
of global synchronization points using asynchronous uncoarsening.

However, the improvements are, perhaps, not as large as we had expected. Moreover,
considering all benchmark instances, Mt-KaHyPar-Async does not scale any better than
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Mt-KaHyPar-Q. We attribute this to several challenges we have encountered during our
work on asynchronous uncoarsening that we had not fully been aware of previously.

Firstly, managing the gain cache as described in and controlling the cross-
dependencies mentioned in introduces memory and time overheads. Our gain
cache requires additional memory for an extra k — 1 benefit entries per node compared
to the cache used in Mt-KaHyPar-Q. Furthermore, gain cache updates for moves and
uncontractions are more expensive as stated in[Section 5.1land [Section 5.2] This leads to an
increased likelihood of lock contention, especially for large hyperedges, which can, in turn,
reduce parallelism. In order to reduce this lock contention, we use snapshots to perform
gain cache updates that concern every pin of a large hyperedge as described in
and [Section 6.3l We found that on average fewer than 10% of all gain cache updates are
performed with snapshots if we only perform snapshots for hyperedges with at least 1000
pins. For instances that required any gain cache updates with snapshots, keeping track of
stable pins (see reduced the number of pins that needed to be copied by 57%
on set A and by 60% on set B. In our parameter tuning experiments (see , we
tested taking snapshots for all hyperedges and for hyperedges of at least 1000 pins and
found that the latter has a slight running time advantage. However, the large percentages
of stable pins suggest that in the future we should try values between 0 and 1000 as the
minimum hyperedge size for snapshots, too.

Secondly, our locality sensitive uncoarsening used to control the interference with localized
FM searches (see causes a significant time overhead. As discussed in [Section 7.5,
we believe that inefficient locality asynchronous uncoarsening is a cause for the bad speedups
on instances with a small running time in our scalability experiments. In that section, we
give an optimization for locality asynchronous uncoarsening that may help with this issue
in the future. However, even with our optimization, we observe that for short running
instances each worker thread spends up to 30% of its time on picking suitable groups and
updating the active region of the thread. Therefore, in the future, we want to reassess the
methods used to store and compare the active regions of threads.

Loss of Quality Compared to Mt-KaHyPar-Q). We have not managed to achieve the same
solution quality with asynchronous uncoarsening that synchronous Mt-KaHyPar-Q provides.
We observe that Mt-KaHyPar-Async is outperformed by Mt-KaHyPar-Q in terms of quality
especially with larger numbers of threads (compare Figure 7.2 and [Figure 7.4). We see two
causes for the decreased quality with asynchronous uncoarsening.

Firstly, we believe that the principal reason is the inherent increased interference in asyn-
chronous uncoarsening. Generally, refinement heuristics in the asynchronous setting have
to deal with a more volatile partition state caused by more frequent changes to the global
partition. This can affect parallel gain calculation using the gain cache because of race
conditions between reads and writes to gain cache entries. As explained in
localized FM searches are additionally afflicted by invalidated gain deltas due to concurrent
changes of the global partition. Our approach to locality sensitive asynchronous uncoarsen-
ing cannot reliably prevent interference with refinement algorithms entirely. The loss in
quality with an increasing number of threads (see suggests that there is room
for improvement in future work. Perhaps, more effective diversification of search regions
could improve the quality of asynchronous parallel partitioners in the future.

Secondly, some mechanisms used by the synchronous refinement phase of Mt-KaHyPar-Q
are either not applicable in asynchronous uncoarsening at all or only work less effectively.
We do not expect these missing features to greatly affect the solution quality of Mt-
KaHyPar-Async. However, our experimental results do not allow us to gauge the impact
of these features precisely so we mention them here, nonetheless.

To begin with, the parallel FM implementation of Mt-KaHyPar-Q constructs a global
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move sequence and applies a global rollback on all moves at the end of the parallel FM
phase (see . In asynchronous uncoarsening, we could similarly apply global
rollbacks but this would require additional global synchronization points which we are
trying to avoid. Thus, we opted not to include global rollbacks. Therefore, refinement
in Mt-KaHyPar-Async lacks the global perspective which Mt-KaHyPar-Q obtains that
way. In the future, we may attempt to introduce additional occasional synchronization
points for global rollbacks in Mt-KaHyPar-Async to measure the effect on the quality of
the partition.

Moreover, each call to localized refinement in Mt-KaHyPar-Q is handed a much larger
set of refinement seeds than in Mt-KaHyPar-Async. Both partitioners repeat localized
LP and FM on a set of refinement seeds iteratively until no more improvement is found.
Therefore, the number of refinement iterations in Mt-KaHyPar-Q is greater on average
simply because more possible moves are examined for a potential improvement. Then,
Mt-KaHyPar-Q has more chances to find further improvements using the larger number of
additional refinement iterations.

We suspect that interference is the paramount reason for the loss of quality while the
difference in refinement mechanisms plays a minor role. We could gather further evidence
for this hypothesis in a future experiment in which we would compare Mt-KaHyPar-
Async with a variant of Mt-KaHyPar-Q that minimizes differences to Mt-KaHyPar-Async
in the refinement phase. If the only difference between the partitioners were whether
uncontractions are performed concurrently to refinement or separately, we could obtain
insight into the effect on the quality of increased interference alone. According to our
hypothesis, we would then expect the quality of Mt-KaHyPar-Async to still be worse than
the variant of Mt-KaHyPar-Q and the scalability to still be better.

Final Remarks on Experiments. Ultimately, our experimental results presented here lead
us to believe that asynchronous uncoarsening is a viable avenue of research for massive
scale hypergraph partitioning. The increased scalability of asynchronous uncoarsening
may outweigh a potential loss of quality for processing very large hypergraphs with large
numbers of threads. For that purpose, we are confident that the quality gap can be reduced
in the future using better approaches to asynchronous localized refinement.
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8. Conclusion and Future Work

In this thesis, we demonstrate that asynchronous uncoarsening is viable for shared-memory
n-level hypergraph partitioning and that it exhibits increased scalability compared with the
existing n-level variant of the Mt-KaHyPar framework. We discuss core challenges arising
with asynchronous uncoarsening and present effective solutions. These issues include cross-
dependencies and interference caused by concurrent uncontractions and node moves as well
as the management of a gain cache in the asynchronous context. Furthermore, we introduce
the idea of explicit locality sensitive uncoarsening to decrease the amount of interference
with refinement searches. We implement our approach in the Mt-KaHyPar hypergraph
partitioning framework. Our experiments on more than 500 real-world hypergraphs show
that asynchronous uncoarsening can improve the running times and scalability of an n-level
parallel partitioner compared to separate phases of uncontractions and refinement. On
average, we manage to find partitions of large hypergraphs 26% faster than the previous
n-level version of Mt-KaHyPar. Using 64 threads, our asynchronous uncoarsening phase
achieves average self-relative speedups of almost 40 for instances with a large single-threaded
running time. We find that high-quality, asynchronous partitioners may in the future
be able to process large hypergraphs for which other high-quality partitioners exceed
prohibitive time limits.

Future work on the asynchronous paradigm needs to focus on bringing the quality of
asynchronous refinement up to par with the previous, synchronous n-level Mt-KaHyPar
variant. We see a large potential in the notion of locality sensitive uncoarsening and suggest
additional work on more efficient and effective approaches to explicit diversification of search
regions in the future. Here, the central issues for the future should be faster, more scalable
region comparison and a more comprehensive representation of the active region of each
thread. The diversification of search regions needs to be revised for short running instances
where it currently makes up large parts of the total running time while not providing a clear
quality advantage. With future insight, the basic idea of locality sensitive uncoarsening may
also be applicable to batch construction and parallel localized FM searches for synchronous
parallel partitioners. Lastly, the limited time of a master thesis did not allow us to engineer
our algorithms to the standard of the Mt-KaHyPar framework. Future optimizations could
be undertaken in that regard to settle asynchronous uncoarsening into the role of a more
scalable variant of n-level uncoarsening in Mt-KaHyPar.
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Appendix

A. Parameter Tuning Experiments

In this section, we will describe our parameter tuning experiments in more detail. We used
a subset of set A containing 19 comparatively small hypergraphs. We ran the experiment
with p = 16 threads, k € {2,8,16,64} and 10 seeds. In the following, for each of our four
configuration parameters, we describe the set of values we examined and their impact on
the running time and the solution quality of Mt-KaHyPar-Async.

A.1. Minimum Edge Size for Snapshots (cpsqp)-
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Figure A.1.: Running time box plot and performance profile for the tested values of cpspap-

In[Section 6.3| we state that we take snapshots of the pin list and connectivity information of
hyperedges to perform gain cache updates outside of a hyperedge lock. For large hyperedges
this can reduce lock contention caused by a large number of concurrent gain cache updates
on the hyperedge. However, the overhead for taking snapshots may outweigh this benefit
for smaller hyperedges. Therefore, we interpolate between these arguments by taking
snapshots only for hyperedges of a minimum size cpspap-

We tested the values cpgsnqp € {0, 1000, 5000, 10000} for the minimum number of pins cpgnap
and found that neither the running time nor the quality differed too much between those
values. We show a running time box plot and a performance profile plot for the different
values of cpspgp in We decided to use a threshold of ¢pgnqp = 1000 pins as it
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provides the shortest running time. In the future, we will also test values between 0 and
1000 with a finer resolution. This may improve the running time as we found that stable

pins managed to reduce the size of pin list snapshots significantly (see [Section 7.6)).

A.2. Maximum Region Similarity (cpsin).
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Figure A.2.: Running time box plot and performance profile for the tested values of cpgim
on the original 19 small hypergraphs.

— =
[e=]

S

1

Running Time [s]
Fraction of instances

i —

n
S
=]
< J
b7
R 1
“ J
S
o J
2 |
B3
g J
€3 4
1 1.05 11 15 2101020 1 1.05 11 15 2101020
Quality relative to best Quality relative to best
= CPsim = 0 = CPsim = 1

Figure A.3.: Performance profiles comparing cpgim = 0 and cpgn, = 1 on the original 19
hypergraphs with p = 16 threads (left) and on five larger hypergraphs with
p = 64 (right).

In we explain two configuration parameters related to a thread ¢ picking a group
g with regards to locality sensitive uncoarsening. The first parameter is the maximum
permissible similarity between the region of g and the active regions of threads other than
t. In the context of parameter tuning, we call this configuration parameter cpg;m,. With
larger values of cpgim, t may find a group with a region similarity smaller than cpg;,, with
fewer tries. However, larger permissible similarities may also lead to more interference with
localized FM searches. Therefore, we expect this parameter to decide a trade-off between
running time and quality.

We tested the values cpsim € {0,0.1,0.25,0.5,1} and found that this value only has a
small effect on running time and quality for our parameter tuning instances as the plots

in [Figure A.2|show.

This result suggests that locality sensitive uncoarsening generally has little effect on the
partition quality. However, we attribute this only to an ineffective experiment on our part.
In order to accommodate thousands of runs for the parameter tuning experiments, we chose
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small instances with a short total partitioning time. An evaluation of partition quality
on small instances cannot reliably predict the effects of different parameter values on the
solution quality for larger hypergraphs, though. In fact, locality sensitive uncoarsening was
originally motivated by bad partitions of larger hypergraphs. Therefore, the parameter
tuning experiment for cpg;n, needs to be repeated on larger instances.

At this point, we will only provide a small experiment on larger hypergraphs as a kind
of sanity check for the effectiveness of locality sensitive uncoarsening: We tested the
values ¢pgim = 0 (refinement seeds in different threads cannot be adjacent) and cpgim = 1
(no explicit diversification of search regions) on our five larger example hypergraphs
from [Section 7.5 (see [Table 7.4] for hypergraph metrics). For this small experiment, we
used p = 64 threads, k € {2,16,64} and five seeds.

We show performance profiles comparing the two values on the original 19 hypergraphs
and on the five larger hypergraphs in We observe that the quality difference
between cpgim = 0 and cpgmm = 1 is much greater for the larger instances on the right.
For the five larger hypergraphs, Mt-KaHyPar-Async was, on average, less than 5% slower
with ¢pgim, = 0 than with ¢pg;, = 1. This small experiment does not replace thorough
parameter tuning on larger instances but gives some indication that the quality results for
small instances do not necessarily hold for larger instances with more threads.

Due to time constraints, we based our decision for a value of ¢pg;,,, only on these preliminary
results and chose ¢pg;m = 0 to prioritize solution quality.

In the future, we will consider further large instances with more values for cpg;,, to gain
an understanding of the trade-off between quality and running time that the parameter
defines. Nonetheless, the results from the experiments presented here also imply that
locality sensitive uncoarsening may not be of much value for small instances. Therefore, in
the future, we have to reconsider for which instances the diversification of search regions is
actually worth the time overhead.

A.3. Number of Group Picking Retries (¢p,esries)-
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Figure A.4.: Running time box plot and performance profile for the tested values of cpretries-

The second configuration parameter related to locality sensitive uncoarsening is the number
of groups cpretries that a thread t examines to find a group with a permissible region
similarity (see|Section 6.4). If ¢ has examined ¢pyetries groups and not found one with a

region similarity of ¢pgim, or less (see|Appendix A.2), ¢ will resort to accepting the group
with the smallest region similarity out of the examined ones. Therefore, with higher values,

the chance of finding a group that is not too similar to the active regions of other threads
increases, which can lead to less interference and improved partition quality. However,
examining more groups also takes longer.
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We tried the values cpretries € {5,10,25}. We observed that we achieve the best running
time with cpretries = 10 while the quality is not significantly affected by differing values
as the plots in [Figure A.4| demonstrate. Keep in mind, though, that the evaluation of

locality sensitive uncoarsening on our small benchmark instances may not be indicative of

the effects on larger instances as we describe in [Appendix A.2

A.4. Minimum Number of Seeds for Loc. Refinement (¢pseeqs)-
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Figure A.5.: Running time box plot and performance profiles for the tested values of cpgeeds-

In we describe that localized refinement searches are the most efficient with
a small minimum number of seed nodes that we call ¢pgeeqs here. Therefore, each thread
accumulates at least cpgseeqs seed nodes, possibly from multiple groups, before starting a
localized refinement search. With larger values of ¢pgeeqs, localized refinement is applied
less frequently which potentially reduces the solution quality but decreases the running time.
Also, as explained in with too few refinement seeds, localized FM searches
are forced to attempt time-intensive local moves with negative gain that are unlikely to
lead to an improvement. Therefore, in this parameter tuning experiment, we try to find a
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value that is small enough to provide good quality solutions but also large enough to allow
efficient localized refinement.

We tested the values cpgeeqs € {0,5,10,25,100}. We found that cpgeeqs has the largest
effect on the running time among our configuration parameters. The running time plot
in shows that applying localized refinement whenever any seeds are found
(cpseeds = 0) has considerable running time implications. Many runs with this value reached
our time limit of 600 seconds. Considering the rest of the values, we see that the running
time with cpgseeqs = 25 is the smallest.

Interestingly, with a minimum of 25 seeds, our algorithm is also faster than with a minimum
of 100 seeds. We believe that this may be caused by the relation of the minimum number
of seeds to locality sensitive uncoarsening: A thread t is considered to be working on a
group g if ¢ has already uncontracted g and has extracted seeds from g (see .
Only after t finishes the localized refinement search based on the seeds extracted from g,
we no longer consider ¢ to be working on g. Therefore, if ¢ needs to collect more seed nodes
for a run of localized refinement, the number of groups that ¢ is working on also grows
larger. In turn, this may make it harder for other threads to find groups that are not in
the active region of ¢ which increases the total running time.

Regarding the solution quality, we can see in the performance profile plots in
that the quality does not differ a lot between a minimum number of seeds of 5 and 10.
However, ¢pseeqs = 5 does outperform the other values regarding quality, though. We
decided to prioritize quality and used cpgseeqs = 5 in our experiments. This decision was
additionally motivated by the similarity to Mt-KaHyPar-Q in which parallel localized FM
searches (see use 5 seeds per search. In the future, we would like to consider
the implications of using pseeqs = 10 and cpseeqs = 25 for the running time and quality of
B. Additional Plots

Mt-KaHyPar-Async on larger instances.
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Figure B.1.: Fraction of running time that each component of asynchronous uncoarsening
takes for Mt-KaHyPar-Async 64 with the opimization described in
on five different hypergraphs (Seefor hypergraph metrics). Arithmetic
mean for 5 seeds and k € {2,8} (left) and for 5 seeds and k € {16,64} (right).
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