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Abstract

The very universal and generic problem of automated planning deals with �nding sequences
of actions to be executed by autonomous agents to achieve certain goals. Automated
planning is applied in many �elds that bene�t from autonomous decision making and
plan �nding. In recent years, hierarchical planning formalized by HTN (Hierarchical Task
Network) planning has become a more popular approach for automated planning, which can
be used to create planning problems with a hierarchical structure using expert knowledge.
A recently popularized approach to solving HTN planning problems is SAT-based HTN
planning, where an increasing portion of an HTN planning problem is encoded into a
SAT formula, the SAT formula is solved by a SAT solver, and the resulting solution to the
SAT formula is decoded back into a solution for the planning problem. Most SAT-based
HTN planners use a grounding step as part of their algorithm which can introduce an
exponential overhead. However, a recently introduced lifted SAT-based HTN planner
called Lilotane skips this grounding step and operates on lifted (parametrized) tasks and
methods instead of a �at representation. While this approach is often bene�cial regarding
runtimes, the techniques for reducing the size of the encoding as used by ground SAT-based
HTN planners are not trivially transferable to Lilotane. Hence, in this thesis we introduce
pruning techniques for lifted SAT-based HTN planning in Lilotane that replace the existing
techniques with more sophisticated algorithms and invest additional work before the
encoding step to reduce the size of the resulting SAT formula. Our main approach is a
more sophisticated reachability analysis consisting of a look-ahead traversal of the HTN
hierarchy during runtime as well as procedures to infer postconditions. An evaluation of
our approach using the benchmarks from the IPC 2020 shows that it improves the overall
performance of Lilotane. On some domains of the benchmark set, our approach achieves a
pruning in the number of clauses in the SAT formula of up to two orders of magnitude and
runtime improvements of up to one order of magnitude. When comparing our approach
to other state-of-the-art TOHTN planners, it improves on Lilotane’s advantage in terms
of performance to previously beaten planners and makes Lilotane the best performing
planner on seven to previously only �ve out of 24 domains.
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Zusammenfassung

Das sehr universelle und allgemeine Problem der automatisierten Planung befasst sich mit
dem Finden von Handlungssequenzen, die von autonomen Agenten ausgeführt werden
sollen, um bestimmte Ziele zu erreichen. Automatisierte Planung wird in vielen Bereichen
angewandt, die von autonomer Entscheidungs�ndung und Plan�ndung pro�tieren. In den
letzten Jahren hat sich hierarchische Planung, formalisiert durch HTN (Hierarchical Task
Network)-Planung, zu einem beliebteren Ansatz für die automatisierte Planung entwickelt,
mit dem Planungsprobleme mit einer hierarchischen Struktur unter Verwendung von
Expertenwissen erstellt werden können. Ein neuerdings populär gewordener Ansatz zur
Lösung von HTN-Planungsproblemen ist die SAT-basierte HTN-Planung, bei der ein zuneh-
mender Teil eines HTN-Planungsproblems in eine SAT-Formel kodiert, die SAT-Formel von
einem SAT-Solver gelöst, und die sich daraus ergebende Lösung zurück in eine Lösung für
das Planungsproblem dekodiert wird. Die meisten SAT-basierten HTN-Planer verwenden
einen grounding-Schritt als Teil ihres Algorithmus, der einen exponentiellen Overhead
verursachen kann. Ein kürzlich vorgestellter parametrisierter (lifted) SAT-basierter HTN-
Planer mit dem Namen Lilotane überspringt diesen grounding-Schritt und arbeitet mit
parametrisierten Aktionen und Methoden statt einer instanziierten Darstellung. Während
dieser Ansatz oft vorteilhaft für die Laufzeit ist, sind die Techniken zur Reduzierung der
Größe der Kodierung, wie sie von instanziierten (grounded) SAT-basierten HTN-Planern
verwendet werden, nicht trivial auf Lilotane übertragbar. Daher führen wir in dieser Arbeit
Pruning-Techniken für parametrisierte SAT-basierte HTN-Planung in Lilotane ein, die
die bestehenden Techniken durch anspruchsvollere Algorithmen ersetzen und zusätzliche
Arbeit vor dem Kodierungsschritt verrichten, um die Größe der resultierenden SAT-Formel
zu reduzieren. Unser Hauptansatz ist eine verfeinerte Erreichbarkeitsanalyse, die aus einer
vorausschauenden Traversierung der HTN-Hierarchie während der Laufzeit sowie aus
Prozeduren zur Ableitung von Postkonditionen besteht. Eine Evaluation unseres Ansatzes
anhand der Benchmarks der IPC 2020 zeigt, dass er die Gesamtleistung von Lilotane ver-
bessert. In einigen Domänen der Benchmarks erreicht unser Ansatz eine Reduzierung der
Anzahl der Klauseln in der SAT-Formel um bis zu zwei Größenordnungen und Laufzeit-
verbesserungen von bis zu einer Größenordnung. Beim Vergleich unseres Ansatzes mit
anderen TOHTN-Planern, die auf dem neuesten Stand der Technik sind, verbessert er den
Vorteil von Lilotane in Bezug auf die Leistung gegenüber anderen Planungsalgorithmen
und macht Lilotane zum besten Planungsalgorithmus auf sieben gegenüber zuvor nur fünf
von 24 Domänen.
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1. Introduction

Automated planning is a sub�eld of Arti�cial Intelligence which deals with the �nding of
sequences of actions to be executed by autonomous agents to achieve certain goals [11].
This very universal and generic problem has previously found application in spacecraft
control [10], cyber security [8], greenhouse logistics [12] and many more �elds that bene�t
from autonomous decision making and plan �nding.

So called classical planning represents the original and most popular formalization of
the automated planning problem. To give a general overview, an instance of a classical
planning problem de�nes the features (state) of a world, actions to be executed in this world
which alter its state, an initial state and a goal state. A solution to such a classical planning
problem is a sequence of actions, so that after the execution of this sequence, starting from
the initial state, the goal state is reached. In addition, each action has preconditions which
must hold at its execution.

In recent years however, the so-called concept of hierarchical planning has become
more popular, with its most noteworthy formalization being HTN (Hierarchical Task
Network) planning. It extends classical planning by introducing the option to model
planning domains as a hierarchical structure and thus allows human experts to model
planning problems more e�ectively and intuitively. For this extension, so called tasks
are introduced. While some tasks can be achieved by actions similar to the actions in
classical planning that directly change the world state, other tasks can only be achieved
by so-called methods which de�ne multiple further tasks that need to be achieved to solve
the original task. This latter mechanism gives HTN planning its hierarchical structure.
Additionally, all operations (methods and actions) are parametrized with variables that
need to be substituted with concrete values for a solution to the problem.

An approach for solving hierarchical planning problems is SAT-based HTN planning.
This approach relies on the boolean satis�ability problem (SAT), in which a variable
assignment for a formula in propositional logic has to be found. Due to decades of intense
research, there are various highly e�cient algorithms for solving SAT – SAT solvers –
freely available, and SAT-based HTN planning makes use of these algorithms. For a given
HTN problem, SAT-based HTN planning algorithms create partial, iteratively growing
expansions of the given HTN hierarchy and repeatedly encode these partial expansions
into a SAT formula until the SAT solver can �nd a solution, which is then decoded back
into a solution to the HTN problem.

Most SAT-based HTN planning algorithms contain a grounding procedure. Roughly
speaking, this grounding procedure takes the operations from the HTN problem and
computes all combinations of substitutions for the variables of each operation, because
working with these fully substituted operations is easier than with the original non-ground
problem. Depending on the planning problem, the grounding procedure can introduce
an exponential blowup in terms of runtime and space, since the number of possible
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1. Introduction

combinations might be exponentially big. To mitigate this, Schreiber recently introduced
a SAT-based HTN planner called Lilotane in [21]. This planner skips the grounding step
and works on the non-ground, also called lifted, version of the problem and leaves the
substitution of variables to be done to the SAT solver. Lilotane competed in the 2020
International Planning Competition (IPC) [4] and scored the second place, performing
best on various domains.

To decide which operations to encode into the SAT formula and how to restrict their
variables, Lilotane uses a generalized state and a reachability analysis. This generalized
state is computed by extending the state by the possible e�ects of each operation, which
are currently computed in a highly over-approximative way. Depending on the planning
problem, this can cause operations to be encoded which are actually not possible and causes
unnecessary overhead in Lilotane. Our motivation is to introduce a more sophisticated way
of computing the possible e�ects of an operation that is more accurate and can mitigate
this overhead by pruning these operations before they are encoded.

1.1. Contributions

We developed pruning techniques for lifted SAT-based hierarchical planning with Lilotane
that work by improving the reachability analysis in Lilotane to be more accurate, and
invest additional work before the encoding step to reduce the amount of computation spent
on encoding and SAT solving by pruning impossible operations before they are encoded
for an overall reduction of runtime. Our main technique for �nding more accurate possible
e�ects for an operation is a dynamic, look-ahead traversal of the hierarchy originating from
that operation, during which we check preconditions to identify impossible operations
and restrict the variables of operations occuring in that hierarchy with our concept called
variable restrictions. We further successfully introduced the concept of postconditions into
Lilotane by presenting procedures to infer such postconditions, which we then integrated
into our look-ahead traversal to achieve an even �ner reachability analysis.

We evaluated our approach using the benchmarks of the IPC 2020 [4]. The evaluation
of our approach revealed an overall improvement of Lilotane’s Performance. On some
domains, we observed a reduction of the number of clauses in the �nal encoding of
up to two orders of magnitude and an improvement in runtime of up to one order of
magnitude. When comparing our approach to other state-of-the-art HTN planners, it
improves Lilotane’s advantage in terms of performance to previously beaten planners and
makes Lilotane the best performing planner on seven to previously only �ve out of 24
domains.

Lastly, we have identi�ed a bug1 in Lilotane’s previous source code and an inconsistency2

in the previous Lilotane publication [21] and have proposed corrections which have been
integrated since then.

1https://github.com/domschrei/lilotane/pull/7
2https://github.com/domschrei/lilotane/pull/6
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1.2. Structure of Thesis

1.2. Structure of Thesis

This thesis is structured as follows. In chapter 2 we will introduce the necessary concepts,
de�nitions and notations for the thesis, touch on related work that has been done in
SAT-based HTN planning and elaborate on the general approach of Lilotane. After this we
present our pruning techniques in chapter 3. We then evaluate our approach extensively
in chapter 4 and �nally summarize our �ndings and touch on possible future work in
chapter 5.
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2. Preliminaries

In this chapter we �rst de�ne the problem of totally ordered HTN planning and introduce
the approach of SAT-based HTN planning. We then touch on related work and �nally give
an overview of lifted SAT-based HTN Planning with Lilotane.

2.1. Totally Ordered Hierarchical Planning

Our formalization of TOHTN (Totally Ordered Hierarchical Task Network) is based on
the formalization from [21]. To make understanding more intuitive we will use the
planning domain ‘Factories’ as an example. In this domain, factories are constructed
at certain locations by using resources produced from already existing factories and by
transporting these resources between locations via trucks. This domain has three types of
objects: factories, resources and locations, where locations represent distinct locations
and resources and factories represent types of resources and factories. We call speci�c
objects of these types constants.

The next concept we need to introduce is that of a signature. Signatures are of the
form f (01, . . . , 0:) and consist of a name f and a �xed number : of parameters 08 . The
number : is called the signature’s arity. The parameters can either be constants or variables
(placeholders for constants), where variables have a type g8 that represents a subset of a
domain g8 ⊂ � . Signatures with all parameters being constants are called ground signatures,
and non-ground signatures are called lifted signatures. We refer to the variables left in a
signature as free arguments.

A predicate is a signature that represents a logical atom. In the Factories domain, an
example for a predicate is produces(f,r) which represents the logical atom of a factory of
type 5 being able to produce a resource of type A . To represent whether this logical atom
holds or not, the predicate is equipped with a polarity (positive or negative) and forms
a literal. A fact is a ground literal and a state is a set of positive facts. A world state is
always well-de�ned: every ground predicate whose positive fact is not contained in the
world state is implicitly assumed to be false. For a literal ; we represent the equivalent
literal with switched polarity as ¬; and for a set B4C of literals we represent its negative
literals as B4C− and its positive literals as B4C+.

The central part of HTN planning are tasks. These are non-predicate signatures that
represent something to be achieved. In the factories domain, 2>=BCAD2C_5 02C>A~ (5 , ;) is
such a task which represents the construction of a factory 5 at a location ; . Tasks can be
achieved by operations and there are two types of operations: methods or operators. If an
operation can achieve a task we also say it matches the task. Speaking generally, a method
achieves a task by decomposing it into a sequence of further tasks called subtasks, which
can be matched by further operations that we will often call the children of the method.

5



2. Preliminaries

Figure 2.1.: The m_construct_factory method

The de�ning factor of totally ordered HTN planning is the total order of this sequence
of subtasks. When not requiring an order for the subtasks of methods as it is the case in
general HTN planning, the problem becomes much more di�cult as we will touch on in
Section 2.1.1.

More speci�cally, a method is a tuple (C0B:, B86, ?A4, BD1C0B:B). Here, C0B: is the task
to be achieved and B86 is a signature that provides a unique name to the method and
contains all parameters used in ?A4 , C0B: and BD1C0B:B . ?A4 is a set of literals that represent
preconditions that need to hold in the world state B (?A4 ⊂ B) in order to apply the method
and BD1C0B:B is the sequence of further tasks that need to be achieved. A method where
B86, and thus every other signature in the method, is ground, is called a reduction. In the
Factories domain, a method that matches the construct_factory task is shown in Fig. 2.1. In
addition to the parameters 5 and ; of the task, the signature also contains the parameter A .
This is the resource that is required to be able to construct the factory of type 5 , which is
enforced via the precondition 34<0=3B (5 , A ). The other preconditions ensure that there is
not already a factory at location ; and that a factory of type 5 has not been constructed
yet.

Conversely, an operator achieves a task without introducing further tasks. Operators
are tuples (task, sig, pre, e�) similarly to methods, but instead of a sequence of subtasks,
the operator contains a set of literals e� that change the world state when this operator
is executed: First, the negative e�ects are removed from the world state and then the
positive e�ects are added. To give an example, consider the task 2>=BCAD2C (5 , A, ;), which
represents the task of constructing factory 5 at location ; , by using a resource A which
is already at the location ; . This task is one of the subtasks of the<_2>=BCAD2C_5 02C>A~
method. The operator for achieving this task can be seen in Fig. 2.2.

We can now formally de�ne the actual TOHTN problem. For this, we �rst de�ne a
TOHTN domain as follows.

De�nition 1 A TOHTN domain � = (%,�,",$) consists of Predicates % , Constants � ,
Methods" and Operators $ as de�ned above. The possible Reductions ' and Actions � arise
from grounding the Methods and Operators with all possible combinations of constants for
their parameters.

Using this, we can de�ne a problem instance.

6



2.1. Totally Ordered Hierarchical Planning

Figure 2.2.: The construct operator

De�nition 2 An instance of the TOHTN Problem Π := (�, B� , A0,) ) consists of a TOHTN
Domain � , an initial state B8 and an initial reduction A0 without preconditions and subtasks
) , whereas ) is an ordered list of ground tasks to be executed.

We de�ne a solution to a TOHTN problem using the following notions:

De�nition 3 A solution candidate for a TOHTN problem % = (�, B8, A0,) ) is a directed tree
) = (�,+ ) with a total node ordering relation and the following properties:

1. Every non-leaf node corresponds to a reduction and its children correspond to one
operation each that match the subtasks of this reduction.

2. The root node in ) corresponds to A0.

3. Every leaf corresponds to an action from �.

Further we de�ne:

De�nition 4 A solution candidate traversal for a speci�c solution candidate is

1. a depth-�rst traversal of the tree according to the total node ordering relation

2. during which a world state B is maintained that is initialized as the intial state B8 , and
is updated when reaching an action by applying the action’s e�ects.

De�nition 5 A solution candidate traversal for a solution candidate is valid if the precondi-
tions ?A4 of every operation, when its corresponding node is reached, hold, i.e., ?A4+ ⊂ B and
?A4−

⋂
B = ∅.

We can now �nally de�ne a solution for a TOHTN problem:

De�nition 6 A solution candidate for a given TOHTN instance is a solution for this instance
if its well de�ned traversal is valid.

Further we de�ne multiple symbols that we will use later on.

7



2. Preliminaries

De�nition 7 For a set of literals B , B represents the elementwise negation of B , meaning the
set of all literals in B with switched polarity.

De�nition 8 Given two sets B1 and B2 of literals, B1 \ B2 represents the relative complement
of B2 in B1, meaning all literals that are part of B1 that are not part of B2.

De�nition 9 Given two sets B1 and B2 of literals, B1 \?A43 B2 represents the relative predicate
complement of B2 in B1, meaning all elements that are part of B1 for which no literal of the
same predicate and same polarity exists in B2.

We also group predicates into two groups.

De�nition 10 For a TOHTN domain � = (%,�,",$), a predicate ? ∈ % is called rigid if

∀(C0B:, B86, ?A4, e�) ∈ $ : ∀4 ∈ e� : 4.?A43820C4 ≠ ?

De�nition 11 For a TOHTN domain � = (%,�,",$), a predicate ? ∈ % is called �uent if
it is not rigid.

Further, we also call literals and preconditions rigid (�uent) if their predicates are rigid
(�uent).

2.1.1. Complexity

Compared to classical planning which is PSPACE-complete, general hierarchical planning
is semi-decidable and, as such, more complex. The total order of subtasks in TOHTN
planning softens this a bit; TOHTN planning is only 2-EXPTIME-complete, roughly
meaning that no general algorithm for solving TOHTN planning problems can be faster
than $ (22? (=) ) where ? is a polynomial function and = is the problem size in bits. Despite
this high worst-case complexity, there are still solvable TOHTN and HTN instances in
practice.

2.1.2. TOHTN as Satisfiability

The SAT or propositional satis�ability problem is the problem of �nding an assignment
to all Boolean variables in a propositional formula in conjunctive normal form [21] so
that the formula evaluates to True. In general, many problems are reduced to SAT by
transforming them into an equivalent SAT instance, solving this formula with a SAT
solver, and then decoding the found variable assignment into a solution to the original
problem. In HTN planning this is not quite that simple. As SAT is famously NP-complete
and TOHTN planning is 2-EXPTIME-complete, the resulting (conjectured) asymptotic
gap makes a direct encoding of a complete TOHTN problem instance into a single SAT
formula generally infeasible. Instead, often the encoding is expanded iteratively until a
solution is found.
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2.2. Related Work

In this section we will summarize the literature on general HTN planning and SAT-based
HTN planning algorithms.

2.2.1. HTN Planning

What could be considered as the canonical approach to solving HTN problems is progression
search, since this type of algorithm closely follows the de�nition of the solution to an
HTN problem. Essentially, progression search algorithms build the solution in a forward
manner while maintaining a state by progressively �nding operations that match the
tasks to be executed, adding applicable primitive operations to the �nal plan, using found
compound operations to substitute tasks to be executed by new tasks and outputting the
�nal plan when no more tasks are left. Some of the earliest successful algorithms of this
type were the SHOP algorithm and its successor SHOP2 [18, 19], but newer progression
search planners are still being developed like HyperTensioN [16], which won the 2020
International Planning Competition. Another recently introduced progression search
planner is PandaGBFS [13], which combines progression search and using heuristics that
incorporate the maintained state to guide the search. It should be noted that there exist
both progression search planners which work on the lifted problem domain (SHOP, SHOP2
or HyperTensioN) and progression search planners working with a grounded version of
the problem domain (PandaGBFS).

2.2.2. SAT-Based HTN Planning

Encodings for SAT-based HTN planning were �rst introduced in 1998 by Mali and Kamb-
hampati in [17], after SAT-based approaches for classical planning had been found to be
feasible. However, because their encoding was ine�cient [21] and could only be applied
to acyclic HTN domains, meaning the graph de�ned by the task relationships of a domain
could not contain a cycle, it did not �nd much application and essentially no literature
was published on SAT-based HTN planning until two decades later.

Then, in 2018 Behnke et al. presented a SAT-based TOHTN planner called totSAT
using a novel encoding that outperformed other non-SAT-based HTN planners[5]. They
extended this planner further to be able to �nd optimal plans and �nd plans for general
HTN domains, and we will refer to the current version of their planner as PandaSAT, since
we will also be using it in our evaluation in chapter 4.

Independently of this, in 2019 Schreiber et al. also introduced a novel and e�cient
encoding for SAT-based HTN planning that was used to create the TOHTN planning
algorithm Tree-REX, which also compared favourably against other state-of-the-art HTN
planners [23, 22].

While developed independently, both Tree-REX and PandaSAT converged in a certain
part of their general procedure: Both planners traverse the HTN hierarchy along its depth,
incrementally expanding an encoding after every layer and handing this encoding to a
SAT solver. PandaSAT hands these encodings to a SAT solver operating non-incrementally,

9
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meaning it knows nothing of the previous encodings and starts from scratch every time,
while Tree-REX makes use of incremental SAT solving to avoid redundant work.

Both PandaSAT and Tree-REX also rely on the previously mentioned grounding step.
For this procedure, Tree-REX uses the result from Ramoul et al., while the authors of
PandaSAT created their own grounding procedure [20, 6].

Finally, Schreiber introduced Lilotane (Lifted Logic for Task Networks) as the successor
of Tree-REX [21]. Like Tree-REX, Lilotane iteratively traverses the given HTN hierarchy
layer by layer and makes use of incremental SAT solving. On the other hand, Lilotane
skips the grounding step and hence presents a lifted SAT-based HTN planning approach,
which is re�ected in a di�erent encoding procedure than Tree-REX, because in Lilotane
the SAT Solver is responsible for substituting constants for variables. Lilotane took part in
the International Planning Competition 2020 [4], where it scored the second place. In the
upcoming Section 2.3 we will go into detail on how Lilotane works.

The authors of PandaSAT have also published pruning techniques for SAT-based TOHTN
planning [3]. These techniques work by doing a reachability analysis at the bottom of their
current expansion of the hierarchy to identify impossible actions and then propagating
this information to the rest of the hierarchy to prune further operations. Lilotane actually
uses similar techniques for pruning but due to the lifted nature of Lilotane the reachability
analysis is less accurate and these techniques are not fully transferable to Lilotane.

2.3. Li�ed SAT-Based Hierarchical Planning with Lilotane

In this section we will introduce lifted SAT-based HTN Planning as it is approached by
Lilotane. We will start by giving a general overview of Lilotane.

2.3.1. Lilotane Overview

A simpli�ed pseudocode for the general Lilotane procedure can be seen in Alg. 1.
Generally, Lilotane features an iterative procedure in which the given TOHTN problem

is subdivided into a sequence of layers which are generated and encoded after one another
until a solution is found. In each iteration, Lilotane instantiates all possible children of the
operations of the previous layer, the details of which will be presented in the next section.
After the instantiation, the entire network of reductions is encoded into a SAT formula
and given to a SAT solver. If the SAT solver �nds a solution, this solution is decoded into
a valid plan and the algorithm is done. If the SAT solver does not �nd a solution, the next
layer is instantiated. This procedure is repeated until a solution is found. Additionally, one
should note that the SAT formula is not generated from scratch in each iteration, rather
the formula from the previous layer is extended using the newly found operations.

2.3.1.1. Instantiation

In this section we will give an overview of the 8=BC0=C80C4 and 64C%�� functions used in
Alg. 1.
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Input :Π = (�, B� ,) )
Result: solution c

1 A0 := 2A40C4�=8C80;'43D2C8>=() );
2 ;0BC_;0~4A := 〈〈A0〉〉;
3 C0B:_=4CF>A: := ;0BC_;0~4A ;
4 while )AD4 do
5 ?>BB81;4_5 02CB := (B� , 〈〉);
6 =4F_;0~4A := 〈〉;
7 for ?>B8C8>= ∈ ;0BC_;0~4A do
8 <0G_=D<_BD1C0B:B :=<0G{1,<0G{|BD1C0B:B (A ) |, A ∈ ?>B8C8>=}};
9 for o�set ∈ {0, . . . ,<0G_=D<_BD1C0B:B − 1} do
10 =4F_?>B8C8>= := 8=BC0=C80C4 (?>B8C8>=, o�set, B);
11 ?>BB81;4_5 02CB := ?>BB81;4_5 02CB

⋃
64C%�� (=4F_?>B8C8>=);

12 =4F_;0~4A := =4F_;0~4A ◦ =4F_?>B8C8>=
13 C0B:_=4CF>A: := C0B:_=4CF>A: ◦ =4F_;0~4A ;
14 B0C_5 >A<D;0 := 4=2>34 (C0B:_=4CF>A:);
15 (A4BD;C, B>;DC8>=) := B0C_B>;E4A .B>;E4 (B0C_5 >A<D;0);
16 if A4BD;C = (�) then
17 return 342>34 (B>;DC8>=);
18 ;0BC_;0~4A := =4F_;0~4A ;

Algorithm 1: Simpli�ed Lilotane algorithm

In the 8=BC0=C80C4 function, each possible operation for a new position G in layer ; is
instantiated. This instantiation is done lifted by Lilotane using a concept called pseudo-
constants. A pseudo constant can be de�ned as follows:

De�nition 12 A pseudo-constant q is a symbol replacing a free argument U8 of an opera-
tion > , which contains an e�ective domain 3><(U8) forming a subset 3><(U8) ⊂ g8 of the
arguments type.

To understand what ‘lifted’ means in this context and further illustrate pseudo constants
and how they are computed, consider the example shown in Fig. 2.3, which shows a
partial instantiation of Lilotane’s layers for a problem of the Factory domain. In this
example, the root forms a fully ground<_2>=BCAD2C_5 02C>A~ method that represents the
task of constructing factory �2 at location � using resource '. The<_2>=BCAD2C_5 02C>A~
method has two subtasks, one for transporting the resource ' to location� and one for the
actual construction of the factory afterwards. The �rst subtask is matched by a method
<_64C_A4B>DA24 , which besides the inherited parameters of � and ' for destination and
resource, introduces two new parameters that do not exist in<_2>=BCAD2C_5 02C>A~. The
parameter ;1 for the source location of the resource and the parameter 52 for the factory
that produces the resource A1. These parameters are constrained by the preconditions of
the method<_64C_A4B>DA24 that can be seen on the left. The precondition ?A>3D24B (51, A1)
ensures that the parameter 51 can produce the resource A1, the precondition 0C (51, ;1)
enforces that the factory 51 exists at location ;1.

11
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Figure 2.3.: An instantiation example

During the instantiation of an operation, Lilotane uses these preconditions together
with the possible facts pfG,; at the position G and layer ; to restrict the operation’s new
parameters. In the example one can see that the possible facts on the left imply, that
the factories which are able to produce resource ', are �0 and �1 and that these exist at
locations� and � respectively. Thus, Lilotane introduces two new pseudo-constants for the
parameters 51 and ;1, namely q1 and q2, whose domains consist of the possible constants for
these parameters. These pseudo constants with their possible domain are also encoded into
the SAT formula and the SAT solver then tries out the possible combinations of constants
when looking for a solution. This lifted procedure using these pseudo-constants avoids a
possible combinatorial blowup that could happen during instantiation if an operation was
instantiated with all its possible fully ground parameter combinations.

2.3.1.2. Computation of Possible Facts

We will now explain the calculation of the possible facts pfG,; . These are an over-approximation
of possible facts that could hold at the position and layer that is currently being instan-
tiated and are computed using the possible fact changes pfc> for each operation > at the
position G . The set pfG,; contains both positive and negative facts and is instantiated at the
beginning of each iteration (layer) with the initial state B8 as the positive facts pf+0,; and
the empty set for pf−0,; . Whether a given fact 5 is reachable at position G is assessed in the
following way: In the case that 5 is positive it is reachable if 5 ∈ pf+

G,;
, in the case that 5 is

negative it is reachable if 5 ∈ pf−
G,;

or ¬5 ∉ pf+0,; , where the latter case can be intuitively
explained as a negative fact being reachable if it could have been caused by an operation at
a previous position or if it was implicitly true in the initial state, i.e., its positive equivalent
was not contained in pf+0,; .

We have already established that pf0 := B� . For G > 0, pfG,; is computed in the following
way, where $G,; refers to the set of operations possible at position G, ; :

pfG,; := pfG−1,; ∪
⋃
>∈$G,;

pfc>
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For an operation > , pfc> is recursively computed as follows:

1. If > is an operator, pfc> is simply the ground hull of e�(>), meaning all possible facts
that can be achieved by grounding the literals in e�(>) with all possible combinations
of constants.

2. Otherwise
pfc> :=

⋃
2∈2ℎ8;3A4=(>)

pfc2

where 2ℎ8;3A4=(>) are the possible operations that can match >’s subtasks.

The possible fact changes of an operation > , when calculated as shown above, can be
computed once for every lifted operation in the TOHTN instance domain in a preprocessing
stage and to compute the possible fact changes pfc> for an operation during instantiation,
this preprocessed set of possible fact changes is substituted with the constants or pseudo
constants contained in the signature of > and then added to pfG,; . Because the computation
of pfc> is not directly dependent on pfG,; we will refer to this set of possible fact changes
as being state independent.

2.3.1.3. Retroactive Pruning

During the instantiation of an operation > when variables are restricted using preconditions
and the set of possible facts, it can happen that there is no valid combination of constants
for a precondition of > that is reachable according to the possible facts at this position pfG,; .
The operation is as such not instantiated and pruned. Further, this can cause a subtask
of an operation in the previous layer ; − 1 to have no possible child for at least one of
its subtasks, causing the parent operation to be pruned as well. Pruning this operation
can then lead to further prunings in layer ; and also ; − 2 and so on and can cause many
operations to be pruned retroactively that where instantiated before. While many future
operations in further layers are avoided like this, the previously instantiated operations
cannot be removed from the SAT encoding, rather it is extended by further clauses that
invalidate these invalid operations. Also, the time lost from instantiation of these invalid
operations can obviously not be won back. Because of these reasons, it could be bene�cial
to extend the calculation of possible fact changes to look further ahead while taking into
account the current state to prune more operations earlier. The further re�nement of this
conservative implementation of the calculation of possible fact changes to achieve higher
amounts of pruning is the central focus of this thesis.
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In this chapter we present our contributions to pruning techniques in Lilotane. In the �rst
part, we present the core ideas of our new approach for a �ner reachability analysis. In
the second part, we introduce the concept of postconditions, and then integrate it into
our approach from Section 3.1 to arrive at the �nal version of our algorithm to compute
possible fact changes.

3.1. State Dependent Computation of Possible Facts

As mentioned before, the previous function for computing possible fact changes relied
on a precomputed set of lifted possible fact changes per operation, that is substituted at
runtime and ground with the appropriate constants and pseudo constants. In contrast, our
new algorithm looks ahead by traversing possible subtasks and children of the queried
operation, and uses the reachable facts at the current position and possible fact changes
found during this traversal to check preconditions. This approach achieves more and/or
earlier pruning of operations during the instantiation phase of Lilotane. Pruning can
happen in two di�erent ways:

• By descending the tree and checking preconditions, the found set of possible fact
changes that is returned can be smaller and more precise than what the previous
function would have returned. As such, the new algorithm can cause indirect pruning
since operations at later positions in the same layer might be pruned earlier or pruned
at all, since no possible instantiation of their parameters exists.

• The modi�ed algorithm may detect that one of the possible subtasks of the queried
operation has no possible children and as such trigger the direct pruning of the
queried operation. This latter case obviously has implications on the found set of
possible facts, and thus can also cause further indirect pruning.

Our new function for computing possible fact changes is shown in Alg. 2. In addition
to receiving an operation > as input like before, the function is now also given pfG,; , the
possible (reachable) facts at the current position. Because of this dependence on the current
state pfG,; , we refer to the resulting set of possible fact changes as state dependent and
represent it with pfc>,G,; . Our algorithm always computes pfc>,G,; by �rst collecting all
(potentially) lifted possible fact changes lpfc>,G,; and then computing the ground hull of
these at the end of the procedure. This is done both for performance reasons, and because
it is necessary for our postcondition approach in Section 3.2 to work. The new function
also outputs a Boolean value. In the case that it �nds a subtask of the queried operation
to be impossible, this value is set to �0;B4 (line 11) so that a pruning of this operation at
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Input :operation > , pfG,;
Result: Bool, pfc>,G,;

1 A>>C := 64C%A4?A>24BB43)A44 (>); // Section 3.1.1

2 nodes_left := 8=8C80;#>34�D364C ; // Section 3.1.2.3

3 if 8B%A8<8C8E4 (A>>C) or A>>C .BD1C0B:B.B8I4 () > =>34B_;4 5 C then
4 lpfc>,G,; := A>>C .pfc;
5 else
6 nodes_left := nodes_left − A>>C .BD1C0B:B.B8I4 ();
7 lpfc>,G,; := 〈〉;
8 for B ∈ A>>C .BD1C0B:B do
9 (E0;83, lpfcB) := CA0E4AB4 (B, lpfc>,G,; , pfG,; , nodes_left) // Section 3.1.2

10 if ¬E0;83 then
11 return (�0;B4, {});
12 lpfc>,G,; := lpfc>,G,;

⋃
lpfcB ;

13 return ()AD4, 6A>D=3�D;; (lpfc>,G,; ));
Algorithm 2: The new algorithm for computing state dependent possible fact changes
during instantiation.

the position can be triggered. In this case, pfc>,G,; is unde�ned and the function returns an
empty set instead.

The new algorithm starts with a retrieval of a preprocessed tree containing an excerpt of
the hierarchy of subtasks and children originating from the queried operation, which can
be seen in line 1 of Alg. 2. How this tree is computed in preprocessing will be elaborated
in the next section. While the interesting case of our new function happens when there
are child operations to traverse, it can happen that this tree only consists of a single node
and hence cannot be traversed. We call such an operation pfc-primitive and the check for
this happens in line 3. An operation is pfc-primitive if it is primitive or if no children to
traverse were computed in the preprocessing step due to a limit given to the preprocessed
tree. Further, even for an operation that is not pfc-primitive, the algorithm might not
descend if the operation has too many child nodes that would need to be visited. This
is also checked in line 3 and was introduced for our dynamic work adjustment that we
will elaborate on in Section 3.1.2.3. In both of the previously mentioned cases, the new
function behaves like the old function and lpfc>,G,; is set to the set of fact changes from
the preprocessed A>>C object (line 4), which are the state independent fact changes for the
queried operation.

In the case that the algorithm does descend, all the subtask objects that are pointed to
by A>>C are traversed in the given order. For this, the CA0E4AB4 function is called in line 9,
which will be explained in detail in Section 3.1.2. The CA0E4AB4 function is given a subtask
B , i.e. an unordered set of child operations, the so far found lifted possible fact changes
lpfc>,G,; , the set of a-priori reachable facts pfG,; , and nodes_left, the number of nodes that
can be further traversed. It returns a Boolean value to indicate an impossible subtask
and the set of lifted possible fact changes lpfcB for the subtask B . The found sets lpfcB are
uni�ed to compute lpfc>,G,; iteratively (line 12), and if all subtasks were valid the ground
hull of lpfc>,G,; is returned at the end of the algorithm (line 13).
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3.1.1. Preprocessing

The preprocessing for our techniques extends the previous preprocessing by the creation
of a tree of a limited constant size for every possible (lifted) operation > . The nodes in
this tree represent operations and contain the signature of the operation, preconditions,
possible fact changes, and, if they are not pfc-primitive, pointers to further child nodes
that are organised in an ordered list of sets for each subtask.

The constant size limit of the tree is an integer called CA44(8I4!8<8C that represents the
maximum amount of nodes in the tree. The tree is computed via a breadth-�rst search up
to the point where the further expansion of an operation, i.e., adding all direct child nodes
for all subtasks of this operation, would cause the tree size to exceed the size limit. We
check the limit in this manner because it is necessary to expand a node by all of its possible
direct children for the correctness of our tree traversal algorithm. A partial expansion of
a node may lead to critical e�ects being omitted. For this reason the computed tree size
might not reach the node limit exactly.

All parameters that appear in the signatures, e�ects or preconditions of the tree nodes
are either inherited from the original operation > or are newly introduced by the child
operation. These newly introduced parameters are assigned new, unique variable names,
and are used for the technique we will present later in Section 3.1.2.2.

3.1.2. Tree Traversal

The algorithm for the traversal is shown in Alg. 3. It is essentially a recursive, depth-�rst
search of the preprocessed tree. As mentioned before, it computes the possible fact changes
of the given subtask B and checks whether the subtask is valid. It is given as input the
subtask B , the set of a-priori reachable possible facts lpf, the set pfG,; and a budget of nodes
left to traverse nodes_left.

For computing the possible fact changes of the subtask, the CA0E4AB4 function iterates
over all possible child operations of the subtask. For a single child, it �rst restricts the
child’s variables (line 4) and checks its preconditions (line 6), the details of which are
explained in the annotated sections. After this, the child might be identi�ed as not valid
(line 7). In this case, the child cannot contribute to lpfcB and the algorithm moves on
to the next child. Additionally, for every invalid child that is found and for every child
where variables are restricted, nodes_left is increased by a constant amount (lines 8 and
11) which will be explained in the annotated section.

If the child is found to not be invalid, there are two possible scenarios. Firstly, if the
child is pfc-primitive or if there are not enough nodes left to traverse and secondly if the
converse holds. In the former case, the lifted possible fact changes for the child lpfc2ℎ8;3
are simply set to the state independent possible fact changes found in the child node (line
13). In the latter case, the child’s subtasks are further traversed (lines 13-22).

In the case of further traversal, nodes_left is decreased by the amount of direct children
of the child (line 17), since at least all direct children of the child need to be traversed.
The traversal is then done iteratively in the order of the subtasks of the child, and lpfc2ℎ8;3
is iteratively expanded by the found lpfcBD1C0B: sets. During this, another set lpf_2>?~ is
also expanded by the found lpfcBD1C0B: sets and given to the traverse function. This set is
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instantiated with lpf (line 17) and represents the lifted set of possible fact changes found
up to the current subtask. If a subtask is found to be invalid the traversal is aborted (lines
20-21).

Lastly, if the child has not been found to be invalid, BD1C0B:_E0;83 is set to )AD4 since
a single child being valid is enough for the subtask to be considered valid, and lpfc2ℎ8;3
is added to lpfcB (lines 25-27). After all children have been processed, BD1C0B:_E0;83 and
lpfcB are returned.

Input : subtask B , lpf, pfG,; , nodes_left
Result: Bool, lpfcB

1 BD1C0B:_E0;83 := �0;B4;
2 lpfcB := 〈〉;
3 for 2ℎ8;3 ∈ B do
4 2ℎ8;3_E0;83 := A4BCA82C+0A801;4B (2ℎ8;3, lpf, pfG,; ); // Section 3.1.2.2

5 if 2ℎ8;3_E0;83 then
6 2ℎ8;3_E0;83 := 2ℎ42:%A42>=38C8>=B (2ℎ8;3, lpf, pfG,; ); // Section 3.1.2.1

7 if ¬2ℎ8;3_E0;83 then
8 nodes_left := nodes_left + =>34�=2A40B4; // Section 3.1.2.3

9 2>=C8=D4 ;
10 if 2ℎ8;3.ℎ0B'4BCA82C43+0A801;4B () then
11 nodes_left := nodes_left + =>34�=2A40B4; // Section 3.1.2.3

12 if 8B%A8<8C8E4 (2ℎ8;3) or 2ℎ8;3.BD1C0B:B.B8I4 () > =>34B_;4 5 C then
13 lpfc2ℎ8;3 := 2ℎ8;3.pfc;
14 else
15 lpfc2ℎ8;3 := 〈〉;
16 nodes_left := nodes_left − 2ℎ8;3.BD1C0B:B.B8I4 ();
17 lpf_2>?~ := lpf;
18 for BD1C0B: ∈ 2ℎ8;3.BD1C0B:B do
19 E0;83, lpfcBD1C0B: := CA0E4AB4 (BD1C0B:, lpf_2>?~, pfG,; , nodes_left);
20 if ¬E0;83 then
21 2ℎ8;3_E0;83 := �0;B4;
22 1A40: ;
23 lpf_2>?~ := lpf_2>?~

⋃
lpfcBD1C0B: ;

24 lpfc2ℎ8;3 := lpfc2ℎ8;3
⋃

lpfcBD1C0B: ;
25 if 2ℎ8;3_E0;83 then
26 BD1C0B:_E0;83 := )AD4;
27 lpfcB := lpfcB

⋃
lpfc2ℎ8;3 ;

28 return (BD1C0B:_E0;83, lpfcB);
Algorithm 3: CA0E4AB4 Algorithm
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3.1.2.1. Checking Preconditions

The procedure for checking preconditions is shown in Alg. 4. Here, every precondition is
checked for reachability, and if one precondition is found that is not reachable the set of
preconditions is not reachable since they must all hold for an operation to be applicable.

Input :=>34 , lpf, pfG,;
Result: Bool

1 for ?A42>=38C8>= ∈ =>34.?A42>=38C8>=B do
2 if ¬8B'402ℎ01;4 (?A42>=38C8>=, lpf, pfG,; ) then
3 return �0;B4;
4 return )AD4;

Algorithm 4: 2ℎ42:%A42>=38C8>=B function

Input :?A42>=38C8>=, lpf, pfG,;
Result: Bool

1 if 8B'8683 (?A42>=38C8>=) then
2 if ¬?A42>=38C8>=.=460C8E4 then
3 for fact ∈ 6A>D=3�D;; (?A42>=38C8>=) do
4 if fact ∈ B� then
5 return )AD4;
6 else
7 for fact ∈ 6A>D=3�D;; (?A42>=38C8>=) do
8 if ¬fact ∉ B� then
9 return )AD4;

10 else
11 if ¬?A42>=38C8>=.=460C8E4 then
12 for fact ∈ 6A>D=3�D;; (?A42>=38C8>=) do
13 if fact ∈ (pfG,;

⋃
6A>D=3�D;; (lpf)) then

14 return )AD4;
15 else
16 for fact ∈ 6A>D=3�D;; (?A42>=38C8>=) do
17 if fact ∈ (pfG,;

⋃
6A>D=3�D;; (lpf)) or ¬fact ∉ B� then

18 return )AD4;
19 return �0;B4;

Algorithm 5: 8B'402ℎ01;4 function

How a preconditions reachability is computed is shown in Alg. 5. There are several
di�erences to the way reachability was de�ned in 2.3.1.1. Firstly, preconditions might not
be fully ground literals, since the parameters might be constants, pseudo constants or free
variables. For this reason, we go through the possible groundings of the literal until a
reachable grounding is found (lines 3, 7, 12, 16). Secondly, the algorithm di�erentiates
between rigid and �uent preconditions.
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For rigid preconditions, the initial state B� can be used to check their validity, because by
de�nition no operation’s e�ects match a rigid precondition’s predicate and so the additional
possible fact changes collected in lpf and pfG,; are irrelevant for the validity of these
preconditions. Positive, rigid preconditions are validated by �nding a grounding of the
precondition that is contained in the initial state (line 4), and negative, rigid preconditions
are validated by �nding a grounding of the precondition whose negation is not contained
in the initial state.

For �uent preconditions, both sets lpf and pfG,; need to be considered, because the
possible facts of both sets combined might hold before the currently examined operation.
This is because both sets are constructed by the possible e�ects of operations that could
be part of a plan in which they are executed before the current operation as to the total
node ordering relation de�ned in the TOHTN domain. However, we cannot just check
whether the precondition is contained in the union of lpf and pfG,; , because we keep lpf
lifted. Instead, we check whether there exists a grounding of the precondition in the union
(pfG,;

⋃
6A>D=3�D;; (lpf)) (lines 13 and 17). If we do not �nd such a grounding there is

no possibility of the preconditions holding, regardless of which constants would later be
substituted for lifted variables, making the operation impossible at the current location. For
groundings of negative, �uent preconditions we further check if their positive equivalent
is not contained in the initial state if they are not contained in the found possible facts
(line 17). While the negative preconditions not being contained in the found possible facts
means no operation could have directly caused them at the current position, they might
still hold in the initial state. Since negative facts are only implicitly contained in the initial
state, we need to check whether the positive equivalent is not contained in the initial state
to check whether the negative precondition held in the initial state.

Our actual implementation has further e�ciency improvements not shown in Alg. 5,
which we will touch on in Section 4.1.

3.1.2.2. Variable Restrictions

In the early stages of our experiments we discovered that while descending down a single
layer of subtasks and no further in our traversal function lead to signi�cant pruning and
speed improvements on some domains, descending down further than this caused little
further pruning while causing a signi�cant overhead. Investigating this lead to the concept
of variable restrictions that we will introduce in this chapter.

In general, operations that match tasks often introduce parameters beyond the param-
eters contained in the task’s signature. Broadly speaking this means that if we descend
the subtasks of an operation recursively like in our DFS algorithm, more and more free
variables arise that did not exist in the parent operation. Each precondition p featuring
such unbound variables essentially blurs the logic of our procedure: Without further
knowledge we must consider p valid as soon as any single ground fact matching p is valid.
This in turn causes preconditions to be more and more generic and the collected e�ects
to be highly over-approximative. As a consequence, our procedure �nds new invalid
preconditions whereas the set of reachable facts increases considerably. Our hypothesis is
that these are the reasons we found so little further pruning with a more comprehensive
descent of each operation’s tree.
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Input :=>34 , lpf, pfG,;
Result: Bool

1 E0;83 := )AD4;
2 for ?A42>=38C8>= ∈ (=>34.?A42>=38C8>=B)+ do
3 for E ∈ ?A42>=38C8>=.?0A0<4C4AB do
4 if E ∈ =>34.=4F_?0A0<4C4AB then
5 if 6A>D=3�D;; (?A42>=38C8>=).B8I4 () < A4BCA82C!8<8C then
6 A3E := 〈〉;
7 for 6A>D=3�02C ∈ 6A>D=3�D;; (?A42>=38C8>=) do
8 if 8B'402ℎ01;4 (6A>D=3�02C, lpf, pfG,; ) then
9 A3E .8=B4AC (6A>D=3�02C .?0A0<4C4AB [E]);

10 A3E := A3E
⋂
=>34.64C�><08=(E);

11 if A3E .B8I4 () = 0 then
12 return �0;B4;
13 else
14 =>34.B4C�><08=(E, A3E );
15 return )AD4;

Algorithm 6: A4BCA82C+0A801;4B algorithm

To solve this we introduced variable restrictions.

De�nition 13 For a given variable E that is newly introduced by a node in the preprocessed
tree, the restricted domain A3E of this variable is a set of constants that E could be substituted
with, constants not in this set cannot be substituted for E .

In general, variable restrictions are very similar to pseudo constants, with the di�erence
that they only exist temporarily in a single call of the function for computing possible
fact changes. They are not used outside of this context like pseudo constants which are
used in the encoding. Variable restrictions use the unique variables that are introduced in
the preprocessing as explained in Section 3.1.2.1. These free variables are restricted using
both rigid and �uent preconditions, similar to how they are restricted in the instantiation
mentioned in Section 2.3.1.1. But there are two major di�erences to that approach. Firstly,
we do not restrict all variables we �nd, we only restrict variables where we can be sure
that the time needed to �nd the set of valid constants is limited by a constant amount. As
a consequence, we also ensure that the set of valid constants for a given variable is of a
limited size. Secondly, we only consider positive preconditions because we have found
through preliminary experiments that using negative preconditions to restrict variables is
not e�ective.

How the variable restriction is done is shown in Alg. 6. Its input are a node =>34 whose
newly introduced variables shall be restricted, the set lpf and the set pfG,; . It returns �0;B4
if a precondition turns out to not be reachable and )AD4 otherwise. For every positive
precondition we go through every parameter that is a new parameter introduced by the
given node (lines 2-4). If the size of the ground hull of this precondition is smaller than
the constant A4BCA82C!8<8C we go through all facts in the ground hull and check them for
reachability with respect to lpf and pfG,; . If they are reachable we add the corresponding
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constants to the restricted domain for this parameter (lines 8-9). After this, if the parameter
already has a restricted domain, the intersection of A4BCA82C43�><08= and the existing
domain contained in the node object is computed (line 10) as the new set A3E . If the
resulting A4BCA82C43�><08= is empty, the precondition is not reachable and in this case
the function returns �0;B4 , otherwise the new domain is added to the node.

For the actual implementation of this function we have also made e�ciency improve-
ments not shown here which we will touch on in Section 4.1.

3.1.2.3. Dynamic Work Adjustment

While we have found signi�cant prunings on multiple domains, there are many domains
where no or little pruning happens and the traversal of the tree adds an overhead without
any bene�t. Depending on the limit that is used for the size of the preprocessed tree, this
overhead can be quite large. At the same time, when comparing domains that do have
signi�cant pruning, setting a constant tree size limit might optimally exploit the possible
pruning on one domain without unnecessary overhead, while not exploiting the possible
pruning on another. In an attempt to solve these challenges, we introduced a dynamic
budget for traversing the tree to �nd a more balanced optimum regarding overhead and
pruning.

Our new function for computing possible fact changes di�erentiates itself from the
old function by checking the reachability of preconditions, either to identify invalid
preconditions or to restrict variables. If it �nds no invalid preconditions or no variable
restrictions, the returned set of possible facts is the same as in the old function that was not
dependent on the state. Conversely, we hypothesize that the more variables are restricted
and the more invalid preconditions are found, the more exact our output is and the more
pruning is done. We use this hypothesis to come up with our dynamic traversal approach.

The basis of this traversal are two parameters, namely two integers initialNodeBudget
and nodeIncrease. Our dynamic traversal uses an integer nodes_left that limits the amount
of nodes which the CA0E4AB4 function is allowed to traverse. nodes_left is always initialized
with the parameter initialNodeBudget (Alg. 2 line 2). If a node’s subtasks are traversed,
the number of direct children in these subtasks is subtracted from nodes_left (Alg. 2 line 6,
Alg. 3 line 16). Only if there are still enough nodes left to check all of the direct children
of a node, it is traversed (Alg. 2 line 3, Alg. 3 line 12). If an invalid node is found or if
the variables of a node are successfully restricted, nodes_left is increased by the value
of nodeIncrease (Alg. 3 lines 7-11). Like this, our traversal algorithm is ‘encouraged’ to
traverse further when �nding invalid nodes and restricting variables. Appropriate values
for each of these parameters will be determined in Section 4.3.

3.2. Postconditions

To motivate the concepts of postconditions we will use an example method from the
‘Minecraft’ domain [24]. Generally this domain is concerned with placing blocks of
di�erent materials in a three-dimensional world. Naturally, a task that exists in this
domain is the ?;024_1;>2:_01BCA02C (<, ;) task, which represents the task of placing a
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block of a certain material< to a location ; represented by a three-dimensional coordinate.
A method that matches this task is the ?;024_1;>2:_3(<, ;,<2) method shown in Fig. 3.1.
Intuitively speaking, this method achieves placing a block at the location by removing a
block that already exists at the location ; of a possibly di�erent material<2 than< as its
�rst subtask, and then placing a block of the correct material< at the location ; .

Figure 3.1.: The ?;024_1;>2:_3 method of the Minecraft Domain.

When the possible fact changes are computed by Lilotane for ?;024_1;>2:_3(<, ;,<2)
as described in 2.3.1.1, two literals 4<?C~ (;) and ¬4<?C~ (;) are added: Literal 4<?C~ (;) is
added because the �rst subtask removes a block at ; while ¬4<?C~ (;) is added because
the second subtask places a block at ; . Intuitively speaking, a method responsible for
placing a block at a speci�c location ; should not have the literal 4<?C~ (;) as a possible
fact change, since a block will exist at location ; after the methods execution. In fact, it is
not possible that 4<?C~ (;) holds after the execution of ?;024_1;>2:_3(<, ;). Our concept
of postconditions solves this issue, and Fig. 3.2 shows the state independent possible facts
for ?;024_1;>2:_3(<, ;) computed with and without postconditions.

Figure 3.2.: The possible fact changes for the ?;024_1;>2:_3 method of the Minecraft
Domain, computed without (left) and with postconditions (right).

3.2.1. Concept

Intuitively speaking, an operations postconditions are a set of literals that always hold
after the execution of said operation, similarly to how preconditions must hold before the
execution of an operation. In the fundamental publication [9], one of the �rst formalizations
of HTN planning was presented and this formalization allowed HTN problems to de�ne
constraints that could among other things be used to enforce certain facts before, between

23



3. Pruning Techniques

or after certain tasks. While the input format by which planning problems can be handed
to Lilotane does not support the notion of constraining predicates between or after tasks,
even if it did, the planning domain might still be possible to model without them and as
such, a domain modeler might not have the motivation to encode this extra information.
Even the set of preconditions for a given operation is often not as expressive as it could be,
and for this reason Lilotane actually already contains a procedure for inferring additional
preconditions. Similarly to this, we now present procedures to infer postconditions in
Lilotane and use them to make the reachability analysis more accurate as shown in the
example in the previous section.

3.2.2. Computation of State Independent Postconditions

We will now describe how the state independent postconditions pc> for a lifted primi-
tive operation > are computed. For a lifted, primitive operation > with e�ects e�> and
preconditions ?A4> , its state independent postconditions pc> are computed as:

pc> := (?A4> \?A43 e�>) ∪ (e�−> \?A43 e�+> ) ∪ e�+>
This formula is correct because it consists only of literals that always hold after the

execution of > . To give an intuitive understand of this, we can summarize the computation
as the combination of three sets:

1. The preconditions of > that cannot be contradicted by any e�ect of > . These hold
because they held before the execution of > and since no e�ect with di�erent polarity
and the same predicate exists, they could not be negated by any e�ect of > .

2. The negative e�ects of > that cannot be contradicted by any positive e�ect of > .
Similarly, since no positive e�ect exists of the same predicate for each of these, they
hold after the execution of > .

3. The positive e�ects of > , which always hold after the execution of > by de�nition.

It might seem too strict to use the relative predicate complement instead of the regular
relative complement and deleting only literals that are matched exactly as to their vari-
ables in the calculation above, but we have found that this is strictly necessary and the
computation is otherwise not correct: While literals of the same predicate with di�er-
ing polarity and di�erent parameters are not necessarily in direct con�ict after they are
grounded, we cannot know whether this will be the case with the lifted literals at hand, if
the intersections of their respective argument’s domains are not empty. Since it is crucial
that postconditions of children hold under all circumstances for the computation and
later usage of postconditions for compound operations, we have to calculate the relative
predicate complement of e�+> in e�−> and of e�> in ?A4> as shown above.

Since we not only want to compute state independent postconditions for a compound
operation, but also use them during the calculation of state independent possible facts of
that operation, we will present the computation of state independent postconditions and
possible facts for compound operations in an intertwined way. Given a compound opera-
tion > with subtasks BD1C0B:B> containing possible child operations, the state independent
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1 pfc> := 〈〉;
2 pc> := ?A4> ;
3 for B ∈ BD1C0B:B> do
4 pcB :=

⋂
2∈B pc2 ;

5 pfcB :=
⋃
2∈B pfc2 ;

6 ;
7 pc> := pc> \?A43 pfcB ;
8 pfc> := pfc> \ pcB ;
9 ;

10 pc> := pc>
⋃

pcB ;
11 pfc> := pfc>

⋃
pfcB ;

Algorithm 7: Computing state independent postconditions and possible fact changes
for compound operations.

postconditions pc> and possible fact changes pfc> are computed with the procedure shown
in Alg. 7.

This algorithm, starts with the empty set for pfc> and the preconditions of > as the initial
pc> . It then iterates over all subtasks, repeating the same procedure: First it computes the
intersection pcB of postconditions (line 4) and the union pfcB of possible fact changes of the
children (line 5) for each subtask. Using these subtask postconditions and possible facts,
the previously found global possible facts pf> and postconditions pc> are reduced. The
postconditions pc> are reduced via relative predicate complement, since any of the possible
fact changes with di�erent polarity and the same predicate might annul this postcondition
once grounded. The set pfc> is reduced via regular relative complement and pcB , because
only the exactly matching literal with di�erent polarity can annul an e�ect with absolute
certainty regardless of which constants are later substituted for the free lifted variables.
Finally, the procedure uni�es the reduced sets pc> and pfc> with the newly found sets
from the subtask. Even though this algorithm shows the computation for preprocessing
state independent postconditions, the computation of state dependent postconditions at
runtime follows a very similar pattern as will be seen in the next section.

Alg. 7 together with the procedure to compute state independent postconditions for
primitive operations is integrated into the previous computation of state independent pos-
sible fact changes in the preprocessing step of Lilotane. Through this altered preprocessing
alone, we already found further pruning in many domains.

3.2.3. Computation of State Dependent Postconditions

To achieve even further pruning, we also compute state dependent postconditions during
runtime when computing the state dependent possible fact changes pfc>,G,; for an operation
> at location G, ; . The updated and �nal procedure of how this is done can be seen in Alg. 8.
As an additional input, it receives the postconditions that hold at the current position pcG,; .
How these are calculated will be explained in Section 3.2.4.

The �rst di�erence of the updated algorithm can be seen in lines 3 and 4. Line 3 checks
whether a the negation of a precondition of the queried operation is contained in pcG,; .
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Input :operation > , pfG,; , pcG,;
Result: Bool, pfc>,G,; , pc>,G,;

1 A>>C := 64C%A4?A>24BB43)A44 (>);
2 nodes_left := 8=8C80;#>34�D364C ;
3 if (A>>C .?A4⋂ pcG,; ) ≠ ∅ then

4 return (�0;B4, {}, {}) ;
5 if 8B%A8<8C8E4 (A>>C) or A>>C .BD1C0B:B.B8I4 () > nodes_left then
6 lpfc>,G,; := A>>C .pfc;
7 pc>,G,; := (pcG,; \?A43 A>>C .pfc)⋃ A>>C .pc ;
8 else
9 nodes_left := nodes_left − A>>C .BD1C0B:B.B8I4 ();

10 lpfc>,G,; := 〈〉;
11 pc>,G,; := pcG,;

⋃
A>>C .?A4 ;

12 for B ∈ A>>C .BD1C0B:B do
13 (E0;83, lpfcB, pc>,G,; ) := CA0E4AB4 (B, lpfc>,G,; , pfG,; , pc>,G,; , nodes_left) ;
14 if ¬E0;83 then
15 return (�0;B4, {}, {});
16 lpfc>,G,; := lpfc>,G,;

⋃
lpfcB ;

17 lpfc>,G,; := lpfc>,G,; \ pc>,G,; ;
18 return ()AD4, 6A>D=3�D;; (lpfc>,G,; ), B0=8C8I4 (pc>,G,; )) ;
Algorithm 8: Final algorithm for computing state dependent possible fact changes
and postconditions, di�erences to Alg. 2 highlighted in green.

If that is the case, the operation cannot be possible at this position and �0;B4 is returned
to trigger the operation’s pruning. The queried operation’s preconditions were not been
checked in Alg. 2, since the instantiation step for the queried operation already ensured
their validity.

Further, the updated algorithm calculates the postconditions pc>,G,; that hold after the
queried operation. In the case that the hierarchy is not traversed, pc>,G,; is computed by
reducing the set pcG,; with the new possible fact changes and combining what is left with
the state independent postconditions found in the root node (line 7). In the case of further
traversal, pc>,G,; is computed iteratively by calling the CA0E4AB4 function (line 13). After
every subtask, the found postconditions are used to reduce the set of found possible facts
in line 17. As an additional output, the updated 64C%�� function then returns the set of
postconditions pc>,G,; that hold after the execution of the current operation. This set is
sanitized, meaning all postconditions with parameters that are not constants, or pseudo
constants contained in the signature of > , are removed.
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Input : subtask B , lpf, pfG,; , pc , nodes_left
Result: Bool, lpfcB , pcB

1 BD1C0B:_E0;83 := �0;B4;
2 lpfcB := 〈〉;
3 pcB := 〈〉;
4 for 2ℎ8;3 ∈ B do
5 2ℎ8;3_E0;83 := A4BCA82C+0A801;4B (2ℎ8;3, lpf, pfG,; );
6 if 2ℎ8;3_E0;83 then
7 2ℎ8;3_E0;83 := 2ℎ42:%A42>=38C8>=B (2ℎ8;3, lpf, pfG,; , pc );
8 if ¬2ℎ8;3_E0;83 then
9 nodes_left := nodes_left + =>34�=2A40B4;

10 2>=C8=D4 ;
11 if =>34.ℎ0B'4BCA82C43+0A801;4B () then
12 nodes_left := nodes_left + =>34�=2A40B4;
13 if 8B%A8<8C8E4 (2ℎ8;3) or 2ℎ8;3.BD1C0B:B.B8I4 () > =>34B_;4 5 C then
14 pc2ℎ8;3 := pc \?A43 2ℎ8;3.pfc;
15 pc2ℎ8;3 := pc2ℎ8;3

⋃
2ℎ8;3.pc;

16 lpfc2ℎ8;3 := 2ℎ8;3.pfc;
17 else
18 lpfc2ℎ8;3 := 〈〉;
19 nodes_left := nodes_left − 2ℎ8;3.BD1C0B:B.B8I4 ();
20 lpf_2>?~ := lpf;
21 pc2ℎ8;3 := pc

⋃
2ℎ8;3.?A4;

22 for BD1C0B: ∈ 2ℎ8;3.BD1C0B:B do
23 E0;83, lpfcBD1C0B: , pc2ℎ8;3 := CA0E4AB4 (BD1C0B:, lpf_2>?~, pfG,; , pc2ℎ8;3 , nodes_left);
24 if ¬E0;83 then
25 2ℎ8;3_E0;83 := �0;B4;
26 1A40: ;
27 lpf_2>?~ := lpf_2>?~

⋃
lpfcBD1C0B: ;

28 lpf_2>?~ := lpf_2>?~ \ pc2ℎ8;3 ;
29 lpfc2ℎ8;3 := lpfc2ℎ8;3

⋃
lpfcBD1C0B: ;

30 lpfc2ℎ8;3 := lpfc2ℎ8;3 \ pc2ℎ8;3 ;
31 if 2ℎ8;3_E0;83 then
32 BD1C0B:_E0;83 := )AD4;
33 lpfcB := lpfcB

⋃
lpfc2ℎ8;3 ;

34 pcB := pcB
⋂

pc2ℎ8;3 ;
35 return (BD1C0B:_E0;83, lpfcB, pcB);
Algorithm 9: Final CA0E4AB4 algorithm with postconditions, di�erences to Alg. 3
highlighted in green.
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3.2.3.1. Updated Algorithm for Recursive Traversal

The updated and �nal algorithm for recursive traversal of the hierarchy can be seen in
Alg. 9. It too receives a set of postconditions pc that hold before this subtask B . This set is
used when checking preconditions in line 7. The updated 2ℎ42:%A42>=38C8>=B algorithm
can be seen in Alg. 10. In it, preconditions are additionally checked for validity concerning
the postconditions pc by checking if the negation of a precondition is contained in pc.
Further, the updated CA0E4AB4 method computes postconditons for every child pc2ℎ8;3 . In
the case of no further traversal for a child (line 13), the postconditions of the child are
computed as the relative predicate complement of 2ℎ8;3.pf in pc (line 14), combined with
the state independent postconditions of the child node 2ℎ8;3.pc. In the case of further
traversal, pc2ℎ8;3 is instantiated with pc and the preconditions of the child 2ℎ8;3.?A4 (line
21), and is then iteratively computed via recursive calls to CA0E4AB4 in line 23. Additionally,
the ‘temporary’ child postconditions pc2ℎ8;3 are used to reduce the sets lpf_2>?~ and
lpfc2ℎ8;3 in lines 28 and 30. Finally, CA0E4AB4 calculates the subtask’s postconditions pcB as
the intersection of the child postconditions in line 34, which is returned as an additional
output in line 35.

Input :=>34 , lpf, pfG,; , pc
Result: Bool

1 for ?A42>=38C8>= ∈ =>34.?A42>=38C8>=B do
2 if ¬?A42>=38C8>= ∈ pc then
3 return �0;B4 ;
4 if ¬8B'402ℎ01;4 (?A42>=38C8>=) then
5 return �0;B4;
6 return )AD4;

Algorithm 10: 2ℎ42:%A42>=38C8>=B function using postconditions.

3.2.4. Computing Positional Postconditions

1 . . .
2 pfG+1,; := pfG,; ;
3 for >?4A0C8>= ∈ (G, ;) do
4 E0;83, pfc>,G,; , pc>,G,; := 64C%�� (>?4A0C8>=, pfG,; , pcG,; );
5 if E0;83 then
6 pfG+1,; := pfG+1,;

⋃
pfc>,G,; ;

7 pcG+1,; := pcG+1,;
⋂

pc>,G,; ;
8 . . .
9 . . .

10 pfG+1,; := pfG+1,; \ {fact ∈ pcG+1,; | fact is fully ground};
11 . . .
Algorithm 11: Schematic excerpt of instantiation function using postconditions.
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For further pruning, we also use the calculated postconditions per operation > at a given
position G to compute postconditions which hold after this position G . These can then be
used when instantiating position G + 1. A schematic excerpt of the function instantiating
a position (G, ;) is shown in Alg. 11. It calculates the postconditions holding after the
current position pcG+1,; (line 7) by computing the intersection of the postconditions pc>,G,;
of all operations at the position G . This is correct because these literals will hold after
the current position regardless of which of the operations is executed and because one of
the operations at a given position must be part of every successful encoding representing
a valid plan in Lilotane. For the computation of the possible facts pfG+1,; for the next
position, the individual sets pfc>,G,; are combined (line 6) as before. Finally, after traversing
all operations for the position, the ground literals in pcG+1,; are used to remove impossible
literals from pfG+1,; .
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In this chapter we will evaluate our pruning techniques presented in the previous chapter.
We start o� by giving some notes and details on our implementation in Section 4.1 and
presenting our evaluation setup in Section 4.2. We will then spend Section 4.3 optimizing
the values for the parameters our approach introduces. After this, we continue with an in
depth evaluation of our approach per domain on our benchmark set in Section 4.4. Lastly,
we compare the new Lilotane version against the old Lilotane version and other state-of-
the-art hierarchical planners in terms of performance and plan quality in Section 4.5.

4.1. Implementation

Our extensions of Lilotane were implemented in C++ 17 like the existing Lilotane codebase.
Our source code is available at https://github.com/NikolaiLMS/lilotane. For hashsets and
and hashmaps we also used the e�cent implementation from [1]. As a SAT solver we used
Glucose [2] for most runs except those speci�cally labeled with the su�x ‘(C)’ in Section 4.5,
for which we used CaDiCaL [7]. We will now elaborate on some implementation details
that improve the e�ciency of the techniques from chapter 3.

4.1.1. Reduction of Found Li�ed E�ects

Input : literal ;1, literal ;2
Result: Bool

1 0BB4AC (;1.?A43820C4 = ;2.?A43820C4);
2 0BB4AC (;1.?>;0A8C~ = ;2.?>;0A8C~);
3 for 0A6�=34G, 0A6 ∈ 4=D<4A0C4 (;1.0A6B) do
4 if ¬8B�A44 (0A6) and 0A6 ≠ ;2.0A6B [0A6�=34G] then
5 return �0;B4;
6 return )AD4;
Algorithm 12: Function for checking whether the ground hull of a literal ;1 is a
superset of the ground hull of another literal ;2.

In the implementation, the literals of which the ground hull is computed at the end of
algorithms 2 and 8 (lines 13 and 18) are reduced so that less redundant computations are
done when computing the ground hull. This is achieved by removing literals whose ground
hull is the subset of the ground hull of a di�erent literal in the set. The procedure for
checking this for two given literals is shown in Algorithm 12. To give an example, consider
a precondition of the form ?A42 (�, ?), and ?A42 (?, ?) where� is a constant and ? stands for
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a free variable, i.e., the latter preconditions ground hull contains all possible combinations
of possible constants for both parameters. In this case, the latter preconditions ground
hull contains all the ground preconditions contained in the former preconditions ground
hull, and as such we can remove the former precondition from our set before grounding.
Depending on how big the domain of possible constants for the second parameter is, we
can save many unnecessary computation steps with this technique and have empirically
found this approach to bring a performance improvement.

4.1.2. Preprocessed Tree

The tree that is preprocessed as described in 3.1.1 and then substituted at runtime does not
actually contain all the information (preconditions, postconditions, e�ects) that is needed
at runtime. Rather, the e�ects, preconditions and postconditions exist only once in memory
for every lifted operation and are substituted at runtime with the appropriate parameters
using a substitution object found in the tree’s nodes which makes up most of the node’s
content. Further, this substitution is only done for every precondition, postcondition and
e�ect just in time when or if it is needed. If, for example, a node’s preconditions turn out
to be invalid, the postconditions and e�ects of said node are never substituted as this is
not necessary.

4.1.3. Caching Rigid Preconditions for Variable Restrictions

For the restriction of variables described in 3.1.2.2, possible constants for variables be-
longing to rigid preconditions are determined using a special caching technique. In the
preprocessing step of Lilotane, all rigid preconditions in the state are used to create a
rigid precondition cache. An example of this computation can be seen in Fig. 4.1. For
every rigid precondition in the initial state B� , every version of this precondition with a
single parameter as completely free variable (denoted by ‘?’) is used as a key in a map,
that maps to the possible constant values for the free parameter. Since the preconditions
are rigid, this map always stays correct, and conversely this type of preprocessing is not
possible for �uent preconditions. This map is then used in A4BCA82C+0A801;4B to determine
possible constants for a newly introduced variable. For example, given the precondition
A8683_?A42>=38C8>=(�,+0A1) where +0A1 shall be restricted, this map can be used to re-
trieve the possible constants (�,�) for +0A1 in constant time instead of having to go
through all possible values for +0A1 and checking each ground precondition against the
initial state.

4.1.4. Avoiding Redundant Precondition Checking

In algorithms 2 and 8, if A4BCA82C+0A801;4B used a precondition to restrict variables and does
not �nd it to be invalid, then this precondition has already implicitly been checked for reach-
ability. Hence, preconditions with this property are not checked again in 2ℎ42:%A42>=38C8>=B .
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Figure 4.1.: Example computation of rigid precondition cache.

4.2. Evaluation Setup

For the evaluations we used the benchmarks of the 2020 IPC planning competition[4],
which comprise a total of 24 diverse domains. We used two machines with 507GB and
550GB of RAM respectively, running Intel Xeon E5-4640 CPUs @ 2.40GHz with 32 cores.
We executed up to 28 runs in parallel with a RAM limit of 16GB and a time limit of 1800
seconds. We always executed a single run for each con�guration of our planner over the
benchmark set. We used the pandaPIparser1 to verify found plans. The experimental data
is available at https://github.com/NikolaiLMS/mastersthesis-experimental-data.

4.3. Parameter Evaluation

As a reminder, our approach introduces four parameters that belong to three di�erent
concepts:

• 1. The limit used for variable restrictions as explained in 3.1.2.2; A4BCA82C!8<8C .

• 2. The limit for the number of nodes in the preprocessed tree for each operation
mentioned in 3.1.1; CA44(8I4!8<8C .

• 3. The two parameters for the dynamic traversal explained in 3.1.2.3; 8=8C80;#>34�D364C
and =>24�=2A40B4 .

We will evaluate these parameters in the above shown order in the following sections with
di�erent emphasis on performance and amount of pruning, although in the end our main
goal is optimizing the performance of our planner. For the measurement of performance
and amount of pruning we will use three metrics:

• 1. PAR2-Score: The ‘Penalized Average Runtime 2’-Score, is used as our main
performance metric. For a �nished instance, this score is the number of seconds
that the planner needed to �nd the solution. For an instance which did not �nish,
the instances score is computed as twice the time limit, so 2 ∗ 1800 = 3600 in our
case. The PAR2-score for a domain is the arithmetic average of the scores of all its
instances, and the total PAR2-score for the entire test-set is the arithmetric average
over the PAR2-scores of all instances. For this score, lower is better, hence we will
sometimes use 3600 − PAR2-Score to represent it.

1https://github.com/panda-planner-dev/pandaPIparser
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• 2. IPC-Score: This score was used in the 2020 IPC planning competition and for
an instance that was �nished in C seconds, it is computed as 1.0 if C < 1.0 and as
1 − log(C/1800) otherwise. For an instance for which no solution was found, the
score is 0. A domains IPC-score is the arithmetic average over the scores of all of its
instances, and the total IPC-score is the sum of the IPC-scores for every domain. This
score is quite skewed towards solving instances very quickly rather than solving
more instances, and we will only use it as a secondary performance metric, e.g.,
if the other metrics are the same between di�erent con�gurations we will use the
IPC-score as a tie breaker. For this score, higher is better.

• 3. ANC-Score: This is our main metric to compare amounts of pruning, and it is
computed as the average number of clauses in the �nal encoded SAT formula over
all �nished instances. When we compare this score across the runs of multiple con-
�gurations we only use the �nished instances that were solved by all con�gurations
to prevent elusive skewing. For this score, lower is better.

For the evaluations in sections 4.3.1 through 4.3.3 we did not use the full IPC benchmark
set, but rather a randomly chosen subset of about 70% of the total benchmark, and then
use the remaining 30% to evaluate whether our parameters exhibit over�tting properties
in Section 4.3.4. For the rest of the evaluations we will then use the complete IPC bench-
mark set. It should also be noted that the Lilotane version used in this section di�ers
from the version presented in Section 3, in that preconditions were not used to initialize
postcondition sets (Alg. 7 line 2, Alg. 8 line 11, Alg. 9 line 21).

4.3.1. Variable Restriction Limit

Figure 4.2.: ANC values for runs with di�erent A4BCA82C!8<8C values. Lower is better.
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In this section we will try to determine the optimal value for the A4BCA82C!8<8C parameter.
Since the amount of possible combinations for all four parameters mentioned in 4.3 is
too big to �nd the optimum combination by trying out many combinations, we will use
a di�erent approach where we will determine the ‘optimum’ value for each parameter
isolated from the others by trying di�erent values for the parameter to optimize and keeping
the others �xed. To start, we will determine the optimum parameter for A4BCA82C!8<8C . We
will try di�erent values for A4BCA82C!8<8C while keeping the other parameters �xed. We
will keep the parameter CA44(8I4!8<8C �xed at 1024 and set the dynamic parameters so
that our dynamic approach is e�ectively not used by also setting 8=8C80;#>34�D364C to
1024. In this context we will then �nd the value for A4BCA82C!8<8C with the highest amount
of pruning measured via ANC as the highest priority and performance as measured by
PAR2- and IPC-score as secondary. We do it in this manner, because we want to maximize
the potential for pruning by �nding an upper limit for the work done in a single node
of our tree traversal that still has a meaningful impact on pruning, and then optimize
the performance of our planner by optimizing the number of nodes that are traversed in
sections 4.3.2 and 4.3.3 using the other parameters.

Figure 4.3.: PAR2-scores and IPC-scores for runs with di�erent A4BCA82C!8<8C values.
Higher is better.

Fig. 4.2 shows ANC for our runs with di�erent values for the A4BCA82C!8<8C parameter.
One can see two bigger ‘jumps’ at values 20 and 28. Since pruning is our main priority we
consider only the values of 28 and higher as these have the highest ANC-score. Looking
at this interval in Fig. 4.3, one can see that the PAR2-score reaches its best value with a
A4BCA82C!8<8C of 29 and the IPC-Score dropping signi�cantly with values 210 and higher.
Thus, we choose the value of 29 = 512 for the A4BCA82C!8<8C parameter in the further
evaluation.
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4.3.2. Tree Size Limit

In this section we will evaluate di�erent values for CA44(8I4!8<8C , while keeping the
A4BCA82C!8<8C �xed with the value of 512 found in the previous section, and again not using
the dynamic approach by setting 8=8C80;#>34)A0E4AB4; to the value of CA44(8I4!8<8C for
every run. We will look at both performance and amount of pruning and look at di�erences
between domains.

Figure 4.4.: PAR2-scores and IPC-scores for runs with di�erent CA44(8I4!8<8C values.
Higher is better.

Figure 4.5.: ANC values for runs with di�erent CA44(8I4!8<8C values. Lower is better.
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Fig. 4.4 shows the performance for di�erent CA44(8I4!8<8C values measured via PAR2-
and IPC-score. One can see that the best PAR2 value of 1450 is reached with a CA44(8I4!8<8C
of 27, going further away from this value in both directions seems to worsen both PAR2
and IPC-score. When looking at the amount of pruning measured via �#� in Fig. 4.5, one
can see that even beyond a CA44(8I4!8<8C of 27 the amount of pruning increases further.
We will try to exploit more of this pruning using our dynamic work approach in the next
section.

4.3.3. Dynamic Work Adjustment Parameters

Our strategy for the determination of the dynamic paramter values goes as follows. Firstly,
we will use a CA44(8I4!8<8C of 128 and determine the minimal values for 8=8C80;#>34�D364C
and=>34�=2A40B4 that still achieve (most of) the pruning that happens with an 8=8C80;#>34�D364C
of 128. These minimal values should also pose the optimum values for PAR2 performance
with a CA44(8I4!8<8C of 128 since they traverse as little nodes as possible to achieve the
same amount of pruning. We will then �x the found optimal 8=8C80;#>34�D364C and
=>34�=2A40B4 values, and try values higher than 128 for the CA44(8I4!8<8C and see if we
can reach even better performance as measured by PAR2-score.

Figure 4.6.: PAR2-scores and IPC-scores for runs with di�erent dynamic parameter values.
Higher is better.

Starting with a CA44(8I4!8<8C of 128 we evaluated di�erent 8=8C80;#>34�D364C and
=>34�=2A40B4 values starting with 64 and 1 to try and reach or surpass the PAR2-scores for
the 128 column of the table. Fig. 4.6 shows the PAR2-score of the best 8=8C80;#>34�D364C
and =>34�=2A40B4 value combination for every 8=8C80;#>34�D364C value we tried. It
shows that the optimal values regarding PAR2-score are 8=8C80;#>34�D364C = 8 and
=>34�=2A40B4 = 4. For smaller values of 8=8C80;#>34�D364C we were not able to achieve
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enough further pruning, regardless of how big we set =>34�=2A40B4 and as such we stopped
there.

Figure 4.7.: PAR2-scores and IPC-scores for runs with di�erent dynamic parameter values.
Higher is better.

Using the values of 8=8C80;#>34�D364C = 8 and =>34�=2A40B4 = 4, we then tried bigger
CA44(8I4!8<8C values. The results of these runs can be seen in Fig. 4.7. As one can see,
we could not achieve a better overall %�'2 and �%� score with this method. As such,
the �nal values for our parameters and further evaluations are A4BCA82C!8<8C = 512,
CA44(8I4!8<8C = 128, 8=8C80;#>34�D364C = 8, =>34�=2A40B4 = 4. In the further sections
we will call our �nal planner using these parameter values LilotaneP+ (spoken ‘Lilotane
Plus’).

4.3.4. Evaluation of Overfitting

Lilotane LilotaneP+ Δ
Training set 1488.0 1444.9 -2.9%
Test set 1247.0 1245.0 -0.2%
Entire set 1409.9 1379.2 -2.2%

Table 4.1.: PAR2-score for Lilotane and LilotaneP+ on the di�erent versions of the bench-
mark set. Lower is better.

To check how well our approach can extrapolate on unseen data that we did not
use to optimize parameters, we evaluated the �nished LilotaneP+ planner on a test set
comprising about 30% of the IPC benchmark set. The results can be seen in T. 4.1. It shows
that LilotaneP+ does not achieve the improvement over Lilotane measured by PAR2-score
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on the test set as it does on the training set. On the entire set, the improvement is much
bigger than on the test set but still smaller than on the training set. Our approach seems
to not generalize well on the test set based on this data. We believe this to be the case
because our approach achieves improvements on selected domains and for an overall
improvement on a diverse benchmark set, the balance between exploiting the pruning on
domains where our approach is e�ective and limiting the overhead on domains where it
is not e�ective, is delicate. The data in T. 4.2 supports this hypothesis. Here we see that
LilotaneP+ has advantages on multiple domains on both test and training sets, but only
on the training set the advantages amount to an overall advantage. On the test set, the
overhead on instances where LilotaneP+ is not e�ective o�sets the advantages.

Lilotane LilotaneP+
Blocksworld-G 1288.0 539.1
Satellite 547.3 792.6
Hiking 691.1 216.1
Snake 5.9 9.2
Elevator 139.4 109.5
Minecraft-R 1204.0 1001.0
Total 1488.0 1444.9

Lilotane LilotaneP+
Transport 564.9 608.2
Hiking 1202.0 872.9
Barman 543.0 498.8
Childsnack 146.9 458.1
Snake 0.3 1.0
Elevator 163.3 101.2
Monroe-FO 2.1 1.9
Rover-GTOHP 351.4 294.5
Total 1247.0 1245.0

Table 4.2.: PAR2-scores for Lilotane and LilotaneP+ on the training set (left) and the test
set (right). Only domains with di�erences > 5% in PAR2-score shown. Lower is
better.

4.4. Per Domain Evaluation

In this section we will evaluate the e�ects of LilotaneP+ and how it compares to Lilotane
on our benchmark set on each of its respective domains.

The left part of Fig. 4.8 shows the number of clauses for the �nal SAT formula for each
�nished instance of LilotaneP+ and Lilotane, where each domain is characterized with a
unique symbol. Each datapoint below the diagonal means that the formula of LilotaneP+
was smaller than that of Lilotane and vice versa for points above the diagonal. Additionally,
the datapoints beyond the timeout boundary are instances which one of the planners
solved while the other one did not. One can clearly see four domains on which LilotaneP+
leads to much smaller formulas, for some instances up to two orders of magnitude smaller,
namely Minecraft-Regular, Blocksworld-GTOHP, Hiking and Elevator. LilotaneP+ also
solves seven instances more, mostly of these same domains. Surprisingly there are two
domains with two obvious outliars in which the formula of LilotaneP+ is much bigger;
Transport and Monroe-Fully-Observable. We found out that these increases in the size
of the SAT formula are actually not caused by our approach directly. That is to say, for
implementing our approach we actually did not start out with the exact source code of the
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Figure 4.8.: Direct comparison of encoded clauses and runtimes of Lilotane and LilotaneP+.
Diagonal lines denote orders of magnitude of di�erence.

planner we are referring to as ‘Lilotane’ in this chapter, but rather a slight refactoring of
the source code which we will refer to as LilotaneR, which causes these increases in the
number of encoded clauses. We will brie�y discuss the di�erences of this refactoring and
its e�ects on our evaluation at the end of this section in Section 4.4.2.

Next we will look at the di�erences in runtime for the �nished instances, which are
shown in Fig. 4.8 on the right. One can see that the previously identi�ed four instances
with the biggest reductions in the size of the SAT formula also lead to lower runtimes, with
a reduction of up to about one order of magnitude. For the domains Minecraft-Regular and
Blocksworld-GTOHP the improvement in runtime is consistent across most instances. For
the Hiking domain, LilotaneP+ actually takes longer to solve the instances that are solved
in about ten seconds or less by Lilotane, while solving instances with longer solve times
faster than Lilotane and ultimately solving four more instances on the Hiking domain. The
Elevator domain behaves similarly, where the advantage of LilotaneP+ only appears to
be in the upper right corner of the graph, and otherwise the runtimes are quite scattered
across the diagonal. In general, when dismissing the quadrant with runtimes below one
second, LilotaneP+ seems to have a slight advantage in runtime, albeit not a consistent
one across all domains.

We will now examine di�erences in clauses encoded and di�erences in PAR2-score,
which are shown in Fig. 4.9 on the left. We chose LilotaneR instead of Lilotane as the
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Domain Δ#2;0DB4B Δ%�'2
Blocksworld-G -87.88% -41.45%
Elevator -68.92% -23.78%
Minecraft-R -51.79% -17.92%
Hiking -51.07% -50.62%
Monroe-FO -15.38% -11.74%
AssemblyH -13.77% -0.29%
Depots -12.66% -0.50%
Monroe-PO -9.09% -15.28%
Robot -7.46% 0.01%
Barman -6.58% 12.43%
Factories -5.74% 0.05%
Satellite -5.09% 4.65%
Woodworking -4.85% -1.36%
Freecell -3.33% 0.20%
Minecraft-P -1.47% 0.28%
Logistics -1.00% -0.57%
Childsnack -0.19% 3.01%
Entertainment -0.17% -1.20%
Rover-GTOHP -0.08% 1.66%
Snake 0.00% 28.75%
. . . . . . . . .
Total -14.44% -3.07%

Figure 4.9.: Left: Di�erence in clauses and PAR2-score per domain of LilotaneP+ and
LilotaneR, negative numbers mean lower (better) values for LilotaneP+, only
domains with absolute di�erences > 1% shown, sorted by Δ#2;0DB4B column.
Right: Correlation plot showing the reduction in PAR2-score and reduction in
number of clauses encoded per domain. Positive numbers mean higher (better)
values for LilotaneP+. Same legend see Fig. 4.8

comparison planner for this table to isolate the e�ects of our approach and not blur
the data with the e�ects of the refactoring. The column Δ#2;0DB4B shows the relative
di�erence in the �nal SAT formula as measured by clause size between LilotaneR and
LilotaneP+, averaged over the �nished instances (�nished by both planners) of every
domain. One can see that the four domains we previously identi�ed in Fig. 4.8 as having
the biggest di�erence in clauses encoded also have the highest negative values in the
Δ#2;0DB4B column, and can be seen in the top four rows of the table. These reductions of
50% and higher in the �nal SAT formula seem to correlate with double digit improvements
in the PAR2-score as shown in the Δ%�'2 column. Beyond the top four instances, there
are two more domains where a double digit improvement in PAR2-score can be measured,
namely Monroe-FO and Monroe-PO. For the domains Barman and Snake, signi�cant
deteriorations of PAR2-score are measured. Interestingly, for the Barman domain this
deterioration appears despite a signi�cant decrease in clauses encoded. In general, when
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plotting the correlation of reduction in PAR2-score and reduction of clauses, as can be
seen in Fig. 4.9 on the right, reductions in clauses encoded of about 10% and higher seem
to correlate with signi�cant improvements in runtime measured by PAR2-score, while
small reductions are either accompanied by little to no di�erences or by deteriorations in
PAR2-score.

4.4.1. Impact of Postconditions

Domain Δ#2;0DB4B Δ%�'2
Blocksworld-G -85.67% -41.48%
Elevator -68.92% -26.68%
Monroe-FO -4.34% -5.65%
Rover-GTOHP -0.06% -4.16%
Monroe-PO -2.52% -4.02%
Logistics -0.99% -3.83%
Freecell -3.31% -0.54%
Depots -2.52% -0.21%
Hiking -0.12% 1.92%
Childsnack -0.19% 3.43%
Satellite -5.09% 5.39%
Snake 0.00% 8.31%
Barman -1.92% 12.76%
. . . . . . . . .
Total -7.39% -1.13%

Figure 4.10.: Left: Di�erence in clauses and PAR2-score per domain of LilotaneP+
and LilotaneP+w/oPC, negative numbers mean lower (better) values for
LilotaneP+, only domains with absolute di�erences > 1% shown, sorted by
Δ%�'2 column. Right: Direct comparison of encoded clauses of Lilotane and
LilotaneP+w/oPC. Diagonal lines denote orders of magnitude of di�erence.

While LilotaneP+ consists of both the general approach described in Section 3.1 and
the postcondition approach from Section 3.2, the general approach can be used with-
out postconditions. We used this version without postconditions, which we will call
LilotaneP+w/oPC, to evaluate the impact of our postcondition approach. We have drawn
a scatter plot showing the di�erence in number of clauses encoded which can be seen
in Fig. 4.10 on the right. It shows that the clause reduction on the domains Elevator and
Blocksword-G that we have seen before when comparing LilotaneP+ and Lilotane, are
caused by the postcondition approach and that seven additional instances are solved when
using postconditions.

Further, when looking at di�erences in PAR2-score between LilotaneP+w/oPC and
LilotaneP+ in the table in Fig. 4.10 on the left, it shows that the improvements in PAR2-score
on Blocksworld-G and Elevator are also caused by the postconditions as expected. Further
there are additional signi�cant improvements in PAR2-score on 4 more domains, and
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signi�cant decreases in PAR2-score on 5 additional domains. Overall, using postconditions
improves the PAR2-score by 1.13% and causes an average of 7.39% less clauses encoded
per instance.

4.4.2. E�ects of Refactoring

Domain Δ#2;0DB4B Δ%�'2
Transport 25.77% 3.97%
Monroe-FO 16.52% 8.43%
Depots 8.86% 0.64%
Rover-GTOHP 0.04% -2.17%
Monroe-PO 0.00% 20.37%
Satellite 0.00% 19.62%
Entertainment 0.00% 1.37%
Minecraft-R 0.00% 6.08%
Snake 0.00% 7.27%
Childsnack 0.00% 49.64%
Elevator 0.00% -3.58%
Barman 0.00% -2.25%
Logistics -2.39% 0.70%
Freecell -3.04% 0.54%
. . . . . . . . .
Total 1.92% 1.17%

Figure 4.11.: Left: Di�erence in clauses and PAR2-score per domain of Lilotane and
LilotaneR, positive numbers mean higher (worse) values for LilotaneR, only
domains with absolute di�erences > 1% shown, sorted by Δ#2;0DB4B column.
Right: Direct comparison of encoded clauses of Lilotane and LilotaneR. Diag-
onal lines denote orders of magnitude of di�erence.

When looking at the di�erence between Lilotane and LilotaneR in terms of the number of
clauses encoded in Fig. 4.11 on the right, one can see that the previously identi�ed domains
of Monroe-FO and Transport have higher numbers of clauses encoded than Lilotane.
Additonally, the domain ‘Depots’ exhibits this behaviour aswell, which can be seen in the
table on the left of Fig. 4.11. We do not know why this is the case. However, the table
also reveals signi�cant worsenings in PAR2-score in multiple domains, e.g. Childsnack,
Satellite and Monroe-PO, which do not exhibit an increase in the encoding size. A possible
explanation for this is the lack of a certain caching technique in the refactored version:
Because LilotaneR only uses state independent possible fact changes, the lifted set of
possible fact changes is always the same for every operation which means that the ground
hull can be partly precomputed and cached. This caching technique is not something we
can adapt to our algorithm since our set of lifted possible fact changes is state dependent
and di�erent depending on when the operation is queried.
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Either way, our approach needed to overcome this overhead of about 1.17% measured
by PAR2-score to improve upon Lilotane overall. If the exact reasons for the overhead
could be identi�ed and mitigated, our approach could have a bigger impact.

4.5. State of the Art Comparison

In this section we will compare LilotaneP+ and Lilotane to other state-of-the-art TOHTN
planners. These planners are the following:

• HyperTensioN [16], a greedy, lifted progression search planner written in Ruby.

• PandaSAT [3], a SAT-based planner that works on a grounded version of the problem.

• PandaGBFS [13], a ground planner that uses a heuristic progression search. We
executed it using the ‘RC2(add)’ heuristic.

We will compare both planner performance and quality of the found plans. We executed
one run per planner and instance of the entire IPC benchmark set using the parallel setup
described in 4.2.

4.5.1. Performance

Figure 4.12.: Runtimes of evaluated planners.

For the initial performance evaluation we will look at the cactus graphs in Fig. 4.12.
We used two di�erent version of LilotaneP+ and Lilotane each, one using the SAT solver
Glucose (Fig. 4.12 left) and one version using the SAT solver CaDiCaL (4.12 right). When
using Glucose, LilotaneP+ shows a small but signi�cant advantage over Lilotane, and it
extends the advantage over PandaGBFS further. When using CaDiCaL, both planners
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perform signi�cantly better than with Glucose. While the advantage of LilotaneP+ over
Lilotane seems to dwindle a bit when using CaDiCaL, LilotaneP+ can solve the same
number of instances as Lilotane with an about 800 seconds lower time limit per instance.
PandaSAT outperforms all other planners signi�cantly, solving about 60 more instances
than LilotaneP+. HyperTensioN comes in last, only solving about 400 instances.

Domain HyperTensioN Lilotane(C) LilotaneP+(C) PandaGBFS PandaSAT
Metric PAR2 Cvg. PAR2 Cvg. PAR2 Cvg. PAR2 Cvg. PAR2 Cvg.
Robot 1922.7 0.47 2281.1 0.37 2281.1 0.37 2280.1 0.37 2280.3 0.37
Blocksworld-H 960.2 0.73 3480.4 0.03 3483.4 0.03 2803.6 0.23 2942.4 0.20
Monroe-PO 3600.0 0.00 7.3 1.00 7.8 1.00 1592.3 0.60 258.1 0.95
Logistics 2610.9 0.28 1593.9 0.61 1571.5 0.61 1890.3 0.50 62.7 1.00
Blocksworld-G 1866.1 0.50 843.4 0.77 494.1 0.87 34.6 1.00 772.0 0.80
Satellite 3600.0 0.00 266.2 0.95 529.4 0.90 109.8 1.00 55.1 1.00
Transport 2093.3 0.42 478.2 0.88 478.2 0.88 1152.6 0.70 30.5 1.00
Hiking 600.1 0.83 846.6 0.77 414.4 0.90 637.3 0.83 976.5 0.73
Woodworking 3064.6 0.15 460.6 0.88 460.4 0.88 1895.8 0.47 776.2 0.80
Barman 360.1 0.90 444.5 0.90 317.7 0.95 1810.2 0.50 324.5 0.95
Entertainment 3600.0 0.00 2217.1 0.42 2237.9 0.42 81.1 1.00 1.8 1.00
Childsnack 168.2 0.97 124.5 0.97 124.3 0.97 1102.4 0.70 843.5 0.77
Snake 0.2 1.00 5.0 1.00 6.4 1.00 16.3 1.00 26.2 1.00
Factories 3060.3 0.15 2881.3 0.20 2883.2 0.20 2171.7 0.40 2216.2 0.40
Elevator 1322.6 0.63 43.5 1.00 37.7 1.00 192.1 1.00 4.6 1.00
AssemblyH 3360.2 0.07 3008.4 0.17 3011.1 0.17 3122.0 0.13 2930.6 0.20
Depots 764.8 0.80 740.3 0.80 736.5 0.80 1115.2 0.70 372.4 0.90
Monroe-FO 3600.0 0.00 4.5 1.00 4.2 1.00 93.1 1.00 35.4 1.00
Freecell 3600.0 0.00 2970.1 0.20 2956.7 0.20 3600.0 0.00 3014.8 0.17
Minecraft-P 2700.1 0.25 2926.8 0.20 2934.1 0.20 3092.7 0.15 2800.0 0.25
Minecraft-R 490.4 0.86 1290.5 0.66 1238.4 0.66 832.6 0.80 859.1 0.80
Multiarm-B 3356.9 0.07 3412.0 0.05 3420.7 0.05 2932.3 0.19 2801.9 0.24
Towers 1980.1 0.45 1849.2 0.50 1857.4 0.50 1463.6 0.60 2345.9 0.35
Rover-GTOHP 123.4 0.97 845.2 0.80 713.8 0.83 1584.2 0.57 352.9 0.93
Total 2033.5 10.50 1375.9 15.11 1341.7 15.38 1483.6 14.44 1128.5 16.81

Table 4.3.: PAR2-scores and coverage scores for the di�erent planners on the IPC bench-
mark set. For the PAR2-score, lower is better and for the Coverage higher is
better. Best values per domain are marked in bold. The rows highlighted in blue
(red) show which domains LilotaneP+(C) performs signi�cantly better (worse)
on than Lilotane(C) measured by PAR2-score.

Further, we have computed the PAR2-scores as well as the coverage (solved percentage
of available instances) per domain and assembled these in T. 4.3, where the respective best
values per domain are marked bold. For this table we used the SAT solver CaDiCaL for
Lilotane and LilotaneP+ as the previous data showed an advantage over Glucose. The total
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coverage score is simply the sum of all domain coverage scores, and the total PAR2-score
was computed as the average of the domain scores.

The total PAR2-scores and coverage basically express the hierarchy of performance
already seen in 4.12. For the the total scores in both metrics, PandaSAT is quite ahead
of everyone, LilotaneP+ and Lilotane rank second and third respectively, then follows
PandaGBFS and HyperTensioN comes in last. When looking at the di�erent domains, the
picture becomes more nuanced. In terms of PAR2-score, PandaSAT wins eight domains,
HyperTensioN and LilotaneP+ win six domains each, Lilotane wins one domain and
PandaGBFS wins 3 domains. One should note that LilotaneP+ would win 7 domains
if not competing against Lilotane, and Lilotane would win 5 domains if not competing
against LilotaneP+. The coverage scores generally follow the pattern of the PAR2-scores.
To summarize, LilotaneP+ improves the overall performance of Lilotane by a small but
signi�cant margin, measured by better coverage and PAR2-score. On the Hiking and
Barman domains, LilotaneP+ improves the performance by such a big margin that it now
beats all other planners on these domains. The improvements on the Blocksworld-G,
Elevator, Minecraft-R, and Rover-GTOHP domains are also signi�cant, but not enough to
win them. Interestingly, when using CaDiCaL as the SAT solver, LilotaneP+ achieves a
signi�cant PAR2-score improvement on the Rover-GTOHP domain, which could not be
observed before when using Glucose (compare tables 4.3 and 4.9).

Finally, it should be noted that HyperTensioN and PandaGBFS performed signi�cantly
worse than they did in [16] and [13]. This could be due to a multitude of reasons, e.g.,
executing them in parallel on the same machine instead of sequentially, executing them on
a di�erent CPU, only using one run per instance and planner, not randomizing the planners
seeds etc.. Since all planners were evaluated under the same conditions we consider our
evaluation to be fair, but the di�erence for the named planners performance should still
be noted and possibly investigated in future work.

Figure 4.13.: Found plan lengths of the evaluated planners.
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4.5. State of the Art Comparison

4.5.2. Plan Quality

For the evaluation of plan quality we have drawn a cactus plot in Fig. 4.13 showing the
amount of plans found per plan length, using only the instances for which every planner
found a solution. We again used two di�erent versions of LilotaneP+ and Lilotane each, one
using the SAT solver Glucose (Fig. 4.13 left) and one version using the SAT solver CaDiCaL
(Fig. 4.13 right). In terms of quality, Lilotane and LilotaneP+ have a clear advantage over all
other planners. The quality of plans output by PandaGBFS ranks last, while HyperTensioN
and PandaSAT rank quite similarly about ‘halfway’ between the Lilotane planners and
PandaGBFS.
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5. Conclusion

We have presented pruning techniques for lifted SAT-based hierarchical planning with
Lilotane. Our techniques work by improving the reachability analysis in Lilotane’s instan-
tiation phase to be more accurate, and ultimately leverage additional computation in this
phase of the Lilotane algorithm to reduce the time that is spent encoding and SAT solving
in later phases by pruning impossible operations before they are encoded. Our general
approach works by �nding more accurate possible e�ects for an operation via a dynamic,
look-ahead traversal of the hierarchy originating from that operation, during which we
check preconditions to identify impossible operations and to restrict the possible constants
for variables occuring in that hierarchy with our concept called variable restrictions. In
addition to this, we have introduced the novel concept of postconditions into Lilotane and
successfully integrated it into our general approach.

We have evaluated our approach on a diverse benchmark set, and we have shown that
our approach improves both the overall performance and coverage of Lilotane. On some
domains of the benchmark set it achieves a reduction of the number of clauses in the
encoded SAT formula of up to two orders of magnitude as well as runtime improvements
of up to one order of magnitude. For an overall improvement in terms of performance,
exploiting the improvements on the domains of the benchmark set where our approach
is e�ective has to be carefully balanced against the overhead on domains where it is not
e�ective. We have seen that this balance is �ckle and heavily depends on the values
given to our hyperparameters, which were prone to over�tting the data used to optimize
them. Further, we have seen that the postcondition concept is an e�ective addition to our
general concept and is responsible for much of our performance improvements. When
comparing our approach to other state-of-the-art TOHTN planners, it improves Lilotane’s
advantage in terms of performance to previously beaten planners and makes Lilotane the
best performing planner on seven to previously only �ve out of 24 domains. In terms
of quality of the output plans, our approach is able to sustain Lilotane’s previously held
advantage over all other planners.

5.1. Outlook

There are multiple possibilities for future work to be done and extending our approach by
using the insights we gained in this thesis.

Since we have found big di�erences in performance depending on which SAT solver was
used, a possibility for future work is a SAT solver case study comparing the performance
of di�erent SAT solvers in conjunction with Lilotane and our extensions. Based upon
this, our parameter optimization could then be redone using the best performing SAT
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solver. The parameter optimization could also generally be redone using a state-of-the-art
parameter optimizer like ParamILS [14] or SMAC [15] instead of our chosen approach.

In terms of balancing the amount of work that is done in the function for computing
possible fact changes, an approach worth trying might contain shifting more work to
earlier positions in a given layer, i.e., doing a deeper more thorough traversal of possible
further operations at earlier positions. Since possible facts in the generalized world state
are only removed if an according postcondition is found, which is rare, and otherwise are
deemed reachable for the entire rest of the layer, pruning these, if possible, earlier could
be more e�ective than our presented approach whose dynamic traversal algorithm is the
same for every position in a layer.

Further, the dynamic part of our traversal could be extended. Currently, the dynamic
traversal only uses found invalid nodes and restricted variables as information to cause
further traversal via the node budget. An additional piece of information to consider could
be the size of the set of already found, state dependent possible fact changes in comparison
to the size of the preprocessed set of state independent possible fact changes of the queried
operation: One could hypothesise that the smaller this di�erence is, the less possible fact
changes can be pruned and the less further traversal might be worth it. For �nding out
what information to further consider, the domains of the benchmark set on which our
approach caused the least pruning and the biggest overhead could be analysed. With a
more sophisticated traversal algorithm, one could then also consider getting rid of the
parameter that limits the size of the preprocessed tree, and allowing the algorithm to
dynamically decide at runtime how deep to traverse the hierarchy.

One could also consider an alternative approach where multiple layers are instantiated
in a single iteration instead of just one, and then a depth-�rst search is used to instantiate
this number of layers. This could be viewed as an adaptation of our look-ahead traversal
to the general Lilotane procedure. Since our approach has shown that a limited amount of
‘look-ahead’ work can bring improvements, changing the general procedure in a similar
way might as well. A caveat of this approach would be that Lilotane might lose its feature
of �nding a solution at the minimum expansion depth of the hierarchy, since this limit
might be ‘overshot’ when instantiating multiple layers.
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A. Appendix

A.0.1. Misc. Metrics of LilotaneP+ per Domain

Domain # slv. Δ#2;0DB4B Δ%�'2 IRP IFP IFPPC IOS IOPC
Blocksworld-G 26.00 -87.88% -41.45% 0.00 533.38 173.58 25.92 4.85
Elevator 147.00 -68.92% -23.78% 0.00 258.72 201.46 0.00 31.97
Minecraft-R 41.00 -51.79% -17.92% 19033.71 998.00 0.02 0.00 0.00
Hiking 27.00 -51.07% -50.62% 10496.93 0.11 0.00 39.26 0.00
Monroe-FO 20.00 -15.38% -11.74% 1037.40 199.70 52.90 4.60 0.00
AssemblyH 5.00 -13.77% -0.29% 29.00 16.40 0.00 2.00 0.00
Depots 24.00 -12.66% -0.50% 0.00 64.54 4.62 0.92 0.00
Monroe-PO 20.00 -9.09% -15.28% 1532.95 238.75 98.70 3.60 0.00
Robot 11.00 -7.46% 0.01% 0.00 787.91 771.64 4.00 0.00
Barman 17.00 -6.58% 12.43% 0.00 32.35 4.12 0.00 4.12
Factories 4.00 -5.74% 0.05% 12077.00 46.25 1.00 0.00 0.00
Satellite 14.00 -5.09% 4.65% 0.00 362.14 357.86 0.00 1.00
Woodworking 35.00 -4.85% -1.36% 2.46 249.34 0.00 0.00 0.00
Freecell 13.00 -3.33% 0.20% 737.38 49103.31 46355.00 5.46 0.00
Minecraft-P 4.00 -1.47% 0.28% 1096.00 709.00 0.25 0.00 0.00
Logistics 44.00 -1.00% -0.57% 0.00 444.82 391.32 0.00 2.00
Childsnack 28.00 -0.19% 3.01% 0.00 0.00 0.00 0.00 0.00
Entertainment 5.00 -0.17% -1.20% 10.40 31.20 0.00 0.20 0.00
Rover-GTOHP 23.00 -0.08% 1.66% 10.61 4.00 0.17 0.00 0.00
Transport 34.00 -0.04% -0.02% 0.41 0.00 0.00 0.00 0.00
Multiarm-B 4.00 0.00% 0.26% 0.00 55.50 0.00 0.00 0.00
Snake 20.00 0.00% 28.75% 0.00 4.35 0.00 0.00 0.00
Towers 10.00 0.00% 0.30% 0.00 36.90 0.00 0.00 0.00
Blocksworld-H 1.00 0.00% 0.09% 0.00 92865.00 92823.00 0.00 0.00

Table A.1.: Di�erent metrics for �nished instances by LilotaneP+ averaged over �nished
instances per domain, sorted by column Δ#2;0DB4B . From left to right: # slv.:
number of solved instances, Δ#2;0DB4B : di�erence in number of clauses of �nal
SAT formula (vs LilotaneR), Δ%�'2: di�erence in PAR2-Score (vs LilotaneR),
IRP: invalid rigid preconditions found, IFP: invalid �uent preconditions found,
IFPPC: invalid preconditions found via postconditions, IOS: invalid operations
found via invalid subtasks, IOPC: invalid operations found via postconditions
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A.0.2. State of the Art Evaluation IPC-Scores

Domain HyperTensioN Lilotane(C) LilotaneP+(C) PandaGBFS PandaSAT
Robot 0.43 0.35 0.35 0.37 0.36
Blocksworld-H 0.73 0.02 0.01 0.15 0.11
Monroe-PO 0.00 0.78 0.77 0.23 0.43
Logistics 0.25 0.28 0.26 0.33 0.62
Blocksworld-G 0.39 0.69 0.79 0.86 0.69
Satellite 0.00 0.69 0.59 0.68 0.71
Transport 0.36 0.75 0.74 0.58 0.87
Hiking 0.83 0.66 0.69 0.67 0.61
Woodworking 0.13 0.81 0.80 0.44 0.58
Barman 0.90 0.76 0.76 0.39 0.76
Entertainment 0.00 0.15 0.14 0.77 0.93
Childsnack 0.87 0.91 0.91 0.52 0.70
Snake 1.00 0.94 0.89 0.82 0.81
Factories 0.14 0.17 0.15 0.32 0.29
Elevator 0.63 0.69 0.71 0.57 0.86
AssemblyH 0.06 0.13 0.13 0.11 0.14
Depots 0.76 0.72 0.72 0.63 0.83
Monroe-FO 0.00 0.84 0.84 0.48 0.53
Freecell 0.00 0.05 0.05 0.00 0.09
Minecraft-P 0.25 0.09 0.08 0.05 0.08
Minecraft-R 0.81 0.41 0.48 0.52 0.47
Multiarm-B 0.06 0.03 0.02 0.15 0.13
Towers 0.45 0.39 0.37 0.48 0.30
Rover-GTOHP 0.89 0.54 0.56 0.42 0.61
Total 9.94 11.83 11.82 10.53 12.51

Table A.2.: IPC-Scores for all planners per domain.
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A.0.3. Partition of Runtimes by Stage

Figure A.1.: Partition of runtimes by stage
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