PHYSICAL REVIEW E 106, 015308 (2022)

Accuracy and performance of the lattice Boltzmann method with 64-bit, 32-bit,
and customized 16-bit number formats

Moritz Lehmann®,"-* Mathias J. Krause ®,? Giorgio Amati ®,> Marcello Sega®,* Jens Harting®,*> and Stephan Gekle

' Biofluid Simulation and Modeling—Theoretische Physik VI, University of Bayreuth, Bayreuth, Germany

2Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe, Germany

3CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome Branch, Italy
4Helmholtz Institute Erlangen-Niirnberg for Renewable Energy, Erlangen, Germany

® (Received 12 January 2022; accepted 7 June 2022; published 26 July 2022)

Fluid dynamics simulations with the lattice Boltzmann method (LBM) are very memory intensive. Alongside
reduction in memory footprint, significant performance benefits can be achieved by using FP32 (single) precision
compared to FP64 (double) precision, especially on GPUs. Here we evaluate the possibility to use even FP16
and positl6 (half) precision for storing fluid populations, while still carrying arithmetic operations in FP32. For
this, we first show that the commonly occurring number range in the LBM is a lot smaller than the FP16 number
range. Based on this observation, we develop customized 16-bit formats—based on a modified IEEE-754 and
on a modified posit standard—that are specifically tailored to the needs of the LBM. We then carry out an
in-depth characterization of LBM accuracy for six different test systems with increasing complexity: Poiseuille
flow, Taylor-Green vortices, Karman vortex streets, lid-driven cavity, a microcapsule in shear flow (utilizing the
immersed-boundary method), and, finally, the impact of a raindrop (based on a volume-of-fluid approach). We
find that the difference in accuracy between FP64 and FP32 is negligible in almost all cases, and that for a large
number of cases even 16-bit is sufficient. Finally, we provide a detailed performance analysis of all precision
levels on a large number of hardware microarchitectures and show that significant speedup is achieved with

1

3Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universitdt, Erlangen, Germany

mixed FP32/16-bit.

DOI: 10.1103/PhysRevE.106.015308

I. INTRODUCTION

The lattice Boltzmann method (LBM) [1-4] is a powerful
tool to simulate fluid flow. The parallel nature of the un-
derlying algorithm has led to (multi-)GPU implementations
[5-62], becoming a popular choice as speedup can be up
to two orders of magnitude compared to CPUs at similar
power consumption. However, most GPUs have only poor
FP64 (double precision) arithmetic capabilities' and thus the
vast majority of GPU codes have been implemented in FP32
(single precision), while most CPU codes are written in FP64.
This difference, and, in particular, whether FP32 is suffi-
cient for LBM simulations compared to FP64, has been a
point of persistent discussion within the LBM community
[15-20,31-36,52-58,60,63-65]. Nevertheless, only a few pa-
pers [19,35,36,52,60,66] provide some comparison on how
floating-point formats affect the accuracy of the LBM and
mostly find only insignificant differences between FP64 and
FP32 except at very low velocity and where floating-point

*Corresponding author: moritz.lehmann @uni-bayreuth.de

'As of June 2022, the only GPUs with >2 TFLOPs/s in FP64
are H100, MI250(X), MI210, A100, CMP 170HX, MI100, A30,
V100(S), Titan V, GV100, MI60, MI50, Radeon Pro VII, GP100,
P100, Radeon VII, W9100, and W8100. All other data-center, gam-
ing, and pro GPUs have limited FP64 capabilities.

2470-0045/2022/106(1)/015308(28)

015308-1

round-off leads to spontaneous symmetry breaking. Besides
the question of accuracy, a quantitative performance compar-
ison across different hardware microarchitectures is missing,
as the vast majority of LBM software is either written only for
CPUs [67-79] or only for Nvidia GPUs [30-56] or CPUs and
Nvidia GPUs [18-29].

A second point of concern has been the amount of video
memory on GPUs, which is in general smaller than standard
memory on CPU systems and can thus lead to restrictions in
domain size. LBM solely works on density distribution func-
tions (DDFs) f; (also called fluid populations)—floating-point
numbers [80-83]—that need to be loaded from and written
to video memory in every time step. These DDFs take up
the majority of the consumed memory. If wanting to reduce
the memory footprint of LBM with reduced floating-point
precision, it comes to mind to store the DDFs in a lower
precision number format (streaming step) while doing arith-
metic in higher (floating-point) precision (collision step). This
is equivalent to decoupling arithmetic precision and memory
precision [84,85]. As a desirable side effect, since the lim-
iting factor regarding compute time is memory bandwidth
[12-21,30-45,52-55,59,60,63,64,67,86—88], lower precision
DDFs also vastly increase performance. Such a mixed pre-
cision variant, where arithmetic is done in FP64 and DDF
storage in FP32, has already been used by Refs. [35,57]. Using
FP32 arithmetic and FP16 DDF storage would be even better,
but has not yet been attempted due to concerns about possibly

©2022 American Physical Society

https://orcid.org/0000-0002-4652-8383
https://orcid.org/0000-0003-1026-6462
https://orcid.org/0000-0003-1116-1443
https://orcid.org/0000-0002-0031-905X
https://orcid.org/0000-0002-9200-6623
https://orcid.org/0000-0001-5597-1160
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.015308&domain=pdf&date_stamp=2022-07-26
https://doi.org/10.1103/PhysRevE.106.015308

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

insufficient accuracy. Lower 16-bit precision has already been
successfully applied to other fluid solvers [§9-91] and to a lot
of other high-performance computing software [92,93].

The purpose of this paper is thus twofold: First, to render
mixed FP32/16-bit precisions feasible for LBM, we intro-
duce customized 16-bit number formats that turn out to be
superior to standard IEEE-754 FP16 in LBM applications and
in many cases perform as accurately as FP32. Therein, we
leverage that some of the FP32 bits do not contain physical
information or are entirely unused, similar to Ref. [89]. This
approach requires minimal code interventions and can be eas-
ily combined with any velocity set, collision operator, swap
algorithm, or LBM extension. In addition to using custom-
built floating-point formats, we show that shifting the DDFs
by subtracting the lattice weights and computing the equi-
librium DDFs in a specific order of operations as originally
proposed by Skordos [66] and further investigated by He and
Luo [94] and Gray and Boek [60]—an optimization benefi-
cial across all floating-point formats and already widely used
[6-12,24-26,31,35,53,60,66,68-76,88,94]—turns out abso-
lutely crucial for the 16-bit compression.

Second, we present an extensive comparison of FP64,
FP32, FP16, shifted positl6 as well as our customized for-
mats. Regarding LBM accuracy, we study Poiseuille flow
through a cylinder [95], Taylor-Green vortex energy dissi-
pation [66,96], Karman vortices [97] from flow around a
cylinder, lid-driven cavity [30,33,37,39,49,52,98-103], defor-
mation of a microcapsule in shear flow [104-106] with the
immersed-boundary method (IBM) extension, and microplas-
tic particle transport during a raindrop impact [10] with the
volume-of-fluid and IBM extensions. Regarding performance,
we exploit the capability of our FluidX3D LBM implementa-
tion written in OpenCL [6-12] to provide benchmarks for all
floating-point variants on a large variety of hardware, from the
world’s fastest datacenter GPU over various consumer GPUs
and CPUs from different vendors to even a mobile phone
ARM system-on-a-chip (SoC), and show roofline analysis
[64,87,107] for one hardware example.

II. LATTICE BOLTZMANN ALGORITHM
A. LBM—overview

The LBM is a Navier-Stokes flow solver that discretizes
space into a Cartesian lattice and time into discrete time steps
[1-4]. For each point on the lattice, density p and velocity
i of the flow are computed from so-called density distribu-
tion functions (DDFs) f; (also called fluid populations). The
DDFs are floating-point numbers and represent how many
fluid molecules move between neighboring lattice points in
each time step. Because of the lattice, only certain directions
are possible for this exchange and there are various levels of
this directional discretization, in 3D typically 19 (including
the center point), where space-diagonal directions are left
out. After exchange of DDFs from and to neighboring lattice
points (streaming), the DDFs are redistributed locally on each
lattice point (collision). For the collision, there are various ap-
proaches, the most common being the single-relaxation-time
(SRT), two-relaxation-time (TRT), and multirelaxation-time
(MRT) collision operators [1,12].

The computation of the streaming part is done by copying
the DDFs in memory to their new location. The algorithm is
provided in Appendix A 2 a with notation as in Appendix A 3.

B. DDF-shifting

To achieve maximum accuracy, it is essential not to work
with the DDFs f; directly, but with shifted fﬁhif“’d =fi—w;
instead [53,60,66,88,94]. w; = f4(p = 1, i = 0) are the lat-
tice weights and p and # are the local fluid density and
velocity. This requires a small change in the equilibrium DDF
computation,

S o, = S5,) — M
(- i-d iioii
=w,-p-< 7ot +C—2+1—2—c2>—wi 2)
@&y d-n @
=wu0'< 7ot _2_c2+c_2>+wi('0_1)’ 3)

and density summation:

p= Z (_fl‘Shiﬂed + wi) — (Z f;_ShiflEd) + 1. (4)
We emphasize that it is key to choose Eq. (3) exactly as pre-
sented without changing the order of operations,” otherwise
the accuracy may not be enhanced at all [60,66,94]. With
this exact order, the round-off error due to different sums is
minimized. This offers a large benefit, most prominently on
FP16 accuracy, by substantially reducing numerical loss of
significance at no additional computational cost. Since it is
also beneficial for regular FP32 accuracy, it is already widely
used in LBM codes such as our FluidX3D [6-12], OpenL.B
[68—71], ESPResSo [24-26], Palabos [72-76], and some ver-
sions of walBerla [53]. In Appendix A2, we provide the
entire algorithm without and with DDF-shifting for compar-
ison and in Appendix A 3 we clarify our notation.

We also recommend doing the summation of the DDFs in
alternating + and — order during computation of the velocity
u to further reduce numerical loss of significance, for exam-
ple, u, = (fi— f2+ f1— fs+ fo— fio+ fizs — fua + fis —
f16)/ p for the x component in D3Q19.

Gray and Boek [60] also proposed computing (p — 1) =
Y-, fehifted a5 a separate variable and directly inserting it into
Eq. (3); while we do not advise against this, we found its
benefit to be insignificant at any floating-point precision while
increasing complexity of the code and thus omit it in our
implementation.

Although without DDF-shifting, the equation for the
equilibria dictates the number distribution of the DDFs,
with DDF-shifting applied, the DDFs are always centered
around zero. Higher-order equilibria definitions such as
Refs. [108-110], an alternative to Eq. (3), are likely to work as
well with 16-bit compression if DDF-shifting is applied, but
further validation is required.

2To minimize the overall number of floating-point operations, terms
should be precomputed such that 7" = 4 . (1 (B> + C) £ B) +
D requires only three fused-multiply-add (FMA) operations.

015308-2

ACCURACY AND PERFORMANCE OF THE LATTICE ...

PHYSICAL REVIEW E 106, 015308 (2022)

102 LANLENLENLE LN R BN LI BLANL R EELENLLL B
10
104
10
10—8 PR [0S S P NSRS PSSR BT] P N

-0.

T
a

Ty
ol

probability
distribution

-
o
o
o
-
o
N
o
w
o
N
o
wul

102 LANLENLENLE LN R BN LN BELANL R EELRNLLL B

10°

104

106

10-8 MR L SR B B BT RS

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
fishifted

T
a

Ty
ol

probability
distribution

FIG. 1. Histogram of the DDFs for the lid-driven cavity simula-
tion from Sec. [IVD (Re = 1000, Ma = 0.17, grid resolution 1283%)
after 100 000 LBM time steps. The simulation is performed without
the DDF-shifting (top) and with DDF-shifting (bottom), both times
in FP32/FP32.

C. Which range of numbers does the LBM use?

In Fig. 1, we present the distribution of f; and f:hifted for
the example system of the lid-driven cavity from Sec. IV D. A
more detailed look at the DDF distributions of this system are
provided in Figs. 19 and 20 in the Appendix. Similar data for
the remaining setups are given in Appendix Fig. 21. It is quite
remarkable how the number range in all cases is very lim-
ited. The f; accumulate around the LBM lattice weights (for
D3Q19 w; € {%, 1—18 %}) and the ffhif‘ed accumulate around
0, where floating-point accuracy is best. So for FP32 not only
are the trailing bits of the mantissa expected to be nonphysical
numerical noise [89], but also some bits of the exponent are
entirely unused, meaning one can waive these bits without
losing accuracy.

To find the theoretical maximum number range of f; and

ffhiﬁed, we insert ii; = ¢ Ig_JI in Egs. (A4) and (3) and find
il)

that % I/ <68 or /l) | fieq'Shmed| < 8*hifed | respectively, with

the values of § and §*hf®d depending on the velocity set in

use (Table I).
With > 0.5, through Eq. (AS), we get in the worst case

Il S 12,5208, (5)

|fishifled| é |2 fie(-I‘Shlfted| é 2,0 8shifted’ (6)

respectively, because the DDFs in stable simulations are
expected to follow the equilibrium DDFs. The density p
typically deviates only little from p =~ 1. Assuming p < 2
leads to | f;| < 2 being the worst-case maximum number range
(D3Q13, no DDF-shifting). With the more typical D3Q19 and

TABLE 1. The numerical value of § and §*"if®d depending on the
used velocity set.

D2QY9 D3Q7 D3Q13 D3Q15 D3Q19 D3Q27

3 0.45 0.47 0.50 0.42 0.34 0.30
gshifted (0,31 0.35 0.25 0.31 0.17 0.21

DDF-shifting, the same number range |ffd| < 2 restricts
the density to a less strict p < 6. Keeping the sign is required
because ffhif‘ed (and also f;) can be negative.

| fehifted] < 2 and the resulting p < 6 is even sufficient for
covering a fairly large class of compressible flows. The shock
simulations in Ref. [108], for example, range in density from
0.6 to 2.2, so these simulations could possibly work as well.
However, careful considerations need to be made for the in-
dividual setup to not exceed this limit. If a higher value for
density is required, the floating-point formats with limited
range could be shifted toward higher numbers; however, care-
ful validation is required as this comes at the cost of worse
accuracy at small numbers. The later proposed posit formats
P16¢S and P16;S do not put a limit on density, so they would
be a better fit for simulations with large density variation.

III. NUMBER REPRESENTATION MODELS

A 16-bit number can represent only 65 536 different val-
ues. The task is to spread these along the number axis in a
way that the most commonly used numbers are represented
with the best possible accuracy. There is a variety of number
representations that come to mind as a 16-bit storage format:
fixed-point, floating-point as well as the recently developed
posit format [111], and each of them can be adjusted specif-
ically for the LBM. Figure 2 illustrates the number formats
investigated in this paper and Fig. 3 shows their accuracy
characteristics.

A. Floating-point
1. Overview

In the normalized number range, a floating-point number
[80-83] is represented as

x= (=1 2 A +27"m), (7)
—— —

sign exponent mantissa

with s being the sign bit, e being an integer representing the
exponent, and m being an integer representing the mantissa.
b is a constant called exponent bias and n,, is the number
of bits in the mantissa (values in Table II). The precision
is log;o(2"*1) decimal digits® and the truncation error is
€=2""

When the exponent e is zero, the mantissa is shifted to the
right as a way to represent even smaller numbers close to zero,
although at less precision. This is called the denormalized
number range and making use of it during the conversions that
will be described below is not straightforward, but essential
alongside correct rounding to keep decent accuracy with the
16-bit formats.

2. Customized FP16 formats for the LBM

In our lattice Boltzmann simulations, we implement and
test three different 16-bit floating-point formats:

(1) FP16: Standard IEEE-754 FP16, with FP32 < FP16
conversion supported on all CPUs and GPUs from within the
last 12 years.

3The +1 refers to the implicit leading bit of the mantissa.

015308-3

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

TABLE II. Comparing the properties of the number formats used here to store the LBM DDFs f;.

Smallest normalized number

Smallest denormalized number

Bits n, b Digits € Range
IEEE FP64 | 64 52 1023 16.0 2.2x107'% +1.797693x10%®
IEEE FP32 | 32 23 127 7.2 1.2x1077 43.402823x10%
IEEE FP16 | 16 10 15 33 9.8x10™* =+6.550400x 10*
FP16S 16 10 30 33 9.8x10™* =£1.999023x10°
FP16C 16 11 15 36 49x10™* £1.999512x10°
Posit P16,S | 16 0-13 - <42 >1.2x107* +£1.280000x% 10?
Posit P16;,S | 16 0-12 0 <39 >24x10™* £2.097152x10°
Posit P16,C | 16 0-12 0 <39 >24x107™* £1.999756x10°

2.225074x 10738
1.175494x 10~
6.103516x107°
1.864464x107°
6.103516x107°

4.940656x 107324
1.401298x 104
5.960464x 1078
1.818989x 10712
2.980232x10°8
4.768372x 1077
2.910383x 10!
1.734724x 10713

(2) FP16S: We downscale the number range of IEEE-754
FP16 by x2~1 to £2 and use the convenience that all modern
CPUs and GPUs can do IEEE-754 floating-point conversion
in hardware.

(3) FP16C: We allocate one bit less for the exponent (to
decrease number range towards small numbers) and one bit
more for the mantissa (to gain accuracy). The number range
is also limited to £2. This custom format requires manual
conversion from and to FP32.

o

01111111111|00000000000000000000000000...

...00000000000000000000000000
IEEE-754 FP64 (1| 1152)

‘0 ’ 01111111 ‘00000000000000000000000‘
IEEE-754 FP32 (18] 23)

‘0‘01111‘0000000000‘
IEEE-754 FP16 (1|5 10)

‘o‘ 11110‘0000000000‘
FP16S (1|5 10)

‘0‘ 1111 ‘00000000000‘
custom FP16C (1|4 |11)

‘0‘111111110 000000’
posit P16 ¢S (1| ny+1 | 14-n,)

‘0‘11110 1 000000000‘
posit P16 1S (1| n.+1 |1 | 13-n,)

0

1 11 000000000000 ‘

custom asymmetric posit P16 oC (1 | n, | 2 | 13-n,)

’0 100000000000000‘
INT16S (1]15)

FIG. 2. The number 1.0 represented by the different formats we
investigate here. The leftmost single bit is the sign s and the right-
most segment is the mantissa m. For floating-point (FP), the center
segment is the exponent e. FP16S and FP16C are new formats specif-
ically designed to store the DDFs. Fixed-point (INT16S) does not
have an exponent. Posits have dynamic partitioning of the segments,
with an extra regime segment and an optional exponent segment next
to the mantissa.

When looking at Table II and Fig. 3, FP16S and FP16C
differ in extended range toward small numbers versus halved
truncation error €. The question arises which of these two
traits is more important for LBM. FP16 is inferior to both
FP16S and FP16C as it combines lower mantissa accuracy
and less range toward small numbers. Since FP16S comes at
no additional computational cost and complexity compared to
FP16, FP16S should always be preferred over FP16 for storing
the DDFs.

3. Floating-point conversion: FP32 « FP16S

The IEEE-754 FP32 < FP16/FP16S conversion is sup-
ported in hardware and therefore only briefly described below.

FP32 — FP16S: For the FP32 — FP16 conversion,
OpenCL provides the function vstore_half_rte that is exe-
cuted in hardware. To convert to the FP16S format instead, we
shift the number range up by 2! via regular FP32 multiplica-
tion right before conversion. This is equivalent to increasing
the exponent bias b by 15.

FP16S — FP32: For the FP16 — FP32 conversion,
OpenCL provides the function vload_half that is executed
in hardware. To convert from the FP16S format instead, we

FP32 FP16S P164S P16,C
FP16 FP16C — P16;S INT16S -
2-50 2-40 2-30 2-20 2—10 20 210 220
8 T T T T T T T T
° /
g 4 i : AN]
o2 / .
he] | i
0 L tuml suml n T | suaml I
106 1012 108 104 100 10% 108
number x

FIG. 3. Accuracy characteristics of the number formats investi-
gated in this paper. This plot shows only the local minima (measured
graphs see Fig. 18). FP16C reduces number range but increases ac-
curacy in the normalized regime (horizontal part). For floating-point
formats, the downward slope indicates the denormalized part, where
accuracy behaves like fixed point. We also show 16-bit fixed-point
scaled by x2~'* (INT168S). Posits (P16) have slopes left and right,
with highest accuracy in the middle, which here is shifted from 1 to
%, hence the “S”. P16,S/P16,S have 0/1-bit exponents, making the
slopes more (less) steep and decreasing (increasing) number range.
P16,C is a custom format with 2-bit exponent but asymmetric slope.

015308-4

ACCURACY AND PERFORMANCE OF THE LATTICE ...

PHYSICAL REVIEW E 106, 015308 (2022)

shift the number range down by 2~ via regular FP32 multi-
plication right after conversion.

4. Floating-point conversion: FP32 « FP16C

For FP32 < FP16C conversion, we developed a set of
fast conversion algorithms that work in any programming
language and on any hardware which we describe in some
more detail further below. An OpenCL C version is presented
in Listing 1.

We ditch NaN and Inf definitions for an extended number
range by a factor of 2 and less complicated and faster conver-
sion. In PTX assembly [112], the FP32 — FP16C conversion
takes 25 instructions and FP16C — FP32 takes 26 instruc-
tions.

FP32 — FP16C: The first step is to interpret the bits
of the FP32 input number as uint, for which there is the
as_uint (float x) function provided by OpenCL. The sign
bit remains identical as the leftmost bit via bit-masking and
bit-shifting. To assure correct rounding, we add a 1 to the 12th
bit from left (0x00000800), because mantissa bits at positions
12 to 0 later are truncated. Next, we extract the exponent e by
bit-masking and bit-shift by 23 places to the left.

For normalized numbers, the exponent is decreased by the
difference in bias 127 — 15 = 112 and bit-shifted to the right
by 11 places. A final bit-mask ensures that there is no overflow
into the sign bit. The mantissa is bit-shifted in place and or-ed
to sign and exponent.

For denormalized numbers, we first add a 1 to place
24 (0x00800000) of the mantissa (to later figure out how
many places the mantissa was shifted) and then bit-shift it
to the right by as many places as the new exponent is be-
low zero. Correct rounding, however, makes this a bit more
difficult: We need to add 1 for rounding to the leftmost
place of the mantissa that is cut off. To undo the initial
rounding we did earlier, instead of 0x00800000, we add
0x00800000-0x00000800=0x007FF800, then shift by one
place less than the new exponent is below zero, add 1 to the
rightmost bit and finally shift right the one remaining place.

The exponent itself is the switch deciding whether the nor-
malized or denormalized conversion is used. As an optional
safety measure, we add saturation: If the number is larger than
the maximum value, we override all exponent and mantissa
bits to 1 (bitwise or with 0x7FFF).

FP16C — FP32: To convert back to FP32, we first
extract the exponent e and the mantissa m by bit-masking and
bit-shifting. Additionally, since we intend to avoid branching,
we already count the number of leading zeros* v in the
mantissa for decoding the denormalized format: We cast m to
float,’ reinterpret the result as uint, bit-shift the exponent
right by 23 bits and subtract the exponent bias, giving us the
base-2 logarithm of m, equivalent to 31 minus the number of
leading zeros.

“The OpenCL function c1z(m) also counts the number of leading
zeros. While translated into a single c1z.b32 PTX instruction (in-
stead of cvt.rn.£32.u32 mov.b32 shr.u32), clz.b32 executes
much slower, leading to noticeably worse performance.

SCasting an int to float implicitly does a log2 operation to
determine the exponent.

The sign bit is bit-masked and bit-shifted in place. The
exponent e again decides for normalized or denormalized
numbers: For normalized numbers (e # 0), the exponent is
increased by the difference in bias 127 — 15 = 112 and or-
ed together with the bit-shifted mantissa. For denormalized
numbers (e = 0 and m # 0), the mantissa is bit-shifted to the
right by the number of leading zeros and the shift-indicator
1 is removed by bit-masking. The mantissa is or-ed with the
exponent which is set by the number of leading zeros and
bit-shifted in place.

Finally, the uint result is reinterpret as float via the
OpenCL function as_float (uint x).

B. Posit
1. Overview

The novel posit format (type-III Unum) [90,111,113,114]
is different from floating-point in that the bit segment for the
mantissa (and also exponent) is variable in size and there is
another bit segment, the regime, with variable size as well.
The posit number representation is

x= (D@L 2 a2), ()
—— N — —_—
sign regime exponent mantissa

with sign s, regime r, exponent e, and mantissa m. n = 1 +
(n, + 1) 4+ n, + n,, is the total number of bits, whereby n,, n,,
and n,, are the variable numbers of bits in regime, exponent
and mantissa, respectively.

For very small numbers, the regime bit pattern looks like
000. .01 (negative r), then gets shorter toward 01 (r = —1),
flips to 10 (r = 0) and then gets longer again, looking like
111. .10 (positive r). The last bit is the regime terminator bit
that unambiguously tells the length of the regime. This bit is
not included in the regime size n,, so the size of the regime
bit pattern is n, + 1. n, determines the value of the regime:
r = —n, if the regime terminator bit is 1 or r = n, — 1 if the
regime terminator bit is 0.

For increasing regime size, the remaining bits for exponent
and mantissa are shifted to the right, so the mantissa (and if
no mantissa bits are left also the exponent) become shorter
and precision is reduced.

Posits can be designed with different (fixed) exponent sizes
or no exponent at all. Just like for floating-point, larger expo-
nent increases the range but decreases accuracy. This way, the
posit format is designed to deliver variable accuracy based on
where the number is in the regime: best accuracy is around
41.0 where the regime is shortest (superior to floating-point)
but for both tiny and large numbers, much precision is lost
[114].

2. Customized posit formats for the LBM

As a storage format for LBM DDFs, where numbers close
to 0 need to be resolved best and numbers outside the +2
range are not required at all, the standard 16-bit posit formats
seems an unfavorable choice. However, by multiplying a con-
stant before and after conversion, similar to FP16S, we shift
the most accurate part down to smaller numbers. We take a
closer look at three different posit formats:

(1) P16¢S: 16-bit posit without exponent, shifted down by
x27. In the interval [27'!, 273], accuracy is equal to or better

015308-5

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

than FP16S and in the interval [2710, 274], accuracy is equal
to or better than FP16C. The range toward small numbers is
very poor and for numbers >273, accuracy is vastly degraded.

(2) P16,S: 16-bit posit with one-bit exponent, shifted
down by x27. In the interval [27!3, 27!], accuracy is equal to
or better than FP16S and in the interval [2711, 2737, accuracy
is equal to or better than FP16C. For numbers <273 or >27!,
accuracy is reduced. The range toward small numbers is
between FP16S and FP16C. This format poses no limitations
on the density p because its number range is +22!.

(3) P16,C: Custom asymmetric 16-bit posit with two-bit
exponent, not shifted. By only covering the lower flank, we
can get rid of the bit reserved for the regime sign, thus making
the regime shorter by one bit and increasing the mantissa
size by one bit in turn. The conversion algorithms are vastly
simplified with the asymmetric regime. Accuracy is better or
equal to FP16C in the interval [277, 2] and equal or better than
FP16S in the interval [2~!", 2]. For smaller numbers, accuracy
is slowly reduced, but the range toward small numbers is
excellent.

Both P16yS and P16;S provide numbers >2 that are un-
used in the LBM. Shifting the number range further down
would degrade accuracy for larger numbers too much. Since
the LBM with DDF-shifting uses numbers around O and it is
not entirely clear in which order of magnitude accuracy is
most important, it is also unclear if the increased accuracy
in the center interval will benefit more than the decreased
accuracy further away from the center will adversely affect.

3. FP32 « posit conversion

Conversion between FP32 and posit is not supported in
hardware (yet). Since the reference conversion algorithm in
the SoftPosit library [115] is not written for speed primarily,
we provide self-written, ultrafast conversion algorithms in
Listing 1 in OpenCL C. These work on any hardware. A
detailed description of how the algorithms work is omitted
here but can be inferred by studying the provided listings.
Note that the posit specification [111] does two’s complement
for negative numbers to have no duplicate zero and an infinity
definition instead. To simplify the conversion algorithms and
since infinity is not required in our applications, we just use
the sign bit to reduce operations, so there is positive and
negative zero.

C. Fixed-point

16-bit fixed-point format with a range scaling of £2 has
discrete additive steps of 271* ~ 6.1107, so this is also the
smallest possible value. Compared to floating-point, precision
is worse for small numbers and better for large numbers. For
the LBM, this is insufficient and does not work.

D. Required code interventions

At all places where the DDFs are used as kernel parame-
ters, their data type is made switchable with a macro (fpXX).
At any location where the DDFs are loaded or stored in mem-
ory, the load (store) operation is replaced with another macro
as provided in Listing 1 for FP32, FP16S, FP16C, P16,S,
P16,S, and P16,C. In the Appendix in Listing 2, we provide

the core of our LBM implementation, exemplary for D3Q19
SRT.

IV. ACCURACY COMPARISON
A. 3D Poiseuille flow

A standard setup for LBM validation is a Poiseuille flow
through a cylindrical channel [95]. For the channel walls,
we use standard nonmoving midgrid bounce-back boundaries
[1,12] and we drive the flow with a body force as proposed
by Guo et al. [116]. Simulations are done with the D3Q19
velocity set and a single-relaxation-time (SRT) collision
operator. We compare the simulated flow profile ug, () with
the analytic solution [117]

f

o (R* — 1) ©)

Utheo (1) =
to compute the error. Here, p = 1 is the average fluid density,

SR
r= -5) i3 (10)

is the radial distance from the channel center, R is the channel
radius,

2 R Uax T 1
v = =

(1)

Re 3 6
is the kinematic shear viscosity, and t is the relaxation time.
The dimensions of the simulation box are

Li=1, Ly=L :=2{R+1). (12)

The flow is driven by a force per volume f that is calculated
by rearranging Eq. (9) with r = 0O:

40V Umax
f="

In accordance with Ref. [12], we define the error as the L,
norm [1, p. 138]:

E— \/Zf—o ttsim (7) — utheo(r)|2.
Zf:o |utheo(r)|2

In Fig. 4, we keep the Reynolds number and center velocity
constant at Re = 10 and up,x = 0.1, and vary channel radius

13)

(14)

FP64/FP64 FP32/FP16 FP32/P164S
FP64/FP32 % FP32/FP16S FP32/P164S
FP32/FP32 FP32/FP16C + FP32/P16,C
LB3D FP64 - LB3D FP32
100 f——————rrrrr
E S o /l/f)'
S 10] e - — :
- 1F S 1
Yok 4
0.01 L 1 Lol L L1l 1 Lo
100 10 102 103

channel radius R

FIG. 4. Error of D3Q19 SRT Poiseuille flow for varying channel
radius R (lattice resolution) at constant Reynolds number Re = 10
and constant center flow velocity upm.x = 0.1. The dashed lines rep-
resent corresponding simulations without DDF-shifting.

015308-6

ACCURACY AND PERFORMANCE OF THE LATTICE ...

PHYSICAL REVIEW E 106, 015308 (2022)

FP64/FP64 FP32/FP16 FP32/P164S
FP64/FP32 » FP32/FP16S FP32/P164S
FP32/FP32 FP32/FP16C + FP32/P16,C
100 =TT T T
2104 ? i
-~ E. 3
So1p 12
" I
12
° E . =)
x s { R
E : ERLl
o 1,&@‘,(;,4;“0:&@(&«‘% Sassaer 1&
0.1 el :
100 T8
X 10 F Xm [ood™
o 1 g-\ Seyaeyecdor 5:~<—~'—>e,:f:—,::::t»:':"i':"fu; i :,I,
o1 b— vt [
10 103 102 10t

center velocity Umnay

(a) R=31

FP64/FP64 < FP32/FP16 FP32/P160S
FP64/FP32 ~ FP32/FP16S FP32/P164S
FP32/FP32 FP32/FP16C + FP32/P16,C
3 BRI L B R AT T T
s S
\\{Zmyy/ 10
- o ¢ [0)
i el &
210 F ¥ 17
WOl 12
0.1 E—— o 3
100 ¢ 15
X10f 1,
~ F N =
w1 R X N 12
0.1 C M A | PRl S DT e =
100 S AR e S
L : e] =
i 10 X Vs W"s-/‘-f-“—r"“ “Z
IR VAV SRR T e, io
0.1 P S S T B W 1k i v fan 2
104 1073 1072 101

center velocity Umay

(b) R = 63

FIG. 5. Error of D3Q19 SRT Poiseuille flow for varying center velocity up,x at constant Reynolds number Re € {0.1, 1, 10, 100} and
constant channel radius (a) R = 31 and (b) R = 63. The dashed curves represent corresponding simulations without DDF-shifting. The vertical

lines represent the LBM relaxation time 7 = 1.

R and kinematic shear viscosity v accordingly. For R < 15,
we see almost no difference between any of the floating-
point variants. Here the staircase effect of the channel walls
dominates the error. Moving toward larger radii, the error
increases at first for FP32 /FP16 and FP32/FP16S and later for
FP32/FP16C as well, while FP64/xx and FP32/FP32 show
no difference in this regime either. 16-bit posit formats hold up
even better here with their increased peak accuracy. P16,C for
small R behaves like FP16C and then migrates over to FP16S
as R becomes larger and the DDFs become smaller. We also
simulate the same system without DDF-shifting (dashed lines)
to quantify the difference. Already here we see that the 16-bit
formats become unfeasible without DDF-shifting.

To confirm that the observed agreement between
FP32/FP32 and FP64/FP64 is not a coincidence of our
implementation, in Fig. 4 we include data from a simulation
of the very same system with the LB3D code [79] that is
further described in the Appendix.

We now investigate the error in more detail for a con-
stant channel radius R € {31, 63} in Fig. 5. We simulate the
flow in the channel for different Reynolds numbers Re e
{0.1, 1, 10, 100} and vary the center velocity um,x and kine-
matic shear viscosity v accordingly.

We find that the higher the Reynolds number, the further
the minimal error is shifted toward larger uy,,x, always staying
close to where T = 1 (vertical lines). The better small num-
bers can be resolved, the lower uy,,x can be chosen before
the error suddenly becomes large. The better the accuracy of
the mantissa, the lower the overall error, up to a certain point
where discretization errors dominate at large .

It is important to consider that compute time is proportional
t0 Umax and that U, < Umax,r=1 = % smaller than at the
error minimum is thus less practically relevant. In the domain
Umax = Umax.r=1 (in Fig. 5, right of the vertical lines), FP16C

is almost always superior to FP16S, especially at higher Re.
Posits show their superior precision most of the time, if the
DDFs are just in the right interval.

We find that without DDF-shifting, the 16-bit formats be-
come very inaccurate. For FP32/FP32, there is some benefit
at higher Re and especially low velocities up,x. For FP64, the
DDF-shifting does not make any noticeable difference in this
setup as discretization errors dominate.

To better understand where the error comes from in the
Poiseuille channel radially, we exemplary plot the error con-
tribution as a function of the radial coordinate r for the
parameters R = 63, unx = 0.1, Re = 10 in Fig. 6. We find
that for FP64 to FP32, the largest error contribution is near the
channel wall (staircase effect along the no-slip bounce-back
boundaries). For FP32/16-bit, there is equal error contri-
bution near the wall, but the majority of the error comes
from close to the channel center. The wall poses a boundary
condition not only for velocity [u(R) = 0] but also for the

FP64/FP64 © FP32/FP16 FP32/P16,S
FP64/FP32 x FP32/FP16S FP32/P164S
5 FP32/FP32 FP32/FP16C + FP32/P16,C
~ 2X107° e
EN: 4
3 1x10° | 3 y
£ L
\?L: :ﬂ"ﬂ":l.l-*-_‘—-‘__—q__ b
0 Seeermr——t t

0 8 16 24 32 40 48 56 64

FIG. 6. Radial error profile of D3Q19 SRT Poiseuille flow for
a channel radius R = 63 and center flow velocity upm,, = 0.1 at
constant Reynolds number Re = 10. The small dots on the right
represent corresponding simulations without DDF-shifting. Note that
the error contribution is on a linear scale here.

015308-7

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

FIG. 7. Illustration of the velocity field at + = 0 with colored
streamlines.

velocity error. Going radially inward from the channel wall,
at first the staircase effect smooths out, lowering the error,
but then each concentric ring of lattice points accumulates
systematic floating-point errors, so at the channel center the
error is largest. For FP32/FP32, this error behavior is barely
noticeable but visible upon close inspection. For FP64, the
floating-point errors are so tiny that the staircase smoothing
continues all the way through the radial profile, making the
error smallest in the center. Without DDF-shifting, there is
no noticeable difference for FP64 and FP32 compared to
when DDF-shifting is done, but the 16-bit formats become
unfeasible.

B. Taylor-Green vortices

An especially well suited setup for testing the behavior at
low velocities is Taylor-Green vortices. A periodic grid of
vortices is initialized with velocity magnitude uq (illustrated
in Fig. 7) and then over time viscous friction slows down the
vortices while they remain in place on the grid. In 2D, the
analytic solution [66,96] reads

(1) = +uo cos(kx) sin(ky) e 2"¥" (15)

uy(t) = —uy sin(kx) cos(ky) e 2%, (16)

32 .
p(t)=1— % (cos(2kx) + cos2ky)) e "F1 (17)

and at¢ = 0is used to initialize the simulation with uy = 0.25.
Herev = § — é = é is the kinematic shear viscosity at T = 1
and k = Z”TN L = 256 is the side length of the square lattice
and N = 1 is the number of periodic tiles in one direction. The

kinetic energy

Lol o,
E(t):/0 /0 E(ui—l—ui)dxdy
2

=2 r? vk (18)
drops exponentially with time 7. Ey = E(t = 0) denotes the
initial kinetic energy. We compute the kinetic energy from
the simulation as the discrete sum across all lattice points and
compare it to the analytic solution in Fig. 8. The simulated
kinetic energy drops exponentially as well, but at some point
it does not drop further and remains constant as a result of

FP64/FP64 FP32/FP16 FP32/P16,S
FP64/FP32 — FP32/FP16S FP32/P164S
FP32/FP32 FP32/FP16C — FP32/P16,C
0 theory —
1Q5 L L L
o [
uT1015 |
~ 1020 |-
wigas [
10-30 L
10-35....I....I....I....'....
0 50000 100000 150000 200000 250000
t

FIG. 8. Relative kinetic energy E(¢)/Ey of a D2Q9 SRT simu-
lation of Taylor-Green vortices compared to the analytic solution in
Eq. (18). Dashed lines represent corresponding simulations without
DDF-shifting.

floating-point errors. The relative energies of the plateaus are
no coincidence: The plateaus are located at approximately the
truncation error € squared (Table II) for the respective number
format in use. Particularly interesting is that for FP64/FP32
the plateau is much lower than for FP32 €2, being closer
to FP64 €2. With P16,S, the DDFs are outside of the most
accurate interval, so accuracy is poor overall.

Finally, we note that the plateaus only reach down to €2 if
DDF-shifting is properly implemented as presented in Eq. (3).
Without DDF-shifting, there is significant loss in accuracy
across all number formats.

C. Karman vortex street

Our next setup is a Karman vortex street in two dimensions
[97]: a cylinder with radius R = 32 is placed into a simula-
tion box with dimensions 512x1024. At the box perimeter,
a velocity of # = (0, 0.15) is enforced using nonreflecting
equilibrium boundaries [12,118]. The Reynolds number is set
to Re = @ = 250, defining the kinematic shear viscosity

v=3z— é and relaxation time t.

If starting the simulation with perfectly symmetric initial
conditions, only floating-point errors can eventually trigger
the Karman vortex instability. We notice that in some cases,
the instability would not start at all even after several hundred
thousand time steps. To avoid this nonphysical behavior, we
initialize the velocity i = (0, 0.15) not only at the simulation
box perimeter but also on the left half x < 256. This imme-
diately triggers the Karman vortex instability regardless of
floating-point setting.

We probe the velocity at the simulation box center
(256, 512) over time in Fig. 9. This demonstrates that,
when DDF-shifting is done, the 16-bit formats are almost
indistinguishable from FP64 ground truth both qualitatively
and quantitatively, with only minimal phase-shift for FP16,
FP16S, and P16,S.

To assess in detail where eventual differences may be
present beyond a single velocity point probe, we look at the
vorticity throughout the simulation box. In Fig. 10, we show
the vorticity in the very much zoomed-in range of +0.001. For
the 16-bit formats, in low vorticity areas there is noise present.
Comparing FP16 and FP16S, the extended number range

015308-8

ACCURACY AND PERFORMANCE OF THE LATTICE ...

PHYSICAL REVIEW E 106, 015308 (2022)

FP64/FP64 FP32/FP16 FP32/P164S
FP64/FP32 - FP32/FP16S - FP32/P164S
FP32/FP32 FP32/FP16C - FP32/P162C
T T e T
0.1F i
3 0F
01 f ~ L R \
PR LAY TR LAV T MO UA Al ! AR | N N W
0 20000 40000 60000 80000 98000 99000 100000
t

FIG. 9. Velocity x component of the Karman vortex street at
the simulation box center (256, 512) over time for various floating-
point precision. Dashed lines represent corresponding simulations
without DDF-shifting. Even after 100000 LBM time steps (50 vor-
tex periods), the 16-bit graphs still cover the FP64 ground truth
as amplitude, frequency, and even phase appear indistinguishable.
Only zooming in at the last oscillation period reveals minuscule
differences in phase for FP16, FP16S, and P16,S. The phase shift
in the 16-bit graphs is large without the DDF-shifting optimization.
FP32/FP16C, FP32/FP32, and FP64/FP32 are indistinguishable
from FP64 ground truth even when zooming in.

toward small numbers has no benefit here. FP16C with DDF-
shifting mostly mitigates this noise, showing that the noise
purely originates in smaller mantissa accuracy and numeric
loss off significance. Our custom posit P16,C has similarly
low noise. P16¢S shows artifacts.

{H

H

FP64/FP64 FP64/FP32 FP32/FP32 FP32/FP16 FP32/FP16S FP32/FP16C FP32/P16OS FP32/P16,S FP32/P16,C

D. Lid-driven cavity

The lid-driven cavity is a common test setup for the LBM
[30,33,37,39,49,52,98—-100] and other Navier-Stokes solvers
[101-103]. We here implement it in a cubic box at Reynolds
number Re = 1000. On the lid, velocity parallel to the y-axis
is enforced through moving bounce-back boundaries [1,12].
The box edge length is L = 128, the velocity at the top lid is
uy = 0.1 in lattice units, and the kinematic shear viscosity is
set by the Reynolds number Re = L—‘ﬁ‘“ = 1000. We simulate
100 000 LBM time steps with the D3Q19 SRT scheme.

Figure 11 shows the y (z) velocity along horizontal (verti-
cal) probe lines through the simulation box center. All number
formats except P16yS look indistinguishable, even without
DDF-shifting. Only when zooming in (not shown), for the
simulations without DDF-shifting, deviations in relative ve-
locity in the second digit become visible. With DDF-shifting,
deviations are present only in the fourth digit, being smallest
for FP16C, P16,S, and P16,C.

E. Capsule in shear flow

Here we test the number formats on a microcapsule in shear
flow, one of the standard tests for microfluidics simulations in
medical applications [105,106]. The D3Q19 multi-relaxation-
time (MRT) [1,12] LBM is extended with the IBM [119] to
simulate the deformable microcapsule in flow. For the IBM,
we use the same level of precision as for the LBM arithmetic,

4!

vorticity

. 0.0010

0.0005
0.0000
-0.0005

-0.0010

H

-

(a) simulations with DDF-shifting

| 1
f:J

| &

|

'l vorticity

. 0.0010

0.0005

0.0000

.—O .0005
-0.0010

FP64/FP64 FP64/FP32 FP32/FP32 FP32/FP16 FP32/FP16S FP32/FP16C FP32/P1608 FP32/P1618 FP32/P16,C

(b) simulations without DDF-shifting

FIG. 10. Vorticity in the vastly overexposed range +0.001 for simulations (a) with and (b) without DDF-shifting, after 100 000 LBM
time steps. All simulations very accurately predict the vortex street, with frequency and amplitude of the vortices being identical and only
insignificant differences in phase-shift even after 50 vortex periods. FP32 is indistinguishable from FP64 ground truth. For 16-bit, in the low
vorticity range there is noise present, equally for FP16 and FP16S, but vastly reduced for FP16C and P16,C. Omitting DDF-shifting vastly
increases this noise and also adds significant phase shift as can be seen by comparing the position of the last red vortex at the bottom.

015308-9

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

relative y-velocity uy/ug

-1.0 -0.5 0.0 0.5 1.0
71— ——= 10
FP64/FP64
I FP64/FP32 —] ¢
o i FP32/FP32 CS
N FP32/FP16 =
8 - FP32/FP16S =
K] FP32/FP16C — 3
a 0.5 00 ¢
Py 1 N
2 2
FP32/P16¢S -0.5 ©
- FP32/P16,S
FP32/P16,C
' Delboscetal. —]
0.0 —— — -1.0
0.0 0.5 1.0

relative y-position y/L

FIG. 11. The y-velocity along a vertical probe line through the
simulation box center as well as the z-velocity along a horizontal
line through the simulation box center. At the top lid, the velocity
is fixed. As the flow goes one rotation clockwise, the width of
the high-velocity peak increases and the height decreases. Dashed
lines represent corresponding simulations without DDF-shifting. As
a reference, we show the data from Delbosc et al. [33].

so either FP64 or FP32. As illustrated in Fig. 12, we place an
initially spherical capsule of radius R = 13.5 in the center of
a simulation box with the dimensions 128 x64x 192, and we
compute 385 000 time steps. At the top and bottom of the sim-
ulation box, a shear flow is enforced via moving bounce-back
boundaries [120]. The membrane of the capsule is discretized
into 5120 triangles and membrane forces, consisting of shear
forces (neo-Hookean) [104,105,121] as well as volume forces
(volume has to be conserved), are computed as in Ref. [105].

The Reynolds number is Re = 0.05, the kinematic shear
viscosity is v = 1 , and we simulate various capillary numbers

Ca= £ € (0. 010 0.025, 0.05, 0.1, 0.2} by varying the

membrane shear modulus k;. The shear rate is y = 1.3107°
in simulation units. To cross validate our results, we perform
the same simulations with ESPResSo (FP32 for LBM, FP64
for IBM) [24], which has been cross validated with boundary-

FIG. 12. Illustration of the capsule in shear flow (FP32/FP32,
Ca = 0.1) simulation at dimensionless times y ¢ € {1, 2, 3, 4, 5}.
Each image shows the simulation box from the side, with the top
and bottom moving bounce-back boundaries marked in green. The
capsule initially deforms to an elongated shape and then performs
tank-treading, i.e., rotating the membrane while keeping its deformed
shape.

FP64/FP64 - FP32/FP16 FP32/P164S ESPResSo -

FP64/FP32 - FP32/FP16S — FP32/P16,S

FP32/FP32 - FP32/FP16C — FP32/P16,C
2 0-6 [Ff T 1T T .
S 0.5 02 &
g 04 0.1 g
S 0.3
§ 0.2} 005 §
501l 0.025 F
S 0.1 o T
S , , , , 0.010 8
g 0.0 (I T T | T | Lo T N | T L T |

0 1 2 3 4 5

dimensionless time yt

FIG. 13. Taylor deformation of the capsule first increases and
then plateaus as the capsule starts tank-treading. This plateau de-
pends on the Capillary number. Dashed lines represent corresponding
simulations without DDF-shifting.

integral simulations and many others in Ref. [105]. In Fig. 13,
we plot the Taylor deformation D = 7= over time, with the
largest and smallest semiaxes a and ¢ of the deformed capsule
[105]. We see that even in this complex scenario, the FP16C
simulations produce physically accurate results with only in-
significant deviations from FP64. The other 16-bit formats,
especially posits, perform noticeably worse here. Without
DDF-shifting, while FP32 still appears identical to ground
truth, all 16-bit simulations do not produce the correct out-
come (deformation remains close to zero). This emphasizes
that DDF-shifting is essential for the lower precision formats.

F. Raindrop impact

Finally, we examine how number formats affect a volume-
of-fluid LBM simulation of a 4mm diameter raindrop
impacting a deep pool at 8.8 2 terminal velocity. This sys-
tem is described and extenswely validated in Ref. [10] to
study microplastic particle transport from the ocean into the
atmosphere. The particles are simulated with the IBM. There,
simulations are performed in FP32/FP32 with the maximum
lattice size that fits into memory, so FP64 is not used here as it
does not fit into the memory of a single GPU. The dimension-

less numbers for this setup are Reynolds number Re = dy” =

33498, Weber number We = d';—' 4301, Froude number
Fr = T = 44.4, Capillary number Ca = “2* = (.1284 and

Bond number Bo = dTpg = 2.179. The simulated domain
is 464 x464 %394 lattice points and runs on a single AMD
Radeon VII GPU. The impact is simulated for 10 ms time,
equivalent to 20416 time steps in LBM units.

The raindrop impact is illustrated in Fig. 14. Note that
the fully parallelized GPU implementation of the IBM with
floating-point atomic_add_£ makes the simulation nondeter-
ministic [10,12] and that the exact breakup of the crown into
droplets is expected to be randomly different every time. We
see minor artifacts at the bottom of the cavity for FP32/P16,S,
but otherwise no qualitative differences in random crown
breakup.

To be able to obtain statistics of ejected droplets and
particles, we run the simulation 100 times each with
FP32/FP32, FP32/FP16S, FP32/FP16C, and FP32/P16,S.
The microplastic particles each time are initialized at different

015308-10

ACCURACY AND PERFORMANCE OF THE LATTICE ...

PHYSICAL REVIEW E 106, 015308 (2022)

o o o (]

FP32/FP32

FP32/FP16S FP32/FP16C FP32/P16;S

FIG. 14. A 4mm diameter raindrop impacting a deep pool at
8.8 % terminal velocity, illustrated at times ¢ € {0, 1, 2, 3,4, 5} ms
after impact as used in Ref. [10].

random positions, resulting in slightly different random crown
breakup. Ejected droplets that touch the top of the simulation
box are measured and then deleted as detailed in Ref. [10]. In
histograms of the size, volume, and particle count depending
on droplet diameter (Fig. 15), we see no significant differences
across the data sets.

To conclude this section, we find that all FP32/FP16S,
FP32/FP16C, and FP32/P16,S are able to recreate the results
of FP32/FP32 in raindrop impact simulations without nega-
tive impact on the accuracy of the results, while significantly
reducing the memory footprint of these simulations. This in
turn enables simulations higher lattice resolution, potentially
increasing accuracy by resolving smaller droplets.

V. MEMORY AND PERFORMANCE COMPARISON

For GPUs, the most efficient streaming step implementa-
tion [63] is the One-Step-Pull scheme (AB-Pattern) with two
copies of the DDFs in memory, because the noncoalesced
memory read penalty is lower than the noncoalesced write
penalty on GPUs [12,15,30,33,35,37,38,51,53,54], see Fig. 22
in the Appendix. One-Step-Pull further greatly facilitates im-
plementing LBM extensions like Volume-of-Fluid, so it is a
popular choice. Our FluidX3D base implementation (no-slip
bounce-back boundaries, no extensions, as in Listing 2) with
DdQq velocity set has memory requirements per lattice point
as shown in Table III. For D3Q19, going from FP32/FP32 to
FP32-16x reduces the memory footprint by 245%, to 93 bytes
per node. If 16-bit compression was combined with in-place

10 [. . ——T
5 . FP32/FP32
59 F 1 FP32/FP16S O 1
£8 °F illfre FP32/FP16C O
2%° - . |, FP32/P16:S
0 -
0.0 0.5 1.0 1.5 2.0
droplet diameter (mm)
(a)

A - T T L B
3t L3k A ep3gpe32 07
EE10F AL FP32/FP16C O]
ge 05 E = FP32/FP16S O 3
o3 "k i v FP32/P164S
G)>0l0'..,7'.I....I..r.l..._.

0.0 0.5 1.0 1.5 2.0
droplet diameter (mm)
(b)

ﬂ T T T L DL
5EQ sL ﬂ FP32/FP32 (1]
285 7 = FP32/FP16S
EET ot i, FP32/FP16C O]
28¢ | Ty FP32/P164S

= 0 PRt L PR EFERRN LR RS S ——

()

0.0 0.5 1.0 1.5 2.0

droplet diameter (mm)
(c)

FIG. 15. (a) The size distribution of droplets, (b) the distribution
of ejected fluid volume by droplet diameter, and (c) the distribution of
microplastic particles in droplets for 100 simulations each conducted
with FP32/FP32, FP32/FP16S, FP32/FP16C and FP32/P16,S.

streaming schemes like AA-Pattern [34], Esoteric-Twist [62],
Shift-and-Swap-Streaming [59], or the simple Esoteric-Pull
[9], the memory footprint can even be reduced by ~67%, to
only 55 bytes per node.

Although our main goal with FP16 is to reduce mem-
ory footprint and allow for larger simulation domains, as a
side effect, performance is vastly increased as a result of
less memory transfer in every LBM time step. For our base
implementation with the DdQq velocity set, the amount of
memory transfers per lattice point per time step is shown in
Table IV. Writing velocity and density to memory in each
time step is not required for LBM without extensions. The-
oretical speedup from FP32/FP32 to FP32/16-bit is 80% for
all velocity sets and swap algorithms.

While most LBM implementations are limited to one
particular hardware platform—either CPUs [67-79], Nvidia

TABLE III. Memory requirements in byte per lattice point of
LBM floating-point variants for the One-Step-Pull swap algorithm
with two copies of the DDFs for the DdQq velocity set.

i 0 flags fi >
FP64/FP64 | 8d 8 1 16g | 8d+9+16¢
FP64/FP32 8d 8 1 8¢q 8d+9+ 8¢
FP32/FP32 | 4d 4 1 8 | 4d+5+ 8¢
FP32/16-bit | 4d 4 | 4qg | 4d+5+ 4q

015308-11

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

TABLE IV. Memory transfer in byte per lattice point per time
step of LBM floating-point variants for the DdQq velocity set.

flags fi by
FP64 /FP64 q 16¢ 17¢q
FP64/FP32 q 8¢q 9¢q
FP32/FP32 q 8¢q 9¢q
FP32/16-bit q 4q 5¢q

GPUs [30-56], CPUs and Nvidia GPUs [18-29] or mobile
SoCs [122,123]—only few use OpenCL [5-17]. With
FluidX3D also being implemented in OpenCL, we are able to
benchmark our code across a large variety of hardware, from
the world’s fastest data-center GPUs over gaming GPUs and
CPUs to even the GPUs of mobile phone ARM SoCs. This
enables us to determine LBM performance characteristics
on various hardware microarchitectures. In Fig. 16, we
show performance and efficiency on various hardware for
D3Q19 SRT without extensions (only no-slip bounce-back
boundaries are enabled in the code). The benchmark setup
consists of a cubic box without any boundary nodes and with
periodic boundary conditions in all directions. The standard
domain size for the benchmark is 2563, except where device
memory is not enough; there we use the largest cubic box that
fits into memory.

We group the tested devices into four classes with different
performance characteristics:

(1) FP64-capable dedicated GPUs (high FP64:FP32
compute ratio) provide excellent efficiency for FP64/xx,
FP32/FP32, and FP32/FP16S. They have such fast mem-

ory bandwidth that the FP32 < FP16C software conversion
brings FP32/FP16C from the bandwidth limit into the com-
pute limit, reducing its efficiency.

(2) Non-FP64-capable dedicated GPUs (low FP64:FP32
compute ratio) have a particularly high FP32 arithmetic
hardware limit, so even with the FP32 <> FP16C software
conversion the algorithm remains in the memory bandwidth
limit. FP32/xx efficiency is excellent except for older Nvidia
Kepler. However, due to the poor FP64 arithmetic capabilities,
FP64/xx efficiency is low as LBM here runs entirely in the
compute limit rather than memory bandwidth limit. Surpris-
ingly, FP64 /FP32 runs even slower than FP64/FP64. This is
because there is additional overhead for the FP64 <> FP32
cast conversion in the compute limit, despite less memory
bandwidth being used.

(3) Integrated GPUs (iGPUs) overall show low perfor-
mance and low efficiency. This is expected due to the slow
system memory and cache hierarchy. Some older models do
not support FP64 arithmetic at all.

(4) CPUs also show low performance and low efficiency.
The low efficiency on CPUs is less of a property of the im-
plementation or a result of OpenCL, and more related to CPU
microarchitectures in general [67]. Other native CPU imple-
mentations of the LBM have equally low hardware efficiency
[67,68,71,73] as a result of multilevel caching, inter-CPU
communication, and other hardware properties unfavorable
for LBM. To illustrate this further, our implementation runs
about as fast on the Mali-G72 MP18 mobile phone GPU as
CPU codes on between 2 and 16 cores, depending on the CPU
model [19,23,27,67,68,71,73,86].

FP64-capable GPUs non-FP64-capable GPUs iGPUs CPUs
15000 | | [Voltal | Kepler [\3]Amp, Turing Pascal Maxwell & [SITISISISIS S @ FP64/FP64
O - ol=(sle L2 2| 13 |64 1:32 1:32 1:32 | 5 Hlg=l=Isel o o|FPE64/FP32
(9] (@) © = (10 [
82, o0 I2BIBE 8 ol & |sl%| 2| 2Z|E| & S|FP32/rP32
IS B181> il ol & o 0|33 2
£= }gI £ Y:5. . L8| (5] & [p|Fr2/Friec m
g = 5000 LT il ol - JHAAAE. da s © @[O 5, |Broadw { Haswell
11 3 ﬂ%l Al §| & j%ﬁli - s © S| 12 | 1:2
- A e] ml% gl*@' o
0 | el R B S B) L
2 8 100%
58 5% iyl ila] A 0 0 A A
gé 0% I II I I IIIJ_II III il 1l 1 -I |I-I-] I | 05 T R S) | PR
3] — — —
AN AR R R MR DR - = e e KRR SR S EE S R S
— LDLDLD(DLDOQ.Q 00202 ol b s O a 3o welonox|go Oldle o mlon S
BHcommuoNVo Slmolgm 2RSS =8 8ES -T ORI O|g pwnFlE|@o RN A NSRS T &
HZOQ’MHH'—cx o| Bl D SV v ol 8 "2 R0|= vaﬂ Dh Pl=[w © Vo X N
DA A T QL X I R o o —=EX @708 S1= 2 X6 alsl<| 8|8yl CEIRF RIS F
HB|0|o|lu olo ot T YIPIE ol « B - FEEXx=2|e 2 QAOI5llZ51=o BIE Y O T o ¥
2=8l888I8 S8 8 x=BlS 8 n e C e h & SIS 8 0I5 Ble| E[E0e|L bl sl th thlih &
mED<.-.>n_o_:¥_@Cgmoonxxng?gf_dEwG:‘gZ8:Gg6‘32%'5u58cc:cug
=7 2 e]” oo o8 855 xXgE S 82653 0V OICs 59Y98|a019=|5591X|S S 28T S
ol<slewnv B2 S ElE Exr < B|TL < 5 9ol 2o o> EolnES|E BlalE L L L0
BelTISgllezlE[gl3 ¥y o 8 L2888 YLoEEIEE B rEg
B FlEeeel & [¥la8S3E & = SL32e 2ol ez —|h|leLee =
S ool T |2t sl 2L S o S35 8% 5SS ElF S S5|5
ssz3 = |IElEglRe R =2 SI71717| S x x x| x
a2 $2122 2 <280’?08 5 2 S © 23 o %] T N K|N
Z 2 8o = £Z3 7la
g8 3 2 2|%
52 2

FIG. 16. Performance of FluidX3D with D3Q19 SRT on different hardware (code as in listing 2). The unit MLUPs/s is an acronym for
mega lattice updates per second, meaning how many times 10° LBM lattice points are computed every second. To obtain the efficiency, we
divide the measured MLUPs/s by the data sheet memory bandwidth times the number of bytes transferred per lattice point and time step
(Table IV). Performance characteristics differ depending on the FP64 arithmetic capabilities as indicated by the FP64:FP32 compute ratios of
the microarchitectures. The two GCDs of the MI250 are separate GPUs with 64 GB unified memory each, similar to dual-GPU cards such as
the Tesla K80; driver 3423.0 (HSA1.1,LC) and ROCm 5.1.3 was used. CPU benchmarks are on all cores. Values in Table V.

015308-12

ACCURACY AND PERFORMANCE OF THE LATTICE ...

PHYSICAL REVIEW E 106, 015308 (2022)

100 p——— g
. compute bound™]
= r FP32/xx hardware limit — 1
g 10f FP32/FP32 3
Z f FP32/FP16S +
E FP32/FP16C + 1
o 1F FP32/P16;S 73
= ; FP32/P164S™ + 1
£ FP32/P16,C
S 0.1 ol e
a-g_ 15 T T T g, AT TR

: L+ 4 FP64/xx hardware limit —
s / * FP64/FP6d |

0.1 Dl FRGAJRP32. . .,

0 1 10 100 1000

arithmetic intensity / (FLOPs/B)

FIG. 17. Roofline model analysis of FluidX3D with the D3Q19
velocity set, running on an Nvidia Titan Xp GPU. For each floating-
point type, the three data points (left to right) correspond to the SRT,
TRT, and MRT collision operators. The arithmetic hardware limit is
different for FP64/xx and FP32/xx, so we use two plots.

It is of note that performance on CPUs with large cache
greatly depends on the domain size: If a large fraction of the
domain fits into the L3 cache, efficiency (relative to memory
bandwidth) is significantly better. Our CPU tests use a domain
size of 256%, so only an insignificant 1% is covered by L3
cache—a scenario representative of typical applications.

On the vast majority of hardware, we actually reach the the-
oretical 80% speedup as indicated by the hardware efficiency
remaining equal for FP32/FP32 and FP32/FP16S. Some
hardware, namely, the Nvidia Turing and Volta microarchi-
tectures, do actually reach 100% efficiency with FP32/FP32
and FP32/FP16S. The Nvidia RTX 2080 Ti is at 100% ef-
ficiency even with FP32/FP16C, since the Nvidia Turing
microarchitecture can do concurrent floating-point and inte-
ger computation and the 2080 Ti has high enough compute
power per memory bandwidth to entirely remain in the mem-
ory bandwidth limit. Some efficiency values are even above
100% as Nvidia Turing and Ampere A100 are capable of
memory compression to increase effective bandwidth beyond
the memory specifications [124,125]. Nvidia Pascal GeForce
and Titan GPUs (that lack ECC memory) lock into P2 power
state with reduced memory clock for compute applications to
prevent memory errors [126], lowering maximum bandwidth
and making perfect (data sheet) efficiency impossible.

FP32/P16¢S and FP32/P16,C performance is very similar
to FP32/FP16C (data not shown), since the conversion needs
to be emulated in software as well. FP32/P16,S performance
is a bit lower because the conversion algorithm is slightly
more complex.

To better understand why performance is excellent with
FP32/xx but not with FP64/xx on non-FP64-capable GPUs,
we perform a roofline analysis [64,107] for the Nvidia Ti-
tan Xp in Fig. 17. The number of arithmetic operations and
memory transfers is determined by automated counting of the
corresponding PTX assembly instructions [112] of the stream-
collide kernel. We note that we count the arithmetic intensity
as the sum of floating-point and integer operations because the
Pascal microarchitecture computes floating-point and integer
on the same CUDA cores. For D3Q19 SRT FP32/FP32, for

example, we count 255 floating-point operations and 248 in-
teger operations. LBM performance scales proportionally to
memory bandwidth, which is indicated by diagonal lines. The
factor of proportionality is different for FPxx/64 (323 byte
memory transfer per LBM time step), FPxx/32 (171 byte),
and FPxx/16 (95 byte) as the amount of memory transfer is
different (Table 1V). FP16 reduces the number of memory
transfers, so the arithmetic intensity (number of arithmetic
operations divided by memory transfers) is increased. The
manual conversion from and to FP16C significantly increases
the number of arithmetic operations, further raising arithmetic
intensity. Nevertheless, even with the arithmetic-heavy matrix
multiplication of the MRT collision operator, all data points
are still within the memory bandwidth limit and thus almost
equally efficient compared to FP32. Actual memory clocks
during the benchmark are 3.5% lower than the data sheet
value (hardware limit) due to the Titan Xp locking into P2
power state [126], inhibiting perfect efficiency for FP32/xx.
In contrast, FP64 /xx is in the compute limit, greatly reducing
performance. The data points in the compute limit can be a
bit above the hardware limit if core clocks are boosted beyond
official data sheet values.

VI. CONCLUSIONS

In this paper, we studied the consequences of the employed
floating-point number format on accuracy and performance
of lattice Boltzmann simulations. We used six different test
systems ranging from simple, pure fluid cases (Poiseuille flow,
Taylor-Green vortices, Karman vortex streets, lid-driven cav-
ity) to more complex situations such as immersed-boundary
simulations for a microcapsule in shear flow or a Volume-of-
Fluid simulation of an impacting raindrop. For all of these,
we thoroughly compared how FP64, FP32, FP16, and posit16
(mixed) precision affect the accuracy of the LBM. In the
mixed variants, a higher precision floating-point format is
used for arithmetics and a lower precision format is used for
storing the DDFs. Based on the observation that a number
range of +2 is sufficient for storing DDFs, we designed two
customized 16-bit number formats specifically tailored to the
needs of LBM simulations: a custom 16-bit floating-point
format (FP16C) with halved truncation error compared to
the standard IEEE-754 FP16 format by taking one bit from
the exponent to increase the mantissa size and a specifically
designed asymmetric posit variant (P16,C). Conversion to
these formats can be implemented highly efficiently and code
interventions are only a few lines.

In all setups that we have tested and for the majority of pa-
rameters, FP32 turned out to be as accurate as FP64, provided
that proper DDF-shifting [66] is used. Our custom FP16C
format considerably diminished errors and noise and turned
out to be a viable option for FP32/16-bit mixed precision in
many cases. 16-bit posits with their variable precision have
shown to be very compelling options too. Especially, P16;S
in some cases could beat our FP16C. In other cases, how-
ever, where the DDFs are outside the most favorable number
range, the simulation error is increased significantly for the
FP32/positl16 simulations.

Regarding performance, we find that pure FP64 runs very
poorly on the vast majority of GPUs, with the exception of

015308-13

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

very few data-center GPUs with extended FP64 arithmetic
capabilities such as MI250/MI100/A100/V100(S)/P100.
FP64/FP32 mixed precision can be almost as fast as pure
FP32 on these special data-center GPUs. However, somewhat
counterintuitively, on all GPUs with poor FP64 capabil-
ities, FP64/FP32 is even slower than pure FP64 due to
the conversion overhead. In general, pure FP32 then is a
better choice since it enables excellent computational ef-
ficiency across all GPUs, especially considering that it is
equally accurate to FP64 in all but edge cases. Computational
efficiency is also excellent for FP32/FP16S mixed preci-
sion across all GPUs, reaching a maximum performance of
15455 MLUPs (D3Q19) on a single 40 GB Nvidia A100. On
almost all GPUs that we have tested, we see the theoreti-
cal speedup of 80% that FP32/16-bit mixed precision offers
for D3Q19, alongside 45% reduced memory footprint. Our
custom format FP32/FP16C requires manual floating-point
conversion which is heavy on integer computation. Never-
theless, FP32/FP16C runs efficiently on most GPUs with
good FP32 arithmetic capabilities compared to their respec-
tive memory bandwidth and the theoretically expected 80%
speedup can be achieved.

In conclusion, we show that pure FP32 precision is suf-
ficient for most application scenarios of the LBM and that

J

with our specifically tailored FP16C number format, in many
cases even mixed FP32/FP16C precision can be used without
significant loss of accuracy.

ACKNOWLEDGMENTS

We acknowledge support through the computational re-
sources provided by BZHPC, LRZ, CINECA, and JSC
JURECA-DC Evaluation Platform. We acknowledge the
NVIDIA Corporation for donating a Titan Xp GPU and an
A100 40GB GPU for our research. We thank M. Lehmann,
M. Meinhart, and R. Kellnberger for running the bench-
marks on their PCs. This study was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) No. SFB 1357-391977956. We further acknowledge
funding from Deutsche Forschungsgemeinschaft in the frame-
work of FOR 2688, Instabilities, Bifurcations and Migration
in Pulsating Flow, Projects No. B3 (417989940) and No. B2
(417989464).

M.L. and M.K. contributed the original concept. M.L.
conducted the simulations and wrote the paper. M.L., M.K.,
G.A., and S.G. contributed essential ideas, paper review, and
literature research. M.L., G.A., M.S., and J.H. contributed test
setups and benchmarks.

APPENDIX
1. The LB3D code

While in the most of this paper, we used the FluidX3D code [6—-12], we also confirmed selected results with the LB3D
lattice Boltzmann simulation package [79]. For this, we ported the FP64/FP64 routines to FP32/FP32 also in LB3D. LB3D
is an MPI-based, general-purpose simulation package that includes various multicomponent and multiphase lattice Boltzmann
methods, coupled to point particle molecular dynamics, discrete element methods [127], and immersed boundary [128,129]
methods, as well as finite element solvers for advection-diffusion problems, including the Nernst-Planck equation [130]. For the
Poiseuille test, we used second-order accurate, midgrid bounce-back boundary conditions.

2. LBM equations in a nutshell

The coloring indicates the level of precision for the equations below:
lower precision storage, conversion,

a. Without DDF-shifting
(1) Streaming:

= fAE -8 1). (A1)

(2) Collision (SRT):
, (A2)
, (A3)
, (A4)
fR@E t+ A1) = (AS)

b. With DDF-shifting
(1) Streaming:

= fAE -8 1). (A6)

015308-14

ACCURACY AND PERFORMANCE OF THE LATTICE ...

PHYSICAL REVIEW E 106, 015308 (2022)

(2) Collision (SRT):

B, 4 A =

3. List of physical quantities and nomenclature

(AT)

(A8)

, (A9)

(A10)

Quantity SI-units Defining equation(s) Description
X m X=(x,y2) 3D position in Cartesian coordinates
t K - Time
Ax m Ax 1 Lattice constant (in lattice units)
At s At =1 Simulation time step (in lattice units)
c o = % & Lattice speed of sound (in lattice units)
0 :l’;’ p=,f Mass density
i 2 =)y ,¢f; Velocity
fi ";ﬁ (AlD) Density distribution functions (DDFs)
£ Z’;’ (A4) Equilibrium DDFs
i 1 0<i<g LBM streaming direction index
q 1 q €{7,9,13,15,19,27} Number of LBM streaming directions
G % [12], Eq. (11) Streaming velocities
é; m é; =& At Streaming directions
w; 1 [12], [Eq. A10)], >, w; =1 Velocity set weights
T s t=%+4% LBM relaxation time
m2 o
v = v="~2 Kinematic shear viscosity
f m’;i 5 f= 5 Force per volume
(Ly, Ly, L;) (m, m, m) L. L,L,=V Simulation box dimensions
g 3 g:=9.81% Gravitational acceleration
o ls‘f - Surface tension coefficient
4. Measured number format characteristics
FP32 FP16S — P163S P16,C
FP16 FP16C - P16;S INT16S -
2-50 2-40 2-30 2-20 2—10 20 210 220
8 . 7 ; ¥

P

S5 6 A 11 .

2 -

Tt u -

E | '

(&}

o 2F M‘ .

-O -

0 Lum ...-I/wv tuml Lol T . T | o
106 1012 108 10% 100 10* 108

number x

FIG. 18. Measured accuracy characteristics of the number formats investigated in this paper. The number of decimal digits for a given

number x is computed via — log,,(| log;,(

Xrepresented
X

definition for the number of decimal digits is off from the log,,(2"*!) definition by about 0.4.

015308-15

)]) [90,111,113]. Only the local minima are the relevant criterion for the error. Note that this

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

5. Numerical values of f; and fifd for the lid-driven cavity (FP32/FP32)

_

<
~

™

—
<

o
Ty

probability
distribution
3
D

probability
distribution

[ary
Q

=]
m

._.

<
N

™

._.

i
(<))

™

probability
distribution
g
EN
oy

probability
distribution

[y
(=]

=]
m

,_.

<
N

™

probability
distribution
==
SRS
[N
L

probability
distribution

fi

0.5

—

<
N)

T

—
i

o
Ty

probability

probability
distribution
3
D

0.1 0.2 0.3
fi

0.4

distribution

1072
107
106
108

T

T

PR ISR S NS T T S S R R

0.1 0.2 0.3 0.4 0.5

fishifted

T

Ty

wl

0.1

0.2 0.3 0.4 0.5
fishifted

™

™y

-0.1

0.2 0.3 0.4 0.5
fishifted

t = 100 time steps.

100
1072
104
10°®
108

T

T

-0.1

0.2 0.3 0.4 0.5
fishifted

(d) Lid-driven cavity, after ¢ = 1000 time steps.

—

2
N

T

._.

i
(=)}

™

probability
distribution
g
D
oy

| PRI T S U S ST N

probability
distribution

0.1 0.2 0.3
fi

0.4

0.5

T

Ty

| I IS T S S S R NS T T

0.2 0.3 0.4 0.5
fishifted

(e) Lid-driven cavity, after ¢ = 10000 time steps.

._.
-
o
N ©
r—

_
S

o
Ty

probability
distribution
g
EN

probability
distribution

0.1 0.2 0.3
fi

0.4

0.5

T

Ty

0.2 0.3 0.4 0.5
fishifted

(f) Lid-driven cavity, after ¢ = 100000 time steps.

FIG. 19. Numerical values of f; and 4 for the lid-driven cavity (FP32/FP32, Re = 1000, Ma = 0.17, grid resolution L = 128) at

various points in time.

015308-16

ACCURACY AND PERFORMANCE OF THE LATTICE ... PHYSICAL REVIEW E 106, 015308 (2022)

6. Numerical values of f; and fif*d for all setups (FP32/FP32)

100=- T T T T T 100=-.-.,....,....,....,....,....=
EE 102 | E 55 102 | L
B304k 4 S310%F 1
S5 106k + 55106k
a5 10—8 1 1 1 1 1 a5 10—8 1 1 1 1 1
01 00 01 02 03 04 05 01 00 01 02 03 04 05
f; fishifted

(a) Lid-driven cavity at grid resolution L = 64.

100 F T T T T T 3 100 F T T T T T 3
Z6102k 4 Z5102F .
%E 104 3 %g 104 3
RS 4 8f 106k :
g_.alo-s..|...|....|....|....|.... g_:.310-8....|....|....|...|...|...

01 00 01 02 03 04 05 01 00 01 02 03 04 05
fi fishifted
(b) Lid-driven cavity at grid resolution L = 128.
0 0
ES 11092 ; T T T T T -; Es 1](-)0_2 [T T T T T]
23104k 4 33104k 4
S5 10°%k 4 55100 :
Q_:alo-s.. 1 P PR B UR N1l PP B g_-.alo-s....|....|....|....| [N
01 00 01 02 03 04 05 01 00 01 02 03 04 05
fi fishifted

FIG. 20. Numerical values of f; and £ for the lid-driven cavity (FP32/FP32, Re = 1000, Ma = 0.17, after t = 100 000 time steps) at

various grid resolutions.

(c) Lid-driven cavity at grid resolution L = 256.

015308-17

MORITZ LEHMANN et al. PHYSICAL REVIEW E 106, 015308 (2022)

100 E T T T T T 100 FT T T T T T
26102k 4 25102 :
S310%E 4 S310%F -
S5 106k 4 65100 E
Q_-a 10—8 1 1 1 1 1 Q_-B 10—8 1 1 1 1 1

01 00 01 02 03 04 05 01 00 01 02 03 04 05
fi fishifted

(a) Poiseuille flow, R = 63, umax = 0.1, Re = 10, at the time of convergence, like in

figure 6.
3‘811092= T T T T T B‘g11092=”lIIIll'lll”l”‘ll”l'l‘l”_,
S3104F 4 33104k 4
€5 106k A 65100 -
‘ﬁ_-ﬁ 10-8 1 1 1 1 I ‘5_-.5 10—8 1 1 1 1 1
01 00 01 02 03 04 05 01 00 01 02 03 04 05
f; f_shifted
| |
(b) Taylor-green vortices, at time of initialization ¢ = 0.

100 ¢ 109 ¢
ey S 102 - 4 2 S 1072 - -
53 10_4 - 4 o El 10'4 3 -

¥ F] ©o F 3
égm-ﬁ_r 4 85 106k -
g_:alo-s....|....|....|....|....|.... g_:.310-8....|....|....|....|....|....

01 00 01 02 03 04 05 01 00 01 02 03 04 05
f; fshifted
| |
(c) Karman vortex street, after t = 100000 time steps.

100 ¢ 109 ¢
265102 4 25102k -
%E 104 | E %g 104 | -
S5 10°%k 4 o5 100 :
Q_:Glo-s | | T [T 1P I Q_-.alo-s...._|_....1....|....|....1....

01 00 01 02 03 04 05 01 00 01 02 03 04 05
fi fishifted

bc102= T T T T T bc102:""I""I""I""I""l""
£0 107k 1 285 10°K E
83 10%F 1 §3 10tk 3
S5 106k 4 65106 -
a5 10-8 1 1 1 1 1 a5 10-8 1 1 1 1 1
01 00 01 02 03 04 05 01 00 01 02 03 04 05
f; fishifted

(e) Microcapsule in shear flow at Ca = 0.1, after dimensionless time ¢ = 5.

102""I""I""I""I""I""

10°

107

106

10-8 1 1 1 1 1

01 00 01 02 03 04 05
fishifted

T
n|

L |
ol

probability
distribution

(f) Raindrop impact at resolution 464 x 464 x 394, with IBM particles, after

t = 10 ms time.

FIG. 21. Numerical values of f; and £ for all setups (FP32/FP32).

7. Properties of benchmarked hardware

015308-18

PHYSICAL REVIEW E 106, 015308 (2022)

ACCURACY AND PERFORMANCE OF THE LATTICE

8C 1 1 6 8 1 6 44 (44 9T 91 €€0 LTO OHOTLP-L! 210D [S)u]
e ¢l 19 € LE Tl Sl 9C ¥ 9T 91 0 (4] OLLY-L1 210D [o)u]
961 9p1 11 61 11 0S 94 201 (1]81 LET 9 W61 96°0 €A 089T-GH UOAX 93] X7
e 19 LL 69 43 9T ¥T (9% ST LET 9 L9°0 €€0 YA €79T-GH U0SX [9IU] XT
YL €€l 691 49! 111 98 99 88 S9 LET 9 1 0L°0 YA 0€9T-SH UOSX [AIU] XT
6€1 (844 99t 6£C IS1 S 49 9zI) €LT Tis 69T PE'l PA 0T9H-GH U0dX [AIU] Xir
74! 9¢1 SLT 874 L91 19 9 9 S 201 61 w©s 99T 012L yd uodX [oiu]
(4! LL 801 01 ¥S 81 9 IS 8¢ IS 91 1L°0 9¢°0 M00L8- L1 910D [)u]
€Il s 66 76 43 91 ¥1 6¢ S¢ (9% 91 09°0 0€°0 0096-51 910D [o1u]
49! 49! €61 61 011 0¢ 9T S9 09 6 8Tl €TE 181 HX08601-6! 910D [9IU]
1 ¢l ¢l - - 1T 1T 1T w 6C 14 v 0 - 8IdIN TLO-I[EN Sunswes
0€ 9L 09 - - L 1 01 61 9T 4 8¢0 - 009% sorydeln qH el
6L LIT 9 - - 6 8 61 91 9T ¢ Se0 - 00S¢ sorydeln qH g
0LI €81 S| 86 08 81 8¢ e 8¢ Is L 90 Tro 0€9 sowydern gHN [P
661 0L1 €01 16 ¥S €¢ 9T €¢ 0¢ 8¢ L €Tl 80°0 soryde1n) g eSoA uoepey QINV
99 81 6C1 w 9 ¥ 9T ¢ ¢l 6C 4 90 200 (NH0) 0£9 LD 210400 BIPIAN
81 e 00€ 6 65 8 LS L S¢ 9 4 €L0 €00 000T3] 0IpenQ) BIPIAN
€IS 16L 1454 €8 48! vl 0L 1€ €L 08 ¥ 1S S0°0 IN096 X.LO 9910430 BIPIAN
TEst 9LY1 w8 ST 9be 6¢ Syl 96 erl 091 8 wY S0 (NdD 1) 09I BISAL BIPIAN
888 c6vl 88 171 L81 €T 651 S¢ ¥S1 061 8 LST 80°0 000¥IA 01pend BIPIAN
€Tl 8¢8 9t 8! SP1 1T €L Ly 0L 8 ¥ 681 90°0 0001d 01peng) BIPIAN
0L6 9611 79 99| Y61 LT 201 S9 86 48! ¥ 6v'C 80°0 1L INOSOT X.LO 9910499 BIPIAN
8651 TLLL 996 yLT 8¢ a4 S91 Y01 961 61 9 lead ¥1°0 NO90T XLO 910430 RIPIAN
1Ll 691 668 €ee 1744 a4 24! K4 6¢€1 61 3 oL's 81°0 d BISAL BIPIAN
€66 600€¢ 1191 08S obL 08 SLT 10T LST 0ze 8 8L°6 1€0 0801 XLD 9210490 BIPIAN
S69% 0res L68T 118 €01 48! ats €91 St 87S Tl SIel 8¢°0 dx ey, eIpaN
€8LT S66¢ 6971 L6T 9LE 99 €9¢C L81 9T 88T 9 87°S LTO 1L 0991 X.LO 9910490 BIPIAN
€L9T T56¢ T6€1 Siv LTS 8 97T Y92 65T 00€ 91 Y18 ST0 L B[S, BIPIAN
L68E 6161 00ST 91t 876 8 €Th 9T T6€ 8t 8 8I'L (440) 'S 090T XLy 910430 BIPIAN
L1L9 T5L9 [$:4% 0S8 1L01 651 6LS 1€ €€s 919 1 SPel wo 1L 080T X.IA 9210495 BIPIAN
SH9¢ (9299 859¢ 9L $96 24! 954 YLy S6t ¥29 ¥ €6vl LY0 I0AI0S 0008 XL 01pend) BIPIAN
08€L 7818 STy 918 L801 L1 60L €69 769 09L 01 LL'6T LY0 080¢ XIY 901030 BIPIAN
LY€6 88801 £61S 2001 LEET ¥0T 606 988 988 9¢6 T S0°6€ 190 060€ XY 901030 BIPIAN
SIST 956¢ 0681 vyl L86 16€ (494 89¢ ST P8t 8 Seel €8°0 9 B3oA XY uoapey ANV
L19 €l 098 619 0Ty S¢ L¥1 e 1€l 80T S e LT 90T BISAL BIPIAN
968 11S1 206 68 SOt (97 €SI w Sel o Tl Iy LET (NdD 1) 08 B[S BIPIAN
v18 0491 6801 68L LES w 8l w 8S1 88T Tl 6Tt Al WQpY B[SAL BIPIAN
LOTE S69¢ 06£¢C €574 86T Ly €0t 80¢ 9Ty 6¥S Tl %6 9IL¥ (4D21) 001d ®ISAL BIPIAN
125¢ PE8Y 491 Sree 9691 06 a4S 90€ ¥0S €L 91 %6 LY (4991) 001d ®ISAL BIPIAN
TL69 8166 €€TS IS1S 9T €€l 888 908 118 006 91 eIyl LO'L (4991) 00T A PISAL BIPIAN
LE69 80T6 1956 S0Ts ¥L8C €61 156 0£6 116 PELT 43 Se91 81'8 (4D7€) SOOTA ®ISR BIPIAN
1£56 SSHS1 9188 L1¥8 19t% LOT vISI seTl Peel SSSI or 61761 SL'6 (dD0t) 001V BIPIAN
900% 7869 906¥ c8¢ee 90£¢ L6€ 869 [543 L¥9 ¥201 91 €8¢l 9t'¢ IIA uodpey ANV
S66S vLES €SLY 9L6¥ SL9T L9S 9LL 9¢6 TI8 6CCl [43 Y19t $S11 00T Jounsu] NV
8S0L €18 0L6S sTI9 6C1€ €9 €01 0621 696 8¢91 9 9T St 9T’ SH (DD 1) 0STIA Wunsu] ANY
J91dd S91dA edd zedd ¥9dA QUM QM pear pear s /4D g0 /Aowsw s /SqOTAL S /SdOTAL 1
/tedd /tedd /tedd /¥9dd /¥9dd | Ppousiesiu Padsa[eod pousiesiu Paoso[e0d /wpimpueq /Tedd /¥9dd
$/sdNTINL/ (1¥S 610€Q) ddouewioprad g /49D /ypimpueq Klowaur paInsedjA 100y elR(

"QIeMpIRY pasIewyouaq Jo sentedoid ‘A A19VL

015308-19

PHYSICAL REVIEW E 106, 015308 (2022)

MORITZ LEHMANN et al.

8. Memory benchmarks

CPUs
coalesced read 1 -

misaligned read

coalesced write
misaligned write =l

OHOZZb-£! 910D [33uT
0£4p-£1 310D [PI]
€A 089¢-G3 U0SX [SIUI X¢

PA €29¢-G3 UOSX [S1UL XT
PA 0€9¢-G3 UOSX [SQUL XC
PA 0C9-G3 UOSX |9V Xy

KL|Broadw|Haswell

0T¢Z yd uosx Sl

e] 990D

Y00/8-£! 10D [SIUI
0096-S! 8100 [S]

e apedse)

3X08607-6! 3100 [SU]

iGPUs

WAV

8TdIW 2/9-1eW bunsuies

[lomser

009t Salyde.s gH (U

[empeolg

0056 soydess gH |1

€T 83400

0€9 saiydet gHN [P

soiydeus) g ebap uospey AWy

non-FP64-capable GPUs

(W30) 0£9 1D 3010435 BIPAN
0002 0Jpend eipiaN

IN096 X1D 8210439 BIPIAN
(NdD T) 09I eIsaL eIpIAN
000bIA 04pend eipiaN

".".Il.ll_".".ll

000Td 04pend eIpN

I1 WOSOT X195 8210495 eIpIAN
INO90T X.1D 8210439 eipiN
td €[S L eIPIAN

080T X19 8210439 eIpIAN

dx uey| eipiaN

I1 099T X1D 2210435 elpAN

1 eIsal epiN

43dns 0902 XY 8210439 eIpIAN
I1 080T X.L¥ 9240499 eIpAN
1aAJ3S 0008 X1 04pend) elpiN

(990T) 080€ XL 8210435 eIPIAN
060€ X1Y 9210439 eIpIAN

9 eBaA X Uospey AWy

FP64-capable GPUs

200 BISSL BIPAN
(NdD T) 08 eIsaL eIpiAN
WO eIsa.L BIPIAN

(g92T1) 001d eIS3L eIpAN
(99971) 00Td eIS3L eIpIAN

(@99T) 00TA EISaL eIpIAN
(g97€) SOOTA BISo1 eIpiAN

(890%) 00TV BIPAN

IIA uospey dWv

3L .. G LALLM o e o

OO0TIW 3PuURSUL ANV

(@29 T) 0STIIW PUNSUT AWY

1000 [;
500

(s/f@) /

100%
50%

0%

Aouapiys

IpImpueq Adowsw Atowsw

FIG. 22. Synthetic OpenCL memory benchmarks to measure coalesced/misaligned read/write performance. The misaligned write penalty

is much larger than the misaligned read penalty across almost all tested devices. Values in Table V.

015308-20

ACCURACY AND PERFORMANCE OF THE LATTICE ... PHYSICAL REVIEW E 106, 015308 (2022)

9. Ultrafast conversion algorithms

1 // FP32/FP32 macros

2 #define fpXX float // switchable data type

3 #define load(p,o) plo]l // regular float read

4 #define store(p,o,x) plol=x // regular float write

5

6 // FP32/FP16S macros

7 #define fpXX half // switchable data type

8 #define load(p,o0) vload_half (o,p)*3.0517578E-5f // use OpenCL function

9 #define store(p,o0,x) vstore_half_rte((x)#*32768.0f,0,p) // use OpenCL function

10

11 // FP32/FP16C macros

12 #define fpXX ushort // switchable data type

13 #define load(p,o0) half_to_float_custom(plo]l) // call conversion function

14 #define store(p,o,x) plol=float_to_half_custom(x) // call conversion function

15

16 // FP32/P160S macros

17 #define fpXX ushort // switchable data type

18 #define load(p,o0) pl160_to_float(pl[o])*0.0078125f // call conversion function

19 #define store(p,o,x) plol=float_to_p160((x)*128.0f) // call conversion function

20

21 // FP32/P161S macros

22 #define fpXX ushort // switchable data type

23 #define load(p,o0) pl61_to_float(p[o])*0.0078125f // call conversion function

24 #define store(p,o,x) plol=float_to_p161((x)*128.0f) // call conversion function

25

26 // FP32/P162C macros

27 #define fpXX ushort // switchable data type

28 #define load(p,o0) p162C_to_float(plol) // call conversion function

29 #define store(p,o,x) plol=float_to_p162C(x) // call conversion function

30

31

32

33 ushort float_to_half_custom(const float x) {

34 const uint b = as_uint(x)+0x00000800; // round-to-nearest-even: add last bit after truncated mantissa

35 const uint e = (b&0x7F800000)>>23; // exponent

36 const uint m = b&0xO007FFFFF; // mantissa; in line below: O0x007FF800 = 0x00800000-0x00000800 = decimal indicator flag -
< initial rounding

37 return (b&0x80000000)>>16 | (e>112)*((((e-112)<<11)&0x7800) Im>>12) | ((e<113)&(e>100))*((((0x007FF800+m) >>(124-e))+1)
«— >>1) | (e>127)*0x7FFF; // sign | normalized | denormalized | saturate

38 }

39 float half_to_float_custom(const ushort x) {

40 const uint e = (x&0x7800)>>11; // exponent

41 const uint m = (x&0x07FF)<<12; // mantissa

42 const uint v = as_uint ((float)m)>>23; // evil log2 bit hack to count leading zeros in denormalized format

43 return as_float ((x&0x8000)<<16 | (e!=0)*((e+112)<<23|m) | ((e==0)&(m!=0))*((v-37)<<23|((m<<(150-v))&0x007FF000))); //
< sign | normalized | denormalized

44 ¥

45

46

47

48 ushort float_to_pl160(const float x) {

49 const uint b = as_uint(x);

50 const int e = ((b&0x7F800000)>>23)-127; // exponent-bias

51 int m = (b&0x007FFFFF)>>9; // mantissa

52 const int v = abs(e); // shift

53 const int r = (e<0 ? 0x0002 : OxFFFE)<<(13-v); // generate regime bits

54 m = ((m>>(v-(e<0)))+1+(e<-13)*0x2)>>1; // rounding: add 1 after truncated position; in case of lowest numbers, saturate

55 return (b&0x80000000)>>16 | (e>-16) *((r+m)&0x7FFF) | (e>13)*0x7FFF; // sign | regime+mantissa ("+" handles rounding
< overflow) | saturate

56 1

015308-21

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

57 float p160_to_float (const ushort x) {

58 const uint sr = (x>>14)&1; // sign of regime

59 ushort t = x<<2; // remove sign and first regime bit

60 t =sr ? ~t : t; // positive regime r>=0 negative regime r<0

61 const int r = 142-(as_int((float)t)>>23); // evil log2 bit hack to count leading zeros for regime

62 const uint m = (x<<(r+10))&0x007FFFFF; // extract mantissa and bit-shift it in place

63 const int rs = sr ? r -r-1; // negative regime r<0 positive regime r>=0

64 return as_float ((x&0x8000)<<16 | (r!=158) *((rs+127)<<23 | m)); // sign | regime | mantissa

65)

66

67

68

69 ushort float_to_pl61(const float x) {

70 const uint b = as_uint(x);

71 const int e = ((b&0x7F800000)>>23)-127; // exponent-bias

72 int m = (b&0xO007FFFFF)>>10; // mantissa

73 const int ae = abs(e);

74 const int v = ae>>1; // shift, ">>1" is the same as "/2"

75 const int e2 = ae&l; // "&1" is the same as ")2"

76 const int r = ((e<0 7 0x0002 O0xFFFE<<e2)+e2)<<(13-v-e2); // generate regime bits, merge regime+exponent and shift in
— place

77 m = ((m>>(v-(e<0)*(1-e2)))+(e>-28)+(e<-26)*0x3)>>1; // rounding: add 1 after truncated position; in case of lowest
< numbers, saturate

78 return (b&0x80000000)>>16 | (e>-31)*((r+m)&0x7FFF) | (e>26) *0x7FFF; // sign | regime+exponent+mantissa ("+" handles
< rounding overflow) | saturate

79}

80 float pl161_to_float (const ushort x) {

81 const uint sr = (x>>14)&1; // sign of regime

82 ushort t = x<<2; // remove sign and first regime bit

83 t =sr ? ~t : t; // positive regime r>=0 negative regime r<0

84 const int r = 142-(as_int((float)t)>>23); // evil log2 bit hack to count leading zeros for regime

85 const uint e = (x>>(12-r))&1; // extract mantissa and bit-shift it in place

86 const uint m = (x<<(r+11))&0x007FFFFF; // extract mantissa and bit-shift it in place

87 const int rs = (sr ? r -r-1)<<1; // negative regime r<0 positive regime r>=0, "<<1" is the same as "*2"

88 return as_float ((x&0x8000)<<16 | (r!=158) *((rs+e+127)<<23 | m)); // sign | regime+exponent | mantissa

89 1}

90

91

92

93 ushort float_to_p162C(const float x) {

94 const int b = as_int(x);

95 const int e = ((b&0x7F800000)>>23)-127; // exponent-bias

96 int m = (b&0x007FFFFF)>>10; // mantissa

97 const int ae = -e;

98 const int v = ae>>2; // shift, ">>2" is the same as "/4"

99 const int r = 0x4000>>v; // generate regime bits, merge regime+exponent and shift in place

100 const int e4 = (3-(ae&3))<<(12-v); // generate exponent and shift in place

101 m = ((m>>v)+(e>-54)+(e<-51)*0x3)>>1; // rounding: add 1 after truncated position; in case of lowest numbers, saturate

102 return (b&0x80000000)>>16 | (e>-59)*((r+e4+m)&0x7FFF) | (e>0)*0x7FFF; // sign | regime+exponent+mantissa ("+" handles
< rounding overflow) | saturate

103}

104 float p162C_to_float(const ushort x) {

105 const int r = 158-(as_int ((float) ((uint)x<<17))>>23); // remove sign bit,

— regime

106 const int e = (x>>(12-r))&3; // extract mantissa and bit-shift it in place

107 const int m = (x<<(r+11))&0x007FFFFF; // extract mantissa and bit-shift it in place

108 return as_float ((x&0x8000)<<16 | (r!=158) *((124-(r<<2)+e)<<23 | m)); // sign | regime+exponent | mantissa
109 }

evil log2 bit hack to count leading zeros for

Listing 1: OpenCL C macros for regular FP32, for FP16S using hardware-accelerated IEEE-754 FP16 floating-point conversion

and for our FP16C format with calls to our manual floating-point conversion functions. Manual floating-point conversion
functions for FP32 < FP16C (float<half) in OpenCL C. We also provide macros and conversion algorithms for FP32 <«
P169S/P16,S/P16,C posit formats. The saturation term in the algorithms can be omitted if it is made sure that larger than
maximum numbers are never used, which is the case in this LBM application.

015308-22

ACCURACY AND PERFORMANCE OF THE LATTICE ... PHYSICAL REVIEW E 106, 015308 (2022)

10. LBM core of the FluidX3D OpenCL C implementation (D3Q19 SRT FP32/xx)

1 float __attribute__((always_inline)) sq(const float x) {

2 return x*x;

3}

4 uint3 __attribute__((always_inline)) coordinates(const uint n) { // disassemble 1D index to 3D coordinates (n -> x,y,z)

5 const uint t = n%(def_sx*def_sy);

6 return (uint3) (t%def_sx, t/def_sx, n/(def_sx*def_sy)); // n = x+(y+z*sy)*sx

7

8 uint __attribute__((always_inline)) f_index(const uint n, const uint i) { // 32-bit indexing (maximum box size for D3Q19:
— 608x608x608)

9 return i*def_s+n; // SoA (2297 faster on GPU compared to AoS)

10}

11 void __attribute__((always_inline)) equilibrium(const float rho, float ux, float uy, float uz, float* feq) { // calculate

< f_equilibrium

12 const float ¢3 = -3.0fx(sq(ux)+sq(uy)+sq(uz)), rhomi=rho-1.0f; // c3=-2%sq(u)/(2xsq(c))

13 ux *= 3.0f;

14 uy #*= 3.0f;

15 uz *= 3.0f;

16 feq[0] = def_wO*fma(rho, 0.5f*c3, rhoml); // 000 (identical for all velocity sets)

17 const float uO=ux+uy, ul=ux+uz, u2=uy+uz, u3=ux-uy, ué4=ux-uz, ub=uy-uz;

18 const float rhos=def_ws*rho, rhoe=def_we*rho, rhomls=def_ws*rhoml, rhomle=def_we*rhoml;

19 feq[1] = fma(rhos, fma(0.5f, fma(ux, ux, c3), ux), rhomis); feq[2] = fma(rhos, fma(0.5f, fma(ux, ux, c3), -ux), rhomils

<); // +00 -00

20 feql[3] = fma(rhos, fma(0.5f, fma(uy, uy, c3), uy), rhomils); feql[l 4] = fma(rhos, fma(0.5f, fma(uy, uy, c3), -uy), rhomils
<); // 0+0 0-0

21 feql[5] = fma(rhos, fma(0.5f, fma(uz, uz, c3), uz), rhomls); feql[6] = fma(rhos, fma(0.5f, fma(uz, uz, c3), -uz), rhomils
—); // 00+ 00-

22 feql[7] = fma(rhoe, fma(0.5f, fma(u0, u0, c3), u0), rhomle); feql 8] = fma(rhoe, fma(0.5f, fma(u0, u0, c3), -u0), rhomle
—); // ++0 --0

23 feql[9] = fma(rhoe, fma(0.5f, fma(ul, ul, c3), ul), rhomle); feq[10] = fma(rhoe, fma(0.5f, fma(ul, ul, c3), -ul), rhomle
—); // +0+ -0-

24 feq[11] = fma(rhoe, fma(0.5f, fma(u2, u2, c3), u2), rhomle); feql[12] = fma(rhoe, fma(0.5f, fma(u2, u2, c3), -u2), rhomle
—); // 0++ 0--

25 feq[13] = fma(rhoe, fma(0.5f, fma(u3, u3, c3), u3), rhomle); feq[14] = fma(rhoe, fma(0.5f, fma(u3d, u3, c3), -u3), rhomle
—); // +-0 -+0

26 feq[15] = fma(rhoe, fma(0.5f, fma(u4, u4, c3), u4), rhomle); feq[16] = fma(rhoe, fma(0.5f, fma(u4, u4, c3), -u4), rhomle
—); // +0- -0+

27 feq[17] = fma(rhoe, fma(0.5f, fma(ub, u5, c3), ub), rhomle); feq[18] = fma(rhoe, fma(0.5f, fma(ub, ub, c3), -ub), rhomle
—)5 // 0+- 0-+

28)

29 void __attribute__((always_inline)) fields(const float* f, float* rhon, float* uxn, float* uyn, float* uzn) { // calculate

< density and velocity from fi

30 float rho=f[0], ux, uy, uz;

31 #pragma unroll

32 for (uint i=1; i<def_set; i++) rho += f[il; // calculate density from f

33 rho += 1.0f; // add 1.0f last to avoid digit extinction effects when summing up f

34 ux = f[11-f[21+f[71-£f[81+f[91-f[10]+f[13]1-£f[14]+£f[15]1-f[16]; // calculate velocity from fi (alternating + and - for
<~ best accuracy)

35 uy = f£[31-f[41+f[71-£f[81+f[11]1-f[12]+f[14]1-£f[13]1+f[17]1-f[18];

36 uz = f[5]1-f[61+f[9]-f[10]1+f[11]-£f[12]+f[16]-f[16]1+£f[18]1-£f[17];

37 *rhon = rho;

38 *uxn = ux/rho;

39 *uyn = uy/rho;

40 *uzn = uz/rho;

41}

42 void __attribute__((always_inline)) neighbors(const uint n, uint* j) { // calculate neighbor indices

43 const uint3 xyz = coordinates(n);

44 const uint x0 = xyz.x; // pre-calculate indices (periodic boundary conditions on simulation box walls)

45 const uint xp = (xyz.x +1)%def_sx;

46 const uint xm = (xyz.x+def_sx-1)%def_sx;

47 const uint yo = Xyz.y *def_sx;

015308-23

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

48 const uint yp = ((xyz.y +1)%def_sy)*def_sx;

49 const uint ym = ((xyz.y+def_sy-1)%def_sy)*def_sx;

50 const uint z0 = Xyz.z *def_sy*def_sx;
51 const uint zp = ((xyz.z +1)%def_sz)*def_syxdef_sx;
52 const uint zm = ((xyz.z+def_sz-1)%def_sz)xdef_sy*def_sx;
53 jI0] = n;

54 j[11 = xp+y0+z0; j[2] = xm+y0+z0; // +00 -00

55 j[31 = x0+yp+z0; j[4] = x0+ym+z0; // 0+0 0-0

56 jL 8] = x0+yO+zp; j[6] = x0+yO+zm; // 00+ 00-

57 jL 71 = xp+yp+2z0; j[8] = xm+ym+z0; // ++0 --0

58 j[91 = xp+yO+zp; jl[10] = xm+yO+zm; // +0+ -0-

59 j[11]1 = xO+yp+zp; j[12] = xO+ym+zm; // O++ O0--

60 j[13] = xp+ym+z0; j[14] = xm+yp+z0; // +-0 -+0

61 j[15] = xp+yO+zm; j[16] = xm+yO+zp; // +0- -0+

62 j[17]1 = xO+yp+zm; j[18] = xO+ym+zp; // O+- O0-+

63 }

64 kernel void initialize(global fpXX* fc, global float* rho, global float* u) {
65 const uint n = get_global_id(0); // n = x+(y+z*sy)*sx

66 float feqldef_set]; // f_equilibrium

67 equilibrium(rho[n], uln], uldef_s+nl, ul2*def_s+nl], feq);
68 #pragma unroll

69 for(uint i=0; i<def_set; i++) store(fc, f_index(n,i), feqlil); // write to fc

70 } // initialize()

71 kernel void stream_collide(const global fpXX* fc, global fpXX#* fs, global float* rho, global float* u, global uchar* flags

—) {
72 const uint n = get_global_id(0); // n = x+(y+z*sy)*sx
73 const uchar flagsn = flags[nl]; // cache flags[n] for multiple readings
74 if (flagsn&TYPE_W) return; // if node is boundary node, just return (slight speed up)
75 uint j[def_set]; // neighbor indices
76 neighbors(n, j); // calculate neighbor indices
7 uchar flagsj[def_set]; // cache neighbor flags for multiple readings
78 flagsj[0] = flagsn;
79 #pragma unroll
80 for (uint i=1; i<def_set; i++) flagsj[i]l = flags[j[ill;
81 // read from fc in video memory and stream to fhn
82 float fhn[def_set]; // cache f_half_step[n], do streaming step
83 fhn[0] = fc[f_index(n, 0)]; // keep old center population
84 #pragma unroll
85 for (uint i=1; i<def_set; i+=2) { // perform streaming
86 fhn[i] = load(fc, flagsj[i+1]J&TYPE_W ? f_index(n, i+1) f_index(j[i+1], i)); // boundary regular
87 fhn[i+1] = load(fc, flagsj[i J&TYPE_W ? f_index(n, i) f_index(j[i 1, i+1));
88 }
89 // collide fh
90 float rhon, uxn, uyn, uzn; // cache density and velocity for multiple writings/readings
91 fields (fhn, &rhon, &uxn, &uyn, &uzn); // calculate density and velocity fields from f
92 uxn = clamp(uxn, -def_c, def_c); // limit velocity (for stability purposes)
93 uyn = clamp(uyn, -def_c, def_c);
94 uzn = clamp(uzn, -def_c, def_c);
95 float feqldef_set]; // cache f_equilibrium([n]
96 equilibrium(rhon, uxn, uyn, uzn, feq); // calculate equilibrium populations
97 #pragma unroll
98 for (uint i=0; i<def_set; i++) store(fs, f_index(n,i), fma(1.0f-def_w, fhn[i], def_wx*feql[il)); // write to fs in video

<~ memory

99 } // stream_collide ()

Listing 2: LBM core of the FluidX3D OpenCL C implementation (D3Q19 SRT FP32/xx).

[1] T. Kriiger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva,
and E. M. Viggen, in The Lattice Boltzmann Method (Springer
International Publishing, Cham, Switzerland, 2017), Vol. 10,
p. 978.

[2] S. Chapman, T. G. Cowling, and D. Burnett, The Mathematical
Theory of Non-Uniform Gases: An Account of the Kinetic
Theory of Viscosity, Thermal Conduction and Diffusion in
Gases (Cambridge University Press, Cambridge, UK, 1990).

015308-24

ACCURACY AND PERFORMANCE OF THE LATTICE ...

PHYSICAL REVIEW E 106, 015308 (2022)

[3] H. Pradipto and A. Purqon, Accuracy and numerical stability
analysis of lattice Boltzmann method with multiple relaxation
time for incompressible flows, in J. Phys.: Conf. Ser. (IOP
Publishing, Bristol, UK, 2017), Vol. 877, p. 012035.

[4] R. Benzi, S. Succi, and M. Vergassola, The lattice Boltz-
mann equation: Theory and applications, Phys. Rep. 222, 145
(1992).

[5] P. M. Tekic, J. B. Radjenovic, and M. Rackovic, Imple-
mentation of the lattice Boltzmann method on heterogeneous
hardware and platforms using OpenCL, Adyv. Electr. Comput.
Eng. 12, 51 (2012).

[6] E. Hiusl, MPI-based multi-GPU extension of the lattice Boltz-
mann method, Bachelor’s Thesis, University of Bayreuth
(2019), https://epub.uni-bayreuth.de/5689/.

[7] E. Héusl, Soft objects in newtonian and non-Newtonian fluids:
A computational study of bubbles and capsules in flow, Mas-
ter’s Thesis, University of Bayreuth (2022), https://epub.uni-
bayreuth.de/5960/.

[8] M. Lehmann and S. Gekle, Analytic solution to the piecewise
linear interface construction problem and its application in
curvature calculation for volume-of-fluid simulation codes,
Computation 10, 21 (2022).

[9] M. Lehmann, Esoteric Pull and Esoteric Push: Two simple in-
place streaming schemes for the lattice Boltzmann method on
GPUs, Computation 10, 92 (2022).

[10] M. Lehmann, L. M. Oehlschligel, F. P. Hdusl, A. Held, and
S. Gekle, Ejection of marine microplastics by raindrops: A
computational and experimental study, Microplast. Nanoplast.
1, 1 (2021).

[11] H. Laermanns, M. Lehmann, M. Klee, M. G. Loder, S. Gekle,
and C. Bogner, Tracing the horizontal transport of microplas-
tics on rough surfaces, Microplast. Nanoplast. 1, 11 (2021).

[12] M. Lehmann, High performance free surface LBM on GPUs,
Master’s Thesis, University of Bayreuth (2019), https://epub.
uni-bayreuth.de/5400/.

[13] M. Schreiber, P. Neumann, S. Zimmer, and H.-J. Bungartz,
Free-surface lattice-Boltzmann simulation on many-core ar-
chitectures, Proc. Comput. Sci. 4, 984 (2011).

[14] M. Holzer, M. Bauer, and U. Riide, Highly efficient lattice-
Boltzmann multiphase simulations of immiscible fluids at
high-density ratios on CPUs and GPUs through code gener-
ation, arXiv:2012.06144.

[15] M. Taka¢ and I. Petras, Cross-platform GPU-based imple-
mentation of lattice Boltzmann method solver using ArrayFire
library, Mathematics 9, 1793 (2021).

[16] M. Q. Ho, C. Obrecht, B. Tourancheau, B. D. de Dinechin,
and J. Hascoet, Improving 3D lattice Boltzmann method sten-
cil with asynchronous transfers on many-core processors, in
Proceedings of the 2017 IEEE 36th International Performance
Computing and Communications Conference (IPCCC) (IEEE,
San Diego, California, 2017), pp. 1-9.

[17] J. Habich, C. Feichtinger, H. Kostler, G. Hager, and G.
Wellein, Performance engineering for the lattice Boltzmann
method on GPGPUs: Architectural requirements and perfor-
mance results, Comput. Fluids 80, 276 (2013).

[18] C. Riesinger, A. Bakhtiari, M. Schreiber, P. Neumann, and
H.-J. Bungartz, A holistic scalable implementation approach
of the lattice Boltzmann method for CPU/GPU heterogeneous
clusters, Computation 5, 48 (2017).

[19] E. O. Aksnes and A. C. Elster, Porous rock simulations and
lattice Boltzmann on GPUs, in Parallel Computing: From
Multicores and GPU'’s to Petascale (10S Press, Amsterdam,
Netherlands, 2010), pp. 536-545.

[20] A. Kummerldnder, M. Dorn, M. Frank, and M. J. Krause, Im-
plicit propagation of directly addressed grids in lattice Boltz-
mann methods (2021), doi: 10.13140/RG.2.2.35085.87523.

[21] M. Geveler, D. Ribbrock, D. Goddeke, and S. Turek, Lattice-

Boltzmann simulation of the shallow-water equations with

fluid-structure interaction on multi-and manycore processors,

in Facing the Multicore-Challenge (Springer, Wiesbaden,

Germany, 2010), pp. 92-104.

J. Bény, C. Kotsalos, and J. Latt, Toward full GPU implemen-

tation of fluid-structure interaction, in Proceedings of the 2019

18th International Symposium on Parallel and Distributed

Computing (ISPDC) (IEEE, Amsterdam, 2019), pp. 16-22.

[23] G. Boroni, J. Dottori, and P. Rinaldi, Full GPU implementa-

tion of lattice-Boltzmann methods with immersed boundary

conditions for fast fluid simulations, Int. J. Multiphys. 11, 1

(2017).

M. Griebel, M. A. Schweitzer et al., Meshfree Methods for

Fartial Differential Equations II (Springer, Cham, Switzerland,

2005).

[25] H.-J. Limbach, A. Arnold, B. A. Mann, and C. Holm,

ESPResSo—an extensible simulation package for research

on soft matter systems, Comput. Phys. Commun. 174, 704

(2006).

Institute for Computational Physics, Universitdt Stuttgart,

ESPResSo user’s guide, http://espressomd.org/wordpress/wp-

content/uploads/2016/07/ug_07_2016.pdf (2016), accessed

June 15, 2018.

[27] S.D. Walsh, M. O. Saar, P. Bailey, and D. J. Lilja, Accelerating
geoscience and engineering system simulations on graphics
hardware, Comput. Geosci. 35, 2353 (2009).

[28] S. Zitz, A. Scagliarini, and J. Harting, Lattice Boltzmann sim-
ulations of stochastic thin film dewetting, Phys. Rev. E 104,
034801 (2021).

[29] C. Wei, W. Zhenghua, L. Zongzhe, Y. Lu, and W. Yongxian,
An improved Ibm approach for heterogeneous gpu-cpu clus-
ters, in Proceedings of the 2011 4th International Conference
on Biomedical Engineering and Informatics (BMEI) (IEEE,
Shanghai, China, 2011), Vol. 4, pp. 2095-2098.

[30] M. J. Mawson and A. J. Revell, Memory transfer optimization
for a lattice Boltzmann solver on Kepler architecture nVidia
GPUs, Comput. Phys. Commun. 185, 2566 (2014).

[31] J. Tolke and M. Krafczyk, TeraFLOP computing on a desktop
PC with GPUs for 3D CFD, Int. J. Comput. Fluid Dyn. 22, 443
(2008).

[32] G. Herschlag, S. Lee, J. S. Vetter, and A. Randles, GPU data
access on complex geometries for D3Q19 lattice Boltzmann
method, in Proceedings of the 2018 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS) (IEEE,
Vancouver, BC, Canada, 2018), pp. 825-834.

[33] N. Delbosc, J. L. Summers, A. Khan, N. Kapur, and C. J.
Noakes, Optimized implementation of the lattice Boltzmann
method on a graphics processing unit towards real-time fluid
simulation, Comput. Math. Appl. 67, 462 (2014).

[34] P. Bailey, J. Myre, S. D. Walsh, D. J. Lilja, and M. O. Saar,
Accelerating lattice Boltzmann fluid flow simulations using

[22

—

[24

—

[26

—

015308-25

https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.4316/aece.2012.01009
https://epub.uni-bayreuth.de/5689/
https://epub.uni-bayreuth.de/5960/
https://doi.org/10.3390/computation10020021
https://doi.org/10.3390/computation10060092
https://doi.org/10.1186/s43591-020-00001-9
https://doi.org/10.1186/s43591-021-00010-2
https://epub.uni-bayreuth.de/5400/
https://doi.org/10.1016/j.procs.2011.04.104
http://arxiv.org/abs/arXiv:2012.06144
https://doi.org/10.3390/math9151793
https://doi.org/10.1016/j.compfluid.2012.02.013
https://doi.org/10.3390/computation5040048
https://doi.org/10.13140/RG.2.2.35085.87523
https://doi.org/10.1016/j.cpc.2005.10.005
http://espressomd.org/wordpress/wp-content/uploads/2016/07/ug_07_2016.pdf
https://doi.org/10.1016/j.cageo.2009.05.001
https://doi.org/10.1103/PhysRevE.104.034801
https://doi.org/10.1016/j.cpc.2014.06.003
https://doi.org/10.1080/10618560802238275
https://doi.org/10.1016/j.camwa.2013.10.002

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

graphics processors, in Proceedings of the 2009 International
Conference on Parallel Processing (IEEE, Vienna, Austria,
2009), pp. 550-557.

[35] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux,
Multi-GPU implementation of the lattice Boltzmann method,
Comput. Math. Appl. 65, 252 (2013).

[36] W. B. de Oliveira Jr, A. Lugarini, and A. T. Franco,
Performance analysis of the lattice Boltzmann method im-
plementation on GPU, in XL CILAMCE 2019 Ibero-Latin
Congress on Computational Methods in Engineering (AB-
MEC), Natal, Brazil (2019).

[37] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux,
A new approach to the lattice Boltzmann method for
graphics processing units, Comput. Math. Appl. 61, 3628
(2011).

[38] N.-P. Tran, M. Lee, and S. Hong, Performance optimization
of 3D lattice Boltzmann flow solver on a GPU, Sci. Program.
2017 (2017).

[39] P. R. Rinaldi, E. Dari, M. J. Vénere, and A. Clausse, A
lattice-Boltzmann solver for 3D fluid simulation on GPU,
Simul. Modell. Pract. Theory 25, 163 (2012).

[40] P. R. Rinaldi, E. A. Dari, M. J. Vénere, and A. Clausse, Fluid
simulation with lattice Boltzmann methods implemented on
GPUs using CUDA, in High-Performance Computing Sympo-
sium (HPC2009), San Diego, California, USA (2009).

[41]1J. Beny and J. Latt, Efficient LBM on GPUs for
dense moving objects using immersed boundary condition,
arXiv:1904.02108.

[42] J. Ames, D. F. Puleri, P. Balogh, J. Gounley, E. W. Draeger,
and A. Randles, Multi-GPU immersed boundary method
hemodynamics simulations, J. Comput. Sci. 44, 101153
(2020).

[43] Q. Xiong, B. Li, J. Xu, X. Fang, X. Wang, L. Wang, X. He,
and W. Ge, Efficient parallel implementation of the lattice
Boltzmann method on large clusters of graphic processing
units, Chin. Sci. Bull. §7, 707 (2012).

[44] H. Zhu, X. Xu, G. Huang, Z. Qin, and B. Wen, An efficient
graphics processing unit scheme for complex geometry sim-
ulations using the lattice Boltzmann method, IEEE Access 8,
185158 (2020).

[45] J. Duchateau, F. Rousselle, N. Maquignon, G. Roussel, and
C. Renaud, Accelerating physical simulations from a mul-
ticomponent lattice Boltzmann method on a single-node
multi-GPU architecture, in Proceedings of the 2015 10th In-
ternational Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC) (IEEE, Krakow, Poland, 2015),
pp- 315-322.

[46] C. E. JanRen, D. Mierke, M. Uberriick, S. Gralher, and T.
Rung, Validation of the GPU-accelerated CFD solver ELBE
for free surface flow problems in civil and environmental en-
gineering, Computation 3, 354 (2015).

[47] J. Habich, T. Zeiser, G. Hager, and G. Wellein, Performance
analysis and optimization strategies for a D3Q19 lattice Boltz-
mann kernel on nVIDIA GPUs using CUDA, Adv. Eng.
Software 42, 266 (2011).

[48] E. Calore, D. Marchi, S. F. Schifano, and R. Tripiccione,
Optimizing communications in multi-GPU lattice Boltzmann
simulations, in Proceedings of the 2015 International Confer-
ence on High Performance Computing & Simulation (HPCS)
(IEEE, Amsterdam, 2015), pp. 55-62.

[49] P-Y. Hong, L.-M. Huang, L.-S. Lin, and C.-A. Lin, Scalable
multi-relaxation-time lattice Boltzmann simulations on multi-
GPU cluster, Comput. Fluids 110, 1 (2015).

[50] W. Xian and A. Takayuki, Multi-GPU performance of incom-
pressible flow computation by lattice Boltzmann method on
GPU cluster, Parallel Comput. 37, 521 (2011).

[51] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux, Global
memory access modelling for efficient implementation of the
lattice Boltzmann method on graphics processing units, in
Proceedings of the International Conference on High Per-
formance Computing for Computational Science (Springer,
Berkeley, California, 2010), pp. 151-161.

[52] F. Kuznik, C. Obrecht, G. Rusaouen, and J.-J. Roux, LBM
based flow simulation using GPU computing processor,
Comput. Math. Appl. 59, 2380 (2010).

[53] C. Feichtinger, J. Habich, H. Kostler, G. Hager, U. Riide,
and G. Wellein, A flexible Patch-based lattice Boltzmann par-
allelization approach for heterogeneous GPU-CPU clusters,
Parallel Comput. 37, 536 (2011).

[54] E. Calore, A. Gabbana, J. Kraus, E. Pellegrini, S. F. Schifano,
and R. Tripiccione, Massively parallel lattice—Boltzmann
codes on large GPU clusters, Parallel Comput. 58, 1 (2016).

[55] A. Horga, With lattice Boltzmann models using CUDA en-
abled GPGPUs, Master’s thesis, University of Timisoara,
Romania (2013).

[56] N. Onodera, Y. Idomura, S. Uesawa, S. Yamashita, and
H. Yoshida, Locally mesh-refined lattice Boltzmann method
for fuel debris air cooling analysis on GPU supercomputer,
Mech. Eng. J. 7, 19-00531 (2020).

[57] G. Falcucci, G. Amati, P. Fanelli, V. K. Krastev, G. Polverino,
M. Porfiri, and S. Succi, Extreme flow simulations reveal
skeletal adaptations of deep-sea sponges, Nature (London)
595, 537 (2021).

[58] S. Zitz, A. Scagliarini, S. Maddu, A. A. Darhuber, and J.
Harting, Lattice Boltzmann method for thin-liquid-film hydro-
dynamics, Phys. Rev. E 100, 033313 (2019).

[59] M. Mohrhard, G. Thiter, J. Bludau, B. Horvat, and M. Krause,
An auto-vecotorization friendly parallel lattice Boltzmann
streaming scheme for direct addressing, Comput. Fluids 181,
1 (2019).

[60] F. Gray and E. Boek, Enhancing computational preci-
sion for lattice Boltzmann schemes in porous media flows,
Computation 4, 11 (2016).

[61] W.Li, Y. Ma, X. Liu, and M. Desbrun, Efficient kinetic simula-
tion of two-phase flows, ACM Trans. Graphics 41, 114 (2022).

[62] M. Geier and M. Schonherr, Esoteric twist: An efficient in-
place streaming algorithmus for the lattice Boltzmann method
on massively parallel hardware, Computation 5, 19 (2017).

[63] M. Wittmann, T. Zeiser, G. Hager, and G. Wellein, Com-
parison of different propagation steps for lattice Boltzmann
methods, Comput. Math. Appl. 65, 924 (2013).

[64] M. Wittmann, Ph.D. thesis, Friedrich-Alexander-Universitt
Erlangen-Niirnberg, Erlangen, Germany (2016), https://nbn-
resolving.org/urn:nbn:de:bvb:29-opus4-74586.

[65] F. Bonaccorso, A. Montessori, A. Tiribocchi, G. Amati, M.
Bernaschi, M. Lauricella, and S. Succi, Lbsoft: A parallel
open-source software for simulation of colloidal systems,
Comput. Phys. Commun. 256, 107455 (2020).

[66] P. Skordos, Initial and boundary conditions for the lattice
Boltzmann method, Phys. Rev. E 48, 4823 (1993).

015308-26

https://doi.org/10.1016/j.camwa.2011.02.020
https://doi.org/10.1016/j.camwa.2010.01.054
https://doi.org/10.1155/2017/1205892
https://doi.org/10.1016/j.simpat.2012.03.004
http://arxiv.org/abs/arXiv:1904.02108
https://doi.org/10.1016/j.jocs.2020.101153
https://doi.org/10.1007/s11434-011-4908-y
https://doi.org/10.1109/ACCESS.2020.3029800
https://doi.org/10.3390/computation3030354
https://doi.org/10.1016/j.advengsoft.2010.10.007
https://doi.org/10.1016/j.compfluid.2014.12.010
https://doi.org/10.1016/j.camwa.2009.08.052
https://doi.org/10.1016/j.parco.2011.03.005
https://doi.org/10.1016/j.parco.2016.08.005
https://doi.org/10.1299/mej.19-00531
https://doi.org/10.1038/s41586-021-03658-1
https://doi.org/10.1103/PhysRevE.100.033313
https://doi.org/10.1016/j.compfluid.2019.01.001
https://doi.org/10.3390/computation4010011
https://doi.org/10.3390/computation5020019
https://doi.org/10.1016/j.camwa.2012.05.002
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-74586
https://doi.org/10.1016/j.cpc.2020.107455
https://doi.org/10.1103/PhysRevE.48.4823

ACCURACY AND PERFORMANCE OF THE LATTICE ...

PHYSICAL REVIEW E 106, 015308 (2022)

[67] G. Wellein, P. Lammers, G. Hager, S. Donath, and T. Zeiser,
Towards optimal performance for lattice Boltzmann applica-
tions on terascale computers, in Parallel Computational Fluid
Dynamics 2005 (Elsevier, Amsterdam, Netherlands, 2006),
pp- 31-40.

[68] M. J. Krause, A. Kummerlédnder, S. J. Avis, H. Kusumaatmaja,
D. Dapelo, F. Klemens, M. Gaedtke, N. Hafen, A. Mink, R.
Trunk et al., OpenLB—Open source lattice Boltzmann code,
Comput. Math. Appl. 81, 258 (2021).

[69] J. Latt and M. Krause, OpenLB release 0.3: Open source
lattice Boltzmann code (2007).

[70] V. Heuveline and M. Krause, OpenLB: Towards an efficient
parallel open source library for lattice Boltzmann fluid flow
simulations, in PARA’08 Workshop on State-of-the-Art in Sci-
entific and Parallel Computing, May 13-16, 2008, Lecture
Notes in Computer Science (LNCS) Vols. No. 6126 and No.
6127 (Springer, Trondheim, Norway, 2011) published online
2011, https://para08.idi.ntnu.no/docs/submission_37.pdf.

[71] M. Krause, S. Avis, H. Kusumaatmaja, D. Dapelo, M.
Gaedtke, N. Hafen, M. Haulmann, J. Jeppener-Haltenhoff,
L. Kronberg, A. Kummerlénder, J. Marquardt, T. Pertzel, S.
Simonis, R. Trunk, M. Wu, and A. Zarth, OpenLB release 1.4:
Open source lattice Boltzmann code (2020).

[72] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D.
Lagrava, F. Brogi, M. B. Belgacem, Y. Thorimbert, S. Leclaire,
S. Li et al., Palabos: Parallel lattice Boltzmann solver,
Comput. Math. Appl. 81, 334 (2021).

[73] T. Min, G. Weidong, P. Jingshan, and G. Meng, Performance
analysis and optimization of PalaBos on petascale Sun-
way BlueLight MPP Supercomputer, Procedia Eng. 61, 241
(2013).

[74] L. Mountrakis, E. Lorenz, O. Malaspinas, S. Alowayyed, B.
Chopard, and A. G. Hoekstra, Parallel performance of an IB-
LBM suspension simulation framework, J. Comput. Sci. 9, 45
(2015).

[75] C. Kotsalos, J. Latt, and B. Chopard, Bridging the computa-
tional gap between mesoscopic and continuum modeling of
red blood cells for fully resolved blood flow, J. Comput. Phys.
398, 108905 (2019).

[76] C. Kotsalos, J. Latt, and B. Chopard, Palabos-npFEM: Soft-
ware for the simulation of cellular blood flow (digital blood),
J. Open Res. Software 9, 16 (2021).

[77] G. Wellein, T. Zeiser, G. Hager, and S. Donath, On the single
processor performance of simple lattice Boltzmann kernels,
Comput. Fluids 35, 910 (20006).

[78] A. Lintermann and W. Schroder, Lattice—Boltzmann simula-
tions for complex geometries on high-performance computers,
CEAS Aeronaut. J. 11, 745 (2020).

[79] S. Schmieschek, L. Shamardin, S. Frijters, T. Kriiger, U. D.
Schiller, J. Harting, and P. V. Coveney, LB3D: A parallel im-
plementation of the lattice-Boltzmann method for simulation
of Interacting amphiphilic fluids, Comput. Phys. Commun.
217, 149 (2017).

[80] IEEE Computer Society. Standards Committee and Ameri-
can National Standards Institute, IEEE standard for binary
floating-point arithmetic, IEEE Std 754-2019 (Revision of
IEEE 754-2008) 754 (1985).

[81] D. Goldberg, What every computer scientist should know
about floating-point arithmetic, ACM Comput. Surv. 23, 5
(1991).

[82] IS Committee and others, 754-2008 IEEE standard for
floating-point arithmetic, IEEE Comput. Soc. Std. 2008
(2008).

[83] W. Kahan, IEEE standard 754 for binary floating-point arith-
metic, Lect. Notes Status IEEE 754, 11 (1996).

[84] T. Griitzmacher and H. Anzt, A modular precision format
for decoupling arithmetic format and storage format, in Eu-
ropean Conference on Parallel Processing (Springer, Turin,
Italy, 2018), pp. 434-443.

[85] H. Anzt, G. Flegar, T. Griitzmacher, and E. S. Quintana-Orti,
Toward a modular precision ecosystem for high-performance
computing, Int. J. High Perform. Comput. Appl. 33, 1069
(2019).

[86] M. Krause, Fluid flow dimulation and optimisation with
lattice Boltzmann methods on high performance comput-
ers: Application to the human respiratory system, Ph.D.
thesis, Karlsruhe Institute of Technology (KIT), Univer-
sitdt Karlsruhe (TH), 2010, http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000019768.

S. Succi, G. Amati, M. Bernaschi, G. Falcucci, M. Lauricella,

and A. Montessori, Towards exascale lattice Boltzmann com-

puting, Comput. Fluids 181, 107 (2019).

[88] D. d’Humieres, Multiple-relaxation—time lattice Boltzmann
models in three dimensions, Proc. R. Soc. London, Ser. A 360,
437 (2002).

[89] M. Klower, M. Razinger, J. J. Dominguez, P. D. Diiben, and
T. N. Palmer, Compressing atmospheric data into its real in-
formation content, Nat. Comput. Sci. 1, 713 (2021).

[90] M. Klower, P. Diiben, and T. Palmer, Number formats, er-
ror mitigation, and scope for 16-bit arithmetics in weather
and climate modeling analyzed with a shallow water model,
J. Adv. Model. Earth Syst. 12, e2020MS002246 (2020).

[91] S. Hatfield, M. Chantry, P. Diiben, and T. Palmer, Accelerating
high-resolution weather models with deep-learning hardware,
in Proceedings of the Platform for Advanced Scientific Com-
puting Conference (ACM Press, Zurich, Switzerland, 2019),
pp. 1-11.

[92] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and
J. Dongarra, Exploiting the performance of 32 bit floating
point arithmetic in obtaining 64 bit accuracy (revisiting iter-
ative refinement for linear systems), in SC’06: Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing (IEEE,
Tampa, Florida, USA, 2006), pp. 50-50.

[93] A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra, and N. J.
Higham, Mixed-precision iterative refinement using tensor
cores on GPUs to accelerate solution of linear systems,
Proc. R. Soc. A 476, 20200110 (2020).

[94] X. He and L.-S. Luo, Lattice Boltzmann model for the in-
compressible Navier—Stokes equation, J. Stat. Phys. 88, 927
(1997).

[95] T. Kriiger, Unit conversion in LBM, in LBM Workshop. Dos-
tupné z: http://Ibmworkshop.com/wp-content/uploads/2011/
08/2011-08-22_Edmonton_scaling.pdf (2011).

[96] G. I. Taylor and A. E. Green, Mechanism of the production
of small eddies from large ones, Proc. R. Soc. London, Ser. A
158, 499 (1937).

[97] T. v. Karman, Ueber den Mechanismus des Widerstandes, den
ein bewegter Korper in einer Fliissigkeit erfahrt, Nachrichten
von der Gesellschaft der Wissenschaften zu Gottingen,
Mathematisch-Physikalische Klasse, 509 (1911).

(87

—

015308-27

https://doi.org/10.1016/j.camwa.2020.04.033
https://para08.idi.ntnu.no/docs/submission_37.pdf
https://doi.org/10.1016/j.camwa.2020.03.022
https://doi.org/10.1016/j.proeng.2013.08.010
https://doi.org/10.1016/j.jocs.2015.04.006
https://doi.org/10.1016/j.jcp.2019.108905
https://doi.org/10.5334/jors.343
https://doi.org/10.1016/j.compfluid.2005.02.008
https://doi.org/10.1007/s13272-020-00450-1
https://doi.org/10.1016/j.cpc.2017.03.013
https://doi.org/10.1145/103162.103163
https://doi.org/10.1177/1094342019846547
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019768
https://doi.org/10.1016/j.compfluid.2019.01.005
https://doi.org/10.1098/rsta.2001.0955
https://doi.org/10.1038/s43588-021-00156-2
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
http://lbmworkshop.com/wp-content/uploads/2011/08/2011-08-22_Edmonton_scaling.pdf

MORITZ LEHMANN et al.

PHYSICAL REVIEW E 106, 015308 (2022)

[98] A. Cattenone, S. Morganti, and F. Auricchio, Basis of
the lattice Boltzmann method for additive manufacturing,
Arch. Comput. Methods Eng. 27, 1109 (2020).

[99] U. R. Alim, A. Entezari, and T. Moller, The lattice-
Boltzmann method on optimal sampling lattices, IEEE Trans.
Visualization Comput. Graphics 15, 630 (2009).

[100] P. Neumann and T. Neckel, A dynamic mesh refinement tech-
nique for lattice Boltzmann simulations on octree-like grids,
Comput. Mech. 51, 237 (2013).

[101] U. Ghia, K. N. Ghia, and C. Shin, High-Re solutions
for incompressible flow using the Navier-Stokes equa-
tions and a multigrid method, J. Comput. Phys. 48, 387
(1982).

[102] B.-N. Jiang, T. Lin, and L. A. Povinelli, Large-scale compu-
tation of incompressible viscous flow by least-squares finite
element method, Comput. Methods Appl. Mech. Eng. 114,
213 (1994).

[103] J.-Y. Yang, S.-C. Yang, Y.-N. Chen, and C.-A. Hsu, Implicit
weighted ENO schemes for the three-dimensional incom-
pressible Navier—Stokes equations, J. Comput. Phys. 146, 464
(1998).

[104] D. Barthes-Biesel, Motion and deformation of elastic cap-
sules and vesicles in flow, Annu. Rev. Fluid Mech. 48, 25
(2016).

[105] A. Guckenberger, M. P. Schraml, P. G. Chen, M. Leonetti, and
S. Gekle, On the bending algorithms for soft objects in flows,
Comput. Phys. Commun. 207, 1 (2016).

[106] A. Guckenberger and S. Gekle, Theory and algorithms to
compute Helfrich bending forces: A review, J. Phys.: Condens.
Matter 29, 203001 (2017).

[107] S. Williams, A. Waterman, and D. Patterson, Roofline: An in-
sightful visual performance model for floating-point programs
and multicore architectures (Lawrence Berkeley National
Lab., Berkeley, CA, 2009).

[108] J. Latt, C. Coreixas, J. Beny, and A. Parmigiani, Efficient
supersonic flow simulations using lattice Boltzmann methods
based on numerical equilibria, Philos. Trans. R. Soc. A 378,
20190559 (2020).

[109] N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Entropic
lattice Boltzmann model for gas dynamics: Theory, bound-
ary conditions, and implementation, Phys. Rev. E 93, 063302
(2016).

[110] M. Atif, M. Namburi, and S. Ansumali, Higher-order lattice
Boltzmann model for thermohydrodynamics, Phys. Rev. E 98,
053311 (2018).

[111] J. L. Gustafson and I. T. Yonemoto, Beating floating point
at its own game: posit arithmetic, Supercomputing Front.
Innovations 4, 71 (2017).

[112] NVIDIA Corporation, Parallel Thread Execution ISA Version
7.2 (2021).

[113] J. L. Gustafson, posit arithmetic, Mathematica Notebook
describing the posit number system 30 (2017).

[114] F. De Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, posits:
The good, the bad and the ugly, in Proceedings of the Confer-
ence for Next Generation Arithmetic 2019, Singapore (2019),
pp. 1-10.

[115] C. Leong, SoftPosit library, accessed Sept, 24, 2019, https:/
gitlab.com/cerlane/SoftPosit.

[116] Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the
forcing term in the lattice Boltzmann method, Phys. Rev. E
65, 046308 (2002).

[117] C. K. Batchelor and G. Batchelor, An Introduction to Fluid Dy-
namics (Cambridge University Press, Cambridge, UK, 2000).

[118] S.Izquierdo, P. Martinez-Lera, and N. Fueyo, Analysis of open
boundary effects in unsteady lattice Boltzmann simulations,
Comput. Math. Appl. 58, 914 (2009).

[119] T. Kriiger, Introduction to the immersed boundary method, in
LBM Workshop (Edmonton, Canada, 2011).

[120] A. J. Ladd, Numerical simulations of particulate suspensions
via a discretized Boltzmann equation. Part 1. Theoretical foun-
dation, J. Fluid Mech. 271, 285 (1994).

[121] D. Barthes-Biesel, J. Walter, and A.-V. Salsac, Flow-Induced
Deformation of Artificial Capsules (CRC Press, Boca Raton,
2010), pp. 35-70.

[122] A. R. Harwood and A. J. Revell, Parallelisation of an interac-
tive lattice-Boltzmann method on an Android-powered mobile
device, Adv. Eng. Software 104, 38 (2017).

[123] P. Neumann and M. Zellner, Lattice Boltzmann flow simula-
tion on Android devices for interactive mobile-based learning,
in European Conference on Parallel Processing (Springer,
Grenoble, France, 2016), pp. 3—-15.

[124] NVIDIA Corporation, NVIDIA Turing GPU Architecture
(2018), https://images.nvidia.com/aem-dam/en-zz/Solutions/
design-visualization/technologies/turing-architecture/
NVIDIA-Turing- Architecture- Whitepaper.pdf.

[125] NVIDIA Corporation, NVIDIA A100 Tensor Core GPU Ar-
chitecture (2020), https://images.nvidia.com/aem-dam/en-zz/
Solutions/data-center/nvidia-ampere-architecture-
whitepaper.pdf.

[126] R. Gonzales, NVIDIA CUDA force P2 state - performance
analysis (off vs. on) (2021), https://babeltechreviews.com/
nvidia-cuda-force-p2-state/.

[127] J. Harting, S. Frijters, M. Ramaioli, M. Robinson, D. E. Wolf,
and S. Luding, Recent advances in the simulation of particle-
laden flows, Eur. Phys. J.: Spec. Top. 223, 2253 (2014).

[128] T. Kriiger, S. Frijters, F. Giinther, B. Kaoui, and J. Harting, Nu-
merical simulations of complex fluid-fluid interface dynamics,
Eur. Phys. J.: Spec. Top. 222, 177 (2013).

[129] T. Kriiger, B. Kaoui, and J. Harting, Interplay of inertia and
deformability on rheological properties of a suspension of
capsules, J. Fluid Mech. 751, 725 (2014).

[130] N. Rivas, S. Frijters, I. Pagonabarraga, and J. Harting, Meso-
scopic electrohydrodynamic simulations of binary colloidal
suspensions, J. Chem. Phys. 148, 144101 (2018).

015308-28

https://doi.org/10.1007/s11831-019-09347-7
https://doi.org/10.1109/TVCG.2008.201
https://doi.org/10.1007/s00466-012-0721-y
https://doi.org/10.1016/0021-9991(82)90058-4
https://doi.org/10.1016/0045-7825(94)90172-4
https://doi.org/10.1006/jcph.1998.6062
https://doi.org/10.1146/annurev-fluid-122414-034345
https://doi.org/10.1016/j.cpc.2016.04.018
https://doi.org/10.1088/1361-648X/aa6313
https://doi.org/10.1098/rsta.2019.0559
https://doi.org/10.1103/PhysRevE.93.063302
https://doi.org/10.1103/PhysRevE.98.053311
https://gitlab.com/cerlane/SoftPosit
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1016/j.camwa.2009.02.014
https://doi.org/10.1017/S0022112094001771
https://doi.org/10.1016/j.advengsoft.2016.11.005
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://babeltechreviews.com/nvidia-cuda-force-p2-state/
https://doi.org/10.1140/epjst/e2014-02262-3
https://doi.org/10.1140/epjst/e2013-01834-y
https://doi.org/10.1017/jfm.2014.315
https://doi.org/10.1063/1.5020377

