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ABSTRACT
Local hybrid functionals are a more flexible class of density functional approximations, allowing for a position-dependent admixture of
exact exchange. This additional flexibility, however, comes with a more involved mathematical form and a more complicated design. A
common denominator for previously constructed local hybrid functionals is the usage of thermochemical benchmark data to construct these
functionals. Herein, we design a local hybrid functional without relying on benchmark data. Instead, we construct it in a more ab initio
manner, following the principles of modern meta-generalized gradient approximations and considering theoretical constraints. To achieve
this, we make use of the density matrix expansion and a local mixing function based on an approximate correlation length. The accuracy of the
developed density functional approximation is assessed for thermochemistry, excitation energies, polarizabilities, magnetizabilities, nuclear
magnetic resonance (NMR) spin–spin coupling constants, NMR shieldings, and shifts, as well as EPR g-tensors and hyperfine coupling
constants. Here, the new exchange functional shows a robust performance and is especially well suited for atomization energies, barrier
heights, excitation energies, NMR coupling constants, and EPR properties, whereas it loses some ground for the NMR shifts. Therefore, the
designed functional is a major step forward for functionals that have been designed from first principles.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0100439

I. INTRODUCTION

The incorporation of exact exchange or Hartree–Fock (HF)
exchange into semilocal density functional theory (DFT) was a mile-
stone in computational chemistry.1–3 At the present time, DFT is
probably the most widely applied computational method in chem-
istry and material science due to its favorable cost-accuracy ratio.
Global hybrid functionals, such as B3LYP,4–6 PBE0,7,8 or TPSSh,9,10

use a fixed or static amount of HF exchange. Typically, global hybrid
functionals use 5%–25% of HF exchange.3 While this leads to accu-
rate results for many chemical properties, such a rigid admixture
of exact exchange is not suited for charge-transfer excitations or
the dissociation curve. Global hybrid functionals with the given
amount of exact exchange still feature a self-interaction error.
This is especially pronounced in one-electron regions. Therefore,
range-separated hybrid (RSH) functionals, which typically use a

significantly larger amount of exact exchange in the long-range
region, were introduced.11–14

Local hybrid functionals (LHFs) feature a position-dependent
admixture of Hartree–Fock exchange via a local mixing function
(LMF).15 Thus, the LMF increases the flexibility of the functional
as the amount of HF exchange can be increased or decreased in cer-
tain regions and LHFs are a more general class of hybrid density
functional approximations (DFAs). Compared to range-separated
hybrid functionals, this functional form results in a smoother transi-
tion from spatial regions with a small amount of HF exchange to
the regions with a large amount of HF exchange as it is possible
to interpolate between the semilocal DFT and HF limits. However,
LHFs introduce a gauge dependence of the exact-exchange energy
density.16 Thus, a so-called calibration function16–18 (CF) is intro-
duced in modern local hybrid functionals, such as LH14t-calPBE17

and LH20t.19
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The LMF is the key ingredient of LHFs, and different Ansätze
were suggested.20,21 The first and still most prominent method
to distinguish the electronic regions is the iso-orbital indica-
tor (t-LMF).15 This allows us to identify one-electron regions;
those accurate description requires an increased amount of exact
exchange. Other approaches are based on the correlation length
(z-LMF),22 reduced (spin) density gradients (s-LMF),23,24 the den-
sity overlap regions indicator (DORI-LMF),25,26 or the second-order
Görling–Levy perturbation limit27 of the correlation (PSTS-LMF).28

We have recently carried out benchmark calculations of electric and
magnetic response properties for LHFs based on different LMFs.29

This showed encouraging results for Johnson’s LHF22 based on the
correlation length—especially for heavy elements. Compared to the
PSTS-LMF, this LMF is also advantageous in numerically demand-
ing cases and results in a smooth convergence behavior.30 However,
only one functional based on this LMF was optimized,22 which con-
sists of Becke’s 1988 exchange31 and correlation terms.32 Moreover,
this functional does not make use of a calibration function, which
is commonly included in the latest generation of LHFs based on
the iso-orbital indicator. Therefore, we will first re-parameterize this
functional with Becke’s 1995 correlation term33 and also add a CF.

In a second step, we will design a more sophisticated local
hybrid functional from first principles. Modern (range-separated)
hybrid and local hybrid functionals are typically optimized using
(large) thermochemical test sets. While this may result in well-
performing density functional approximations for the properties
considered in the design, it may also come with a loss of gen-
erality and physical insight.34,35 In contrast, modern semilocal
functionals36–39 are first designed to include (almost) all known the-
oretical constraints and then applied to large benchmark test sets.
Herein, we will follow this route and adapt it to the form of local
hybrid functionals.

In addition to electron correlation, an accurate description of
the electronic structure throughout the Periodic Table of elements
necessitates a proper treatment of relativistic effects.40–46 Herein, we
will also generalize the two-component framework for open-shell
systems developed in Ref. 47 to include the z-LMF22 and PSTS-
LMF28 and higher-order derivatives to add the so-called calibration
function of modern local hybrid functionals.19,21 It is shown that
these functionals lead to substantially improved results for EPR
properties, which are a problematic case for the first and second
generation of t-LMF based functionals.47

This paper is structured as follows. First, we will discuss the
theoretical framework. In doing so, the optimization of a density
functional approximation based on the correlation length from first
principles is described. Then, the accuracy of the developed func-
tionals is assessed for thermochemistry, excitations, polarizabilities,
magnetizabilities, and NMR/EPR properties.

II. THEORY AND IMPLEMENTATION
We will first review local hybrid functionals within an unre-

stricted Kohn–Sham (UKS) formalism in Subsection II A. Fur-
thermore, the generalization to a two-component framework is
described in Sec. II B. A local hybrid exchange functional is con-
structed from first principles in Subsection II C. In the supplemen-
tary material, we present an optimized LHF based on the correlation
length similar to Johnson’s work.22

A. Unrestricted Kohn–Sham formalism for LHFs
In an UKS framework, the exchange–correlation (XC) energy

is given by

ELHF
XC = ∑

σ=α,β
∫ dr⃗ [{1 − aσ(r⃗)}eDFT

X,σ (r⃗) + aσ(r⃗)eHF
X,σ(r⃗)] + EDFT

C (r⃗),

(1)

where a is the LMF, eDFT
X,σ is the semilocal DFT exchange energy den-

sity, and eHF
X,σ denotes the exact-exchange or Hartree–Fock exchange

energy density. EDFT
C refers to the correlation energy. The LMF may

depend on the spin quantities or total quantities. LMFs based on
the latter include spin polarization and are called common LMFs.48

To carry out the integration in Eq. (1), Plessow and Weigend sug-
gested to use a seminumerical scheme49 as this also computes the
LMF, the exact-exchange energy contribution, and the semilocal
DFT exchange energy density on a grid. The exact-exchange term
is as follows:

eHF
X,σ(r⃗) = −

1
2∑pqrs

Dσ
pqDσ

rs ∫ dr⃗ ′
ϕ∗p (r⃗)ϕr(r⃗)ϕ∗q (r⃗ ′)ϕs(r⃗ ′)

∣r⃗ − r⃗ ′∣
, (2)

where the integration with respect to r⃗ ′ is evaluated. ϕp and Dσ
pq

denote the one-electron basis functions and the spin density matrix,
respectively. The remaining integration with respect to r⃗ is per-
formed numerically on a grid. Therefore, the position-dependent
admixture of exact exchange is directly included in the DFT routines
according to

ELHF
X =∑

σ
∑

g
wg[1 − aσ(r⃗g)] eHF

X,σ(r⃗g), (3)

with g denoting a grid point. This LHF scheme was later applied
self-consistently50 to various molecular properties, such as geometry
gradients,29,51 excitation energies and polarizabilities,52–55 ioniza-
tion potentials with the GW method,29,56 magnetizabilities,29 and
nuclear magnetic resonance (NMR) parameters.29,30,57–60 The latter
were also used to compute the magnetically induced current den-
sity and ring current strengths of aromatic systems.29 The reworked
implementations of these properties were described in Refs. 29 and
55.

First, the LMF may be formulated based on the iso-orbital
indicator.15 The respective t-LMF reads

aσ(r⃗) = ct
τvW

σ

τσ
= ct
∣∇ρσ ∣

2

8ρστσ
. (4)

Here, the kinetic-energy density τ is compared to the von
Weizsäcker approximation τvW.61 ρσ denotes the (spin) density. In
the case of a common LMF, the total (kinetic-energy) densities are
used. The prefactor ct in Eq. (4) is an optimized parameter.

Second, Johnson introduced a LMF using the correlation length
z according to22

aσ(r⃗) = erf(cz zσσ) (5)
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with the empirical parameter cz . Note that only the contribution of
parallel spins is considered. Here, the correlation length is computed
with the exchange potential UX and the exchange hole hX as

zσσ′ = cσσ′(∣UX,σ ∣
−1
+ ∣UX,σ′ ∣

−1
), (6)

UX,σ = ∫ ds
1
s
∣hX,σ(r⃗, s)∣, (7)

where cσσ′ are given by cαβ = 0.63 and cσσ = 0.88.32 Notably, this z-
LMF explicitly depends on the underlying exchange functional.

B. Generalization to a non-collinear two-component
framework

A self-consistent treatment of spin–orbit coupling necessi-
tates a generalized two-component Kohn–Sham formalism. This
requires not only the spin excess density but also the complete spin
magnetization vector, which is introduced according to

m⃗ =∑
i

φ†
i σ⃗φi, (8)

with the two-component spinor function φi and the vector σ⃗ con-
taining the (2 × 2) Pauli spin matrices. The total electron density ρ
and the non-collinear spin density ρs are given as62,63

ρ =∑
i

φ†
i φi, (9)

ρs = (m⃗ ⋅ m⃗)1/2. (10)

In a basis set representation, the non-collinear exchange–correlation
energy depends on the total density matrix M0 and the three spin
vector density matrices Mi with i = x, y, z. These are defined as62,63

M0 = Re(Pαα
) + Re(Pββ

), (11)

Mx = Re(Pαβ
) + Re(Pβα

), (12)

My = Im(Pαβ
) − Im(Pβα

), (13)

Mz = Re(Pαα
) − Re(Pββ

). (14)

The XC potential follows as

VXC
μν [M0(r⃗), M⃗(r⃗)] =

δEXC[M0(r⃗), M⃗(r⃗)]
δM0,μν(r⃗)

+ σ⃗
δEXC[M0(r⃗), M⃗(r⃗)]

δM⃗μν(r⃗)
. (15)

The generalization of a non-relativistic spin-density functional is
done using the spin-up and spin-down densities,64,65

ρ↑ = (ρ + ρs)/2, (16)

ρ↓ = (ρ − ρs)/2. (17)

Only considering M0 and Mz results in the UKS limit. Therefore, an
unrestricted Kohn–Sham implementation of the XC potential and
the XC energy can be extended straightforwardly.64 This involves
the following major steps. First, the electron (spin) density and its
derivatives, such as the gradient and the Laplacian or the kinetic-
energy density, are evaluated at a given grid point. Second, the

respective derivatives are multiplied with its spin density matrix con-
tribution, and the sum of all three vector components is formed.
The inverse of the total spin density is used as a prefactor. Third,
the spin-up and spin-down contributions are constructed. Then,
the exchange and correlation functional expressions can be evalu-
ated similar to UKS. For further details, we refer to Refs. 64 and
66. Herein, we have implemented this scheme up to the Hessian of
the electron density and the gradient of the kinetic-energy density to
evaluate all calibration functions described in Ref. 18. A generaliza-
tion of spin-dependent local mixing function is more involved, and
many modern LHFs based on the t-LMF use a common local mix-
ing function. Therefore, the implementation of the 2c t-LMF is still
restricted to the common variant. Thus, LH07t-SVWN67 or LH14t-
calPBE17 is not yet available. Moreover, current-dependent terms
arise as spin–orbit coupling is closely related to magnetic induction,
and these are neglected herein;68 however, their implementation will
be presented elsewhere.

C. Designing a local hybrid exchange functional
from first principles

A common denominator for previously constructed local
hybrid functionals is the usage of thermochemical benchmark data
to construct these functionals. In this paper, we aim at constructing
a local hybrid exchange functional without relying on benchmark
data. Instead, we construct it in a more ab initio manner, following
the principles of previous meta-GGA functionals.9,36,37

We define the local exchange part eX as usual using an
enhancement factor FX,

EX = ∑
σ=α,β

∫ dr⃗ FX(ρσ ,∇ρσ , τσ ; r⃗) ⋅ eunif
X (ρσ ; r⃗), (18)

where the exchange energy density from the local (spin) density
approximation is defined as

eLSDA
X (ρσ ; r⃗) = ρσeunif

X (ρσ ; r⃗) = −
3ρσ

4π
(3π2ρσ)

1/3. (19)

As in many recent density functional approximations (DFAs), we
chose a semilocal enhancement factor, where FX is a function of the
density ρσ , the gradient of the density ∇ ρσ , and the kinetic energy
density τσ . As the exchange enhancement factor only depends on a
single spin coordinate, it is dropped in the following equations. Par-
ticularly, we adopt the density matrix expansion (DME) approach of
Tao and Mo,36 which has been shown to perform well for solids.69–71

Within the DME of Tao and Mo, the enhancement factor FDME
X is

given as

FDME
X =

1
f 2

X
+

7RX

9 f 4
X

. (20)

The auxiliary quantities RX and fX are defined as

RX = 1 +
594
54

y − [τ − 3(λ2
X − λX + 0.5) × (τ − τunif

−
∣∇ρ∣2

72ρ
)]

1
τunif

(21)
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and

fX = [1 + 10
70y
27
+ βXy2

]

1/10
(22)

with τunif
= (3/10)(3π2

)
2/3ρ5/3. λ is a real number between 0.5 and

1, describing the coordinate transformation. λ = 1 corresponds to
the conventional exchange hole.36 Furthermore, y = (2λ − 1)2p is a
scaled version of the reduced density gradient s depending on the
coordinate transformation with p = s2. For a local hybrid functional,
exact and local exchange are combined. Therefore, we choose λX = 1,
corresponding to the untransformed exchange hole. The parameter
βX will be determined later. As outlined by Tao and Mo, the DME
is not exact for slowly varying densities. Hence, it is advisable to
pair it with a fourth-order gradient correction.36 We use the same
expressions as Tao and Mo for the correction in the slowly varying
limit,

FSC
X = {1 + 10[(10/81 + 50p/729)p + 146q̃ 2

/2025

− (73q̃/405) [3τvW
/(5τ)](1 − τvW

/τ)]}
1/10

(23)

with q̃ = (9/20)(α − 1) + 2p/3 and α = (τ − τvW
)/τunif.36 The inter-

polation between FDME
X and FSC

X is also unaltered from the Tao–Mo
functional, yielding the final enhancement factor FX as

FX = wFDME
X + (1 − w)FSC

X (24)

with the interpolation function w = [(τvW
/τ)2
+ 3(τvW

/τ)3
]/

[1 + (τvW
/τ)3
]

2.
As missing piece to construct a local hybrid functional, a suit-

able mixing function is needed. The task of the mixing function is to
augment the local exchange from the DME with exact exchange. We
adopt an approach similar to the correlation length as suggested by
Johnson.22 Using an approximated correlation length zDME,

zDME
σσ′ = (∣Uσ ∣

−1
+ ∣Uσ′ ∣

−1
), (25)

we define U as

Uσ = cF[(1 + ζ)ρσ]
1/3
(

1
f 2

L
+

7RL

9 f 4
L
) (26)

with cF = 3/8 ⋅ 42/3
(3/π)1/3 and ζ = (ρσ − ρσ′)/(ρσ + ρσ′). Uσ′ is

obtained by reversing the spin indices. The expressions of RL and fL
are equivalent to those in Eqs. (21) and (22). The different subscripts
hint at the parameters βL and λL possibly being different from those
used in Eqs. (21) and (22). To map zDME

σσ′ to the interval {0, 1}, we
define the local mixing function aDME as

aDME
= 1 − exp(−cL ⋅ zDME

σσ′ ). (27)

As stated in Ref. 47, it is advantageous to work with “common”
mixing functions for 2c calculations using a single mixing function
for both spin channels. Furthermore, common mixing functions
have also shown to perform exceptionally well for predicting excited
triplet states.72 Therefore, we exclusively use the common LMF
for the designed functional in this work. Obtaining a common

mixing function based on Eq. (27) is straightforward. Simply τσ
is replaced by τσ + τσ′ and ∣∇ρσσ ∣/ρσ is replaced by ∣∇ρσσ + 2∇ρσσ′

+∇ρσ′σ′ ∣/(ρσ + ρσ′) during the evaluation of zDME
σσ′ .

What remains to be done is determining the parameters cL,
λX/L, and βX/L for the exchange functional and the LMF. At first,
a value of λX = 1.0 is set for the exchange enhancement factor in
Eq. (20). This relates to the choice of parameterizing the untrans-
formed (nonlocal) exchange hole. This is a natural choice as the
exact exchange entering Eq. (1) is also calculated from the con-
ventional hole. For the remaining parameters, two Ansätze can be
chosen to achieve a set of parameters. In the first Ansatz, different
parameters are chosen for βX/L and λX/L in the exchange enhance-
ment factor and the LMF, leading to a total of five parameters to
be optimized. In the second Ansatz, the conditions βX = βL and
λX = λL are required, leading to only three parameters that need to
be optimized.

Beginning with the first Ansatz, the parameters βL = 79.873
and λL = 0.6866 are set to the values obtained for the hydrogen
atom by Tao and Mo.36 Therefore, the correlation length is mea-
sured for the transformed (localized) exchange hole. The localized
exchange hole can be expected to be more appropriate for (semi-)
local exchange,36 yielding a more reliable description of the switch-
ing parameter. What is left to be determined are the parameters βX
from the DME, parameterizing the untransformed exchange hole,
and cL, accounting for the inclusion of exact exchange through
the LMF. The latter two parameters are obtained by fitting them
to spin-unpolarized two-electron densities.73,74 As our aim is to
design a functional without any prior exact knowledge of total
exchange–correlation energies, even atomic ones, we fit the para-
meters to theoretical considerations. First, in the low density limit,
which challenges the Lieb–Oxford bound more, the energy is con-
strained by eX = 1.174 eLSDA

X .74 Second, in the high density limit,
where exchange dominates, we expect the results to be closer to the
mean-field Hartree–Fock solution, i.e., eX = 1.165 88 eLSDA

X .75 Both
of these values can be derived analytically. To guide the optimiza-
tion, we choose two two-electron systems as for those, Hartree–Fock
exchange provides solutions close to the exact solution.73 For the
low-density limit, He is used, while we chose Hg78+ as guide for the
high-density limit. For both atoms, we evaluate the corresponding
local spin density approximation (LSDA) exchange energies at the
Hartree–Fock solution using saturated basis sets. For He and Hg78+,
we find LSDA energies of −0.885 and −42.699 hartree. Both of these
values are within 2 mhartree of those obtained for the exact den-
sity.73 Multiplying with the analytic prefactors yields −1.039 and
−49.781 hartree, respectively. Finally, we optimize βX for a given
value of cL, yielding possible pairs of solutions. We chose the pair
with the highest value for cL, yielding cL = 0.18 and βX = 265.25.

In the second Ansatz, only two parameters need to be opti-
mized. As one-electron densities are exact by construction of our
exchange approximation, we drop the hydrogen atom as the refer-
ence system. For the three parameter model, we, therefore, only take
into account the low- and high-density limits of spin-unpolarized
two-electron systems. Repeating the same procedure as above yields
βX = 262.25 and cL = 0.215. Indeed, βX is only a very weak function
of the optimization procedure, and we find hardly any difference
compared to the five parameter fit. cL = 0.215 hints at significantly
more exact exchange being incorporated when a three parameter
fit is desired. It shall be noted that while the Lieb–Oxford bound
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TABLE I. Parameters of the five parameter TMHF and three parameter TMHF-3P fits.
cL, βL, and λL are employed for the LMF, while βX and λX are used for the exchange
density. Note that all parameters were derived from physical constraints.

βL λL cL βX λX

TMHF 79.873 0.6866 0.180 265.25 1.0
TMHF-3P βX λX 0.215 265.25 1.0

was taken into account during the evaluation of the parameters, the
derived exchange approximation may still violate it for certain sys-
tems and basis sets as it is not strictly constrained by it. Furthermore,
our functional certainly violates the conjectured local version of the
Lieb–Oxford bound. The latter issue could be remedied by a gauge
transformation.

For convenience, the parameters of the developed functional,
which we will be refer to as Tao-Mo-Holzer-Franzke (TMHF) (five
parameter fit) and TMHF-3P (three parameter fit), are summarized
in Table I. We pair these local hybrid exchange functionals with the
B95 correlation functional33 as the latter has shown to work well in
conjunction with local hybrid exchange functionals.19 We note that
the B95 correlation functional uses two parameters optimized for
the He and Ne atoms.33 Attempts to employ the (modified) TPSS
correlation9,36 failed as this yields very inaccurate results for ther-
mochemical properties. The TPSS correlation is more suited for
functionals with a small amount of exact exchange.10 Viable alterna-
tives to B95 correlation may be obtained from the rung-3.5 Ansatz of
Ramos and Janesko76 or from the recent non-dynamical correlation
Ansatz of Becke.35

Figure 1 shows a comparison of the LMF defined by Johnson22

outlined in Eqs. (5) and (6) and our DME-based one outlined in
Eqs. (27) and (25) for four diatomic molecules. In both approaches,
the mixing fraction approaches zero near the nuclei. Furthermore,
their behavior in the bonding region is similar, incorporating ∼20%

exact exchange. Larger differences can be found in the tail regions
of the density, where the correlation length defined in Eq. (5) grows
approximately linear. Contrarily, zDME

σσ′ used in TMHF grows nearly
exponentially, as outlined in Fig. 1(a).

For another interesting example, the Li dimer at 5.0 and at
10.0 bohrs, the DME local mixing function is outlined in Fig. 2. It
clearly shows the different behavior between bonded and stretched
Li2. In the former case, the LMF has a local minimum at the cen-
ter, while in the latter case, a local maximum is found. Comparably,
at the bond center, the amount of exact exchange included is raised
by roughly 25% in the stretched dimer. This effect will lead to sig-
nificantly improved barrier heights while not degrading the overall
performance for other properties. In Ref. 77, it was noted that due to
the order-of-limits problem of the interpolation function, stretched
Li2 will not converge with the Tao–Mo functional using the aug-
cc-pVQZ basis set,78–80 which was confirmed by us. The root of
this issue is a singularity located at the center between the two Li
atoms, caused by the order-of-limits problem.77 TMHF, however,
converges smoothly for the stretched Li2. This can be attributed to
the large amount of exact exchange incorporated at the center of
the stretched bond, as shown in Fig. 2, and the increased numerical
rigor of our implementation. Still, the local exchange part of TMHF
is plagued by the order-of-limits problem, but for stretched bonds,
it is expected to be less harmful. Near the nucleus, where the LMF
approaches zero, the singularity from the order-of-limits problem is,
however, not countered. Therefore, no improvements of TMHF over
the initial Tao–Mo functional (or other standard meta-GGA func-
tionals) are expected for properties that are sensitive to the exchange
contribution and the electron density in the vicinity of the nuclei.

D. Implementation
The outlined functionals were implemented into the TURBO-

MOLE program suite.81–84 The mathematical functions for the LMFs
were generated using Maple scripts,85 while the individual exchange

FIG. 1. (a) zσσ′ obtained from Eq. (25) (straight lines, DME) and Eq. (6) (dashed lines, Johnson). (b) Local mixing function a obtained from Eq. (27) (straight lines, DME)
and Eq. (5) (dashed lines, Johnson). Properties calculated for four molecules at self-consistent TMHF/aug-cc-pVQZ orbitals and plotted along the internuclear axis.
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FIG. 2. DME local mixing function as a function of z at various distances between
two Li atoms, calculated using the TMHF/aug-cc-pVQZ method. The distance
between the two Li atoms is r = 5.0 bohrs (solid line) and r = 10.0 bohrs (dashed
line).

and correlation functional terms are computed with Libxc.86–88 For
convenience, the Maple files of the TMHF local mixing function
(separate spin-channels and common spin-channels) are part of
the supplementary material and can be included in the routines
for LHFs. Note that we exclusively use the common variant in
this work.

The existing Kramers unrestricted two-component implemen-
tation47 was reworked for the efficiency and extended to include
higher-order derivatives of the density, i.e., the Laplacian, Hessian,
and the gradient of τ. This allows us to use the pig1, pig2, and tpig1
calibration function18 and general meta-GGAs for LHFs. There-
fore, the LH20t functional19 is also now available in two-component
open-shell calculations. We further added interfaces to Libxc86–88

to support (almost) all exchange and correlation functional ingre-
dients. The revised thresholds of Ref. 30 are used for the numerical
integration.89,90 We note that tighter thresholds and large grids are
helpful for the SCF convergence and the numerical accuracy of the
B95 correlation contribution. The efficiency was increased by using
the routines developed in Refs. 29 and 55, i.e., the screening pro-
cedure and memory handling described therein are applied in the
general two-component case.

We note that the reworked LHF gradient routines evaluate
the high-angular momentum contributions similar to the integral
routines developed for the finite nucleus model in relativistic all-
electron calculations.91 Parallelization is available throughout with
the OpenMP scheme.92,93

III. COMPUTATIONAL DETAILS
In this section, the performance of the newly developed five

parameter TMHF and three parameter TMHF-3P functionals will
be investigated. In addition, we will investigate a re-parameterized

version of the z-LMF-based functional of Johnson,22 labeled LHJ-
HF and LHJ-HFcal. Details about LHJ-HF(cal) can be found in the
supplementary material, Sec. S1. We will limit the assessment of
accuracy to thermochemistry, excitation energies, and EPR prop-
erties in the main text. Further studies on magnetizabilities, polar-
izabilities, NMR spin–spin coupling constants, and NMR shielding
constants and shifts are presented in the supplementary material.
The respective computational details are also given therein. To pro-
vide a comprehensive overview, we compare to a variety of density
functionals commonly used at the present time and earlier designed
local hybrid functionals that have been fitted to thermochemical
data. This includes the Perdew–Burke–Ernzerhof generalized gradi-
ent approximation (PBE GGA);7 the meta-GGA TPSS;9 Tao–Mo;36

SCAN;37 the hybrid functionals PBE0,7,8 B3LYP,4–6 and TPSSh;9,10

the range-separated functionals CAM-B3LYP,14 LC-ωPBE,94 and
ωB97X-D;95 and the local hybrid functionals LH12ct-SsirPW92,48

LH14t-calPBE,17 LH20t,19 LHJ14,22 and mPSTS-a1.28

A. Thermochemistry
Atomization energies and barrier heights are important quality

measures for DFAs. They yield a first overview of the general qual-
ity of functionals and are themselves commonly used when newly
parameterized functionals are designed. Atomization energies were
assessed for the W4-11 test set,96 and barrier heights were assessed
for the BH76 test set.97–99 Both of those sets are subsets of the
extensive “general main group thermochemistry, kinetics, and non-
covalent interactions” (GMTKN) set.100 To yield values that can be
directly compared to the GMTKN values, the def2-QZVP basis set101

was used throughout, in conjunction with a large integration grid
(grid 4) for numerical integration.89,90 Results for other functionals
are taken from Ref. 100.

B. Excitation energies
For the excitation energies, we consider the benchmark test set

of Suellen et al. with experimental reference results, which match
third-order coupled cluster (CC3) values to within 0.05 eV or less.102

Structures were taken from Ref. 102. In line with this reference, we
use the aug-cc-pVTZ basis set78–80 and large grids (grid size 4) for the
numerical integration of the DFT parts.89,90 Tight SCF thresholds of
10−9 hartree for the energy and 10−7 a.u. for the root mean square
of the density matrix are applied. Response equations are converged
with a threshold of 10−5 a.u. for the norm of the residuum.103 The
excitation energies are corrected by the B3LYP zero-point vibra-
tional energies.104 Results with conventional functionals are taken
from Ref. 102, while the results with all previously designed local
hybrids are taken from Ref. 29.

C. EPR calculations
EPR properties, such as the hyperfine coupling (HFC) constant

and the g-tensor, are challenging properties for local hybrid
functionals due to the high-density limit.47 We have recently
benchmarked EPR properties in a self-consistent spin–orbit
exact two-component (X2C) framework.105,106 Herein, we extent
these studies to local hybrid functionals, and those general two-
component implementation is described herein. To do so, we
consider the 17 small transition-metal complexes of Ref. 107,
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namely, [MoNCl4]2−, [MoOF4]−, [MoOCl4]−, [MoOF5]2−,
[MoOBr5]2−, [WOCl4]−, [WOF5]2−, [WOBr5]2−, [TcNF4]−,
[TcNCl4]−, [TcNBr4]−, [ReNF4]−, [ReNCl4]−, [ReNBr4]−,
[ReOBr4], [ReOF5]−, and [OsOF5]. We use the same computational
parameters as in Refs. 105 and 106. In detail, the x2c-QZVPall-2c
basis set108 is applied for all elements. Large grids (grid 5a) are
chosen for the numerical integration.89,90,109 The conductor-like
screening model (COSMO) is applied with the default parameters to
compensate the negative charge.110,111 We use the X2C Hamiltonian
in the diagonal local approximation to the unitary transformation
(DLU).30,91,105,106,112–115 The restricted kinetic balance (RKB)
condition116 is employed for the HFC, whereas both RKB and the
restricted magnetic balance (RMB) conditions117 are employed
for the g-tensor. An SCF threshold of 10−9 hartree is applied.
In addition to the functionals used in Secs. III A and B and the
Hartree–Fock method, we consider the following DFAs additionally
to provide a more complete overview in this chapter as data are yet
comparably rare: S-VWN,118–120 KT3,121 BP86,31,122 revTPSS,123,124

r2SCAN,38,39 BH & HLYP,5,31,125 PBE0, including 40% of HF
exchange (PBE0-40HF),7,8,107 B97,126 B97-2,127 revTPSSh,123,124

TPSS0,10,128 r2SCANh,38,39,129 r2SCAN0,38,39,129 r2SCAN50,38,39,129

CAM-QPT-00,130 CAM-QTP-02,131 HSE06,132–134 LH12ct-
SsifPW92,48 LH20t∗ (LH20t without calibration function),19 and
mPSTS-noa2.28,29 Note that SCAN has been replaced by r2SCAN
as HFC constants and g-tensors are considerably more sensitive
to the integration grid. In the main text, results for the same
functionals as above are shown. The complete results are listed in
the supplementary material.

IV. ASSESSMENT OF ACCURACY
FOR THERMOCHEMISTRY

To assess the basic properties of the newly constructed func-
tionals, their thermochemical properties are investigated. The
W4-1196 and BH76 subsets97–99 from the GMTKN55 test set100 were

chosen, outlining the principal capabilities of a density functional
approximation (DFA) for the calculation of atomization energies
(W4-11) and barrier heights (BH76). The results are displayed in
Figs. 3 and 4.

TMHF is a major step forward for functionals that have been
designed from first principles. With MAE/RMSD values of 2.78/4.60
kcal/mol for the W4-11 atomization energy subset and 2.80/3.36
kcal/mol for the barrier heights of the BH76 subset, it outper-
forms any other functionals that have been constructed from first
principles. Popular thermochemically optimized functionals such
as ωB97X-D exhibit similar errors for the W4-11 subset. Further-
more, previously reported thermochemically optimized local hybrid
functionals, for example, LH20t, are not able to outperform TMHF.
From a viewpoint of thermochemistry, TMHF and TMHF-3P per-
form as well as the best empirically parameterized functionals. While
for barrier heights parameterized functionals still hold a slight edge,
especially the slightly higher amount of exact exchange incorporated
in TMHF-3P yields excellent results. The remaining differences in
barrier heights are rather small and probably do not outweigh the
loss of generality.

Table II summarizes the errors of thermochemical proper-
ties for a set of DFAs that has been derived from first principles.
Here, a clear trend is observed following Jacob’s ladder. The most
pronounced error reduction happens from GGA to meta-GGAs, fol-
lowed by the step to global hybrids. An obvious exception is the
meta-GGA SCAN, which is able to perform as well as global hybrids
for atomization energies, still losing out for barrier heights. Barrier
heights are more sensitive to the inclusion of exact exchange, gen-
erally preferring functionals that incorporate a higher amount of
exact exchange. The non-empirical local hybrids presented in this
work, TMHF and TMHF-3P, again lower the error bar significantly.
The statistical errors in barrier heights are nearly halved. Atomiza-
tion energies are also improved by more than 1 kcal/mol on average,
yet yielding a less pronounced underbinding when compared to the
global hybrids TPSSh and PBE0.

FIG. 3. Mean standard deviation (MSD),
mean average deviation (MAD), and root
mean square deviation (RMSD) for the
atomization energies of the W4-11 test
set. All values are in kcal/mol. PBE and
LHJ14 are omitted due to errors of more
than 10 kcal/mol.
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FIG. 4. Mean standard deviation (MSD),
mean average deviation (MAD), and root
mean square deviation (RMSD) for the
barrier heights of the BH76 test set. All
values are in kcal/mol.

V. ASSESSMENT OF ACCURACY FOR EXCITATION
ENERGIES

The test set of Suellen et al., which is composed of 41 excitation
energies with accurate experimental and approximate coupled clus-
ter singles, doubles, and triples (CC3) reference values has become
a popular way of benchmarking the capabilities to predict excita-
tion energies.102 For these molecules, TMHF and TMHF-3P perform
very well too, as shown in Fig. 5, with TMHF having the edge.

Most obviously, the parameterized functionals, which per-
formed well for thermochemistry, are no longer the top contenders.
TMHF easily outperforms most other DFAs, although most sta-
tistical values are rather close for the top performers here. While
performing very well overall, TMHF also features the by far low-
est maximum error of all functional approximations that have
been tested.102 A maximum error of 0.46 eV equals a reduction
of 0.1–0.3 eV compared to other popular DFAs. Even compared

TABLE II. Mean standard deviation (MSD), mean average deviation (MAD), and root
mean square deviation (RMSD) for the atomization energies of the W4-11 test set and
the barrier heights of the BH76 test set with functionals derived from first principles.
All values are in kcal/mol.

W4-11 BH76

MSD MAD RMSD MSD MAD RMSD

PBE 13.35 14.96 18.50 −9.11 9.15 10.39
Tao–Mo 3.27 7.45 9.66 −8.21 8.24 9.24
TPSS 3.27 5.11 6.65 −8.61 8.63 9.58
TPSSh −1.62 4.41 6.12 −6.65 6.68 7.48
SCAN −0.17 4.01 5.72 −7.36 7.66 8.37
PBE0 −1.75 3.62 5.73 −3.17 4.62 5.90
TMHF-3P −0.27 3.21 4.97 −1.83 2.09 2.59
TMHF −0.73 2.78 4.60 −2.71 2.80 3.36

to coupled-cluster singles and doubles (CCSD), which exhibits a
maximum error of 0.43 eV, it remains competitive. Common to
most local hybrid functionals, the average deviation of TMHF is
again centered around 0 eV. This outlines the balanced interpolation
between local and exact exchange of the newly constructed TMHF
local hybrid. As outlined in the supplementary material, charge-
transfer excitations are also well captured by TMHF and TMHF-3P,
yielding errors comparable to range-separated hybrid functionals in
these cases.

VI. ASSESSMENT OF ACCURACY FOR EPR
PROPERTIES

The results for the HFC constant and the g-tensor are shown
in Figs. 6 and 7, respectively. Here, the statistical evaluation of the
g-tensor is shown with the RMB condition. The previous func-
tional generation with LH12ct-SsirPW92 and LHJ14 does not yield
accurate results. These functionals exhibit larger errors than some
of the conventional hybrid functionals. The mPSTS-a1 functional
performs similar to established global hybrid functionals, such as
B3LYP and TPSSh. However, it is outperformed by many range-
separated hybrid functionals and global hybrid functionals with an
increased amount of exact exchange such as TPSS0 and PBE0-40HF
(see the supplementary material). Among the conventional hybrids,
the latter shows the smallest errors with mean absolute percent-wise
deviations (MAPDs) of 5%–6% for the HFC constant and also yield
smaller errors for the g-tensor (MAPDs of 13%–18%).

TMHF performs remarkably well with an error of 4.77% for
the HFC constant and 11.93% for the g-tensor. Thus, TMHF out-
performs all other density functional approximations. TMHF-3P
is again very similar to TMHF and only slightly inferior. This is
also a remarkable improvement over the parent functional of Tao
and Mo, which results in errors of 29.73% and 34.23%, respectively.
The LH20t functional and the newly developed LHJ-HF functionals
deliver similar results and are among the top performers with errors
of about 7% for the HFC, while LH20t loses ground for the g-tensor
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FIG. 5. Mean standard deviation (MSD),
mean average deviation (MAD), stan-
dard deviation (STD), root mean square
deviation (RMSD), and maximum error
(Max. Err.) for 41 excitation energies of
small molecules. All values are in eV.

and shows slightly larger errors than LH12ct-SsirPW92. For LHJ-
HF, the improvements can be mainly attributed to the re-optimized
parameter for the admixture of HF exchange as EPR properties are
sensitive toward the amount of exact exchange.105,106

The impact of the calibration function on the EPR properties is
negligible, whereas it may lead to an unfavorable SCF convergence
behavior due to the increased numerical difficulties of the higher-
order derivatives. This is especially important for two-component
calculations, which require re-optimized thresholds for the numer-
ical integration.30,109 Thus, we recommend functionals without the
calibration function for two-component calculations of open-shell
compounds.

Taking together, local hybrid functionals are generally able to
deliver accurate results for EPR parameters. Overall, TMHF out-
performs all other functionals. The LH20t and LHJ-HF families
lead to similar errors for the HFC constant, and LHJ-HF shows
improvements for the g-tensor. For both the HFC and the g-
tensor, TMHF and LHJ-HF are the top performers. To illustrate
the performance of local hybrid functionals for systems with more
than one unpaired electron, we list the hyperfine coupling con-
stants for the Lanthanide complex [TbPc2]− in the supplementary
material. For this example, any density functional approximation
other than TMHF yields large errors. TMHF is, however, able
to predict the hyperfine coupling constants for [TbPc2]− with

FIG. 6. Assessment of various density
functional approximations for the HFC
constant compared to the experimental
findings for a set of 12 transition-metal
complexes.107 MAPD and STD denote
the mean absolute percent-wise devia-
tion and its standard deviation. The data
of the conventional functionals are taken
from Ref. 105.
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FIG. 7. Assessment of various density
functional approximations for the Δg-
shift compared to the experimental find-
ings for the set of 17 transition-metal
complexes.107 MAPD and STD denote
the mean absolute percent-wise devi-
ation and its standard deviation. The
data of the conventional functionals are
taken from Ref. 106. [TcNCl4]− and
[ReNBr4]− are neglected in the statistical
evaluation.

very good accuracy, stressing that the results shown in Fig. 6 are
transferable.

VII. SUMMARY AND CONCLUSIONS
We derived a new local hybrid exchange approximation,

termed TMHF and TMHF-3P, from first principles. For their con-
struction, we only take into account the low-density and high-
density limits of the exchange energies of two-electron systems,
and for TMHF, we additionally take the exact solution of the
hydrogen atom. The derived functionals are, therefore, not fit-
ted to any bound systems or reaction energies. Statistical errors
of thermochemical properties reveal that, indeed, the TMHF
exchange models are a significant step forward for density func-
tional approximations designed from first principles. Being the next
step on rung 4 of Jacob’s ladder,135 TMHF significantly outperforms
all previously presented approximations constructed from first
principles.

In the subsequent investigations of various properties, the
assumption that density functional approximations from first prin-
ciples are generally transferable could be verified. For various prop-
erties, such as the calculation of excited states, EPR parameters, or
NMR coupling constants, TMHF is the best in class. It does provide
not only significantly lower statistical errors but also far lower max-
imum errors as compared to other leading functionals. This leads
to more reliable predictions across different molecules and prop-
erties, which may have very different needs. There are, of course,
still points where future work is desperately needed. For example,
a rather simple local correlation model is used, not being able to
truly describe multi-configurational settings. A fully non-empirical
correlation treatment could be derived or paired with the outlined
exchange approach. Furthermore, core-related properties such as
NMR shifts are not improved, given the lack of exact exchange
near the nucleus from our model. Finally, van der Waals interac-
tions still need to be included using a dispersion correction model

as long range correlation can also not be modeled by our approach
alone.

Despite the remaining deficiencies, we conclude that certainly
TMHF is strikingly close to a one-for-all functional for the time
being.

SUPPLEMENTARY MATERIAL

See the supplementary material for the re-parameterized ver-
sion of Johnson’s local hybrid functional, individual results and
statistical evaluation for magnetizabilities and polarizabilities, indi-
vidual results and statistical evaluation for NMR spin–spin cou-
pling constants, individual results and statistical evaluation for
NMR shieldings and shifts, individual results for thermochemistry,
individual results and statistical evaluation for excitation energies,
results of TMHF and TMHF-3P for the QUEST#6 excitation energy
test set of Ref. 136, individual results and statistical evaluation
for hyperfine coupling constants and g-tensors, application to the
isotropic EPR hyperfine coupling constant of [TbPc2]−, Maple files
of TMHF to allow for an easy incorporation into quantum chemi-
cal programs, and Cartesian coordinates of optimized structures for
NMR couplings and NMR shifts.
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