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Abstract

The thiol-disulfide exchange reaction is a nucleophilic substitution that occurs in a large

class of proteins. It plays an important role regarding the third and fourth dimensional

structure of proteins and the catalysis of biological reactions. Moreover, thiol-disulfide

exchange can regulate the activity of certain proteins. In this work, the structural and

environmental factors that influence this reaction will be discussed.

Due to its computational efficiency, Density-Functional based Tight-binding (DFTB)

has positioned itself as a popular and reliable quantum mechanical method for condensed

phase applications as it allows extensive phase space sampling and generating free-energy

surfaces of complex reactions such as those occurring in biological systems. However,

these savings in computational costs can come at the expense of lower accuracy. In

the thiol-disulfide exchange DFTB shows inaccurate transition states. Literature review

indicates that a proper description of this reaction requires high-level ab initio methods.

Hence, the motivation of this work was to correct the DFTB errors with a machine

learning approach. To achieve this, we used a Behler–Parrinello-type Neural Network that

learns the energy value differences between the ab initio quantum chemical potential and

DFTB for a given molecular structure. The machine learned energy correction was then

implemented into the DFTB+ software. With this new framework we were able to perform

hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) simulations of thiol-disulfide

exchange with Coupled Cluster and B3LYP accuracy with a computational cost that is

comparable to DFTB.

This correction algorithm is also implemented in a graphical interface pipeline that

will help the user to generate and arrange training data, as well as exporting the machine

learning model into DFTB+ for its further use in QM/MM simulations. The adoption of this

pipeline is intended to expand the applications of the Neural Network code by prioritizing

the knowledge of quantum modelling over a programming background.

Additionally, we present preliminary work on a machine learned force field to describe

the disulfide-exchange reaction using Coupled Cluster reference data.
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Zusammenfassung

Die Thiol-Disulfid-Austauschreaktion ist eine nukleophile Substitution, die in einer großen

Klasse von Proteinen stattfindet. Sie spielt eine wichtige Rolle für die dritt- und viertdi-

mensionale Struktur von Proteinen und die Katalyse biologischer Reaktionen. Außerdem

kann der Thiol-Disulfid-Austausch die Aktivität bestimmter Proteine regulieren. In dieser

Arbeit werden die strukturellen und Umgebungsfaktoren, die diese Reaktion beeinflussen,

diskutiert.

Aufgrund ihrer Recheneffizienz hat sich die Density-Functional based Tight-binding

(DFTB) Methode als beliebte und zuverlässige quantenmechanische Methode für Anwen-

dungen in kondensierter Phase positioniert. Mit DFTB ist es möglich die freie Energiefläche

komplexer Reaktionen zu erzeugen, da der Phasenraum ausreichen abgetastet werden kann.

Diese Einsparungen bei den Rechenkosten können jedoch auf Kosten einer geringeren

Genauigkeit gehen. Beim Thiol-Disulfid-Austausch zum Beispiel weisen die Übergangs-

zustände eine fehlerhate Struktur und Energie auf. Die Literaturrecherche zeigt, dass für

eine korrekte Beschreibung dieser Reaktion sehr genaue ab initio Methoden verwendet

werden müssen.

Daher bestand die Motivation dieser Arbeit darin, die DFTB-Fehler mit einemmaschinel-

len Lernansatz zu korrigieren. Um dies zu erreichen, haben wir ein neuronales Netzwerk

vom Typ Behler-Parrinello verwendet, das die Energiewertdifferenzen zwischen der ab
initio und DFTB Methode füreine gegebene Molekülstruktur erlernt. Die maschinell er-

lernte Energiekorrektur wurde dann in die DFTB+ Software implementiert. Mit diesem

neuen Ansatz konnten wir hybride Quantum Mechanics/Molecular Mechanics (QM/MM)-

Simulationen des Thiol-Disulfid-Austauschs mit Coupled Cluster und B3LYP-Genauigkeit

mit einem Rechenaufwand durchführen, der mit DFTB vergleichbar ist.

Dieser Korrekturalgorithmus ist auch in einer Pipeline mit grafischer Schnittstelle imple-

mentiert, die dem Benutzer hilft, Trainingsdaten zu generieren und zu arrangieren sowie

das maschinelle Lernmodell in DFTB+ zu exportieren, um es in QM/MM-Simulationen

weiter zu verwenden. Die Einführung dieser Pipeline soll die Anwendungsmöglichkeiten

des Codes für neuronale Netze erweitern, indem das Wissen über Quantenmodellierung

gegenüber einem Programmierhintergrund bevorzugt wird.

Darüber hinaus stellen wir erste Arbeiten an einem maschinell erlernten Kraftfeld zur

Beschreibung der Disulfid-Austauschreaktion unter Verwendung von Coupled Cluster-

Referenzdaten vor.
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1. Introduction

Proteins are the most abundant biological macromolecules. They are the last product of

the central dogma of molecular biology, that explains the flow of genetic information:

DNA→ RNA→ Protein

They are present in all kinds of cells and all parts of cells, and have the most diversity

of roles.

Proteins are constructed by a set of 20 amino acids covalently linked in characteristic

linear sequences. Cysteine
1
and methionine are the only two amino acids that contain

sulfur. Methionine is an essential amino acid, whereas cysteine is synthesized from

methionine and therefore is nonessential.

Cysteine is the most nucleophilic of the 20 canonical amino acid residues and it is

classified as a polar noncharged amino acid. Cysteines play a fundamental role in protein

integrity as it is the only amino acid that can form disulfide bonds. These bonds form

covalent links between parts of a protein molecule or between two different polypeptide

chains, Fig.1.1[80].

Figure 1.1.: Reversible formation of disulfide bonds by two oxidized cysteines.

Disulfide bonds can be broken and exchanged (thiol-redox reactions). Any change in

these bonds may lead to partial protein folding, increasing the probability of misfolding and

misassembly. Conformational changes in the proteins can lead to two outcomes: loss of

function or gain of function. It is easy to think about all the catastrophic consequences due

1
Cysteine was the first amino acid to be discovered, in 1810, by Wollaston in a urinary calculus.
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1. Introduction

to the loss of function, and how many biological pathways may be interrupted. However,

gain of function can also result in aberrant signaling properties (as, for example, growth

factor receptors in cancer), and severe misfolding can complicate protein degradation

because of aggregation, leading to cell stress, cell death, or amyloid formation (source of

neurodegenerative disease)[97]. Free cysteines may also become reactive and hold into

metals, such as mercury, as the sulfhydryl side chain is a strong metal binder[3].

The role of disulfide bonds is not limited to protein function, it can also confermechanical

properties. For example, glutenin, a wheat protein rich in disulfide bonds, is responsible

for the cohesive and elastic character of dough made from wheat flour. Similarly, the

strong nature of hair, nails, horns and feathers is due to the extensive disulfide bonding in

its 𝛼-keratin[80].

The relationship between the aminoacid sequence of a protein and its three-dimensional

structure has been a query in biochemistry. An example of its complication is that the loca-

tion of disulfide bonds is not coded in the DNA sequence. These bonds are formed during

protein maturation in the endoplasmic reticulum of eukaryotic cells and the periplasmic

space of prokaryotic cells, but are not necessarily stable. These bonds can also rearrange

spontaneously (intra- or intermolecular) by mechanical stress [71]. Therefore a biochemi-

cal description is not sufficient, and a physical chemistry approach is also necessary to

understand which factors influence the formation and exchange of these bonds.

Molecular dynamics (MD) are simulation methods that analyze the physical movement

of atoms and molecules. In the present day, the use of molecular simulations complement

the experimentalists, in Fig.1.2 we can observe the established relationship. Molecular

dynamics influence the way experiments are designed and also can help understand results

from experimental work. Thanks to MD simulations we can see properties that would not

be unveiled empirically. Experiments can also be designed to test specific predictions from

these simulations and validate the simulation results.

Figure 1.2.: Relationship between simulations and experiments.

For some MD simulations a microscopical explanation may not be sufficient and a

quantum explanation is necessary, this is the case when studying changes in the electronic

structures such as the formation and cleavage of bonds, charge transfer, or electronic

excitation. Quantum Mechanics/Molecular Mechanics (QM/MM) methods are by now

established as the state-of-the-art computational technique to treat these reactive and

other “electronic” processes in biochemical systems[93]. An example of this methodology

and the aforementioned relationship will be provided in this thesis: where experimentalists

couldn’t understand why some disulfide exchange reactions were preferred over others in

a model protein[5], the answer to this behavior was given by simulating these experiments

and analyzing the physical and chemical structure by 𝑝𝑠 time frames[65, 75].

2



Having a proper description of how electrons distribute themselves around nuclei is

one of the biggest challenges in chemistry. Schrödinger provided an elegant mathematical

formulation for this problem and although it is possible to solve this equation analytically

for a single electron system, in practical applications when the number of electrons

increases, the solution becomes basically impossible.

As a response to this problem, several approximations have been developed and the

race to get closer to the exact solution to the Schrödinger equation for multiple electrons

has been nonstop since its formulation. Advances in computational chemistry are not only

motivated by finding an accurate method but also one that is computationally efficient.

Although approaches such as Coupled cluster[11] can afford highly accurate values of the

electronic energy, their computational costs increase exponentially with the number of

electrons.

Semiempirical methods, such as Density-Functional based Tight-binding (DFTB)[33],

have become an alternative as they require much less computer resources. DFTB has

positioned itself as a reliable method for condensed phase applications, especially where

an extensive sampling of the configurational space is important to the reactive process

of interest such as chemical reactions in biological systems[32]. However, it can neglect

important energy contributions, or show inaccurate transition states, as seen previously

in thiol-disulfide exchange[87].

Machine learning has offered another way to solve quantum chemistry calculations:

the algorithms can predict properties based on knowledge gained about known systems,

without the need for solving the Schrödinger equation. Fig.1.3 illustrates the pipeline of

information between classical quantum mechanical calculations and machine learning

driven predictions.

Figure 1.3.: Machine Learning can accelerate the calculation of molecular properties after

a given model.

Over the last two decades, a growing amount of research has focused on defining

and representing the Potential Energy Surface (PES) of systems using machine learning

techniques. Since Doren and colleagues used artificial neural networks to fit a DFT PES

in 1995 [18], artificial neural networks have attracted a lot of interest. Neural Network

(NN) have been shown to be useful in the development of PES because of their ability to

represent arbitrary functions.

In early work, NN focused on predicting the PES from the spectra of molecules, but

over time it became more popular to predict the PES from structural information of the

system, where the energy is based upon the relative positions of the atoms[56]. In 2007,

3



1. Introduction

Behler & Parrinello presented a NN framework where the total energy of the system is

constructed as a sum of atomic energies, and each atomic energy contribution is the output

of an individual NN [17].

Yang’s group extended Behler and Parrinello’s neural-network representation into a

method known as QM/MM-NN that predicted the potential energy difference between

semiempirical and ab initio QM/MM methods. The potential energies predicted with the

built neural network are then used to correct the free-energy profile obtained from the

semiempirical QM/MM simulation to the ab initio QM/MM [98]. Applications of this

methodology have again been proven to be successful, such as the Irle’s group correction

of intramolecular hydrogen bond energetics by learning the difference between DFTB to

DFT potentials [115].

The aforementioned methodologies represent what is called a second (2nd) generation

potential
2
. However, long-range interactions have being included in the latest develop-

ments. Four generation of NN potentials have been defined and can be summarized as

(Fig.1.4):

• 1º generation: The total energy of a system is calculated directly by the NN.

• 2º generation: The total energy of a system is the sum of atomic energies.

– Each atomic energy contribution is the output of an individual NN.

• 3º generation: The total energy of a system consists of an electrostatic and a short-

range contribution.

– The short-range contribution gets calculated by a 2º generation potential.

– The electrostatic potential gets calculated by an analogous NN that learns

atomic charges.

• 4º generation: The total energy of a system consists of an electrostatic and a short-

range contribution.

– The atomic charges depend on the global system and are obtained from a

charge equilibration process relying on environment-dependent atomic elec-

tronegativities, which are learned by a NN.

– The short-range contribution gets calculated by a 2º generation potential where

the input vectors contain in addition the atomic charges as global descriptors

for changes in the local electronic structure.

This work started from the hypothesis that, as long as the error when describing
the disulfide exchange reaction is based on the local environment, a machine
learning algorithm can achieve as good accuracy as an ab initiomethod to describe
the reaction with the computational efficiency of a semiempirical method. A
graphical illustration of the hypothesis can be seen at Fig.1.5.

2
With the exception of early work using the spectra of molecules, which represent a 1st generation

potential.

4



Figure 1.4.: Overview of the four generations of neural network potentials.

Figure 1.5.: Graphical representation of the hypothesis: The ML approach (in purple) is

hypothesised to achieve the same accuracy as ab initiomethods, while retaining

the low computational cost of the semiempirical methods. MM-approaches

have the lowest cost at the expense of the lowest accuracy.

For getting a better understating of the disulfide-shuffling exchange reaction, snapshots

of QM/MM simulations of a mutated protein (with strategical cysteines located inside

a loop), were analysed by statistical methods and a ML algorithm. The structural and

environmental features were analyzed on a basis of a ratio of successful:unsuccessful

exchange reactions via some preferred cysteine. The obtained results were published

in Ref.[75]. Furthermore, this system would be part of the dataset used for learning the

aforementioned energy correction.

Initially a Δ-ML methodology (2nd generation) was implemented as an analogy to

reparametrization of the S–S repulsive potentials to correct the gas-phase DFTB-genereated

PES. A Behler-Parrinello NN was used to learn the energy diffrence. The obtained results

formed part of the published Ref.[53], where the ML models were used for further QM/MM

5



1. Introduction

simulations. The implementation of this methodology into a GUI and its benefits are also

explored.

At the end of this project we gave the initial steps for implementing global charges into

the learning of an ab inito energy PES (4th generation). We present the results achieved as

a preamble and invite new students to continue in this direction.
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2. Theoretical Background

2.1. Quantum chemistry

The discovery of the Schrödinger equation (SE) in 1926 was a milestone in the development

of quantum mechanics. The SE is for particles, the equivalent to the Newton’s equations of

motions for macroscopic systems. The main differences that distinguishes the microscopic

realm from the macroscopic, is its discrete quantization and wave-particle duality, and

that the classical mechanics is deterministic while quantum mechanics is probabilistic.

Any quantum-mechanical system can be described by a continuous wave function𝜓 .

The time-dependent SE can observed in Eq.2.1, where ℏ is the Planck constant, a constant

that defines the amount of energy that a photon can carry, 𝜐 which is an external potential,

𝑚 the mass of the particle, 𝑡 time and 𝑟 is spatial position.(
− ℏ2

2𝑚
∇2 + 𝜐

)
𝜓 (𝑟, 𝑡) = 𝑖ℏ𝜕𝜓 (𝑟, 𝑡)

𝜕𝑡
(2.1)

If we consider the external potential to be independent of time and we assume no

evolution on this coordinate, the time-independent SE can be written as Eq.2.2:

�̂�𝜓 = 𝐸𝜓 (2.2)

The SE falls into the category of partial differential eigenvalue equations. The energy

can be obtained by solving its Hamiltonian �̂� operator, which includes all the possible

energy contributions as seen in Eq.2.3, where ®𝑅𝑖, 𝑀𝑖 and 𝑍𝑖 indicate the spatial coordinates,

masses, and charges of the nuclei in the molecule respectively, and ®𝑟𝑖 are the electronic
coordinates.

�̂� = −
∑︁
𝑖

∇2®𝑅𝑖
2𝑀𝑖︸     ︷︷     ︸

𝐾𝑁

−
∑︁
𝑖

∇2®𝑟𝑖
2︸    ︷︷    ︸

𝐾𝑒−

−
∑︁
𝑖, 𝑗

𝑍𝑖

| ®𝑅𝑖 − ®𝑟 𝑗 |︸           ︷︷           ︸
𝑉𝑁−𝑒−

+
∑︁
𝑖, 𝑗>1

𝑍𝑖𝑍 𝑗

| ®𝑅𝑖 − ®𝑟 𝑗 |︸            ︷︷            ︸
𝑉𝑁−𝑁

+
∑︁
𝑖, 𝑗>1

1

| ®𝑟𝑖 − ®𝑟 𝑗 |︸           ︷︷           ︸
𝑉𝑒−−𝑒−

(2.3)

where

𝐾𝑁 = Kinetic energy of nuclei

𝐾𝑒− = Kinetic energy of electrons

𝑉𝑁−𝑒− = Nuclei-electron attraction

𝑉𝑁−𝑁 = Nuclei-nuclei repulsion

𝑉𝑒−−𝑒− = Electron-electron repulsion

A solution of the time-independent electronic SE of a given atomic system provides,

in principle, full access to its chemical properties. In bigger systems, with an increased
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number of electrons, an exact solution quickly becomes infeasible. Therefore, the hydrogen

atom is the only atom for which the SE is exactly solvable.

2.1.1. Born-Oppenheimer approximation

The Born–Oppenheimer approximation (BOA), or adiabiatic approximation, treats the

nuclei as a stationary point entity. It is based on the hypothesis that electrons evolve on

a much shorter time scale than the nuclei, then it makes use of a time-scale separation

between fast and slow degrees of freedom and states that the electrons “adiabatically

follow” the nuclei.

The Hamiltonian then can be split into a nuclear and electronic part (Eq.2.4),

�̂� = �̂�𝑛𝑢𝑐𝑙 ( ®𝑅) + �̂�𝑒𝑙𝑒𝑐 ( ®𝑅, ®𝑟 ) (2.4)

and consequentially the wave function gets equally separated (Eq.2.5).

𝜓 ( ®𝑅, ®𝑟 ) = 𝜙𝑛𝑢𝑐𝑙 ( ®𝑅)𝜙𝑒𝑙𝑒𝑐 ( ®𝑅, ®𝑟 ) (2.5)

�̂�𝑒𝑙𝑒𝑐 𝜒𝑒𝑙𝑒𝑐 ( ®𝑅, ®𝑟 ) = 𝐸𝑒𝑙𝑒𝑐 ( ®𝑅)𝜒𝑒𝑙𝑒𝑐 ( ®𝑅, ®𝑟 ) (2.6)

As a result, we can solve the electronic state of amolecule for fixed nuclear configurations.

For every nuclear configurations ®𝑅𝑖 , the energy would describe the electronic movement

(Eq.2.6). Gradually stepping nuclear configurations and solving for the energy leads to a

potential energy surface, or adiabatic state.

If the BOA is valid, ie: the atomic positions, nuclear charges and total charge are known,

the potential energy of a system is fully defined by its electronic Hamiltonian (Eq.2.7) and

provides a Potential Energy Surface (PES).

�̂�𝑒𝑙𝑒𝑐 = −
∑︁
𝑖

∇2®𝑟𝑖
2︸    ︷︷    ︸

𝐾𝑒−

−
∑︁
𝑖, 𝑗

𝑍𝑖

| ®𝑅𝑖 − ®𝑟 𝑗 |︸         ︷︷         ︸
𝑉𝑁−𝑒−

+
∑︁
𝑖, 𝑗>1

1

| ®𝑟𝑖 − ®𝑟 𝑗 |︸         ︷︷         ︸
𝑉𝑒−−𝑒−

(2.7)

In other words, a PES is a multidimensional real-valued function that provides the

potential energy of a system as a function of the atomic coordinates, see Fig.2.1. The

description of chemical reaction dynamics are presented in terms of propagation on these

PES. The barriers on these surfaces are how we describe the rates of chemical reactions

and transition states. The trajectories along these surfaces are used to describe mechanism.

2.1.2. Ab initiomethods

Ab initio methods, as the name implies, require no empirical information about the molec-

ular system but rather apply various approximations to solve the SE through the use of

wavefunctions to describe atomic orbitals. The accuracy of this methods will depend on

the model chosen for solving the wavefunction.

10



2.1. Quantum chemistry

Figure 2.1.: Simplified representation of an arbitrary 1-Dimensional PES.

2.1.2.1. Hartree-Fock

The simplest type of an ab initio calculation is the Hartree–Fock (HF) scheme. To solve the

electronic Hamiltonian, Hartree suggested that we can approximate its electron-electron

repulsion (𝑉𝑒−−𝑒− in Eq.2.7) as an average, denoted as 𝜐𝐻𝐹 (𝑥𝑖). Then, the Hamiltonian can

be re-written as a sum of one-electron operators (Fock operators), see Eq.2.8.

�̂�𝑒𝑙𝑒𝑐 =

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖) (2.8)

𝑓 (𝑥𝑖) = −
∇2®𝑟𝑖
2

− 𝑍𝑖

| ®𝑅𝑖 − ®𝑟 𝑗 |
+ 𝜐𝐻𝐹 (𝑥𝑖)

Then the electronic SE can be expanded into a set of one-electron eigenvalue equations:

𝑓 (𝑥𝑖)𝜒 (𝑥𝑖) = 𝜀𝜒 (𝑥𝑖) (2.9)

𝜐𝐻𝐹 (𝑥𝑖) depends on the entire system’s wavefunction. The HF method used an initial-

guess wavefunction, then calculates 𝜐𝐻𝐹 (𝑥𝑖) and solves Eq.2.9 iteratively until a conver-

gence criteria is satisfied.

The HF approximation breaks down a multi-electron wavefunction into a set of molecu-

lar orbitals (one-electron wavefunctions). Hartree approximately considered the electrons

to be uncorrelated to build a separable wavefunction. The square of the wavefunction

is the probability of finding electrons in a specific volume of space, and the probability

of occurring two independent events at the same time is equal to the product of their

individual probabilities. Thus, the electronic wavefunction of 𝑁 uncorrelated electrons

must be equal to the product of the one-electron wavefunctions.

𝜓𝐻𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑛) = 𝜒𝑖 (𝑥1)𝜒 𝑗 (𝑥2)...𝜒𝑘 (𝑥𝑁 ) (2.10)

Eq.2.10, referred as the Hartree-product, shows the one-electron wavefunctions as spin-

orbitals (𝜒), and each of them is a function of spatial coordinates 𝑟 and a spin coordinate 𝜔 ,

11



2. Theoretical Background

which can be either 𝛼 (↑) or 𝛽 (↓). The set of space-spin coordinates will then be 𝑥 = {𝑟, 𝜔}.
While the Hartree-product is fairly convenient, the electrons are not indistinguishable and

it fails to satisfy the antisymmetry principle
1
.

To satisfy the aforementioned requirements, we can use a linear combination of the

Hartree products with a normalization factor (for an 𝑁 -electron system, there are 𝑁 !

possibilities for interchanging them). This will be know as the Slater determinant (Eq.2.11),

where every row belongs to an electron and each column represents a spin-orbital. The

antisymmetry is equivalent to the assumption that each electron moves independently of

all the others except that it feels the Coulomb repulsion due to the average positions of all

electrons. The Slater determinant also introduces some degree of correlation, as electrons

with parallel spin can not be in the same spatial orbitals.

𝜓 (𝑥1, 𝑥2, .., 𝑥𝑁 ) =
1

√
𝑁 !

��������
𝜒𝑖 (𝑥1) 𝜒 𝑗 (𝑥1) .. 𝜒𝑘 (𝑥1)
𝜒𝑖 (𝑥2) 𝜒 𝑗 (𝑥2) .. 𝜒𝑘 (𝑥2)

: : .. :

𝜒𝑖 (𝑥𝑁 ) 𝜒 𝑗 (𝑥𝑁 ) .. 𝜒𝑘 (𝑥𝑁 )

�������� (2.11)

Now that the electronic wavefunction has been built from the linear combination of

spin-orbitals, the task is to find spin-orbitals. Each spin-orbital 𝜒𝑖 (𝑥) consists of two parts,

the spatial function 𝜑 𝑗 (𝑟 ) and the spin function 𝜍 (𝑠). The spatial function is a function of

spatial coordinates, and the spin function is related to electron spin.

The Molecular orbital theory (MO) describes the distribution of electrons in molecules

as an analogy to electrons in atoms by the atomic orbitals. Molecular orbitals are obtained

by combining the atomic orbitals of the atoms in the molecule, see Fig.2.2. The process of

combining atomic orbitals to generate molecular orbitals is called the Linear Combination

of Atomic Orbitals (LCAO).

MO describes the behavior of electrons in a molecule in terms of combinations of

the atomic wavefunctions. As the wavefunction describes the wavelike properties of an

electron, combining waves can lead to constructive or destructive interference. In orbitals,

the waves are three dimensional, and they combine with in-phase waves producing regions

with a higher electron density and out-of-phase waves producing nodes, or regions of

zero-electron density.

The shape of a given molecular orbital describes the probability of finding an electron,

where the attraction to all the nuclei and the average repulsion to all other electrons are

included. The interaction of the orbitals of the reactants can predict the reactivity of them.

The formation of bonds can be anticipated through the lowering of energy of the molecule,

whenever there is an enhanced probability density in the internuclear region. It is not

the shift of electron density into the internuclear region that lowers the energy of the

molecules but the freedom that this redistribution gives from the wave function to shrink

in the vicinity of two nuclei.

The MO theory implies:

• Considers electrons delocalized throughout the entire molecule.

1
A wavefunction describing fermions should be antisymmetric with respect to the interchange of any set

of space-spin coordinates.

12
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Figure 2.2.: Molecular orbital construction from the atomic orbitals superposition.

• Like an atomic orbital, a molecular orbital is full when it contains two electrons

with opposite spin.

• Creates atomic orbitals to form molecular orbitals:

– Bonding 𝜎, 𝜋 : Additive combination of orbitals, lower in energy than the

original orbitals.

– Antibonding 𝜎∗, 𝜋∗: Subtractive combination, higher in energy than the bond-

ing orbital and original orbitals.

• Predicts the arrangement of electrons in molecules.

Each spatial molecular orbital is expanded in terms of the basis functions 𝜑𝑟 , as seen in

Eq.2.12. The basis set for the molecular wavefunction is represented in computer programs

by stored sets of exponents and coefficients.

𝜓 =

𝑁∑︁
𝑟

𝑐𝑟𝜑𝑟 (2.12)

Then Eq.2.9 can be rewritten as a solvable matrix equation:

𝑓 (𝑟𝑖)
𝑁∑︁
𝑟

𝑐𝑟𝜑𝑟 = 𝜀

𝑁∑︁
𝑟

𝑐𝑟𝜑𝑟 (2.13)

13



2. Theoretical Background

Multiplying by 𝜑∗ and integrating:∑︁
𝑐𝑟

∫
𝜑∗𝑟 𝑓 (𝑟𝑖)𝜑𝑟𝑑𝑟𝑖︸              ︷︷              ︸
Fock matrix

= 𝜀
∑︁

𝑐𝑟

∫
𝜑∗𝑟𝜑𝑟𝑑𝑟𝑖︸       ︷︷       ︸

Overlap matrix 𝑆

(2.14)

The associated calculated integrals are then used to formulate the Hamiltonian matrix

on the basis of interactions between the wavefunction of pairs of atoms (off-diagonal

elements) and each atom itself (diagonal elements) via some potential that varies according

to the method. The optimum values of the coefficients (𝑐𝑟 ) of the basis set functions are

found by applying the variational principle.

The variational theorem states that the energy calculated from an approximation to the

true wavefunctions will always be greater than the true energy. The better the wavefunc-

tion approximation is, the lower the energy. The best wave function is when the energy is

at its minimum.

The HF equations are obtained by imposing the condition on the expression for the en-

ergy, subject to the constraint that molecular orbitals remain orthonormal. The variational

principle instructs that as we get closer and closer to the ’true’ one electron ground state

wavefunction, we will obtain lower and lower energies for our guess followng Eq.2.15.

The coefficients minimize the energy for all possible linear combinations. This equation is

called secular equation (Eq.2.16). In a one electron system the lowest energy molecular

orbital is called ground state and the highest called excited states.

𝜕𝐸

𝜕𝑐𝑟
= 0 (2.15)∑︁

𝑟

𝑐𝑟 (𝐻𝑟𝑠 − 𝐸𝑆𝑟𝑠) = 0 (2.16)

The conditions for choosing a basis set is that the behaviour must agree with the physics

of the problem so it can converge and that the function should go towards zero as the

distance between electrons and nuclei increases.

The HFmethod is also called the Self-Consistent Field (SCF) and even this approximation

can be of low quality due to the lack of correlation effects. The SCF wavefunction is often

used as a starting point to construct a more sophisticated wavefunction ansatz.

2.1.2.2. Many body perturbation theory

Møller and Pesset proposed a way to solve the electron correlation problem. Following

the Rayleigh-Schrodinger perturbation theory in which the Hamiltonian is written as a

sum of a zero
𝑡ℎ
order Hamiltonian

2
with a perturbation. This zero

𝑡ℎ
order Hamiltonian is

the sum of the one-electron Fock operators for the 𝑁 -electrons.

�̂�0 =

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖) (2.17)

2
unperturbed Hamiltonian

14



2.1. Quantum chemistry

The ground state wavefunction,𝜓0, is an eigenfunction of �̂�0 with associated energy 𝐸0
given by the sum of orbital energies of all occupied spin-orbitals. The perturbation is then

�̂� (1) = �̂� − �̂�0. And for the 𝑖𝑡ℎ electron the perturbation will be:

�̂� (1) (𝑖) = 𝑗𝑜

∑︁
𝑗

1

𝑟𝑖 𝑗
−
∑︁
𝑚

{2𝐽𝑚 (𝑖) − 𝐾𝑚 (𝑖)} (2.18)

where the sum 𝑗 omits electron 𝑖 , and the sum over𝑚 is over the occupied molecular

orbital. The HF energy associated with the normalized ground state𝜓0 is the expectation

value of �̂� and equiavlent to the sum of the sum of the zeroth order energy (𝐸
(0)
0

) and the

first order energy (𝐸
(1)
0

), where the latter is equal to the expected value of the perturbation.

The second order correction of the energy is then:

𝐸 (2) =
∑︁
𝑗≠0

⟨𝜓 𝑗 |�̂� (1) |𝜓0⟩⟨𝜓0 |�̂� (1) |𝜓 𝑗 ⟩
𝐸
(0)
0
− 𝐸 (0)

𝑗

(2.19)

where𝜓 𝑗 is a multiply excited determinant and an eigenfunction of �̂�0 with eigenvalue

𝐸
(0)
𝑗
. The inclusion of second order correction is designated as MP2.

2.1.2.3. Coupled Cluster

Coupled cluster theory (CC) is one of the most accurate methods for quantum chemistry.

The couple cluster method introduces the cluster operator 𝐶 , which relates the exact

electronic wavefunction𝜓 to the HF wavefunctions𝜓0 through Eq.2.20

𝜓 = 𝑒𝐶𝜓0 (2.20)

where the exponential operator is defined by the series expansion: 𝑒𝐶 = 1 +𝐶 + 1

2!
𝐶2 +

1

3!
𝐶3 + .... The effect of the cluster operator 𝐶 is the sum of the effects of a one-electron

excitation operator 𝐶1, two-electron excitation operator 𝐶2, to 𝑁 -electron excitation and

so on, the 𝑡
𝑝
𝑎 are called single excitation amplitudes and 𝑡

𝑝𝑞

𝑎𝑏
double excitation amplitudes.

An approximation in CC applications is to truncate the cluster operator C to include only

certain types of terms. This approach is known as Coupled Cluster Singles and Doubles

(CCSD), C is approximated by 𝐶1 +𝐶2 and for triples 𝐶 = 𝐶1 +𝐶2 +𝐶3.

𝐶1𝜓0 =
∑︁
𝑎,𝑝

𝑡
𝑝
𝑎𝜓

𝑝
𝑎 (2.21)

𝐶1𝜓0 =
∑︁
𝑎,𝑏,𝑝,𝑞

𝑡
𝑝𝑞

𝑎𝑏
𝜓
𝑝𝑞

𝑎𝑏
(2.22)

The CCSD augmented with perturbative triples correction [CCSD(T)] is considered

the “gold standard” of quantum chemistry since CCSD(T) often provides an accuracy

comparable to experiment within chemical accuracy (1 kcal/mol) for most energetic

properties, such as cohesive energies.

15
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2.1.2.4. Density Functional Theory

Density Functional Theory (DFT) is one of the most dominant procedures in computational

chemistry, it uses the electron density function as a basic descriptor of the electronic system.

It can scale to larger molecules, but at the price of limited accuracy. Still, DFT allows

to study dynamical processes such as structural transformations of covalently bonded

materials as well as chemical reactions in condensed phases.It gives a better description of

interatomic interactions such as bond redistribution.

The energy, 𝐸 [𝜌], of an electronic system can be written in terms of an electron density

functional, 𝜌 . This functional fully depends on the spatial position of electrons, disregarding

the number of electrons (Fig.2.3). For a system of 𝑁 electrons, 𝜌 (𝑟 ) denotes the total

electron density at a particular point 𝑟 in space.

Figure 2.3.: DFT decreases the many body problem wave function form 3N variables

(𝜙 ( ®𝑟1, ®𝑟2, .., ®𝑟𝑁 )) to 3 variables (𝜌 (®𝑟 )).

The Thomas-Fermi model states that the electron density determines properties of the

molecule and the energy is correctly given by a variation principle. The Hohenberg-Kohn

mapping theorem confirms that is possible to express the ground state energy of a molecule

as a functional of the ground state electron density (Eq.2.23). It is then sufficient to know

the ground state of a molecule to know the ground state electron density and to determine

any property of a molecule.

𝐸 [𝜌 (𝑟 )] =
∫

𝑉𝑒𝑥𝑡 (𝑟 )𝜌 (𝑟 )𝑑𝑟 + 𝐹 [𝜌 (𝑟 )] (2.23)

The left side of the equation arises from the interaction of electrons with an external

potential𝑉𝑒𝑥𝑡 (𝑟 ) and 𝐹 [𝜌 (𝑟 )] is the sum of the kinetic energy of the electrons and the con-

tributions of interelectronic interactions. The minimum value in the energy corresponds

to the ground state electron density. The constraint on the electron density as the number

of electrons is fixed (Eq.2.24). It is introduced as a Lagrangian multiplier 𝜇 (Eq.2.25), which

can also be identified with the chemical potential of an electron cloud for its nuclei, which

is in turn related to the electronegativity, 𝜒 .
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𝑁 =

∫
𝜌 (𝑟 )𝑑𝑟 (2.24)(

𝛿𝐸 [𝜌 (𝑟 )]
𝛿𝜌 (𝑟 )

)
𝑉𝑒𝑥𝑡

= 𝜇 = −𝜒 =

(
𝜕𝐸

𝜕𝑁

)
𝑉𝑒𝑥𝑡

(2.25)

Kohn-Sham suggested later that 𝐹 [𝜌 (𝑟 )] should be an approximate sum of three terms:

kinetic energy (𝐸𝐾𝐸), Coulomb energy (𝐸𝐻 )and exchange-correlation energy functional

(𝐸𝑋𝐶 ):

𝐹 [𝜌 (𝑟 )] = 𝐸𝐾𝐸 [𝜌 (𝑟 )] + 𝐸𝐻 [𝜌 (𝑟 )] + 𝐸𝑋𝐶 [𝜌 (𝑟 )] (2.26)

By adding electron-nuclear interaction into Eq.2.26 we can obtain the full expression

for the N-electron system within the Kohn-Sham definition:

𝐸 [𝜌 (𝑟 )] =
𝑁∑︁
𝑖=1

∫
𝜓𝑖 (𝑟 )

(
−∇

2

2

)
𝜓𝑖 (𝑟 )𝑑𝑟︸                              ︷︷                              ︸

𝐸𝐾𝐸 [𝜌 (𝑟 )]

+ 1

2

∫ ∫
𝜌 (𝑟1)𝜌 (𝑟2)
|𝑟1 − 𝑟2 |

𝑑𝑟1𝑑𝑟2︸                            ︷︷                            ︸
𝐸𝐻 [𝜌 (𝑟 )]

+ 𝐸𝑋𝐶 [𝜌 (𝑟 )] −
𝑀∑︁
𝐴=1

∫
𝑍𝐴

|𝑟 − 𝑅𝐴 |
𝜌 (𝑟 )𝑑𝑟

(2.27)

Eq.2.27 defines the exchange-correlation energy energy functional, which contains

not only contributions due to exchange and correlation as the names states, but also a

contribution of the energy difference between the true kinetic energy and the kinetic

energy dependent of the density. Kohn and Sham rewrote the density of the system as the

sum of the square moduli of a set of one-electron orthonormal orbitals (Eq.2.28).

𝜌 (𝑟 ) =
𝑁∑︁
𝑖=1

|𝜓𝑖 (𝑟 ) |2 (2.28)

To solve the Kohn-Sham equations a self-consistent approach is taken and the quality

of DFT depends on the chosen exchange-correlation functional.

The simplest functional is the Local (spin-) Density Approximation (LDA), based on a

model called the uniform electron gas in which the electron density is constant through all

the space. This functional is obtained by the derivation of the total exchange-correlation en-

ergy, defined by Eq.2.29, where 𝜖𝑋𝐶 (𝜌 (𝑟 )) is the exchange-correlation energy per electron

as a function of the density in the uniform electron gas. LDA gives in general an accurate

description of the atomic structure, elastic, and vibrational properties for a wide range of

systems. However, it fails to describe the energetics of chemical reactions, overestimating

the binding energies of molecules and solids in particular.
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𝐸𝐿𝐷𝐴𝑋𝐶 [𝜌 (𝑟 )] =
∫

𝜌 (𝑟 )𝜖𝑋𝐶 (𝜌 (𝑟 ))𝑑𝑟 (2.29)

Following the LDA approach, we could express the exchange-only energy as:

𝐸𝐿𝐷𝐴𝑋 [𝜌𝛼 (𝑟 ), 𝜌𝛽 (𝑟 )] = −
3

2

(
3

4𝜋

) 1

3

∫ (
𝜌

4

3

𝛼 (𝑟 ) + 𝜌
4

3

𝛽
(𝑟 )

)
𝑑𝑟 (2.30)

where 𝛼 and 𝛽 represent up and down spins.

Recent Generalized Gradient Approximations (GGA) gives a better description of energy

barriers, with an error of approx. 1 kcal/mol. They do not consider a uniform distribution

of electrons as LDA, instead they depend on the local density as well as on the spatial

variation of this density.

GGA gradients are typically divided into separate exchange and correlation contribu-

tions. Several gradient corrections to the exchange functional have been proposed, one of

the most popular is the Becke correction, known as B88.

A combination of the standard LDA exchange (Eq.2.30) with the Becke gradient exchange

correction and the correlation functional Lee-Yang-Parr correlation functional (LYP) is a

popular choice, commonly abbreviated as BLYP.

Hybrid functionals are methods that include exact exchange energy. An example of

these functionals is the B3LYP, constructed by the Becke 3-parameter exact exchange

energy and the LYP correlation.

For an extended definition of the mentioned exchange, correlation and exchange-

correlation functionals see to Appendix.A.1.

2.1.3. Semiempirical methods

Semiempirical methods are derived from HF by neglecting all the integrals involving more

than two nuclei in the construction of the Fock matrix. In order to compensate for the

errors caused by these approximations, semiempirical parameters are incorporated into

the formalism and calibrated against reliable experimental data or calculated exactly from

the corresponding analytic formulas.

2.1.3.1. Density Functional based Tight-binding

The Density-Functional based Tight-binding (DFTB) are a series of models based on DFT,

they are derived from the Taylor series expansion of the Kohn-Sham total energy (Eq.2.27)

with respect to charge density fluctuations (𝛿𝜌), where E is the energy and 𝜌 = 𝜌0 + 𝛿𝜌 .
With an expansion up to the third order and the total energy can be written as:
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2.1. Quantum chemistry

𝐸 [𝜌] = 1

2

∑︁
𝑎

𝑏
𝑍𝑎𝑍𝑏

𝑅𝑎𝑏

− 1

2

∫ ∫
𝜌0(𝑟 )𝜌0(𝑟 ′)
|𝑟 − 𝑟 ] | 𝑑𝑟𝑑𝑟 ′

−
∫

𝑉𝑋𝐶 [𝜌0]𝜌0(𝑟 )𝑑𝑟 + 𝐸𝑋𝐶 [𝜌0]

+
∑︁
𝑖

𝑛𝑖 ⟨𝜓𝑖 |�̂� [𝜌0] |𝜓𝑖⟩

+ 1

2

∫ ∫ (
1

|𝑟 − 𝑟 ′| +
𝛿2𝐸𝑋𝐶 [𝜌]
𝛿𝜌 (𝑟 )𝛿𝜌 (𝑟 ′) |

0

𝜌

)
𝛿𝜌 (𝑟 )𝛿𝜌 (𝑟 ′)𝑑𝑟𝑑𝑟 ′

+ 1

6

∫ ∫ ∫
𝛿3𝐸𝑋𝐶 [𝜌]

𝛿𝜌 (𝑟 )𝛿𝜌 (𝑟 ′)𝛿𝜌 (𝑟 ′′) |
0

𝜌 𝛿𝜌 (𝑟 )𝛿𝜌 (𝑟 ′)𝛿𝜌 (𝑟 ′′)𝑑𝑟𝑑𝑟 ′𝑑𝑟 ′′

= 𝐸0 [𝜌0] + 𝐸1 [𝜌0, 𝛿𝜌] + 𝐸2 [𝜌0, (𝛿𝜌)2] + 𝐸3 [𝜌0, (𝛿𝜌)3]

(2.31)

The application of tight-binding (TB) describes the Hamiltonian eigenstates with an

atomic-like basis set and replaces the Hamiltonian with a parameterized Hamiltonian

matrix whose elements depend only on the internuclear distances and orbital symmetries.

The total energy then gets described by a sum of two contributions:

• Electronic contributions: They are the sum over the energies of all occupied orbitals

obtained by diagonalization of the parameterized Hamiltonian matrix, they come

from DFT and can be either LDA or GGA functionals.

• Repulsive energy contributions: They are obtained by the sum of the atomic-pair

terms and are approximated as a sum of pair potentials, which are represented either

by spline functions or by polynomials.

In the lowest order (DFTB1) takes only the first two contributions of Eq.2.31. 𝐸1 gets

defined as the sum of the occupied KS energies. 𝐸0 gets approximated as superpositions

of neutral atomic densities
3
. The whole Hamiltonian and overlap matrices contain one

and two-centre contributions only, calculated and tabulated in advance as functions of the

distance between atomic pairs. 𝐸0 then gets redefined as the sum of pairwise repulsive

terms.

𝐸𝐷𝐹𝑇𝐵1 =
∑︁
𝑖𝑎𝑏

∑︁
𝜇𝜖𝑎

∑︁
𝜈𝜖𝑏

𝑛𝑖𝑐𝜇𝑖𝑐𝜈𝑖𝐻
0

𝜇𝜈 +
1

2

∑︁
𝑎𝑏

𝑉
𝑟𝑒𝑝

𝑎𝑏
(2.32)

where 𝐻 0
are the diagonal Hamiltonian matrix elements, 𝑐 the molecular orbital coeffi-

cients and 𝑛 the occupation number of the KS orbital.

DFTB1 deals with systems with small and large intramolecular charge transfer, but fails

for molecular systems with intermediate charge transfer.

3
This means it will not depend on the environment, as a consequence this "stored" parameter can be

applied to other molecules in different chemical environments.
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2. Theoretical Background

In the second-order (DFTB2)
4
and third-order (DFTB3) the density fluctuations are

written as a superposition of atomic contributions (𝛿𝜌 =
∑
𝑎 𝛿𝜌𝑎) and the terms in the

energy expansion correspond to a Self Consistent Charge (SCC) representation, where the

deviation of the ground-state density from the reference density is represented by charge

monopoles only.

DFTB2 is a better approach for systems with intermediate charge transfer within a

molecule, its formulation is the following:

𝐸𝐷𝐹𝑇𝐵2 = 𝐸𝐷𝐹𝑇𝐵1 + 1

2

∑︁
𝑎𝑏

Δ𝑞𝐴Δ𝑞𝑏𝛾𝑎𝑏 (2.33)

The 𝛾-function (𝛾ℎ for hydrogen5) describes the atomic chemical hardness (or Hubbard

parameter as calculated from DFT), which is the second derivative of the energy with

respect to the charge density, Analytically, it is defined by 𝛾𝑎𝑏 = 1

𝑟𝑎𝑏
− 𝑆 , where 𝑟 is the

distance and S is a short-range function being responsible for the correct convergence of

𝛾𝑎𝑏 = 0

DFTB3 leads to a new degree of self-consistency, as it also describes the change of the

chemical hardness of an atom with its charge state. This parameter is fitted in order to

improve the performance of the model.

𝐸𝐷𝐹𝑇𝐵3 = 𝐸𝐷𝐹𝑇𝐵2 + 1

3

∑︁
𝑎𝑏

Δ𝑞2𝑎Δ𝑞𝑏Γ𝑎𝑏 (2.34)

where Γ𝑎𝑏 comes from the derivative of 𝛾𝑎𝑏 w.r.t charge 𝑞.

2.1.4. Population analysis

A way to calculate the atomic charge of each atom is to partition the electron density

between the nuclei so that each nucleus has a number
6
of electrons. Although atomic

charges in a molecule are not experimentally observable quantities, they are fundamental

and useful tools to understand and relate properties of molecules to their structures.

The charge distribution can provide information on how much of the electronic density

is concentrated around an atom, which is a quantity of interest as it may be directly linked

to the reactivity of an atom, often identified with its ability to be attacked by a nucleophilic

or an electrophilic agent.

There is no agreed best procedure for computing the particle charge, and there are four

types of models:

• Class I is not determined by quantum mechanics.

• Class II involves direct partitioning of the molecular wavefunction into atomic

contributions following some arbitrary orbital based scheme.

4
Also called SCC-DFTB

5
This function gets modified for hydrogen, as for this atom, the atomic charge density is not proportional

to the chemical hardness.

6
not necessary integral
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2.1. Quantum chemistry

• Class III is computed after a physical observable based on the wavefunction.

• Class IV is calculated after a semiempirical mapping of a precursor charge.

The Mulliken atomic charges (Class II) is one of the most used distributions and we will

describe them as they will be used in this work.

In the Mulliken distribution, all the electron density (P) in an orbital, is allocated to

the atoms on which 𝜑𝜇 is located. The remaining density is associated with the overlap

population, 𝜑𝜇𝜑𝜈 . For each element 𝜑𝑢𝜑𝑣 of the density matrix, half of the density is

assigned to the atom in which 𝜑𝜇 is located and half to the atom in which 𝜑𝜈 is located.

The net charge on atom A is then calculated by subtracting the number of electrons from

the nuclear charge 𝑍𝐴 as:

𝑞𝐴 = 𝑍𝐴 −
𝐾∑︁

𝜇=1;𝜇 on A

𝑃𝜇𝜇

𝐾∑︁
𝜇=1;𝜇 on A

𝐾∑︁
𝜈=1;𝜈≠𝜇

𝑃𝜇𝜈𝑆𝜇𝜈 (2.35)

where

𝑃𝜇𝜈 = 2

𝑁 /2∑︁
𝑖=1

𝑐𝜇𝑖𝑐𝜈𝑖

This analysis becomes trivial when using a SCF as the elements of the density matrix

have been already determined. The Mulliken charges are basis set dependent and its

downside is that the equal overlap division can lead to exaggerated charge separations.
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2. Theoretical Background

2.2. Molecular Dynamics

Molecular dynamics (MD) is a deterministic methodology that treats each atom of a system

as a classical Newtonian system. This means that quantum effects are generally neglected.

These simulations help in the understanding of environment effects as they can be easily

controlled by an initial setup, or imposing thermodynamical constraints.

Given the positions of all of the atoms in a desired system, one can calculate the force

exerted on each atom by all of the other atoms, this is achieved by the derivation of the

potential energy𝑈 :

𝐹 (𝑟𝑁 ) = 𝜕𝑈 (𝑟𝑁 )
𝜕𝑟

(2.36)

𝑈 is a parametric function of the nuclear coordinates obtained from the PES by the BOA

principle. This parameters are stored in a Force Field (FF) that acts on the atoms without

explicitly considering electronic degrees of freedom. This set of parameters can proceed

from electronic structure calculations or empirical data.

A FF is a model of intra- and inter- molecular forces with contributions of stretching,

opening-closing of bonds, and rotation of single bonds. Fig.2.4 and Eq.2.37 can exemplify

the components of the model.

Figure 2.4.: Contributions to a force field model.

Top: Bonded contruibution.

Bottom: Non-bonded contributions.
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2.2. Molecular Dynamics

𝑈 (𝑟𝑁 ) =
∑︁
Bonds

𝑘𝑖

2

(𝑙𝑖 − 𝑙𝑖,0)2︸               ︷︷               ︸
Bond stretching

+
∑︁

Angles

𝑘𝑖

2

(𝜃𝑖 − 𝜃𝑖,0)2︸                 ︷︷                 ︸
Angle bending

+
∑︁

Torsions

𝑉𝑛

2

(1 + 𝑐𝑜𝑠 (𝑛𝜔 − 𝛾))︸                              ︷︷                              ︸
Bond rotation

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

©«
4𝜀𝑖 𝑗



Attraction︷  ︸︸  ︷(
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)
12

−

Repulsion︷ ︸︸ ︷(
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)
6

︸                         ︷︷                         ︸
Van der Waals (Lennard-Jones)

+
𝑞𝑖𝑞 𝑗

4𝜋𝜀0𝑟𝑖 𝑗︸  ︷︷  ︸
Electrostatic

ª®®®®®®®®®®®®¬

(2.37)

where

𝑈 (𝑟𝑁 ) = Potential energy as a function of the

positions 𝑟 of 𝑁 atoms

𝑘 = Force constant
7

𝑙 = Length

𝜃 = Angle

𝑉𝑛 = Barrier of rotation

𝑛 = Multiplicity

𝜔 = Torsional angle

𝛾 = Phase factor

𝜀 = Well depth

𝜎 = Van der Waals radius

𝜀0 = Dielectric constant

𝑞 = Charges

We can categorize force fields into five main groups:

• Fixed-Charge Atomistic: In this model the partial charges do not change depending

on conformation and environment, this means is not polarizable.

• Polarizable: In this model the charge distribution changes on the basis of a dielectric

environment.

• Coarse-grained: This model groups atoms into virtual particles. This process reduces

significantly the computational costs as the number of interactions gets reduced.

• Reactive: In this model bond dynamics are calculated from interatomic distances.

• Machine learned: Ignores the formalism of Eq.2.37 and is based on ML-modelled

functions that reproduce a PES from atomic coordinates.

FF in molecular modelling reproduce structural properties and are designed to predict

certain properties and be parameterised accordingly. FF must be transferable. Transferabil-

ity means the same set of parameters can be used to model a series of related molecules,

rather than having to define a new set of parameters for each individual molecule.

7
Both bond stretching and angle bending are modelled after Hooke’s law.
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2. Theoretical Background

The dynamics of the system is obtained by using propagation algorithms. A popular one

is the Verlet integration
8
(Eq.2.38), after which one can obtain a qualitative understanding

of the dynamics of a process or calculate quantitative results from correlation functions.

𝑟 (𝑡 + Δ𝑡) ≈ 2𝑟 (𝑡) − 𝑟 (𝑡 − Δ𝑡) + 𝐹 (𝑡)
𝑚

Δ𝑡2 (2.38)

The result is a trajectory, a three-dimensional movie that describes the atomic-level

configuration of the system at every point during the simulated time interval.

If the primary interest is in finding low-energy states
9
, then the dynamics are less

relevant, and one of many optimization methods is used to find the ground state of the

system.

The time-average of an MD simulation, according to the ergodic hypothesis, approaches
the thermodynamic ensemble average.

A system’s thermodynamical properties can be represented by averaging over all possible

quantum states in accordance to the statistical mechanics
10
principles. An ensemble is

assumed as an imaginary collection of a very large number of systems
11

in different

quantum states with common macroscopic attributes.

Each system of the ensemble must have the same physical property as the real system it

represents, which includes temperature (T), pressure (P), number of molecules (N), volume

(V) and so on. The ensembles are distinguished by which thermodynamic variables are

held constant over the course of the simulation:

Thermostats and barostats help in controlling these variables.

Figure 2.5.: Ensemble of systems in thermal equilibrium with a heat reservoir.

8
As the estimation error increases with the time step interval, a variation of this algorithm –known as

Velocity Verlet– introduces the particle’s velocity to reduce this error to the order of 𝑡4.
9
If we go back to Fig.2.1, this would correspond to the structures on the well of minimum energy.

10
Statistical mechanics can be seen as a bridge between the microscopic and macroscopic worlds.

11
As this is an imaginary collection, we can choose the number of systems according to our convenience.
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2.2. Molecular Dynamics

2.2.1. Quantum Mechanics/Molecular Mechanics

Some kind of simulations however require the introduction of quantum mechanical effects

for a proper description. One example is the study of chemical reactions involving covalent

bonds. For achieving this modelling Quantum Mechanics/Molecular Mechanics (QM/MM)

simulations are required. In these systems a small part of the system is modeled using

quantum mechanical calculations and the remainder by MD simulation (Fig.2.6).

Figure 2.6.: Partitioning of the system into QM and MM subsystems. The shadowing

around the QM zone represents the boundary region.

Owing to the (strong) QM–MM interactions, the total energy of the entire system

cannot simply be written as the sum of the energies of the subsystems. In this case

the Hamiltonian of a system is defined by Eq.2.39, where �̂�𝑄𝑀 (𝑀𝑀) is the energy of the

QM region, �̂�𝑀𝑀 (𝑀𝑀) the energy of the MM region, and �̂�𝑄𝑀/𝑀𝑀 (𝑄𝑀−𝑀𝑀) the coupling
between the two regions. This last term is crucial and includes the bonded, electrostatic

and van der Waals interactions between the atoms in the two regions. Special precautions

need to be taken at the boundary between the subsystems, especially if it cuts through

covalent bonds. Depending on the type of QM/MM scheme, the boundary region may

contain additional atoms (link atoms) that cap the QM subsystem and are not part of the

entire system, or it may consist of atoms with special features that appear in both the QM

and the MM calculation.

�̂�𝑄𝑀/𝑀𝑀 = �̂�𝑄𝑀 (𝑀𝑀) + �̂�𝑀𝑀 (𝑀𝑀) + �̂�𝑄𝑀/𝑀𝑀 (𝑄𝑀−𝑀𝑀) (2.39)

One of the major challenges inherent to all QM/MM approaches is the high computa-

tional cost needed for the repeated evaluation of the energies and forces in the QM region.

Additionally, due to the large number of atoms included in these calculations, the number

of local minima regions increases.

The QM code must be able to perform the SCF treatment in the presence of the external

point-charge field that represents the MM charge model in the case of electronic or

polarized embedding. Many current QM/MM applications use DFT or semiempirical QM

methods. The DFTB method is increasingly being applied in biomolecular QM/MM studies.
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2. Theoretical Background

2.3. Machine Learning

John McCarthy, one of the pioneers of Artificial Intelligence (AI), defines it as “The science
and engineering of making intelligent machines, especially intelligent computer programs”.
The AI’s target is to enable machines with the ability to conceptualize and create

abstractions. For fulling this target, the field comprises of different concepts and tools

such as Machine Learning (ML) and inside this, Deep Learning (DL) (Fig.2.7).

ML is a subset of AI and its goal is to automate analytical model building. While ML is

based on the idea that machines should be able to learn and adapt through experience, AI

refers to a broader idea where machines can execute tasks by simulating human capability

and behavior, such as decision taking.

Figure 2.7.: Hierarchy of Artificial Intelligence (AI), Machine Learning (ML) and Deep

Learning (DL).

As a general rule, problems can be described by a list of formal and mathematical rules.

Computers have proven their capability and helpfulness at solving logic, algebra, geometry,

and optimization problems through "traditional programming", ie. when we provide then

a function to solve. Yet, some of the problems have not an interpretation or function to

predict a result. For those problems the exact mathematical formulation is not yet known,

and ML has positioned itself as a tool to address the problems.

The main difference between ML and traditional programming is based on the inputs

and desired outputs (Fig.2.8). In traditional programming we want a computer to provide

a result based on an input and a program, in ML instead we provide the input and the

result and expect to gain a program as an output.

The tasks that ML can solve can be divided between regression and classification (Fig.2.9).

Regression tasks assume an immediate relationship between two variables 𝑥 and 𝑦, which

are often of deterministic nature. The objective of regression is to find a function 𝑓 that

yields the mapping as seen in Eq.2.40. In the tasks of classification, the goal is to assign

discrete class labels to examples. In contrast to regression, we are optimizing a model to

find a mapping from an input vector ®𝑥 to a target 𝑦, which encodes a representation of the

different possible classes.
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2.3. Machine Learning

Figure 2.8.: Comparison between traditional programming and machine learning

paradigms.

𝑦 = 𝑓 (𝑥) (2.40)

Certain tasks can only be solved if sufficient data is available and, representative data

allows the learning done with seemingly low effort. We usually refer to the data in terms

of a data set D, containing a finite amount of data instances often called data points,

which may be represented as D = {x𝑖} or may be accompanied by predefined labels,

D = {{x𝑖, y𝑖}}.
The field of ML leverages fundamental concepts of applied statistics, emphasizing the

use of computers to estimate complicated functions and with a decreased emphasis on

proving confidence intervals around them. From a practical point of view, we can neither

optimize over the set of all possible functions nor over the full domain of ®𝑥 . Instead, we
resort to a finite data set for which we opt to find a model that maps every input ®𝑥 to its

corresponding target 𝑦. Usually, the model is predefined up to some parameters.

Learning schemes can be divided in the following types and all follow the same parametriza-

tion in Eq.2.41 as a model for Eq.2.40:

𝑓 (𝑥) = 𝜃𝑇𝑥 + 𝑏 (2.41)

• Supervised: Can be seen as a generalized notion of regression and classification, and

learns from labeled data, D = {{x𝑖, y𝑖}}.

• Unsupervised: Can be used for preliminary preprocessing steps, such as change of

dimensionality, or representation learning.

• Reinforcement: The training is based on rewarding desired behaviors and/or pun-

ishing undesired ones. It is employed to find the best possible behavior or path it

should take in a specific situation.

• Active: Includes selection strategies that allows an iterative construction of a data

set in interaction with a human expert or environment. Its aim is to select the most

informative examples and minimize the cost of labeling.
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2. Theoretical Background

Figure 2.9.: Types of learning and tasks in ML.

a) Classification

b) Regression

c) Clustering

d) Dimensionality reduction

ML can be treated as an optimization problem– the mentioned learning schemes

have the same underlying process of learning: finding an optimal model
ˆ𝑓 ≡ 𝑓𝜃∗ with

optimal parameters 𝜃 ∗ in the hypothesis space, which minimizes a target loss function, L,
and maximizes a model’s performance. A loss function compares a model predictions or a

developed solution against the expected outcome.

Once we choose a loss function, we can minimize it by varying the parameters of the

ML model, using any optimization method of our choice. In general, we can reach the

minimum of the loss function either via analytical construction or optimization methods

that can be either gradient-based or gradient-free. The optimization usually starts in a

random place within the loss landscape (meaning with a model with randomly initialized

parameters, 𝜃 = 𝜃0). Using the model with 𝜃0, one makes predictions over the training

data and from here, computes the loss function.

The next step consists of computing the gradients of the loss function with respect to

each model parameter, 𝜃 𝑗 . This step is typically done by automatic differentiation.

Then the parameters are updated by subtracting the respective gradients multiplied by

a learning rate 𝜂, see Eq.2.42.

𝜃 𝑗 := 𝜃 𝑗 − 𝜂
𝜕L
𝜕𝜃 𝑗

(2.42)
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2.3. Machine Learning

These steps need to be repeated until the minimum is reached, and each repetition is

called an epoch. This gradient descent updates model parameters by making steps toward

the minimum of the function, and the learning rate controls the size of these steps.

These parameters that control the learning process such as quality and speed of conver-

gence are learning–hyperparameters (number of epochs, learning rate) and are fixed by

the user.

Additionally to the setup of learning, a good practice to find optimal parameters is to

split the data into training, validation and test sets. A visualization of the data splitting

can be seen at Fig.2.10.

Figure 2.10.: D splitting. Following a typical ratio of 80/10/10 of training/validation/test

The training data gives the examples from where the ML identify patterns to obtain the

desired outcome.

The validation data is only used to validate the model (not used in the training) by

adjusting the model parameters in a way that the error of the validation set is minimized.

The test set is composed of data points that are used neither for learning or optimization

of model parameters. As the generalization of the ML relies on making accurate predictions

on new data, this set will help in the evaluation of the accuracy of the model.

2.3.1. Neural networks

Neural Network (NN) are general function approximators that can be trained via labelled

data. The goal is to approximate Eq.2.40 as well as possible by choosing suitable parameters

in the hypothesis space 𝜃 . In other words we can view artificial neural networks as a

multiparamater curve fitting.

The basic unit of an artificial neural network is the neuron, which holds a scalar value.

Its value 𝑦 is obtained starting from the values 𝑎𝑘 of some other neurons that feed into it.

First, a linear function of those values gets calculated as in Eq.2.43, where𝑤𝑘 are weights

and 𝑏 is a bias. Then a nonlinear and differentiable activation function is applied to yield

the neurons value, 𝑦 = 𝑓 (𝑧). This arrangement already constitutes a single layer neural

network, also known as perceptron.

𝑧 =
∑︁
𝑘

𝑤𝑘𝑎𝑘 + 𝑏 (2.43)

It has been demonstrated by the Arnold–Kolmogorov representation theorem[95] that

any arbitrary continuous high-dimensional function can be expressed as a linear combina-

tion of a set of nonlinear functions
12
. Therefore, multiple layers of neurons are needed.

12
This property is the base for their applicability to the construction of PESs. The BOA states that the

energy of a system can be given as a parametric function of the nuclear positions.
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Each neuron receives the values of all the neurons in the preceding layer, with suitable

weights.

A multi-layered NN can be seen in Fig.2.11. The first layer in a fully-connected NN is the

input layer, where the activations of its nodes are set according to the vector 𝑥 encoding

the input data. The last layer is called the output layer and the activations of its nodes

constitute the output of the NN. All intermediate layers are called hidden layers. To keep

track of the notation of these multi-layered cases, some extra indexes will be introduced.

𝑎
(𝑛)
𝑘

will be the value (also known as output activation) of the neuron 𝑘 in the 𝑛𝑡ℎ layer,

the weight𝑤
(𝑛+1)
𝑗𝑘

will show how much the neurons 𝑘 in the 𝑛𝑡ℎ layer will affect neuron 𝑗

in the layer 𝑛 + 1. The biases are a constant offset of values 𝑏𝑛+1𝑗 . The output of the entire

neural network is obtained by going through Eq.2.44 layer by layer, staring at the input

layer (𝑛 = 0).

The number of layers, nodes, and their connections is known as the architecture of a

NN.

Figure 2.11.: Basic architecture of a multi-layered feed-forward Neural Network.

𝑧𝑛+1𝑗 =
∑︁
𝑘

𝑤
(𝑛+1)
𝑗𝑘

𝑎
(𝑛)
𝑘
+ 𝑏 (𝑛+1)

𝑗
(2.44)

𝑎
(𝑛+1)
𝑗

= 𝑓 (𝑧 (𝑛+1)
𝑗
)

The activation function, 𝑓 , is usually kept fixed. NNs where each node is by default

connected to all nodes in the subsequent layer are referred to as fully connected. NNs are

considered deep if they are composed of many hidden layers.

All the weights𝑤 and biases 𝑏 form the parameters of the network. They will be updated

during training by gradient-based methods.

Backpropagation is a reverse mode of automatic differentiation to calculate these gradi-

ents, based on Eq.2.42. Backpropagation computes the partial derivatives
𝜕L
𝜕𝑤

and
𝜕L
𝜕𝑏

of

the loss function with respect to any weight𝑤 or bias 𝑏 in the network.

It starts from the output layer and propagates backwards due to the fact that the loss

function is based on the outputs of a NN; i.e, L = L(𝑎𝐿).
The algorithm of backpropagation

13
for a NN states:

13
Mathematical proof for the output errors can be found in Appendix A.2.
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2.3. Machine Learning

Algorithm 1: Backpropagation
1 Input Training data;
33 foreach 𝑥 do
4 Set the corresponding activation 𝑎𝑙 for the input layer;

66 foreach layer 𝑙 = 2, 3, ..𝐿 do
7 𝑧𝑙 = 𝑤 𝑙𝑎𝑙−1 + 𝑏𝑙 ;
8 𝑎𝑙 = 𝑓 (𝑧𝑙 );
9 end

1111 Compute Output error 𝛿𝐿;

12 𝛿𝐿 = ∇𝑎L ⊙ 𝑓 ′(𝑧𝐿);
13 Backpropagate the error;
1515 foreach layer 𝑙 = 𝐿 − 1, 𝐿 − 2, ..2 do
16 𝛿𝑙 = (𝛿𝑙+1(𝑤 𝑙+1)𝑇 ) ⊙ 𝑓 ′(𝑧𝑙 );
17 end
18 end
19 Output ;
2121 𝜕L

𝜕𝑤1

𝑗𝑘

= 𝑎𝑙−1
𝑘
𝛿𝑙𝑗 ;

2323 𝜕L
𝜕𝑏𝑙
𝑗

= 𝛿𝑙𝑗 ;

A summary of a NN training can be seen in Fig.2.12.

Figure 2.12.: Steps for the training of a Neural Network using the Backpropagation.
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3. Case of study

Compounds containing a disulfide bridges are able to undergo disulfide exchange reactions

with free thiols, this constitutes a two-electron oxidation process
1
. The thiol-disulfide

exchange is an 𝑆𝑁 2 reaction, which mechanism can be observed in Fig.3.1.

Figure 3.1.: Thiol disulfide exchange mechanism.

A nucleophile (𝑆𝑛𝑢𝑐 ) attacks the substrate (𝑆𝑐𝑡𝑟 ), and a leaving group departs simultane-

ously (𝑆𝑙𝑔). The substrate and the nucleophile are both present in the transition state for

this step. Because two molecules are present in the Transition state (TS), the reaction is

bimolecular, as indicated by the number "2" in the 𝑆𝑁 2 symbol.

An 𝑆𝑁 2 reaction usually requires a trigonal bipyramidal transition state with the entering

and leaving groups in apical positions and substituents at the central atom in an angle

of approx. 90°. As the cleavage of a disulfide bond is thought to occur without essential

participation of 3d orbitals, a linear orientation seems to be valid for sulfur atoms.

We know that the chemistry of a disulfide exchange is directly influenced by the follow-

ing key factors:

• Accessibility: Physical proximity to partner thiol groups.

• Environment:

1
Oxidation refers to loss of electron density while reduction implies a gain on electron density.
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3. Case of study

– Increased reactivity: High pH and oxidizing environment
2
.

– Decreased reactivity: Low pH and reducing environment
3
.

However, new insights in quantum chemistry show with better precision how does

this factors impact the bond formation and exchange. A detailed study, benchmarking 92

density functionals for the thiolate-disulfide exchange between a methylthiolate and a

dimethyldisulfide, was presented by Neves et al.[82]. A thiolate is the deprotonated state

of a thiol (Fig.3.2).

Figure 3.2.: Deprotonation of a thiol forms a thiolate.

In a polar environment, the charge is more localized. Consequently, the thiolate and

the disulfide states are stabilized whereas the trisulfide state is the transition state. While

the reference method MP2/aug-cc-pVTZ yielded a linear structure with S–S bond lengths

of 2.40 and 2.42 Å, both LDA and GGA functionals showed deviations from linearity and

significantly longer bonds.

The symmetric conformation becomes a transition state with a significant barrier:

CCSD(T)/aug-cc-pVTZ shows a barrier of 9.28 kcal/mol, which decreases with decreasing

basis set size and level of theory to 6.24 kcal/mol with MP2/aug-cc-pVDZ.

These energy estimates are based on continuum solvent models, which yield substantial

contributions to the thermal free energy and zero-point energy of ≈8 kcal/mol. Such free

energy contributions in solution can be taken into account in a straightforward manner

by sampling the configurational space using MD simulations.

In gas phase, theoretical evidence also sustain this linear trisulfide-like transition state,

with the negative charge being delocalized, but most abundant on the attacking and leaving

sulfurs[10, 37].

It has also been observed that potential energy differences (energy minimas) depend

sensitively on the level of theory and the basis set size. CCSD(T)/aug-cc-pVTZ yields an

energy difference of Δ𝐸 = −2.13 kcal/mol in the gas phase, while Δ𝐸 = −5.05 kcal/mol

with MP2/aug-cc-pVDZ, and Δ𝐸 = −5.65 kcal/mol with B3LYP/TZVP. An error of up to 10

kcal/mol was reported for the LDA functionals, while the GGAs still show errors of more

than 5 kcal/mol (e.g. 6.7 kcal/mol with PBE). Including the exact exchange improves the

situation, however the error of the widely used B3LYP functional is still ≈3 kcal/mol.

A proper inclusion of electron correlation is crucial for this reaction. Fernandes’ work

on the description of Thiol–Disulfide Exchange states that the quality of the CCSD(T)/CBS

2
This enviornment is found outside the cell. Exogenous factors such as smoke, xenobiotics, radiation and

other sources may generate Reactive oxygen species (ROS) to diffuse into the cell or induce endogenous

ROS production aftecting the natural homeostasis of the cell (oxidative damage).

3
Glutathione is the main antioxidant inside the cells and helps in buffering this reducing environment.
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energy is the most adequate to be taken as a reference for describing its energetic landscape

[82, 10].

To study the reaction, QM/MM approaches can be applied. However, when using

ab initio approaches for the QM region, sampling is usually restricted and mostly done

by searching reaction pathways. As an alternative, semiempirical methods have been

attempted for describing the reaction and it has been observed that DFTB overestimated

distances in the transition state[87], this correlates with the behavior of the DFT-LDA

and DFT-GGA approaches [82]. Being based on the PBE functional, DFTB thus seems to

reproduce the DFT-PBE errors.
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4. Methodology

4.1. Molecular descriptor

A ML algorithm only processes numbers, any change on the input will lead to a different

output. When positioning ourselves on a cartesian coordinate system, translating or

rotating a rigid molecule in vacuum does not change the relative atomic positions and

consequently the energy remains invariant although the numerical values of the cartesian

coordinates change.

Figure 4.1.: The three configurations are energetically equivalent independent of permuta-

tion, translation or rotation.

Cartesian coordinates are not suitable as the {𝑥𝑖} input for the ML, then is important to

transform the chemical structural information into a a set of parameters invariant to the

aforementioned changes.

The Atom-Centered Symmetry Functions (ACSF) were the first type of descriptors

developed for construction of high-dimensional ML potentials [17, 15, 14]. As mentioned

previously, the PES is an 𝑁 -dimensional space function, and the ACSF can give a correct

description of it as they are based on a transformation of nuclear coordinates. They are

continuous, therefore they can be analytically differentiable to calculate forces, as stated

in Eq.2.36.

The ACSF follow the hypothesis that large part of the atomic interactions of the atoms

are described by interactions of the atoms with their local chemical environments, these

describe the positions of atoms in the environment of a given central atom based on

distances 𝑅𝑖 𝑗 and angles 𝜃𝑖 𝑗𝑘 of the neighboring atoms up to a cut-off distance 𝑅c.

𝑅c represents a convergence parameter that include all energetically relevant interactions

needed to reach the desired level of accuracy. The use of a cut-off effectively reduces the

dimensionality of the atomic environments to the positions of the close atoms enabling

the use of the energy expression in Eq. 4.1, that states that the total energy of a system is

the sum of all the energetic contributions of each atom.
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4. Methodology

𝐸 =

𝑁atoms∑︁
𝑖=1

𝐸𝑖 (4.1)

ACSF include radial and angular contributions.

The radial function is described by Eq.4.2 and is a sum of Gaussians that depend on

interatomic distances 𝑅𝑖 𝑗 . The center of the Gaussians can be shifted by the parameter

𝑅𝑠,𝑚 that describe a spherical shell around the reference atom. The width of the Gaussians

is controlled by the parameter 𝜂. Typically, a set of 𝜂 values is used to obtain a complete

radial fingerprint of the environment.

𝐺 rad

𝑖 =

within𝑅c∑︁
atoms 𝑗≠𝑖

𝑒−𝜂 (𝑅𝑖 𝑗−𝑅𝑠,𝑚)
2

(4.2)

Due to the summation over all neighbors in the cutoff spheres, the number of ACSF is

independent of the coordination of each atom 𝑖 , which is important since NNs require

a constant number of input descriptors irrespective of the coordination number, which

might change frequently in MD simulations.

The angular function (Eq.4.3) provides an angular fingerprint of the environment using

the angles 𝜃𝑖 𝑗𝑘 formed by atoms 𝑖 , 𝑗 and 𝑘 . The angular resolution can be controlled by a

set of 𝜁 values, while 𝜆 = ±1 defines the positions of the extrema of the cosine function.

The angular functions must be constructed for all possible element combinations involved

in the angles 𝜃𝑖 𝑗𝑘 .

𝐺
ang

𝑖
=

within𝑅c∑︁
atoms 𝑗,𝑘≠𝑖

2
1−𝜁 (1 + 𝜆 cos𝜃𝑖 𝑗𝑘)𝜁

𝑒
𝜂 (𝑅2

𝑖 𝑗
+𝑅2

𝑗𝑘
+𝑅2

𝑖𝑘
)

(4.3)

Figure 4.2.: Toy model centered around atom 𝑖 , showing the ACSF parameters.

The set of function values is different for each atomic environment and the number of

symmetry functions is larger than the number of degrees of freedom of the system.
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4.2. Optimization of the molecular descriptor

4.2. Optimization of the molecular descriptor

It is important that the ACSF include all the possible energetic contributions of the system,

therefore a proper selection of the 𝜁 , 𝑅𝑠,𝑚 , 𝑅𝑐 and 𝜂 values for the symmetry functions will

be determinant for the accuracy of the NN.

A Geneteic Algorithm (GA) is a search-based algorithm used for solving optimization

problems in ML. They operate on sets of strings which evolve through generations accord-

ing to the rule of natural selection. This evolution is the method for reaching the optimal

solution of a problem by excluding the worse set of strings based on a fitness function[77].

The initial strings are known as “population”, each set of solutions is called “chromo-

some”, the chromosome is composed of “genes”, and the “genes” stand for the parameters

to be optimized, a graphical explanation can be seen at Fig.4.3. In every generation, a new

set of strings is created, using parts of the best members of the old set. This step, known

as crossover, carries a mutation which is a random alteration of the value of a string’s

position, see Fig.4.4.

Figure 4.3.: ACSF hyperparameters as the genes of a GA.

Figure 4.4.: Example of crossover in the chromosomes to find the optimal parameters for

the ACSF.
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4.3. Artificial neural network for Δ-learning

This work uses the Δ-ML approach by Ramakrishnan et al.[89], following also the work

by Zhu et al.[115] and Shen et al.[98] on learning the energy difference between two levels

of theory of quantum chemical calculations,

Δ𝐸 = 𝐸ab initio − 𝐸DFTB (4.4)

with a Behler–Parrinello NN[17].

The aim was to correct the DFTB level of theory to ab initio accuracy, and implement

the correction into the DFTB+ software[60], following the principle of Eq. 4.4.

As seen on the 2nd generation potentials, when using the Behler–Parrinello NN, the

total energy of a molecular system is expressed as the sum of energy contributions 𝐸𝑖 .

Each energy contribution gets assigned to all of the atoms separately, as seen in Eq.4.1,

where the 𝐸𝑖 are predicted by individual NNs using the concept of Eq. 2.44.

In the Δ-learning, the quantity to be predicted by the NN is the difference of energies

obtained with two quantum chemical methods, as in Eq. 4.4. The training set consisted of

a set of molecular structures, for each of which the energy is calculated with both DFTB

and a reference ab initio method.

The implemented feed-forward NN consists of a two-layer sub-network for each atom

with the 𝑡𝑎𝑛ℎ activation function. The descriptors are defined by Eq. 4.2 and Eq. 4.3 as the

input parameter of Eq. 2.43. Each hidden layer consists of 15 neurons whose weights have

been initialized by the Nguyen–Widrow initialization procedure[6] (see Appendix.A.3).

Figure 4.5.: Representation of the Behler-Parrinello NN.

4.3.1. Implementation into a workflow

The main goal of all major workflow frameworks is to capture the elements of a complex

protocol and automate its execution, saving time by directing properly the information

flow.
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4.3. Artificial neural network for Δ-learning

The present workflow idea is to have a semiautomatic process where the end-user under

his expertise criteria can select the best sampling chemical structures for the Δ-ML dataset.

The end-user will then provide the structures to the workflow and since this point the

process of data preparation and training can be automated.

The purpose of using a GUI is facilitating the use of the Δ-ML code for non-Python

experts directly from an interfaced local machine to a High Performance Computing

(HPC) environment. The selected platform is SimStack[91], developed in a joint project by

Nanomatch GmbH and KIT.

SimStack provides a highly flexible drag-and-drop environment that allows quick adap-

tion of existing workflows, as well as a GUI for the end-user to automatically execute

the workflows on remote computational resources. Multiple modules are connected into

complex workflows via dragdrop and relevant simulation parameters are set for each

model using automatically generated outputs. The SimStack Client connects to a SimStack

Server installed on remote computational resources and handles file transfer, submission

and monitoring of workflows and retrieval of results to the end-user’s personal computer.

A Workflow Active Node (WaNo) is a module that SimStack interprets and uses to

render the information of the node from the local machine to the available HPC resources.

The WaNos are specified on an Extensivle Markup Language (XML) and use as templating

engine Jinja language.

In Fig.4.6 the HPC parameters that can be adjusted can be seen.

Figure 4.6.: The user can select HPC resources according to availability. resources can be

easily optimized by the user.

The developed workflow allows to run DFTB+[8] and ORCA[79] calculations on parallel

computing resources
1
.

The WaNo modules were designed to expose charge and multiplicity as they were not

arbitrary parameters in our system. The ORCAmodule can be seen at Fig.4.7, the geometry

1
There is also the possibility to run the ab initio calculations on a previously developed Turbomole[44]

WaNo, but we will not discuss that software in this application.
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file can come from local files or parsed form another WaNo, all available functionals
2
and

basis-sets from ORCA were implemented on a scroll-down menu. Charge and multiplicity

can be selected manually, however a warning for selecting wrong multiplicity has been

implemented and automatically redefines it.

Figure 4.7.: WaNo for ORCA software

In the case of DFTB+ WaNo, Fig.4.8, just as the ORCA module, the geometry file can

come from local files or parsed from another WaNo, charges and multiplicity are defined

analogously to the ones in the ORCA WaNo. Other exposed parameters are the selection

of Slater-Kloster parameters from a scroll-down menu and number of SCC iterations.

Different types of calculations were also implemented:

• Single shot calculation

• Structure optimization

– Steepest Descent

– Conjugate Gradient

– gDIIS

• Molecular Dynamics with the thermostats:

– Berendsen

– Andersen

– Nosé-Hoover

2
The DLPNO-CCSD(T) approximation[72] was implemented too and uses the same basis-set as its compli-

mentary.
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4.3. Artificial neural network for Δ-learning

– No thermostat

• Single shot calculation with the machine learning correction
3
.

• Molecular dynamics with the machine learning correction.

For the reference values, we use the energy of infinitely separated reactants. These

energies are calculated by a small independent workflow, which can be seen in Fig.4.9.

The output of this workflow will give a chart (suitable for its use in the "NN-Delta-ML"

WaNo) with the energy values of each structure

The "NN-Delta-ML" WaNo trains and creates a model suitable for DFTB+. The exposed

parameters can be seen in Fig.4.10. The cut-off radius, the number of neurons, layers and

learning rate take positive integers while the activation function can be selected from a

scroll-down menu. After completion of the training, this module will export a graphical

report (Fig.4.11) with the histogram of the Δ𝐸, information about the range of correction,

a correlation plot of the accuracy on the test data and report of RMSE–MAE of the test

data. The graphical output as well as the datasets for its creation are available to be saved

locally. Information such as reference energy and error information are saved into a text

file.

The workflow for the Δ-correction can be seen at Fig.4.12.

1. The geometries selected under the criterion of the user are given to the workflow as

a compressed file (tar, tar.gz...).

2. The geometries get extracted and go into a parallel calculation loop, for a semiem-

pirical method by DFTB and an ab intio by ORCA.

3. The calculation outputs get passed to "Table-generator" that cleans the data and

creates a table with the associated energy of each structure.

4. "Super XYZ" rearrange the table ensuring that the index between structure, DFTB+

and ORCA energies match, this step will be important for the Neural Network

module.

5. "NN-Delta-ML" trains and creates a model suitable for DFTB+.

6. For verifying the accuracy of forces, the DFTB+ WaNo can perform an NVE simula-

tion importing the model and creating automatically the input file without the need

of the user intervention outside the MD exposed parameters.

This workflow is expected to expand the systems where the Δ-ML can be used, and

accelerate its application by acting as a bridge enabling non-experts to access information

without the complication of selecting computing resources or numerical parameters, and

saving time from data preparation and plot generation. The code and documentation for

the workflow be found in Ref.[90].

3
The use of this requires the DFTB+ branch for machine learning correction[67].
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Figure 4.8.: WaNo for DFTB+
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4.3. Artificial neural network for Δ-learning

Figure 4.9.: Refence energies workflow.

Figure 4.10.: WaNo for the Δ-ML.
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Figure 4.11.: Workflow learning report.
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Figure 4.12.: Δ-ML workflow.
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4.4. Artificial neural network for learning a fourth generation
potential

Instead of limiting ourselves at the Δ-learning, the total 𝐸ab initio gets fitted by the same

principles of the Behler-Parrinello NN.

To overcome the locality of the atomic energies, long-range charge transfer is ob-

tained by a Charge Equilibration via Neural network Technique (CENT)[34] by employing

environment-dependent atomic electronegativities. The total energy of the system gets

defined by Eq.4.5, where the electrostatic part depends on a set of atomic charges𝑄 = {𝑄𝑖}
and the positions of the atoms ®𝑟 = {®𝑟𝑖}.

𝐸 (®𝑟,𝑄) = 𝐸elec(®𝑟,𝑄) + 𝐸short(®𝑟,𝑄) (4.5)

Following the 4th generation potentials proposed by Behler-Parrinello[104]. Short-range

atomic energies and electronegativities are expressed by NNs as a function of the chemical

environments, employing the ACSF. The architecture is a binary system of two NNs, see

Fig.4.13, the first one calculates the charges by the CENT and and gives provides them as

an additional input to the short-energy NNs.

Figure 4.13.: Representation of the binary system of a fourth generation potential.

For the CENT part, a selected charge population distribution gets converted into elec-

tronegativities, 𝜒𝑖 , following the principle of Eq.4.6.

𝑁𝑎𝑡∑︁
𝑗=1

𝐴𝑖 𝑗𝑄 𝑗 + 𝜒𝑖 = 0 (4.6)
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4.4. Artificial neural network for learning a fourth generation potential

where elements of matrix A are given by Eq.4.7. 𝐽𝑖 is an element-specific hardness,

defined by the Hubbard parameters, 𝜆 is defined by Eq.4.8 and 𝜎 represents the covalent

radii of the respective elements.

[𝐴]𝑖 𝑗 =


𝐽𝑖 + 1

𝜎𝑖
√
𝜋

if 𝑖 = 𝑗

erf ( 𝑟𝑖 𝑗√
2𝛾𝑖 𝑗
)

𝑟𝑖 𝑗
otherwise

(4.7)

with

𝛾𝑖 𝑗 =

√︃
𝜎2
𝑖
+ 𝜎2

𝑗
(4.8)

The electronegativities then get calculated by a feed-forward NN consisting of a five-

layer sub-network for each atom with the 𝑡𝑎𝑛ℎ activation function. The descriptors are

defined by Eq. 4.2, Eq. 4.3 and atomic number as the input parameter of Eq. 2.43. Each

hidden layer consists of 45 neurons whose weights have been initialized by the Nguyen–

Widrow initialization procedure.

After the loss minimization of the electronegativities, the calculation of charges is

computed following the principle of Eq.4.6, considering that the sum of all charges must

be equal to the total charge of the system, in the disulfide case 𝑄𝑡𝑜𝑡 = −1 a constrain is

added via Lagrange multipliers and solved as a system of linear equations:

©«
A
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:
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1 .. 1 0

ª®®®®¬
©«

𝑄1

:

𝑄𝑁𝑎𝑡

𝜆

ª®®®®®¬
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©«
−𝜒1
:

−𝜒𝑁𝑎𝑡

𝑄𝑡𝑜𝑡
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(4.9)

The 𝐸ab initio gets calculated by a feed-forward NN consisting of a five-layer sub-network

for each atom with the 𝑡𝑎𝑛ℎ activation function. The descriptors are defined by Eq. 4.2,

Eq. 4.3 and the partial charge of each atoms as the input parameter of Eq. 2.43. Each

hidden layer consists of 35 neurons also initialized by the Nguyen–Widrow initialization

procedure.
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5.1. Analysis of a disulfide reaction

Titin is one of the most abundant and force-bearing proteins in muscle, which connects the

Z line to the M line in the sarcomere. Titin functions as a molecular spring that absorbs the

accumulated tension during the sarcomere contraction–relaxation cycles and determines

the elasticity of muscle[30, 31]. It has been proposed that the titin’s function as a molecular

spring not only depend on the elastic extension of the unstructured regions, but also in the

unfolding and refolding of the force-bearing immunoglobulin-like (Ig) domains[49, 101].

It has been hypothesized that modulatory effects on titin stiffness may arise from

disulfide bonding under oxidant stress, Ig domains in titin’s spring region have a potential

for S-S formation. Titin’s I27 domain is the most studied Ig domain due its high mechanical

stability and low unfolding rate[74].

QM/MM force-clamp simulations were performed on a mutated I27*, that had two

oxidized cysteines at the residue positions 24 and 55. The QM/MM simulations were set

up in order to cover a possible nucleophilic attack of the deprotonated reduced Cys32,

located on a flexible loop, on both Cys24 and Cys55. These simulations were aiming to

explain the regioselectivity of the disulfide shuffling in proteins.

The QM/MM simulation setup was prepared by Dr. Marina Putzu, the starting structures

were snapshots from the force-clamp swapping simulations of Gräter’s group[65]. Due to

an applied external pulling force on the termini, the protein was already unfolded up to

the disulfide bond between S24 and S55. There were 334 QM/MM setups, in 160 of the

selected structures S32 was closer to S24, and in 174 structures closer to S55.

The QM region comprised the side chains of Cys24, Cys55 and Cys32 up to C𝛽 . Bonds

between C𝛼 and C𝛽 were treated with the link atom approach. In total, the QM region

consisted of 15 atoms described with DFTB3 and 3OB parameters, see Fig. 5.1. The rest

of the system was described with the AMBER99SB-ILDN forcefield [73] and TIP3P water.

Temperature and pressure were kept at 300 K and 1 bar with the Nosé-Hoover thermostat

and the Parrinello–Rahman barostat, respectively.

The QM/MM simulations were extended up to 20 ns to observe disulfide shuffling in

the I27* domain. Snapshots of the trajectories were saved every 0.5 ps. The simulations

where a disulfide exchange occurred were stopped due to the protein termini leaving the

simulation box at both sides.

A reaction occurred 66 times from the 334 initial setups, with a preference for Cys32

attacking Cys55 (48 reactions) over Cys24 (18 reactions). A disulfide exchange reaction

was possible by means of an attack of Cys32, present in the deprotonated thiolate form, on

either Cys24 or Cys55. The preference for Cys32 agreed with experimental observations,

and the Cys55/Cys24 ratio of 2.7 agreed with an observed experimental ratio of 3.8[5].
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Figure 5.1.: QM zone from the I27* domain consisting in Cys24, Cys32 and Cys55.

In order to predict disulfide shuffling with dependency on a preferred cysteine, a decision

tree classifier algorithm based only on structural data was attempted. To establish the

features that determine a successful exchange reaction, the initial, 4 equitably distributed

and the snapshot 10 ps prior the ending of the simulation were taken from (see Fig.5.2) from

both successful and unsuccessful reactions. Distances and angles between the sulfurs were

measured with Plumed[19] in all trajectories, charges of the QM atoms were calculated

with DFTB+[60].

Figure 5.2.: Trajectory splitting for recording structural information.

In Fig.5.3, it can be seen that the first decision criteria is the distance between the sulfurs

atoms of Cys32 and Cys24. Then we ca make the following statements:

• Cys32-Cys24 < 4.38 Å will lead to a exchange towards Cys24.

• Cys32-Cys24 ≥ 4.38 Å and Cys32-Cys55 ≤ 4.21 Åwill lead exchange towards Cys55.

• When both distances are greater than 4.3 Å, an exchange will not take place.

Although angle information was also given as an input, the decision tree did not consider

it a fundamental value for determining shuffling.

Additional structural analysis concluded that the distance between 𝑆𝑛𝑢𝑐 and 𝑆𝑐𝑡𝑟 , (S24 or

S55) has a range between 3–5 Å. Whereas 𝑆𝑛𝑢𝑐 is further away from the leaving sulfur, 𝑆𝑙𝑔,

at 4.5–7 Å. The TS is formed as soon as |𝑆𝑛𝑢𝑐 − 𝑆𝑐𝑡𝑟 | has decreased to ∼2.75 Å and |𝑆𝑐𝑡𝑟 − 𝑆𝑙𝑔|
has increased to ∼2.75 Å, while |𝑆𝑛𝑢𝑐 − 𝑆𝑙𝑔| ∼5.4 Å indicating a linear arrangement[87].
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5.2. Dataset for machine learning

Figure 5.3.: Exchange towards a preferred cysteine is indicated by its index: 24 or 55. No

exchange is denoted by "0"

The angle 𝑆𝑛𝑢𝑐 − 𝑆𝑐𝑡𝑟 − 𝑆𝑙𝑔 oscillates between 80–180° and this range narrows down to

120–170° right before the formation of the TS.

Simulations where the reaction succeeded were re-run to get the electrostatic potential.

S55 in the role of nucleophilic target carried a more positive charge than S24, and S24

carried a more negative charge as a leaving group than S55 did. This means that S55 is the

better nucleophilic target, and S24 the better leaving group of the two
1
. Consequently, it is

the electrostatic effects of the molecular environment that support the reaction S32→S55

more than S32→S24. This is an additional explanation of the outcome of the force-clamp

experiments on I27*.

5.2. Dataset for machine learning

The selection of structures came from two systems. The first one came from the analysed

I27* domain where disulfide shuffling between three cysteines in the reactive center occurs.

The reaction was driven with QM/MM metadynamics (performed by Dr. Denis Maag).

Snapshots of the QM region were extracted from the trajectories and binned regarding

the three sulfur-sulfur distance combinations. Only distances with a minimum length of

1.85 Å, a maximum bond length of 6.95 Å and a binsize of 0.15 Å were considered. This

yielded in 8,436 bins, less than the theoretical amount since not all distance combinations

are chemically feasible or present in the QM/MM metadynamics. From each bin one

structure was added to the training data. Important structures which lie very high in

1
For a more detailed explanation see Ref.[75] and Dr. Denis Maag PhD thesis.
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energy with DFTB/3OB, e.g. structures around the “true” transition state, are usually not

sampled during QM/MM metadynamics.

Thus, a second system was used to compensate for this. A dimethyl disulfide and

a methylthiolate anion were energy minimized with DFTB/3OB and subsequently an

unrelaxed potential energy scan was performed, resulting in 5,112 additional structures

which were added to the dataset.

The reference DFTB energies for the selected structures were calculated in gas-phase

with the 3OB parametrization by the DFTB+ software. The threshold value taken as

reference for normalizing the DFTB3 energy values was of -9931.149 kcal/mol, this value

corresponds to the energy of infinitely separated reactants. The B3LYP functional energies

were calculated by TurboMole 6.5 using the aug-cc-pVTZ basis set, the threshold value is

-824854.937 kcal/mol. For the CCSD(T) the DLPNO approximation[72] was employed by

the ORCA 4.2.1 software.

Figure 5.4.: Gas-phase potential energy surfaces, representing the total energy as a func-

tion of the S1–S2 and S1–S3 bond length in a linear S3–S1–S2 configuration.

Contour lines are drawn every 0.5 kcal/mol. Pathways of minimum energy are

drawn as green lines for DFTB/3OB, yellow for B3LYP/aug-cc-pVTZ and purple

for DLPNO-CCSD(T)/aug-cc-pVTZ. – (A.1) DFTB3 with 3OB parameters, (B.1)

Δ𝐸B3LYP−DFTB, (B.2) B3LYP/aug-cc-pVTZ, (C.1) Δ𝐸CC−DFTB, (C.2) Δ𝐸CC−B3LYP,
(C.3) DLPNO-CCSD(T)/aug-cc-pVTZ. The minimum energy details can be seen

at Table 5.1.
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5.3. Artificial neural network for Δ-learning

Table 5.1.: Minimum energy on gas-phase potential energy surfaces.

Method Minimum energy [kcal/mol]

DFTB/3OB −25.0
B3LYP −15.2
CC −16.7

Visual inspection of the PES in Fig.5.4 reveals that DFTB3/3OB predicts much longer

S–S bonds than the higher-level references. B3LYP performs much better but still slightly

overestimates the bond lengths in the minimum, with an error of 3 kcal/mol. The B3LYP

PES deviates from the DLPNO-CCSD(T) PES, therefore, energy differences of 3 kcal/mol

may be due to a comparison of single point energies for static structures as done in Ref.[82],

where a 1-dimensional energy scan was performed.

Following the respective minimum energy pathways for dissociation, the differences

between DLPNO-CCSD(T) and B3LYP seem to be less pronounced. Even though the overall

PES shows some differences definitely, the largest qualitative difference are apparent for

high-energy structures (see Fig. 5.4 C.2), which are hardly relevant in typical applications.

5.3. Artificial neural network for Δ-learning

From the selection of structures, two datasets were formed: Δ𝐸CC−DFTB and Δ𝐸B3LYP−DFTB.
Due to the energy distribution being skewed towards high Δ𝐸 values, and having a higher

density of sampling over structures with no energy difference, lower delta values structure-

energy pairs were duplicated achieving a more Gaussian-like distribution (Fig. 5.5). The

distribution of the training structures as a function of the S1–S2 and S1–S3 are shown in

Fig. 5.6
2
.

5.3.1. Construction of the symmetry functions

A GA was employed to find the hyperparameters that construct the symmetry function

vectors described in Eq. 4.2 and Eq. 4.3 for each element of the considered system: carbon,

hydrogen and sulfur. The fitness was been defined as the RMSE of the test set, aiming for

a value of 0.75 kcal/mol.

The GA ran on “Batch-NNs”, using the Δ𝐸B3LYP−DFTB dataset with training, validation

and test set split in the ratios of 60/20/20. The initial populationwas composed of 20 random

strings. The training hyperparameters remained invariant at every training generation.

The implemented workflow is shown in Fig. 5.7

The GA took 12 generations to find the best descriptor features for the system, the

evolution after each generation can be observed in Fig.5.8. The best genes constructed 144

symmetry function vectors for each atom, following Eq. 4.2 12 𝑅𝑠,𝑚 shells were considered

2
This image is reproduced with permission form Ref.[53] Copyright 2022 American Chemical Society and

re-used from Dr. Denis Maag PhD thesis.
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5. Results

Figure 5.5.: Data density from Δ𝐸CC−DFTB and Δ𝐸B3LYP−DFTB initial dataset distribution

seen in green color. Red color shows the new data density after the data

augmentation

taking into account a minimal distance of 0.2 Å to a maximum of 5 Å and an 𝜂 = 5
3

𝑅2𝑠,𝑚
was

used. The angular parameters were set as 𝜂 = [0.001, 0.01, 0.05], 𝜆 = ±1 and 𝜁 = [1, 4, 16]
as in Eq. 4.3.

5.3.2. Training of the Δ𝐸

With the optimized molecular descriptor from the GA, two new NNs were trained with 80%

of the dataset, one for Δ𝐸B3LYP−DFTB and the other for Δ𝐸CC−DFTB, the training times on a

GeForce GTX 1080 Ti GPU took 52 min and 58 minutes respectively. The NNs were trained

during six sessions using 80 % of the structures,the Adam optimizer[62] (see Appendix

A.4), a descending learning rate of 0.01, 150 epochs and a decay rate of 0.001.

The loss function, L, used to minimize the error after every session was defined by

Eq. 5.1. 𝐿 refers to the number of geometries, Δ𝐸ref the reference values of 𝐸high −𝐸low and

𝐸pred the energy difference predicted by the NN. This step was performed on the Validation

Set. After the six sessions a final model was exported and evaluated on the Test Set.

L =
1

𝑁

√√√
𝐿∑︁
𝑋=1

(
Δ𝐸pred − Δ𝐸ref

)
2

(5.1)

The accuracy of the NNs was evaluated with the test set showing that they are able to

predict this difference between ab initio methods and DFTB. The B3LYP training achieved

a RMSE of 0.5 kcal/mol from a range of values between −29.41 kcal/mol and 22.21 kcal/mol.

The CC training achieved a RMSE of 0.62 kcal/mol from a range of values between

−62.78 kcal/mol and 36.39 kcal/mol. The accuracy of the predictions when compared

with the reference values on the test set can be seen in Fig. 5.9.

The model of each training was saved as a 27 kB text file containing the values for

weights and biases for each element.
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5.3. Artificial neural network for Δ-learning

Figure 5.6.: Distribution of the training structures as a function of the S1–S2 and S1–S3

of the (A) unrelaxed potential energy scan (5112 structures), (B) QM/MM sim-

ulations of I27* (8436 structures), (C) combined data set (13,548 structures),

(D) B3LYP data (21,238 structures), (E) DLPNO-CCSD(T) data set (18,357 struc-

tures). A minimum bond length of 1.9 Å, a maximum bond length of 7.0 Å and

a bin width of 0.1 Å was considered for the histograms.
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5. Results

Figure 5.7.: The workflow of the genetic algorithm. The fitness is defined as the RMSE on

the test set; the best chromosomes will be the ones having a fitness towards

0.75 kcal/mol. If the stop criterion of a RMSE < 0.75 kcal/mol is achieved, the

GA terminates, otherwise a new iteration is started.

Figure 5.8.: RMSE evolution through evolving generations with 60% of training samples.

5.3.3. Evaluation of the model Δ-ML

The Behler-Parrinello NN scheme of calculation of a correction for quantum chemical

calculations was implemented in the DFTB+ software package[8, 60] from scratch by Dr.

Tomáš Kubař [67].
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5.3. Artificial neural network for Δ-learning

Figure 5.9.: Test set fitting of the Neural Network with 10% of the dataset.

A machine learning module is necessary inside the Hamiltonian specifications in the

input file for the DFTB+, with the explicit symmetry functions parameters and the path

for the model files. The input file can be seen at the Appendix A.5.

The obtainedmodels: Δ𝐸CC−DFTB andΔ𝐸B3LYP−DFTBwere evaluated using this DFTB+/ML

implementations, see Fig. 5.10 (top). Single point energies and forces were calculated for

2000 structures randomly selected from the dataset of linear structures.

Comparison with the differential PES in the data sets (Fig. 5.4 B.1 and C.1) as well as

the comparison of the entire potential energies (Fig. 5.10 (center) versus Figs. 5.4 B.2 and

C.3) shows that the NN correction captures the energy differences well. Overall, the ab
initio and DFT surfaces are reproduced very well, as illustrated by the small deviation of

predicted differential PES from those in the data sets, see Fig. 5.10 (bottom).

Interestingly, the error of the respective fit is smaller than the difference between

the reference methods B3LYP and CCSD(T). Therefore, it indeed makes sense to target

high-level reference methods, i.e. one can try to fit semiempirical methods to reproduce

high level ab initio results. Therefore, such fitted semiempirical methods in principle

can outperform standard DFT methods not only in computational efficiency, but also in

accuracy within the limits they have been parametrized for.

To evaluate the accuracy of ML corrected forces, we followed the methodology from Zhu

et al. [115] by testing the energy conservation on microcanonical (NVE) simulations of a

random structure from the linear dataset. The simulations ran for 100 ps on DFTB+/ML

with a timestep of 0.5 fs and an initial temperature of 300 K. The energy fluctuation of

<0.25 kcal/mol surrounding an average energy of zero can be seen in Fig.5.11, indicating a

good accuracy of the MD simulation and therefore an accurate calculation of forces by the

DFTB+/ML implementation.

On Fig.5.12 we can position the Δ-ML algorithm, following the proposed hypothesis

in Fig.1.5. The computational cost of the energy correction does not depend on the level-

of-theory accuracy, as Δ𝐸CC−DFTB and Δ𝐸B3LYP−DFTB are described by the same number

of symmetry functions. A single point calculation including the Δ𝐸 correction and force

estimation took 41 ± 2 ms on average for both CC and B3LYP corrections, from this

average 7 % (≈3 ms) corresponds to the addition of the Δ𝐸 while the calculation of forces
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5. Results

Figure 5.10.: Top: Magnitude of the ML correction Δ𝐸B3LYP−DFTB and Δ𝐸CC−DFTB, to the

B3LYP and CCSD(T)–DLPNO levels respectively. Energy correction as a func-

tion of the S1–S2 and S1–S3 bond length in a linear S3–S1–S2 configuration.

Contour lines are drawn every 0.5 kcal/mol. Center: The PES calculated with

DFTB+/ML correction, i.e., 𝐸DFTB + Δ𝐸) Contour lines are drawn every 0.5

kcal/mol. Bottom: Deviation of the PES calculated by DFTB+/ML from the

true PES obtained with the reference method. The error remains deep under

1 kcal/mol.

accounts for 42 % (≈17 ms) of the time
3
. Obviously, the calculation of gradients makes

3
If we go back to Eq.2.36, forces get calculated by calculating the gradients of the potential energy w.r.t.

each coordinate. To calculate the forces of this correction, is necessary to calculate the gradients of the

predicted Δ𝐸 w.r.t each symmetry vector and the gradients of each vector w.r.t each Cartesian coordinate.
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5.3. Artificial neural network for Δ-learning

Figure 5.11.: Total energy during MD simulations in a microcanonical ensemble using the

force derivatives from the ML corrected energy up to B3LYP and CC.

DFTB+/ML calculations take twice as long as a corresponding DFTB-only calculation.

When compared with CCSD(T) calculations – even the extremely efficient DLPNO variant,

which approaches the efficiency of DFT, DFTB+/ML remains three orders of magnitude

faster.

Table 5.2.: Δ-ML correction times for single point calculations.

Method Average Time [ms]

DFTB+ 20

DFTB+/ML 24

DFTB+/ML with forces 41

It is interesting to see, however, that the computational cost of the NN is similar to

DFTB3. Once again, this demonstrates that semiempirical methods represent chemical

information in a very efficient way, which is hard to outperform by data-driven approaches

If we have 144 vectors per atom and 15 atoms on a 3D space, those are 12960 operations! Reducing the

symmetry vectors would make this process faster
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5. Results

in terms of efficiency. Due to the similar computing times involved, they may represent a

very good combination of computational approaches in terms of speed and accuracy.

Figure 5.12.: Real positioning of the Δ-ML implementation costs with respect of DFTB.

5.4. Artificial neural network for learning a fourth generation
potential

From the selection of structures, the 𝐸𝐶𝐶 dataset was used and the ACSF remained as the

chosen molecular descriptor (Eq.4.3 and Eq.4.2).

5.4.1. Training of the electronegativities

For the Charge Equilibration via Neural network Technique (CENT), the atomic number

was appended to the ACSF descriptor. We used the DFTB2 Mulliken charges obtained

by DFTB+ as reference data. We converted these charges into the electronegativities by

Eq.4.6 and fed them as the target input for the NN.

The radial parameters for this learning were defined with by a cut-off radius=10 Å, 12

𝑅𝑠,𝑚 shells from 0.8 Å to 12 Å and an 𝜂 = 5
3

𝑅2𝑠,𝑚
was used. The angular parameters were set

as 𝜂 = [0.001, 0.01, 0.05], 𝜆 = ±1 and 𝜁 = [1, 4, 16]. The entire distribution of features was

normalized to ensure a better fitting, the normalization followed Eq.5.2, where 𝜇 is the

mean of the feature values and 𝜎 the standard deviation.

𝑋 ′ =
𝑋 − 𝜇
𝜎

(5.2)

TheNNwas trained during four sessions using 80 % of the structures, the Adamoptimizer,

a descending learning rate of 5𝑒 − 5, 1500 epochs and a decay rate of 1𝑒 − 4. We used as
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5.4. Artificial neural network for learning a fourth generation potential

control the "EarlyStopping", which stops the training when the loss function is no longer

decreased. The loss function, L, used to minimize the error after every session was defined

by Eq. 5.3. 𝐿 refers to the number of geometries, 𝜒 ref the obtained elecronegativities from

reference partial charges and 𝜒pred the predicted electronegativities by the NN.

L =
1

𝑁

√√√
𝐿∑︁
𝑋=1

(
𝜒pred − 𝜒 ref

)
2

(5.3)

The accuracy of the NN was evaluated with the test set by transforming the predicted

electronegativities into charges via Eq.4.9. The training achieved a RMSE of 0.08 A.U.

when predicting electronegativities, and RMSE of 0.06 A.U. w.r.t to charges from a range

of values between −2.33 A.U. and 1.14 A.U (Fig. 5.13).

Figure 5.13.: Test Set evaluation of elecronegativity and charge.

For getting a better visualization of the predicted charges, they were separated into

the trained elements, see Fig. 5.14. Some clustering and deviations can be observed by

calculating the carbon charge distributions. This could be caused by the selection of

reference data. Even when DFTB2 includes charge transfer and polarization effects, DFTB3

has a better accuracy of the charge distribution.

In DFTB2 the Hubbard parameters remain constant for every element (Eq.2.33), this

parameter strongly influences charge transfer, which is supposed to occur at C-H bonds.

DFTB3 uses a charge dependent Hubbard parameters (Eq.2.34), which is particularly

important for the description of systems with localized charges.

In the current CENT methodology, the Hubbard parameters are provided as an input

constant. Integrating the Hubbard parameters into the NN, i,e. by making them adjustable

as the weights and biases, would lead to better accuracy, independent of the reference

charge model.

It is crucial to have good accuracy during training. As the atomic energy calculation

depends on the charges, the system of Fig.4.13 is prone to error propagation.

63



5. Results

Figure 5.14.: Test Set charges per element.

5.4.2. Training of the atomic energies

We investigated a second (2nd) and fourth (4th) generation potential for fitting the atomic

𝐸𝐶𝐶 . The 2nd generation potential is analogous to the Δ-ML (𝐸𝐶𝐶 −����: 0

𝐸𝐷𝐹𝑇𝐵).

The 4th generation has as an additional descriptor to the ACSF, the partial charges of

each atom. For congruence, we used as reference the Mulliken charges obtained by DFTB2.

The radial parameters for both 2nd and 4th generation NN were defined with by a

cut-off radius=12 Å, 24 𝑅𝑠,𝑚 shells from 0.8 Å to 5 Å and an 𝜂 = 5
3

𝑅2𝑠,𝑚
was used. The angular

parameters were set as 𝜂 = [0.001, 0.01, 0.05], 𝜆 = ±1 and 𝜁 = [1, 4, 16].
A slight data augmentation was performed based on the values of 𝐸𝐶𝐶 , the new dataset

can be observed in Fig.5.15

Both NNs were trained during six sessions using 80 % of the structures, the Adam

optimizer, a descending learning rate of 5𝑒 − 6, 1500 epochs and a decay rate of 1𝑒 − 5. The
loss function, L, used to minimize the prediction error after every session was analogous

to Eq. 5.1.

The accuracy of the NNs was evaluated with the test set. The 2nd generation 𝐸𝐶𝐶
training achieved a RMSE of 1.98 kcal/mol, while the 4th generation 𝐸𝐶𝐶 training had a

RMSE of 2.09 kcal/mol. The dataset had a range of values between −16.69 kcal/mol and

71.58 kcal/mol. The accuracy of the predictions when compared with the reference values

on the test set can be seen in Fig. 5.16.

It is important to notice in Fig.5.16 that the RMSE increases when giving reference

charges as an additional descriptor to calculate the potential, even when the ACSF and

training parameters are conserved.
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5.4. Artificial neural network for learning a fourth generation potential

Figure 5.15.: Data augmentation for the 2nd and 3rd generation potentials.

Figure 5.16.: Test set fitting for the 2nd and 4th generation potentials.

In the 2nd generation potential, the charges are implicitly fitted into the energy. The

drop of accuracy in the 4th generation could be an indication of an inconsistent charge

assigned to each structure
4
. Therefore, wewould be using as reference an inaccurate charge

distribution. As mentioned previously, DFTB3 charges could provide better reference data.

5.4.3. Evaluation of the models

As primary test to evaluate a connected system between the CENT and the 4th generation

potential (as seen in Fig.4.13), 2000 structures were randomly selected from the dataset of

linear structures.

By giving as the only input the molecular structures and the global charge of the systems

(-1), on a first step, CENT calculated the partial charges. On a second step, these predicted

charges became part of the descriptor to the 4th generation potential.

4
These charges contain information about the global electronic structure
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Figure 5.17.: A) Reference 𝐸𝐶𝐶 as a function of the S1–S2 and S1–S3 bond length in a linear

S3–S1–S2 configuration. Contour lines are drawn every 0.5 kcal/mol.

B1) PES by a 2nd generation potential. B2) PES by a 4th generation potential

using predicted charges by the CENT. Contour lines are drawn every 0.5

kcal/mol.

C.1) Deviation of the PES calculated by the 2nd generation with reference data.

C.2) Deviation of the PES calculated by the 4th generation with reference

data.

Comparison between the 2nd- and 4th- generation NN PES (Fig. 5.17 B.1 and B.2) shows

that the NN captures the pathways of minimum energy, something that DFTB fails to
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5.4. Artificial neural network for learning a fourth generation potential

do (Fig.4.9 A.1). However, these results still need improvement (Fig. 5.17 C.1 and C.2).

Additional to evident energetic deviations, the PES do not conserve symmetry.

For getting a robust system as seen in Fig.4.13, errors in both trainings must be decreased

but also be taken care of not falling into overfitting. Other reference charge distributions

are encouraged to explore. Preliminary data surrounding these distributions can be seen

in Appendix.A.6.
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6. Outlook

The Δ-ML approach provided very satisfying results on different levels of theory. A

possible avenue of improvement could be decreasing the size of the ACSF descriptor as it

could provide large improvements in regards to computational cost.

Integrating the Δ-ML into the GUI framework allows for more flexibility as it can be

adapted to use cases where the error is contained within the atomic environment. The GUI

also allows users with no ML background to use the system which could greatly increase

its adoption. We look forward to seeing the framework applied to a large variety of uses

cases in the near future.

The 4th generation potential, although accurate (error around 2% of the range of the

data), still proved to be less accurate than the Δ-ML. To improve accuracy, we can start by

looking at the 2nd generation potential (learning of 𝐸𝐶𝐶 ).

By the representation theorem (see Section 2.3.1), any arbitrary function can be fitted

by a NN. We can treat the 2nd generation potential as a "black-box" where the weights

and biases are adjusted without physical interpretability, just like in the Δ-ML approach.

Therefore, we would expect an accuracy comparable to the Δ-ML with an error of less

than 1% of the range of the data. The 2nd generation inaccuracy should be addresses as a

learning problem, in which case we should start focusing on the training parameters, NN

architecture, and the ACSF parameters.

In Fig.5.17 C.1 we can see a uniform distribution of the error w.r.t the structures. Aug-

menting the sampling of these structures on the dataset could improve the general accuracy

as well.

When the accuracy of the 2nd generation potential is improved, we can reuse the same

training setup for learning the short-range energy of the 4th generation and observe if the

accuracy improves on the same scale.

Depending on the observed accuracy, we can explore other charge distributions. We

can propose DFTB3 for obtaining reference charges as the charge distribution is better

represented than in DFTB2 (see Section 2.1.3.1).

For improving the character of the CENT we suggest giving flexibility to the hardness

value and make it an adjustable parameter during the training sessions.

We look forward for the application of the 4th generation model into a QM/MM scheme,

acting as a machine-learned force field. The local bonding would be described by the atomic

short-range energy and the CENTwould ensure long-range electrostatic interactions based

on charge distribution dependent on the environment in which the quantum system is

embedded.
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7. Conclusion

Disulfide bonds have an important role for the function of many proteins. Therefore,

addressing these reactions accurately by applying low computational cost approaches is

of great importance in the simulation community. This work emphasized the importance

of a correct description of the QM zone energies and how the QM/MM interaction is

fundamental for the description of these reactions.

Electrostatic and steric factors play a vital role in controlling the disulfide exchange, as

observed with the QM/MM simulations in the 127* domain. The rate of QM/MM successful

reactions was consistent with experimental force-clamp observations suggesting a trustful

set up to be used as an explanatory model.

Successful exchanged reactions were dependent on electrostatic effects of the molecular

environment. The charges of the sulfurs, and consequently the free energies, changed in

the presence of an external electric potential. A negative applied ESP results in a more

positive charge, which makes the touched atom a better nucleophilic target but a worse

leaving group; and a positive applied ESP results in a more negative charge, making the

atom a better leaving group but a worse nucleophilic target.

In nature, an electrostatic potential may come from the protein itself or from the water

environment. This potential would lead to a slight polarization of the disulfide bond,

letting the nucleophile attack one of the sulfur atoms preferentially. The energies from this

electric field would result in a variation of energy barriers of some few kJ/mol, modulating

the reaction rates by a small factor.

Structural factors are as important but can be misleading if there is an inaccurate

description of the potential energies. A sampling of these variables on the range of the

reaction can require very costly computational approaches. Semiempirical methods are

from 3 to 4 orders of magnitude faster than DFT-GGA using moderately sized basis sets;

however, they may run into even greater difficulties for challenging reactions than DFT-

GGA does. In the disulfide reaction the error is rooted in local bonding effects, DFTB/3OB

can predict much longer S–S bonds than the higher-level references, B3LYP performs

much better but still slightly overestimates the bond lengths in its minimum energy, with

an error of 3 kcal/mol when compared with CC.

The Δ-MLmethodology proved to be adequate to correct the qualitative and quantitative

errors of density based functionals such as DFT and DFTB. Its further application in a

QM/MM scheme as shown in Ref.[53] involved two molecular complexes: a solvated model

system and a blood protein, and proved to be transferable into complex environments

without loss of accuracy. However as the correction is based on an addition over a

previously calculated energy (DFTB), it brings an additional cost in time. As long as the

architecture and descriptor system remain constant, the aftermentioned cost of the energy

correction does not depend on the level-of-theory.
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In the presented work, the Δ-ML computing time was comparable with a DFTB calcula-

tion itself. Force calculation was the pitfall on computational resources as the gradient

energy calculation with respect of each symmetry vector (144 vector for representing an

atom), is the most consuming operation. Even when the GA acted as an efficient method

to ensure the best descriptor it did not took into account its dimensionality, as a future

application it is suggested to add a constraint of length at the moment of declaring the

fitness function.

Even if the Δ-ML correction times are comparable to a DFTB calculation, it saved up to

3 orders of magnitude on computing resources. We believe other systems, where the ener-

getic errors are grounded inside the QM local effects, can benefit from this methodology.

The workflow was designed to accelerate this process by automating the data generation

and preparation, particularly helpful when handling big-data, as well saving time on the

Python-code interpretation and installation of hidden repositories or libraries. Due to

the GUI’s nature of drag-and-drop, the workflow can be adapted to each application

by adding loops or enabling parallelization computing, the pipeline design can also be

saved, repurposed and shared among users, ensuring reproducibility of the protocols. This

functionality can also be used as a teaching framework for computational chemistry.

This correction algorithm is also implemented on a graphical interface pipeline that

will help the user with the production and cleaning of training data, as well exporting

the machine learning model into DFTB+ for its further use on QM/MM simulations. The

adoption of this pipeline is intended to expand the applications of the Neural Network

code prioritizing the knowledge of quantum modelling over a programming background.

By the end of this work, we began the development of a machine learned force field based

on the disulfide exchange dynamics. As mentioned previously, electrostatic effects play an

important role in the reaction, therefore is crucial to address them properly. Preliminary

results showed a qualitative description of the PES based on Coupled cluster theory data,

however a better quantitative accuracy is expected. We look forward for the continuation

of this work, improving the accuracy of the training and testing other charge distributions,

as well integrating this scheme into the description of QM–MM electrostatic interactions.
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A.1. Exchange-correlation functionals

The LDA exchange-correlation functional can be defined by Eq.A.1, where 𝜖𝑋𝐶 (𝜌 (𝑟 )) is
the exchange-correlation energy per electron as a function of the density in the uniform

electron gas.

𝐸𝐿𝐷𝐴𝑋𝐶 [𝜌 (𝑟 )] =
∫

𝜌 (𝑟 )𝜖𝑋𝐶 (𝜌 (𝑟 ))𝑑𝑟 (A.1)

Following the LDA approach, we could express the exchange-only energy as:

𝐸𝐿𝐷𝐴𝑋 [𝜌𝛼 (𝑟 ), 𝜌𝛽 (𝑟 )] = −
3

2

(
3

4𝜋

) 1

3

∫ (
𝜌

4

3

𝛼 (𝑟 ) + 𝜌
4

3

𝛽
(𝑟 )

)
𝑑𝑟 (A.2)

where 𝛼 and 𝛽 represent up and down spins.

From the GGA gradients one of the most popular is the Becke correction, known as B88.

𝐸𝐵88𝑋𝐶 [𝜌 (𝑟 )] = 𝐸
𝐿𝐷𝐴
𝑋 [𝜌 (𝑟 )] − 𝑏

∑︁
𝜎=𝛼,𝛽

∫
𝜌

4

3

𝜎

𝑥2𝜎

1 + 6𝑏𝑥𝜎𝑠𝑖𝑛ℎ−1(𝑥𝜎 )
𝑑𝑟 (A.3)

where 𝑥𝜎 =
|∇𝜌𝜎 |

𝜌
4

3

𝜎

is a dimensionless parameter and 𝑏 a constant=0.0042 a.u.

A widely used correlation functional is the Lee, Yang and Parr expressed as:

𝐸𝐿𝑌𝑃𝐶 [𝜌 (𝑟 )] = −𝑎
∫

1

1 + 𝑑𝑝− 1

3

{𝑟 + 𝑏𝜌− 2

3 [𝐶𝐹𝜌
5

3 − 2𝑡𝑊 +
(
1

9

𝑡𝑊 +
1

18

∇2𝜌
)
𝑒−𝑐𝑟

1

3 ]}𝑑𝑟 (A.4)

where

𝑡𝑊 (𝑟 ) =
𝑁∑︁
𝑖=1

|∇𝜌𝑖 (𝑟 ) |2
𝜌𝑖 (𝑟 )

− 1

8

∇2𝜌

and

𝐶𝐹 =
3

10

(
3𝜋2

) 2

3

using as constants a=0.049, b=0.132, c=0.2533 and d=0.349.

A combination of the standard LDA exchange (Eq.A.2) with the Becke gradient exchange

correction (Eq.A.3) and the LYP (Eq.A.4) is a popular choice, commonly abbreviated as

BLYP.
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The Perdew-Burke-Ernzerhof functional (PBE) is another example of these combinations.

In this functional, the exchange part is written as an enhanced factor multiplied onto the

LDA functional, where the dimensionless gradient variable 𝑥 gets defined by:

𝐸𝑃𝐵𝐸𝑋 = 𝐸𝐿𝐷𝐴𝑋

(
𝑎 − 𝑎

1 + 𝑏𝑥2
)

(A.5)

The PBE correlation is also an enhancement of the LDA, where 𝑡 is related to 𝑥 on

means on a spin-polarization function.

𝐸𝑃𝐵𝐸𝐶 = 𝐸𝐿𝐷𝐴𝐶

(
𝑐 𝑓 3

3
𝑙𝑛

[
1 + 𝑑𝑡2

(
1 +𝐴𝑡2

1 +𝐴𝑡2 +𝐴2𝑡4
]
)] )

(A.6)

𝐴 = 𝑑

[
𝑒𝑥𝑝

(
𝐸𝐿𝐷𝐴𝑐

𝑐 𝑓 3
3

)
− 1

]−1
𝑓3(𝜁 ) =

1

2

[
(1 + 𝜁 )2/3 + (1 − 𝜁 )2/3

]
𝑡 =

[
2(3𝜋3)1/3𝑓3

]−1
𝑥

Hybrid functionals are methods that include exact exchange energy. An example of

these functionals is the B3LYP, expressed by Eq. A.7, constructed by the Becke 3-parameter

exact exchange energy and the LYP correlation.

𝐸𝑋𝐶
𝐵3𝐿𝑌𝑃 = (1 −𝐴)𝐸𝐿𝐷𝐴𝑋 + 𝑎𝐸𝑒𝑥𝑎𝑐𝑡𝑋 + 𝑏𝐸𝐵88𝑋 + (1 − 𝑐)𝐸𝐿𝐷𝐴𝐶 + 𝑐𝐸𝐿𝑌𝑃𝐶 (A.7)
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A.2. Backpropagation

The output error 𝛿𝐿 is computed using the chain rule from multivariable calculus by

re-expressing its partial derivative in terms of partial derivatives with respect to the output

activation.

𝛿𝐿 =
𝜕L
𝜕𝑧𝐿

=
𝜕L
𝜕𝑎𝐿

𝜕𝑎𝐿

𝜕𝑧𝐿

=
𝜕L
𝜕𝑎𝐿

𝜕𝑓 (𝑧𝐿)
𝜕𝑧𝐿

=
𝜕L
𝜕𝑎𝐿

𝑓 ′(𝑧𝐿)

= ∇𝑎L ⊙ 𝑓 ′(𝑧𝐿)

The error 𝛿𝑙 is calculated in terms of the next layer 𝛿𝑙+1

𝛿𝑙 =
𝜕L
𝜕𝑧𝑙

=
𝜕L
𝜕𝑧𝑙+1

𝜕𝑧𝑙+1
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𝜕(𝑤 𝑙+1𝑎𝑙 +���* 0
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𝜕𝑧𝑙
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𝜕𝑧𝑙

= 𝛿𝑙+1(𝑤 𝑙+1)𝑇 ⊙ 𝑓 ′(𝑧𝑙 )

For the output gradients w.r.t to weights and biases:

𝜕L
𝜕𝑤 𝑙
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=
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𝜕𝑧𝑙

𝑗
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���
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= 𝛿𝑙𝑗

75



A. Appendix

A.3. Nguyen–Widrow initialization

Nguyen-Widrow is a method for initialization of the weights of a NN to reduce training

time[6].

Algorithm 2: Nguyen–Widrow initialization

1 Requires 𝑛: Number of input units ;

2 Requires 𝑝: Number of hidden units ;

3 Set Scale factor 𝛽 = 0.7𝑝1/𝑛 ;
4 Set Random𝑤 𝑗∃(−0.5, 0.5) ;
5 Set Random 𝑏 𝑗∃(−1, 1);
77 foreach hidden unit 𝑗 = 1, 2, ..𝑝 do
99 𝑤 𝑗 = 𝛽

𝑤 𝑗 (𝑟𝑎𝑛𝑑𝑜𝑚)
∥𝑤 𝑗 (𝑟𝑎𝑛𝑑𝑜𝑚)∥ ;

1111 ∥ 𝑤 𝑗 ∥=
√︃
𝑤2

1 𝑗
+𝑤2

2 𝑗
+ .. +𝑤2

𝑛𝑗
;

1313 𝑏 𝑗 = 𝛽 · 𝑏 𝑗 (𝑟𝑎𝑛𝑑𝑜𝑚)
14 end
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A.4. Adam optimizer

The Adaptive Moment Estimation (Adam) optimizer is an extension to the Stochastic

Gradient Descent (SGD) based algorithm, as seen in Eq.2.42. Adam uses Momentum and

Adaptive Learning Rates to converge faster. The momentum is a time parameter that

accelerates SGD into a relevant direction. Adaptive learning rates allow the training

algorithm to monitor the performance of the model and automatically adjust the learning

rate for the best performance[62].

The Adam optimizer uses estimations of the first (mean) and second (uncentered vari-

ance) moments of the gradient to adapt the learning rate for each weight of a NN. As it

only requires first-order gradients it memory requirement is too little. It uses the average

of the second moments of the gradients and calculates the exponential moving average of

gradients (𝑚𝑡 ) and square gradients (𝜈𝑡 ). The parameters 𝛽1, 𝛽2 are the control the decay

rates of these moving averages.

The algorithm is the following:

Algorithm 3: Adam optimizer

1 Requires 𝜈 : Stepsize;
2 Requires 𝛽1, 𝛽2∃[0, 1): Exponential decay rates for the moment estimates;

3 Requires 𝑓 (𝜃 ): Stochastic objective function with parameters 𝜃 ;

4 𝜃0: Initial parameter vector;

66 𝑚0 ← 0: Initialize 1st moment vector;

88 𝑣0 ← 0: Initialize 2nd moment vector;

1010 𝑡 ← 0: Initialize timestep;

1212 while 𝜃𝑡 not converged do
1414 𝑡 ← 𝑡 + 1;
1616 𝑔𝑡 ← ∇𝜃 𝑓𝑡 (𝜃𝑡−1) Get gradients at timestep 𝑡 ;

1818 𝑚𝑡 ← 𝛽1 ·𝑚𝑡−1 + (1 − 𝛽1) · 𝑔𝑡 ) Update biased first moment estimate;

2020 𝜈𝑡 ← 𝛽2 · 𝜈𝑡−1 + (1 − 𝛽2) · 𝑔2𝑡 ) Update second raw moment estimate;

2222 �̂�𝑡 ← 𝑚𝑡
1−𝛽𝑡

1

Compute bias-corrected first moment estimate;

2424 𝜈𝑡 ← 𝜈𝑡
1−𝛽𝑡

2

Compute bias-corrected second raw moment estimate;

25 𝜃𝑡 ← 𝜃𝑡−1 − 𝜂·�̂�𝑡√
𝑣𝑡+𝜖

Update parameters;

26 end
27 Return 𝜃𝑡 Resulting parameters

where

𝜖 → 0 is a term preventing division by zero

𝜂 is the learning rate

𝑔2𝑡 =𝑔𝑡 ⊙ 𝑔𝑡
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A.5. dftb_in.hsd file for DFTB+

The module for ML at the dftb_in.hsd file used for the single point calculations:

Geometry = GenFormat {

<<< "Structure"

}

Hamiltonian = DFTB{

MaxAngularMomentum = {

C = "p"

H = "s"

S = "d"

}

Charge = -1

SCC = Yes

SCCTolerance = 1e-05

SlaterKosterFiles = Type2FileNames {

Prefix = /usr/local/src/dftbplus-19.1/3ob-3-1/

Separator = "-"

Suffix = ".skf"

}

ThirdOrderFull = Yes

HubbardDerivs {

C = -0.1492

S = -0.11

H = -0.1857

}

HCorrection = Damping {

Exponent = 4.0

}

MachineLearning = NeuralNet {

SymmetryFunctions {

Neighboursearching = Yes

AtomicNumber = {

S = 16

C = 6

H = 1

}

RadialCutoff = 10.

RadialParameters {

2.00000000e-01 3.12500000e+03

6.36363636e-01 3.08673469e+02

1.07272727e+00 1.08625395e+02

1.50909091e+00 5.48882276e+01

1.94545455e+00 3.30269019e+01
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2.38181818e+00 2.20339724e+01

2.81818182e+00 1.57388137e+01

3.25454545e+00 1.18012859e+01

3.69090909e+00 9.17578684e+00

4.12727273e+00 7.33810088e+00

4.56363636e+00 6.00188886e+00

5.00000000e+00 5.00000000e+00

}

AngularCutoff = 5.

AngularParameters {

1.0e-03 1.0e+00 -1.0e+00

1.0e-03 1.0e+00 1.0e+00

1.0e-03 4.0e+00 -1.0e+00

1.0e-03 4.0e+00 1.0e+00

1.0e-03 1.6e+01 -1.0e+00

1.0e-03 1.6e+01 1.0e+00

1.0e-02 1.0e+00 -1.0e+00

1.0e-02 1.0e+00 1.0e+00

1.0e-02 4.0e+00 -1.0e+00

1.0e-02 4.0e+00 1.0e+00

1.0e-02 1.6e+01 -1.0e+00

1.0e-02 1.6e+01 1.0e+00

5.0e-02 1.0e+00 -1.0e+00

5.0e-02 1.0e+00 1.0e+00

5.0e-02 4.0e+00 -1.0e+00

5.0e-02 4.0e+00 1.0e+00

5.0e-02 1.6e+01 -1.0e+00

5.0e-02 1.6e+01 1.0e+00

}

}

NeuralNetworkFiles = Type2Filenames {

Prefix = $PATH/data_model/

Suffix = "-subnet.param"

}

}

}

ParserOptions {

IgnoreUnprocessedNodes = Yes

}

Options = {

TimingVerbosity = -1

}

Analysis = {

CalculateForces = Yes

}
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A.6. Charge analysis

Different charge density populations were evaluated to determine the best model to fit. A

histogram of all the charge distribution showed no greater difference between the models,

as seen in Fig.A.1, a further analysis plotting the models against each other showed that

the Löwdin model had a biomodal distribution as observed on the histogram, having

a peak around 0.20 and 0.00. This model was discharged. The Mulliken charges were

evaluated by two different softwares, ORCA and DFTB+, its plot showed that DFTB+ did

overestimations on the charges. The Mulliken and Hirshfeld charges showed consistency

between each other having a relation of almost 1:1.

Figure A.1.: Histogram of charge distribution profiles of different charge population mod-

els.
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Figure A.2.: Correlation plots between different charge models of the dataset.
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