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Abstract 

The concentration of water penetrated into silica depends strongly on 
the stress state in the surface region. In the water diffusion zone 
hydroxyl water is generated by the water/silica reaction that is at 
temperatures <450°C a first-order reaction. When [2S]=[2 SiOH] is 
the concentration of the immovable hydroxyl, the reaction equation 
reads 

 ≡Si-O-Si≡ +H2O ↔  [2 SiOH]  

When evaluating the deformation measurements on water-infiltrated 
silica disks, the question remained unanswered as to why the tests can 
lead to increased diffusion constants or whether these are accidental 
(possibly dependent on the special glass composition). 

The result of this Report is: 

• The activation volume for stress affected hydroxyl S is ∆V≅ 58 
cm3/mol, 

• the mass transfer coefficient of water into silica is h/√D = 

0.266/√h, 

• due to the mass transfer coefficient, the effective diffusivity is 
increased by a factor of roughly 1.6. 
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1 Basic equations 
1.1 Water/silica reaction 

Water penetrated into silica reacts with the silica network according to  

 ≡Si-O-Si≡ +H2O ↔ ≡SiOH+HOSi≡ (1a) 

with the concentration of the hydroxyl S = [≡SiOH] and that of the molecular water C = 

[H2O]. The equilibrium constant k of this reaction is at temperatures of θ<450°C 

  
C
Sk =   (2) 

Water concentrations at silica surfaces under saturation pressure are available from 
investigations by Öhler and Tomozawa [1] and Zouine et al. [2]. Since the Zouine data 
[2] extend over the large temperature range of 23°C≤θ≤200°C, these results may be 
applied in the following considerations. 
In molar units, the total water concentration is given by  

  )1( 2
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The reaction volume ∆V can reach high values [3] for temperatures <450°C and may 
be different in the temperature regions of <450°C (first-order reaction) and >450°C 
(second-order reaction).  
When [2S]=[2 SiOH] is the concentration of the immovable hydroxyl, the reaction 
equation (1a) reads 

 ≡Si-O-Si≡ +H2O ↔  [2 SiOH] (1b) 

In this case the reaction or activation volume is  

  CS VVV −=∆ ]2[ . (4) 

with the partial molar volume for [2 SiOH], denoted by ]2[ SV . 
The hydroxyl S reads in mass units  
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1.2 Swelling stresses at 200°C 

Due to the hydroxyl content S in the surface layer the glass will expand. This is sup-
pressed by the bulk material. The consequence is a negative swelling stress ssw. In the 
absence of externally applied stresses, it holds for the hydrostatic stress term sh= ssw,h.  
Then the equilibrium constant reads according to [4] 
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with λ=18.75 GPa. k is the equilibrium constant, p is pressure, ∆V is the reaction vol-
ume, R is the universal gas constant and T is the temperature in °K. 
A similar relation between stress and hydroxyl concentration holds for the equi-biaxial 
swelling stress components in the surface plane, namely,  

  Syxsw ×−= GPa28,,s , 0, =zsws  (7) 

1.3 Mass transfer at 200°C under saturation pressure 

Doremus showed in [5], that the surface condition for diffusion in vapor as the envi-
ronment is given by 

 )( 0CC
D
h

dz
dC

−=   at  z=0, (8)  

where C0 is the concentration of molecular water reached at z=0 and t→∞ and D the 
diffusivity. Following the suggestion by [5], for a slow surface reaction that limits the 
entrance of molecular water species, the parameter h in (8) may be interpreted as a re-
action parameter. On the other hand, a simpler phenomenological description is possi-
ble by assuming that a barrier exists to the transport of water across the surface of the 
glass [4]. This barrier gives rise to a mass transfer coefficient for diffusion, which 
slows the passage of water into the glass.  
Solution of the diffusion equation requires an appropriate boundary condition, very 
often chosen as constant surface concentration of molecular water:  

 constant)0(),0( 0 ==≡= CCtzC  (9) 

As shown by Carslaw and Jaeger (Section 2.7 in [6]), the concentration for a semi-infi-
nite body is given at the surface, z=0: 

  

























−=

D
tht

D
hCtC erfcexp1),0(

2

0 , (10) 



 

 3 

that would for equilibrium constant k=const. result in 
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The solution via Carslaw and Jaeger is exact under the condition, that the right-hand 
side would contain time-independent parameters, i.e. k=k0=const. Since the equilibrium 
constant k varies with the swelling stress, eq.(6), the swelling stresses themselves de-
pend on the S concentration, this requirement is of course violated. Nevertheless, an 
approximate analytical solution for the case of varying k(S) can be obtained following 
the general procedure usual in perturbation theory. If we consider the equilibrium con-
stant as the disturbance parameter, perturbation theory suggests to solve the problem 
for the case of k=k0 and to insert the disturbance parameter k(S) into this solution. In 
terms of the hydroxyl concentration S it holds  
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establishing an implicit equation with the unknown surface concentration S(0,t) on 
both sides of (12). The implicit solution of (12) reads 
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Temperature/ 
Exposure Time (θ / t) 

Measured surface  
stress [10] (MPa) 

Surface stress for  
θ=200°C (MPa) 

196 °C/2.2h -41.8 -36. 
196 °C/20h -46.9  -48.6 
216 °C/20h -50.3  -43.4 
201 °C/96h -54.7  -54.2 
188 °C/168h -53.5  -59.8 

Table 1: Prediction of surface stresses using mass transfer parameter h/√t, [7]. 

In order to eliminate the temperature dependence, we computed the ratio S(θ)/S(200°C) 
and corrected the systematic influence of deviating temperatures according to Table 1 
by  

  )(
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2  Application on swelling data from silica disk experiments  
2.1 Reaction volume and mass transfer from curve fitting 

From the measurements of the swelling stresses and the associated layer thicknesses, it 
was found that their product agreed with the measured bending moments. The diffusiv-
ities were compared to the "standard diffusivities" according to Zouine et al. [2] slight-
ly increased by about 60%. Consequently, the swelling stresses must have been about 
30% too low. In addition to the glass swelling, this is to be interpreted as a conse-
quence of the limited mass transfer (water in glass). In the present report, it is shown 
that the finite mass transfer coefficient must lead to an increase in the effective diffu-
sion constant in the glass. 
The swelling stresses transformed to θ=200°C are entered in the last column of Table 1 
and shown in Fig. 1b. Next, we estimated the hydroxyl concentration for 200°C, Fig. 
1b, from the disk-deformation measurements by Wiederhorn et al. [10] by fitting 
eqs.(7) and (13) to the surface swelling stresses, assuming the reaction volume ∆V and 
the mass-transfer coefficient h/√D as the unknown parameters [8]. For this purpose, we 
applied the Mathematica-Procedure FindFit [9]. 
 

    
Fig. 1 Swelling stresses vs. soaking time in saturation water vapour, a) results from disk-

deformations, reported in [10], b) data re-computed to constant temperature of θ=200°C using 
eq.(14). 
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Figure 2 shows the best fitting curve together with the experimental data of Fig. 1b in a 
plot with linear time scaling. The “best” set of parameters is 

  /molcm8.57 3≅∆V  (15a) 

  -1/2h266.0/ ≅Dh  (15b) 

These parameters were used in the representation of Fig. 2a. The striking agreement 
between the calculated curve and the experimental data in Fig. 2a should not be over-
estimated, as these measurements were used to derive the parameters ∆V and h/√D. 
 
 

  
Fig. 2 a) Swelling stresses vs. time at 200°C. Circles: experimental results, curve: best fit by eq.(13), 

resulting in the parameter set of eqs.(15a, 15b), b) swelling stresses vs. temperature.  
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data by Helmich and Rauch [11] yields trivially the mass-transfer coefficient for the 
total water. In contrast to this, the disk deformations by Wiederhorn et al. [10] reflect 
the hydroxyl concentration S. It is hardly to be expected that these two properties are 
identical since they describe the behavior of different water species.  
An equivalent representation of Fig. 1a is given in Figure 2b. Predictions under the 
assumption of ∆V=0 are shown by the blue circles. The red squares indicate the experi-
mental data of Fig. 1a with their slight deviations of test temperature from the nominal 
temperature of 200°C. The best fitting data, eqs.(15a, 15b) result in the black square, 
that was computed for a soaking time of t→∞ (ssw≅-63 MPa, indicated by the dashed 
arrow).  
Finally, the mass transfer coefficient h/√D is introduced in Fig. 3 as the black square. 
This result is in agreement with transfer coefficients reported in [7]. 
 

 
Fig. 3 Mass transfer parameter h/√D as a function of temperature from [7]. Additionally plotted: black 
square: result of eq.(15b) for the disk glass in [10]. Red symbols: From results by Helmich and Rauch 

[11], evaluated in [7]. 

2.2 Apparent diffusivity 
So far, we only considered the surface value of hydroxyl water and swelling strains. In 
addition to the swelling stresses, the disk measurements also revealed the diffusion 
constant [10].  
Now let us look for their distribution over the surface region. As shown by Carslaw 
and Jaeger [6], the concentration profile, C(z) resulting from the boundary condition 
for a semi-infinite body is given by 

  h 
√D 

300 400 500 
θ  (°C) 

(h-1/2) 

200 

1.2 1.4 1.6 1.8 

1000/T    (K-1) 
2 

0.05 

0.1 

0.2 

0.5 

1 

2 

2.2 

eq.(15b) 

[11] 
Wakabayashi&Tomozawa 

Oehler&Tomozawa 



 

 7 

 











+








+−












=

D
th

tD
zt

D
hz

D
h

tD
zCtzC

2
erfcexp

2
erfc/),(

2

0  (16) 

For h/√D we use eq.(15b) and for the diffusivity D200°C it results from Zouine et al. [2] 
D200°C=8×10-17 m2/s. By using the same strategy as leading to eq.(13), we obtain 
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Figure 4a illustrates the solution of the hydroxyl water S computed via eq.(17). With 
increasing swelling, i.e. increasing reaction or activation volumes ∆V, the maximum 
concentrations decrease and the half widths increase. Whereas for ignored swelling, 
∆V=0, the half-widths is ≈4.5 µm, it becomes ≈6 µm for the “best data set” of 
eqs.(15a) and (15b). An increase of roughly 33% is shown in Fig. 4b where the ratio of 
the thicknesses in presence and in the absence of swelling is plotted as a function of 
the activation volume ∆V. Since the layer thickness is proportional to square-root of 
time, b∝√t, the ratio of the diffusivities result as shown in Fig. 4c. 
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Fig. 4 a) Hydroxyl profiles for h/√D=0.27/√h and different activation volumes ∆V, b) ratio of the 

swelling-affected S- layer thickness b∆V to the diffusivity in the absence of swelling, ∆V=0, b) ratio of 
the swelling-affected diffusivity D∆V to the diffusivity in the absence of swelling, ∆V=0. Additionally 

introduced is the result from the experiments in Table 2 (mean ratio and the standard deviation). 

2.3 Comparison of computed and measured diffusivities 
The experimental diffusivity data are compiled in Table 2. Figure 5a shows these re-
sults as red squares in comparison to the extensive measurements by Zouine et al [7] 
for liquid water as the surrounding medium. The latter were represented by the fitting 
equation 

  ]/exp[0 RTQDD −=  (18) 

with D0=7.6×10-5 (cm2/s) and Q=72.3 kJ/mol. The data from Wiederhorn et al. [10] are 
given in column 2. The related diffusivities computed from (18) are listed in column 3 
and their ratio in column 4. 
The data we are interested in is in the dashed rectangle in the upper left corner. This 
area is reproduced in detail in Fig. 5b. The measured diffusivity values according to 
Wiederhorn et al. are drawn as squares. The straight line of the same slope, shifted by a 
factor of 1.6, is shown as a solid line and the scatter range of ± 1 standard deviation is 
shown as dashed lines.  

Having in mind the high magnification of Fig. 5b, it is reasonable to conclude that the 
shift in the diffusion data is caused by mass transfer and swelling. Measured and com-
puted shifts of 1.599 and 1.65, respectively, are in best agreement. 
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Temperature/ 
Time (θ/t) 

Diffusivity via disk 
measurement [10] 

(cm2/s) 

Diffusivity in liquid  
water [2], eq.(18) 

D([10])/D([2]) 

196 °C/2.2h 1.27×10-12 0.67×10-12 1.895 
196 °C/20h 1.19×10-12 0.67×10-12 1.776 
216 °C/20h 1.97×10-12 1.44×10-12 1.368 
201 °C/96h 1.36×10-12 0.82×10-12 1.658 
188 °C/168h 0.636×10-12 0.49×10-12 1.298 

Mean   1.599 
1 SD.   0.258 

Table 2: Diffusivities from disk deformations, [10], compared with measurements in liquid water, 
reported by Zouine et al. [2]. 

 
Fig. 5 Diffusivities; a) black circles: results for silica soaked in liquid water under saturation pressure 
by Zouine et al. [2], red symbols: from disk deformations after soaking in water vapour of saturation 
pressure, b) details in the dashed rectangle of Fig. 5a.  
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