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ABSTRACT

In multimodal diagnosis for early breast cancer detection, spatial alignment by means of image registration is an
important task. We develop patient-specific biomechanical models of the breast, for which one of the challenges
is automatic segmentation for magnetic resonance imaging (MRI) of the breast. In this paper, we propose a novel
method using unsupervised neural networks with pre-processing and post-processing to enable automatic breast
MRI segmentation for three tissue types simultaneously: fatty, glandular, and muscular tissue. Pre-processing
aims at facilitating training of the network. The architecture of neural network is a Kanezaki-net extended to 3D
and consists of two sub-networks. Post-processing is enhancing the obtained segmentations by removing common
errors. 25 datasets of T2 weighted MRI from the Medical University of Vienna have been evaluated qualitatively
by two observers while eight datasets have been evaluated quantitatively based on a ground truth annotated
by a medical practitioner. As a result of the qualitative evaluation, 22 out of 25 are usable for biomechanical
models. Quantitatively, we achieved an average dice coefficient of 0.88 for fatty tissue, 0.5 for glandular tissue,
and 0.86 for muscular tissue. The proposed method can serve as a robust method for automatic generation of
biomechanical models.

Keywords: Breast Magnetic Resonance Imaging, Image Segmentation, Unsupervised Neural Networks, Machine
Learning

1. INTRODUCTION

For early diagnosis of breast cancer, registration between different modalities such as X-ray mammography,
sonography, magnetic resonance imaging (MRI), and spot mammograms has been applied using biomechanical
models to cope with the different patient positioning and deformation state of the breast.1–3 MRI segmentation
plays an important role for automatic creation of biomechanical models in such applications.

Several image segmentation techniques for breast MRI have been proposed. One of the techniques is cluster-
ing. It could be applied for separating the breast from the background. There are a lot of techniques in clustering
such as hierarchical clustering and mean shift clustering. Due to the uncertainty, irregular and fuzzy borders
in breast MRI images, K-means is used and Fuzzy C-means (FCM) could be applied to improve segmentation
techniques. Besides, gradient and intensity-based clustering could be used in segmentation. However, breast
MRI images have noise, intensity inhomogeneity, and weak boundaries which require complex procedures.4

In literature, most of the methods proposed for automatic breast segmentation are limited to segmenting
two tissue types, fatty and glandular tissue.5,6 Additionally, there are methods for segmenting muscular tissue.7

Deep learning algorithms have been recently used for medical image segmentation.8,9Apart from the lack of
segmentation of muscular tissue, these networks10,11 need labeled training data for robust functionality which is
expensive and time consuming to acquire for 3D breast MRI data.

In this paper, we propose to use an unsupervised neural network (NN) for segmenting three types of tissue
simultaneously: fatty, glandular, and muscular tissue. The method was developed for an application in automatic
generation of biomechanical models and for segmenting T2-weighted images.



(a) (b) (c) (d)

Figure 1. The steps of pre-processing in one of the slices: The original image from the Medical University of Vienna (a).
The enhanced image (b). The corrected bias field image (c). The image multiplied by the K-means mask (d).

2. METHODS

Our proposed methods consist of three parts which are pre-processing, NN classification, and post-processing.
First, pre-processing prepares the MR volume for a NN and aims at facilitating training of the network. Second,
an iterative approach is used in NNs that generates many different segmentations of the same MR volume.
For each iteration, the network is randomly reinitialized and retrained. The NN consists of two sub-networks.
Third, post-processing is enhancing the obtained segmentations by removing common errors and selects the best
segmentation.

2.1 Pre-processing

Pre-processing consists of four steps: improving contrast, correcting bias field, masking, and shrinking data. The
contrast of the images is improved using histogram stretching. It is observed that the intensity distribution in
different datasets contains almost 99% of voxels in less than 30% of the intensity range. We assign the remaining
1% of the voxels the maximum intensity of the other 99% of the voxels. Hence, the contrast is improved as shown
in Fig. 1 (b). Afterwards the bias field correction based on Fuzzy C-means12 is used to correct inhomogeneities
on the magnetic field as shown in Fig. 1 (c). Since the breast muscle and the background have nearly the same
intensity values in T2-weighted MRI, we implemented an air mask using K-means method. Then, an element
wise multiplication is done between this mask and the original MRI as seen in Fig. 1 (d).

For decreasing the size of the MRI, we are cutting all the voxels of the background from posterior, inferior,
left, and right. We rescale the volume of MRI with a factor of 0.623 in order to have less size of memory.

2.2 Neural Networks

Second, our NN architecture is based on the work of Kanezaki et al.13,14 It is an unsupervised image segmentation
method, but has so far only been used for applications outside of medical imaging segmentation and also not
specifically for breast MRI. This network consists of convolution layers only, ReLU as an activation function,
batch normalization layer and softmax layer. They are cascaded together such that the output of a specific layer
is based on the input of the previous layer in a feedforward scheme.

The loss function of this network consists of two criteria. First, pixels with similar features should be assigned
to the same class. Cross entropy loss is applied for this purpose. Second, spatially continuous pixels should also
be in the same class. The mean absolute error (MAE) is calculated for this purpose between each element in the
input x and target y, where x is the difference between the voxel wise feature to its neighbouring voxel and y is
a matrix full of zeroes.

We modified this network to be adapted for 3D datasets with anisotropic volume dimensions. An iterative
approach is used in NNs that generates different segmentations of the same MR volume because of the random
initialization of the NN. For each iteration, the network is randomly reinitialized and retrained and in the
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Figure 2. Segmentation of two sub-networks in one of the slices: The first network of size filter [1x3x3] (a). The second
network of size filter [1x1x1] (b).

post-processing the final segmentation is selected from this series of segmentations. We tested empirically that
re-initialization ten times with each new input would guarantee general robustness for new data. The loss
function of spatial continuity was expanded into the third dimension. Our architecture consists of two sub-
networks. The first network with a filter size of [1x3x3] pixels is responsible for classifying the muscular tissue
and the second network with a filter size of [1x1x1] pixels is responsible for detecting glandular tissue. The
numbers of convolution layers is three and two for the first and the second network, respectively. The learning
rate (α) is 0.2 and 0.05 for the first and second network, respectively. The number of channels in both networks
is 25. We use a stochastic gradient descent (SGD) optimizer. The number of iterations is 300. We selected these
values based on empirical tests on our available data.

2.3 Post-processing

Third, post-processing is enhancing the obtained segmentations by removing common errors and selecting the
best segmentation. Since the learning is performed unsupervised, there is no specific class label for each tissue.
We make use of heuristic observations to sort the segmented areas by the NN to the tissue labels: 0 (background),
1 (glandular), 2 (fatty), and 3 (muscle). Since the background contains the majority of the voxels, we assign the
segmented area with the largest number of voxels to label 0. Due to the characteristics of T2 weighted MRI, the
fatty tissue is the brightest tissue. Hence we analyze the 100 brightest pixels in the original MRI dataset and
assign the NN tissue class of which these pixels are members to label 2.

Muscular and glandular tissue are often assigned to the same class due to their similar intensity value in T2
weighted images. Hence, we extract a binary mask of the mixed class of glandular and muscular tissues from the
sub-network of filter size [1x3x3]. It can be empirically seen in all our available datasets that the breast muscle
could be treated as one single object of a large area while the glandular tissue consists of multiple small areas.
Hence in each slice, we obtain the largest object and assign it to label 3. The remaining objects are assigned to
label 1.

For selecting the best segmentation from the ten iterations of running the sub-networks, we propose a selection
metric to judge the quality of the muscular and glandular tissue segmentation. We calculate a muscle and
glandular quality score by a combination of several heuristic metrics: for muscular tissue, we first evaluate the
muscle occurrence in each segmentation. Second, we evaluate the symmetry of the muscle. Third, we calculate
the number of erosion steps that were done for the inaccurate detection of the muscular tissue in the anterior
part of the breast.

For glandular tissue, we first evaluate the glandular occurrence in each segmentation. Second, we calculate
the overlap of the muscular tissue between the two sub-networks. Third, for the position of the 100 brightest
pixels, we calculate a ratio of those pixels between the default labels (fatty tissue) and the actual segmented
labels. Fourth, we calculate the percentage of glandular tissue at the borders of the breast and in the area below
the sternum position. We weighted these values of these metrics for both muscular and glandular tissue based
on empirical tests on our available data.
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Figure 3. The steps of post-processing in one of the slices: The input for the post-processing block from NNs [1x3x3] (a).
The assigned classes to each tissue(b). Separating muscle to be in a different class (c). The glandular tissue only (d).

3. RESULTS

We tested our methods qualitatively using 25 datasets by two observers and quantitatively using eight datasets
of T2-weighted MRI images of different resolution from the Medical University of Vienna. Datasets have been
acquired on a total of ten different models of Siemens MRI devices.

For qualitative results, we split slices equally in each dataset into three categories: inferior, middle, and
superior slices. We investigated seven problems that could appear in the tissues in each category. For muscular
tissue, there were three problems: differentiating between glandular and muscular tissue, holes in the muscle, and
artifacts at the border between glandular and muscular tissue. For glandular tissue, there were two problems:
noisy classification, and the borders of the breast could be falsely detected as glandular tissue due to the partial
volume effect. For fatty tissue, there were two problems: a wrong overall shape of the breast and missing parts
of the breast tissue. We estimated a score from 1 to 5 (worst to best) in each problem and took the average of
two observers together. We summed over the scores for all seven considered problems resulting in a maximum
score of 35 and a minimum score of seven. Then, we categorized the total score of each category into five groups
as shown in Table 1. It is realized that more problems are in inferior and superior slices while fewer problems are
in middle slices. In category 30-35, more than 75% of the middle slices are without major problems. In category
15-20, only 12% and 8% of inferior and superior slices, respectively are with problems in segmentation.

For quantitative results, we compared our final 3D segmentations to a ground truth segmentation. The
ground truth was created by first using niftySeg5 for classifying glandular and fatty tissue. Then it was corrected
manually by a medical practitioner using MITK15 and the breast muscle was manually segmented in each slice.
We evaluated the full segmentation using the DICE Similarity Coefficient (DSC).16 The mean of DSC is 0.88 for
fatty, 0.5 for glandular, and 0.86 for muscular tissue.

To validate numerically the three categories from our qualitative results, we calculate the mean DSC of eight
clinical datasets for the three tissues in the inferior, middle, and superior slices as shown in Fig. 4. It shows
that the mean DSC in the middle slices are the most robust category which confirms the evaluation by the two
observers.

We compared our methods to other segmentation approaches by replacing only the 3D NNs with common
algorithms: Fuzzy C-means,1 and K-means as shown in Fig. 5. In all of the next comparisons, the result of
those algorithms are passing our pre-processing and post-processing. For Fuzzy C-means with three clusters, the
mean DSCs for the three tissues are lower than our results based in 3D NNs while the results for four clusters
are even worse than with three clusters. K-means with three clusters shows less accuracy in all metrics than
our method while with four clusters, for fatty and glandular tissue, it is comparable to our methods but muscle

Table 1. Percentage of datasets in the group score of each category of slices

Slices 30-35 25-30 20-25 15-20 0-15

Inferior 56% 32% - 12% -

Middle 76% 12% 12% - -

Superior 64% 16% 12% 8% -



In
fe

rio
r

M
id
dl
e

Sup
er

io
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

e
a
n
 o

f 
D

ic
e
 C

o
e
ff
ic

ie
n
t

Fatty

Glandular

Muscle

Figure 4. Mean DSC of eight clinical datasets for the three tissues: fatty, glandular, and muscular tissues in inferior,
middle, and superior slices, respectively.
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Figure 5. Mean DSC of each tissue (fatty, glandular, and muscle) for six datasets in our proposed algorithm (3DNN)
compared to Fuzzy C-means three clusters (FCM3) and four clusters (FCM4) and K-means three clusters (KM3) and
four clusters (KM4).

is not detected at all. An exemplary segmentation compared to Fuzzy C-means with three clusters is shown in
Fig. 6.

While evaluated on different databases, we compared our method to algorithms from literature as shown
in Table 2 to give a relation to other approaches. All of them are restricted to one or two tissues. The first
method was to estimate breast density for two tissues only.6 One method used to detect the muscular tissue
using atlas-based breast muscle segmentation method.7 Two of these methods are using supervised learning
which needs quite a lot of labeled data for training.10,11

An example of the deformed MRI from our biomechanical model using the segmentation of NNs compared

Table 2. Comparison of DSC for three tissues compared to literature review

Tissue Gubern-Mérida, et al.6 Gubern-Mérida, et al.7 Zhang, et al.10 Ha, et al.11 our

Fatty 0.94 - 0.86 - 0.88

Glandular 0.80 - 0.83 0.81 0.50

Muscular - 0.72-0.74 - - 0.86
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Figure 6. The ground truth from the medical practitioner (a). The segmentation of our proposed methods (b). The
segmentation of Fuzzy C-means with three clusters (c).

X-ray image Synthetic X-ray image

Figure 7. An example showing how segmentation using NNs will help in creating the deformed MRI image from our
biomechanical model: X-ray image (left) and Synthetic X-ray (deformed MRI) (right)

to the original X-ray image is shown in Fig. 7.

4. DISCUSSION AND CONCLUSION

The proposed method provides a novel automatic approach using unsupervised NNs for the segmentation of
three tissue types in T2 weighted breast MRI concurrently. The method shows very promising results with a
mean DSC of 0.88, 0.5, and 0.86 for fatty, glandular, and muscular tissue, respectively. While fatty and muscular
tissue segmentation performance is similar to literature values, the mean DSC for glandular tissue is comparably
lower. We think that this is partly an effect of statistics, since due to the lower number of voxels in this class,
errors are overemphasized. Moreover the ground truth segmentation does not capture tiny details of glandular
structures, which however are partly segmented with our method as shown in Fig. 6 and thereby may lead to
a reduced DSC score while actually obtaining very good results. The agreement between glandular structures
obtained from our segmentation is showcased in Fig. 7 in comparison to the X-ray mammogram of a patient.
As a survey of qualitative results of 25 datasets, it shows very promising scores. In only three out of 25 datasets,
it failed to produce a usable result for automatic generation of a biomechanical model. In future, we would like
to extend our database of labeled datasets for more quantitative validation of the method. The method may
also be extended to different MRI series. Until now a segmentation can be computed in range of few minutes
for one dataset, though the emphasis of this paper was not on computation time. Using unsupervised learning
will allow us to segment breast MRI without the need of having labeled data for training. It therefore serves as
a fundamental robust method for automatic generation of patient-specific biomechanical models.
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