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Abstract—The performance evaluation for joint state and pa-
rameter estimation (JSPE) is of great significance. Joint Cramér-
Rao lower bound (JCRLB) has been widely studied for JSPE
of nonlinear parametric systems with white noise. However, in
practice, the noise is often colored due to high measurement
frequency and bandlimited signal channels. In this paper, a
recursive JCRLB is developed for JSPE of nonlinear parametric
systems with colored noise, characterized by auto-regressive
(AR) models. First, we propose a unified recursive JCRLB for
JSPE of general nonlinear parametric systems with higher-order
autocorrelated process noises and autocorrelated measurement
noise simultaneously. Then its relationship with the posterior
Cramér-Rao lower bound (PCRLB) for filtering of nonlinear
systems with colored noise and the hybrid Cramér-Rao lower
bound (HCRLB) for JSPE of regular parametric systems with
white noise are provided. Illustrative examples in radar target
tracking verify the effectiveness of the proposed JCRLB for
the performance evaluation for JSPE of nonlinear parametric
systems with colored noise.

Index Terms—JCRLB, Nonlinear parametric systems, Colored
noise, Auto-regressive models, Radar target tracking.

I. INTRODUCTION

NONLINEAR filtering technologies have made signifi-
cant progress for nonlinear systems with white noises.

However, due to the complexity of the engineering applica-
tions, the assumption of white noise often does not hold.
In contrast, the nonlinear systems with colored noise are
commonly encountered in engineering applications, such as
speech enhancement [1], signal processing [2], target tracking
[3], localization and navigation [4], etc. Motivated by these
practical applications, it is nontrivial to propose the nonlinear
estimators to deal with them. In [5], a state-augmented filter
and a measurement-differenced one-step-lag smoother were
proposed for systems with higher-order colored noise. Both
of these two estimators are optimal under the linear minimum
mean square error criterion. A Gaussian approximate filter [6]
was proposed for systems with autocorrelated measurement
noises, using the measurement difference method. Further-
more, since smoothing is more accurate than the corresponding
filtering, fixed-interval, fixed-point, and fixed-lag Gaussian
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smoothers were developed for nonlinear systems with colored
measurement noise [7]. They will be reduced to standard
Gaussian smoothers with independent white noise when the
correlation is zero.

As is well known, to assess the performance of estimators,
the posterior Cramér-Rao lower bound (PCRLB) [8] defined
as the inverse of the Fisher information matrix (FIM) has been
widely used. It provides a lower bound on the mean square
error (MSE) of estimators. Due to the highly complex nature of
colored noises, it’s more challenging to develop a performance
bound for filtering of nonlinear systems with colored noises.
By reconstructing the measurement error covariance matrix,
a recursive PCRLB was developed for filtering of systems
with biased and correlated measurement noise [9]. A unified
formula of recursive PCRLB was proposed in [10] for filter-
ing of nonlinear systems with colored noise, which consist
of multi-step correlated process noise, multi-step correlated
measurement noise and multi-step cross-correlated process and
measurement noise simultaneously. Also, it was extended in
[11] to nonlinear filters of the nonlinear systems with colored
process and measurement noise, characterized by the higher-
order auto-regressive (AR) models.

In modern engineering applications, the system models
always involve some disturbances, unmodeled effects and
unknown inputs, which are usually described as unknown
nonrandom parameters. Recently, there has been a surge of
interest in joint state and parameter estimation (JSPE) in many
fields, such as sensor registration [12], target tracking [13], and
signal processing [14], etc. Many representative algorithms
have been proposed to deal with the JSPE problems. One of
the most well-known schemes used to estimate the state and
parameter simultaneously is the joint filter scheme [15], which
augments the state vector with the unknown vector parameters.
Dual filtering [16] is another hot scheme which uses two
separate and parallel filters to estimate them. Hence, this
approach usually ignores cross-covariance between states and
parameters. Therefore, the joint filter is expected to be more
effective than the dual filter for parameter estimation [17].
But they are equivalent when the states and parameters are
decoupled. Expectation-maximization (EM) [18] is the third
scheme with two iterative steps. In the expectation (E) step,
state vectors are estimated by a particular type of filter. Then,



in the maximization (M) step, the nonrandom parameters are
identified.

The performance lower bound for JSPE is of importance
both for evaluation of estimators and for prediction of the
best achievable performance. Thus, a recursive hybrid Cramér-
Rao lower bound (HCRLB) was first proposed in [19] for
joint kinematic state and nonrandom parameter estimation
in ground-moving extended target tracking. In [20], the re-
cursive HCRLB was extended to more general discrete-time
Markovian dynamic systems. Furthermore, it was relaxed to
nonlinear systems with time-varying measurement parameters
in [21]. For JSPE of nonlinear parametric systems with two-
adjacent-states dependent (TASD) measurements, a recursive
joint Cramér-Rao lower bound (JCRLB) was proposed in [22].
It also provides the recursive JCRLBs for two special TASD
systems, where the measurement noises are autocorrelated or
cross-correlated with the process noises at one time step apart.
For another type of nonlinear parametric systems, in which
the process and measurement noises are cross-correlated at
the same time, a recursive JCRLB was proposed in [23].

For nonlinear parametric systems with colored noise, the
design of joint state and parameter estimators is a great
challenge. Meanwhile, the performance evaluation of JSPE
for these systems is of equal importance for the design and
improvement of estimators. Thus, this paper aims at proposing
a performance bound for JSPE of nonlinear parametric systems
with colored noises, characterized by autoregressive models
including autocorrelated process noise and autocorrelated mea-
surement noise simultaneously. First, we develop a recursive
JCRLB for JSPE of the general form of such nonlinear
systems. Then, the comparisons of the developed JCRLB with
the PCRLB for filtering of nonlinear systems with colored
noise and the HCRLB for JSPE of regular parametric systems
with white noises are provided. Finally, a numerical example
in radar target tracking shows that the proposed JCRLB
is effective to evaluate the performance of joint state and
parameter estimation for nonlinear parametric systems with
colored noise.

The rest of this paper is organized as follows. Section II
presents the general form of nonlinear parametric systems with
colored noise and formulates the JCRLB problem. Section III
develops the recursive JCRLB for such systems. An illustrative
example in radar target tracking is provided to verify the
effectiveness of the proposed JCRLB in Section IV. Section V
concludes this paper.

II. PROBLEM FORMULATION

Consider the following general form of the nonlinear para-
metric system with colored noise

xk+1 = fk(xk,θx) +wk, (1)
yk = hk(xk,θz) + vk, (2)

where xk ∈ Rn and yk ∈ Rm are the state and measurement
at time k, respectively, θx and θz are unknown nonrandom

parameters, 〈wk〉 and 〈vk〉 are colored process and measure-
ment noise sequences, satisfying the following pth-order and
qth-order AR model, respectively,

wk =

p∑
i=1

Φk−iwk−i + ηk, (3)

vk =

q∑
j=1

Ψk−jvk−j + ξk, (4)

where p ≥ 1 and q ≥ 1, 〈ηk〉 and 〈ξk〉 are mutually
independent white noise sequences with probability density
functions (PDFs) p(ηk|β) and p(ξk|γ), respectively, which in-
volve unknown nonrandom parameters β and γ, and the initial
state x0 is independent of them with PDF p(x0|α), which in-
corporates unknown nonrandom parameter vector α. The joint
estimand (quantity to be estimated) consists of the state xk and
nonrandom parameter vector θ = [α′,β′,γ′,θ′x,θ

′
z]
′ ∈ Rr,

which collects all the unknown nonrandom parameters.
For simplicity, the following notations are introduced.

TABLE I
NOMENCLATURE

Notations Meanings
Xk = [x′0, · · · ,x′k]

′ accumulated state
Zk = [z′1, · · · ,z′k]

′ accumulated measurement
χk = [(Xk)′,θ′]′ joint estimand of Xk and θ
χk = [x′k,θ

′]′ joint estimand of xk and θ
χ̂k estimate of χk
χ̂k estimate of χk

For discrete-time nonlinear parametric systems, the joint
FIM about χk is defined as

Jk , E[−∆χk

χk ln p(Xk,Zk|θ)]
∣∣∣
θ=θ0

, (5)

where p(Xk,Zk|θ) is the joint conditional PDF, ∆ denotes
the second-order derivative operator, i.e., ∆b

a = ∇a∇′b, and ∇
denotes the gradient operator, θ0 is the true value of unknown
nonrandom parameter θ.

From the Cramér-Rao inequality, the MSE of the joint
estimate χ̂k satisfying certain regularity conditions as in [20]
is bounded from below by the inverse of the joint FIM Jk

[8], [20]

E[(χ̂k − χk)(χ̂k − χk)′] ≥ (Jk)−1. (6)

Whereas what we need to obtain is the joint FIM about χk,
i.e., Jk, which is defined as the inverse of the (n+r)×(n+r)
right-lower block of (Jk)−1. The MSE of a joint estimate χ̂k
is bounded from below by the inverse of Jk [20], [21]:

E[(χ̂k − χk)(χ̂k − χk)′] ≥ J−1
k . (7)

Unlike in regular parametric systems, the process noise wk
and measurement noise vk in nonlinear system (1)-(2) are
not mutually independent. They satisfy the higher-order AR
model simultaneously. Next, the main goal is to develop a
recursion for Jk for this system without manipulating large
matrix (Jk)−1.



III. JCRLB FOR JSPE OF SYSTEMS WITH COLORED
NOISES

A. JCRLB

To deal with colored noise, we first construct an equivalent
system as follows.

Lemma 1: The nonlinear parametric system (1)–(4) is
equivalent to the following system

xk+1 = lk(xk, · · · ,xk−p,θx) + ηk, (8)
zk = gk(xk, · · · ,xk−q,θz) + ξk, (9)

where

lk(xk, · · · ,xk−p,θx) = fk(xk,θx) +

p∑
i=1

Φk−i(xk+1−i

− fk−i(xk−i,θx)),

gk(xk, · · · ,xk−q,θz) = hk(xk,θz)−
q∑
j=1

Ψk−jhk−j(xk−j ,θz),

zk = yk −
q∑
j=1

Ψk−jyk−j .

Proof: See Appendix A.
Remark 1: The driven noise sequences 〈ηk〉 and 〈ξk〉 in non-
linear system (8)–(9) are mutually independent white noise,
which are not limited to be Gaussian.

In order to obtain the recursion of FIM Jk+1, some nota-
tions are introduced here in advance.

1) Li,jk , i, j = 1, 2, · · · , l denotes the i-th row and j-th
column block of the l × l martix Lx,xk at time k. If i ≤ 0,
or j ≤ 0, then Li,jk = 0. If i > l, or j > l, then Li,jk = 0.

2) Li,θk , i = 1, 2, · · · , l denotes the i-th row block of the
matrix Lx,θk at time k. If i ≤ 0, then Li,θk = 0. If i > l, then
Li,θk = 0.

Then, the recursion of the JCRLB for joint state and
parameter estimation of the nonlinear parametric systems (1)-
(4) can be obtained as follows

Theorem 1: Partitioning the FIM Jk+1 about xk+1 and θ
as

Jk+1 =

[
Jx,xk+1 Jx,θk+1

Jθ,xk+1 Jθ,θk+1

]
, (10)

then the recursion of Jk+1 can be obtained as
Jx,xk+1 = D22

k −D21
k [D11

k +Lx,xk ]−1D12
k

Jx,θk+1 = D23
k −D21

k [D11
k +Lx,xk ]−1(D13

k +Lx,θk )

Jθ,θk+1 = D33
k +Lθ,θk − (D31

k +Lθ,xk )[D11
k +Lx,xk ]−1

· (D13
k +Lx,θk ) ,

(11)
where Jx,θk+1 = (Jθ,xk+1)′, Lx,θk = (Lθ,xk )′ and the involved
terms can be obtained as

Li,jk = Li+1,j+1
k−1 +Bi+1,j+1

k−1 +Ci+1,j+1
k−1 − [Li+1,1

k−1 +Bi+1,1
k−1

+Ci+1,1
k−1 ][L1,1

k−1 +B1,1
k−1 +C1,1

k−1]−1[L1,j+1
k−1

+B1,j+1
k−1 +C1,j+1

k−1 ]

Li,θk = Li+1,θ
k−1 +Ei+1,θ

k−1 + F i+1,θ
k−1 − [Li+1,1

k−1 +Bi+1,1
k−1

+Ci+1,1
k−1 ][L1,1

k−1 +B1,1
k−1 +C1,1

k−1]−1[L1,θ
k−1 +E1,θ

k−1

+ F 1,θ
k−1] = (Lθ,ik )′

Lθ,θk = Lθ,θk−1 +Eθ,θ
k−1 + F θ,θk−1 − [Lθ,1k−1 +Eθ,1

k−1 + F θ,1k−1]

· [L1,1
k−1 +B1,1

k−1 +C1,1
k−1]−1[L1,θ

k−1 +E1,θ
k−1 + F 1,θ

k−1]

for i, j = 1, 2, · · · , l + 1, l = max{p, q − 1}

D11
k =

 B1,1
k +C1,1

k · · · B1,l+1
k +C1,l+1

k
...

. . .
...

Bl+1,1
k +Cl+1,1

k · · · Bl+1,l+1
k +Cl+1,l+1

k



D12
k =

 B1,l+2
k +C1,l+2

k
...

Bl+1,l+2
k +Cl+1,l+2

k

 = (D21
k )′

D22
k = Bl+2,l+2

k +Cl+2,l+2
k

D13
k =

 E1,θ
k + F 1,θ

k
...

El+1,θ
k + F l+1,θ

k

 = (D13
k )′

D23
k = El+2,θ

k + F l+2,θ
k = (D23

k )′

D33
k = Eθ,θ

k + F θ,θk

and

Bi,j
k =

 E[−∆
xk−l−1+j
xk−l−1+i ln p(xk+1|xk, · · · ,xk−p,θ)],

Φk−j 6= 0
E[−∆

xk−l−1+j
xk−l−1+i ln p(xk+1|xk,θ)], Φk−j = 0

Ci,j
k =

 E[−∆
xk−l−1+j
xk−l−1+i ln p(zk+1|xk+1, · · · ,

xk−q+1,θ)], Ψk−j 6= 0
E[−∆

xk−l−1+j
xk−l−1+i ln p(zk+1|xk+1,θ)], Ψk−j = 0

Ei,θ
k =


E[−∆θ

xk−l−1+i
ln p(xk+1|xk, · · · ,xk−p,θ)],

Φk−j 6= 0
E[−∆θ

xk−l−1+i
ln p(xk+1|xk,θ)], Φk−j = 0

F i,θk =


E[−∆θ

xk−l−1+i
ln p(zk+1|xk+1, · · · ,

xk−q+1,θ)], Ψk−j 6= 0
E[−∆θ

xk−l−1+i
ln p(zk+1|xk+1,θ)], Ψk−j = 0

Eθ,θ
k =

{
E[−∆θ

θ ln p(xk+1|xk, · · · ,xk−p,θ)], Φk−j 6= 0
E[−∆θ

θ ln p(xk+1|xk,θ)], Φk−j = 0

F θ,θk =

 E[−∆θ
θ ln p(zk+1|xk+1, · · · ,

xk−q+1,θ)], Ψk−j 6= 0
E[−∆θ

θ ln p(zk+1|xk+1,θ)], Ψk−j = 0

Proof: See Appendix C.
Remark 2: The initial Fisher information submatrix Lx,x0 ,
Lx,θ0 and Lθ,θ0 can be obtained from the joint PDF p(X l,Zl|θ)
and the definitions in Eqs. (43)-(45), where l = max{p, q−1}.

B. Relationship with the HCRLB for JSPE of Regular Para-
metric Systems with White Noise

In the regular parametric system, the process noise 〈wk〉
and the measurement noise 〈vk〉 are mutually independent
white noise sequences, i.e., Φk−i = 0 and Ψk−j = 0 in the



nonlinear parametric system (1)-(4). Then the joint PDF pk+1

in (35) will be reduced to

pk+1
∆
= p(Xk+1,Zk+1|θ)

= pkp(xk+1|xk,θ)p(zk+1|xk+1,θ). (12)

Correspondingly, due to l = 0, then

Lx,xk = L1,1
k

= B2,2
k−1 +C2,2

k−1 −B
1,1
k−1[L1,1

k−1 +B1,1
k−1]−1B1,2

k−1

= Jx,xk . (13)

Similarly, we have Lx,θk = Jx,θk and Lθ,θk = Jθ,θk .
Then Theorem 1 will be reduced to
Jx,xk+1 = D22

k −D21
k [D11

k + Jx,xk ]−1D12
k

Jx,θk+1 = D23
k −D21

k [D11
k + Jx,xk ]−1(D13

k + Jx,θk )

Jθ,θk+1 = D33
k + Jθ,θk − (D31

k + Jθ,xk )[D11
k + Jx,xk ]−1

· (D13
k + Jx,θk ),

(14)
where{

D11
k = B11

k ,D
12
k = B12

k ,D
22
k = B22

k +C22
k

D13
k = E1,θ

k ,D23
k = E2,θ

k + F 2,θ
k ,D33

k = Eθ,θ
k + F θ,θk

(15)

B1,1
k = E[−∆xk

xk
ln p(xk+1|xk,θ)]

B1,2
k = E[−∆

xk+1
xk ln p(xk+1|xk,θ)]

B2,2
k = E[−∆

xk+1
xk+1 ln p(xk+1|xk,θ)]

C2,2
k = E[−∆

xk+1
xk+1 ln p(zk+1|xk+1,θ)]

E1,θ
k = E[−∆θ

xk
ln p(xk+1|xk,θ)]

E2,θ
k = E[−∆θ

xk+1
ln p(xk+1|xk,θ)]

F 2,θ
k = E[−∆θ

xk+1
ln p(zk+1|xk+1,θ)]

Eθ,θ
k = E[−∆θ

θ ln p(xk+1|xk,θ)]

F θ,θk = E[−∆θ
θ ln p(zk+1|xk+1,θ)].

(16)

Eqs. (14)-(16) are exactly the joint FIM for JSPE of regular
parametric systems with white noises in [20]. Obviously, it is
a special case of the JCRLB proposed in Theorem 1.

C. Relationship with the PCRLB for Filtering of Systems with
Colored Noise

Suppose that the discrete-time system (1)-(4) is reduced to
the following nonlinear system

xk+1 = fk(xk,wk), (17)
zk = hk(xk,vk), (18)

wk =

p∑
i=1

Φk−iwk−i + ηk, (19)

vk =

q∑
j=1

Ψk−jvk−j + ξk, (20)

where 〈ηk〉 and 〈ξk〉 are mutually independent white noise
sequences and both of them are independent of the initial state

x0. The nonlinear system (17)-(20) does not depend on any
nonrandom parameters, i.e., θ ∈ ∅. Then the joint PDFs pk+1

in (35) will be reduced to

pk+1
∆
= p(Xk+1,Zk+1)

= p(Xk,Zk)p(xk+1|Xk,Zk)p(zk+1|xk+1,X
k,Zk)

= pkp(xk+1|xk, · · · ,xk−p)p(zk+1|xk+1, · · · ,xk−q+1).
(21)

Due to θ ∈ ∅, we have Jx,θk = 0 and Jθ,θk = 0. Correspond-
ingly, Theorem 1 will be reduced to

Jx,xk+1 = D22
k −D21

k [D11
k +Lx,xk ]−1D12

k , (22)

where the involved terms can be obtained as

D11
k =

 B1,1
k +C1,1

k · · · B1,l+1
k +C1,l+1

k
...

. . .
...

Bl+1,1
k +Cl+1,1

k · · · Bl+1,l+1
k +Cl+1,l+1

k



D12
k =

 B1,l+2
k +C1,l+2

k
...

Bl+1,l+2
k +Cl+1,l+2

k


D22
k = Bl+2,l+2

k +Cl+2,l+2
k

Li,jk = Li+1,j+1
k−1 +Bi+1,j+1

k−1 +Ci+1,j+1
k−1 − [Li+1,1

k−1 +Bi+1,1
k−1

+Ci+1,1
k−1 ][L1,1

k−1 +B1,1
k−1 +C1,1

k−1]−1[L1,j+1
k−1 +B1,j+1

k−1

+C1,j+1
k−1 ]

for i, j = 1, 2, · · · , l + 1, l = max{p, q − 1},

where

Bi,j
k =

 E[−∆
xk−l−1+j
xk−l−1+i ln p(xk+1|xk, · · · ,xk−p)],

Φk−j 6= 0
E[−∆

xk−l−1+j
xk−l−1+i ln p(xk+1|xk)], Φk−j = 0

Ci,j
k =

 E[−∆
xk−l−1+j
xk−l−1+i ln p(zk+1|xk+1, · · ·

xk−q+1)], Ψk−j 6= 0
E[−∆

xk−l−1+j
xk−l−1+i ln p(zk+1|xk+1)], Ψk−j = 0

The above recursion of FIM in (22) is exactly the FIM
for filtering of nonlinear systems with colored noises in [11].
Obviously, it is a special case of the JCRLB proposed in
Theorem 1.

IV. ILLUSTRATIVE EXAMPLE

In this section, a numerical example in radar target tracking
is provided to demonstrate the utility of the proposed JCRLB
for JSPE of the nonlinear parametric systems with colored
noise.

Consider a target with coordinated turn motion in a 2D plane
[11], [26]. Its motion equation is modeled as

xk+1 =


1 sinωT

ω 0 cosωT−1
ω

0 cosωT 0 − sinωT
0 1−cosωT

ω 1 sinωT
ω

0 sinωT 0 cosωT

xk +wk, (23)



where xk = [xk, ẋk, yk, ẏk]
′ is the state vector, T = 1s is

the sampling interval, ω = 2◦s−1 is the turning rate, a known
nonrandom parameter, and 〈wk〉 is the process noise.

A 2D radar is mounted at the origin of the 2D plane to mea-
sure the range rk and the bearing θk. Then the measurement
equation can be modeled as

zmk =

[
rmk
θmk

]
=

[ √
x2
k + y2

k

tan−1(yk

xk
)

]
+

[
∆r

∆θ

]
+ vk, (24)

where ∆r and ∆θ are range and bearing measurement biases,
which are unknown nonrandom parameters with ground truth
20 m and 5 mrad, respectively, and 〈vk〉 is the measurement
noise.

In this example, we assume that wk in (23) is a first-order
colored noise and modeled as

wk = 0.9Iwk−1 + ηk, (25)

where I is a identity matrix, ηk ∼ N (0,Qk) is a driven noise
with

Qk =

Sw


2(ωT−sinωT )

ω3
1−cosωT

ω2 0
(ωT−sinωT )

ω2

1−cosωT
ω2 T − (ωT−sinωT )

ω2 0

0 − (ωT−sinωT )

ω2
2(ωT−sinωT )

ω3
1−cosωT

ω2
(ωT−sinωT )

ω2 0 1−cosωT
ω2 T

 ,

(26)

where Sw = 0.1 m2s−3 is the power spectral density.
The measurement noise vk in (24) is also first-order colored

and modeled as

vk = 0.8Ivk−1 + ξk, (27)

where ξk ∼ N (0,Rk) is a driven white noise with Rk =
diag(σ2

r , σ
2
θ), 〈ηk〉 and 〈ξk〉 are mutually independent, and

both of them are independent of the initial state x0. x0 ∼
N (x̄0,P0) with

x̄0 = [2000 m, 100 ms−1, 4000 m, 10 ms−1]′,

P0 = diag(1002 m2, 1002 m2s−2, 1002 m2, 102 m2s−2).

For this radar target tracking example with first-order col-
ored process and measurement noises simultaneously, we can
obtain the following equivalent parametric system as

xk+1 = fk(xk) + Φk−1(xk − fk−1(xk−1)) + ηk, (28)
zk = zmk −Ψk−1z

m
k−1

= hk(xk,θz)−Ψk−1hk−1(xk−1,θz) + ξk. (29)

To show how hard it is to jointly estimate the target state
and radar measurement biases using the proposed JCRLB, we
consider three different settings for σr and σθ in Table II. The
JCRLBs are obtained over 500 Monte Carlo runs.

We note that the uncertainty of the measurement in equiv-
alent system (28)-(29) is only dependent on the driven noise
〈ξk〉. Thus if the covariance Rk of driven noise increases, then
the uncertainty of the measurement increases. So we expect
that the accuracy of the estimation will be reduced as Rk

increases.
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Fig. 1.
√

JCRLB for position under different driven noise level.
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√

JCRLB for velocity under different driven noise level.
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√

JCRLB for range bias under different driven noise level.



TABLE II
THE STANDARD DEVIATION OF ξk

Range Bearing

Case 1 σr = 10 m σθ = 3 mrad
Case 2 σr = 15 m σθ = 5 mrad
Case 3 σr = 20 m σθ = 8 mrad
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Fig. 4.
√

JCRLB for bearing bias under different driven noise level.

Figs. 1-4 show that the
√

JCRLBs of position, velocity,
range bias ∆r and bearing bias ∆θ increase as the covariance
Rk of driven noise increases. It indicates that the JCRLBs
for the nonlinear system (23)-(24) get larger when Rk gets
larger. That is, the larger the driven noise level is, the more
difficult it is to jointly estimate the target motion state and
radar measurement biases. Obviously, this is consistent with
our expectations.

V. CONCLUSION

The performance of joint state and parameter estimators is
of importance and can be lower bounded by the JCRLB. In
this paper, we have proposed a recursive JCRLB for joint
state and parameter estimation of the nonlinear parametric
systems, where the process noises and measurement noises are
both autocorrelated satisfying the higher-order auto-regressive
models. Its relationship with HCRLB for JSPE of regular
parametric systems with white noises and PCRLB for filtering
of nonlinear systems with colored noises have been provided
as well. It is found that both of them are special cases of the
newly developed JCRLB.

APPENDIX A
PROOF OF LEMMA 1

From (1)-(2), we have

wk−i = xk+1−i − fk−i(xk−i,θx), i = 1, 2, · · · , p, (30)
vk−j = zk−j − hk−j(xk−j ,θz), j = 1, 2, · · · , q. (31)

Then (3)-(4) can be rewritten as

wk =

p∑
i=1

Φk−i(xk+1−i − fk−i(xk−i,θx)) + ηk, (32)

vk =

q∑
j=1

Ψk−j(zk−j − hk−j(xk−j ,θz)) + ξk. (33)

Substituting (32)-(33) into (1)-(2), we can obtain the equiva-
lent nonlinear system (8)-(9). This completes the proof.

APPENDIX B

Lemma 2: Let B = [B11,B12], A =

[
A11 A12

A21 A22

]
,

C =

[
C11

C21

]
, and the Schur complement D = A22 −

A21(A11)−1A12. Suppose that A, D are invertible, then we
have

BA−1C = B11A
−1
11 C11 + (B12 −B11A

−1
11 A12)D−1

· (C21 −A21A
−1
11 C11). (34)

APPENDIX C
PROOF OF THEOREM 1

From (8) and (9), the joint PDF can be decomposed as

pk+1
∆
= p(Xk+1,Zk+1|θ)

= p(Xk,Zk|θ)p(xk+1|Xk,Zk,θ)p(zk+1|xk+1,X
k,Zk,θ)

= pkp(xk+1|xk, · · · ,xk−p,θ)p(zk+1|xk+1, · · · ,xk−q+1,θ)
(35)

When Φk−j = 0, the transfer function in (35) is simplified to

p(xk+1|xk, · · · ,xk−p,θ) = p(xk+1|xk,θ) (36)

When Ψk−j = 0, the likelihood function in (35) is simplified
to

p(zk+1|xk+1, · · · ,xk−q+1,θ) = p(zk+1|xk+1,θ) (37)

Partition χk as χk = [(Xk−l−1)′, (xk−l)
′, · · · , (xk)′,θ′]′ and

l = max{p, q − 1}. Then Jk can be similarly partitioned as

Jk =


A1,1
k A1,2

k · · · A1,l+2
k A1,θ

k

A2,1
k A2,2

k · · · A2,l+2
k A2,θ

k
...

...
. . .

...
...

Al+2,1
k Al+2,2

k · · · Al+2,l+2
k Al+2,θ

k

Aθ,1
k Aθ,2

k · · · Aθ,l+2
k Aθ,θ

k


=

 J11
k J12

k J13
k

J21
k J22

k J23
k

J31
k J32

k J33
k

 (38)

where

A1,1
k = E(−∆Xk−l−1

Xk−l−1 ln pk)

Ai,1
k = E(−∆Xk−l−1

xk−l−2+i
ln pk) = (A1,i

k )′

A1,θ
k = E(−∆θ

Xk−l−1 ln pk) = (Aθ,1
k )′



Ai,j
k = E(−∆

xk−l−2+j
xk−l−2+i ln pk)

Ai,θ
k = E(−∆θ

xk−l−2+i
ln pk) = (Aθ,i

k )′

Aθ,θ
k = E(−∆θ

θ ln pk)

for i, j = 2, 3, · · · , l + 2.
Define Lk as

Lk =

[
J22
k J23

k

J32
k J33

k

]
−
[
J21
k

J31
k

]
(J11
k )−1

[
J12
k J13

k

]
=

[
J22
k − J21

k (J11
k )−1J12

k J23
k − J21

k (J11
k )−1J13

k

J32
k − J31

k (J11
k )−1J12

k J33
k − J31

k (J11
k )−1J13

k

]
=

[
Lx,xk Lx,θk
Lθ,xk Lθ,θk

]
(39)

Similarly, Partition χk+1 as χk+1 =
[(Xk−l−1)′, (xk−l)

′, · · · , (xk)′, (xk+1)′,θ′]′. Then Jk+1

can be partitioned as

Jk+1 =



A1,1
k A1,2

k · · ·
A2,1
k A2,2

k +B1,1
k +C1,1

k · · ·
...

...
. . .

Al+2,1
k Al+2,2

k +Bl+1,1
k +Cl+1,1

k · · ·
0 Bl+2,1

k +Cl+2,1
k · · ·

Aθ,1
k Aθ,2

k +Eθ,1
k + F θ,1k · · ·

A1,l+2
k 0

A2,l+2
k +B1,l+1

k +C1,l+1
k B1,l+2

k +C1,l+2
k

...
...

Al+2,l+2
k +Bl+1,l+1

k +Cl+1,l+1
k Bl+1,l+2

k +Cl+1,l+2
k

Bl+2,l+1
k +Cl+2,l+1

k Bl+2,l+2
k +Cl+2,l+2

k

Aθ,l+2
k +Eθ,l+1

k + F θ,l+1
k Eθ,l+2

k + F θ,l+2
k

A1,θ
k

A2,θ
k +E1,θ

k + F 1,θ
k

...
Al+2,θ
k +El+1,θ

k + F l+1,θ
k

El+2,θ
k + F l+2,θ

k

Aθ,θ
k +Eθ,θ

k + F θ,θk


(40)

=


J11
k J12

k 0 J13
k

J21
k J22

k +D11
k D12

k J23
k +D13

k

0 D21
k D22

k D23
k

J31
k J32

k +D31
k D32

k J33
k +D33

k

 (41)

where Bi,j
k , Ci,j

k , Ei,θ
k , F i,θk , i, j = 1, 2, · · · , l+ 2, and Dij

k ,
i, j = 1, 2, 3 are as defined in Theorem 1.

Since J−1
k+1 equals the (n+r)×(n+r) right-lower block of

(Jk+1)−1, by using partitioned matrix inversion lemma [25]
we have

Jk+1 =

[
D22
k D23

k

D32
k J33

k +D33
k

]
−
[

0 D21
k

J31
k J32

k +D31
k

]
·
[
J11
k J12

k

J21
k J22

k +D11
k

]−1 [
0 J13

k

J13
k J23

k +D13
k

]
=

[
Jx,xk+1 Jx,θk+1

Jθ,xk+1 Jθ,θk+1

]
(42)

Substituting (39) into (42) and using Lemma 2, thus the
recursion can be obtain as in Eq. (11), and the blocks of Lx,xk ,
Lx,θk , Lθ,θk can be obtained as

Li,jk = Ai+1,j+1
k −Ai+1,1

k (A1,1
k )−1A1,1+j

k (43)

Li,θk = Ai+1,θ
k −Ai+1,1

k (A1,1
k )−1A1,θ

k (44)

Lθ,θk = Aθ,θ
k −A

θ,1
k (A1,1

k )−1A1,θ
k (45)

for i, j = 1, 2, · · · , l + 1
Using the definitions of Bi,j

k , Ci,j
k , Ai,j

k and (35)-(37), we
have

[
A1,1
k A1,1+j

k

Ai+1,1
k Ai+1,j+1

k

]
=

 A1,1
k−1 A1,2

k−1

A2,1
k−1 A2,2

k−1 +B1,1
k−1 +C1,1

k−1

Ai+2,1
k−1 Ai+2,2

k−1 +Bi+1,1
k−1 +Ci+1,1

k−1

A1,j+2
k−1

A2,j+2
k−1 +B1,j+1

k−1 +C1,j+1
k−1

Ai+2,j+2
k−1 +Bi+1,j+1

k−1 +Ci+1,j+1
k−1


(46)

Note that Li,jk in (43) is the Schur complement of the matrix
on the left hand side of (46), Then it can be obtained by the
Schur complement of the matrix on the right hand side of (46)
as

Li,jk = Ai+2,j+2
k−1 +Bi+1,j+1

k−1 +Ci+1,j+1
k−1 −[

Ai+2,1
k−1 Ai+2,2

k−1 +Bi+1,1
k−1 +Ci+1,1

k−1

]
·
[
A1,1
k−1 A1,2

k−1

A2,1
k−1 A2,2

k−1 +B1,1
k−1 +C1,1

k−1

]−1

·
[

A1,j+2
k−1

A2,j+2
k−1 +B1,j+1

k−1 +C1,j+1
k−1

]
(47)

Using Lemma 2 and the definition of Li,jk , we can simplify
(47) to obtain the following recursion

Li,jk = Li+1,j+1
k−1 +Bi+1,j+1

k−1 +Ci+1,j+1
k−1 − (Li+1,1

k−1 +Bi+1,1
k−1

+Ci+1,1
k−1 )(L1,1

k−1 +B1,1
k−1 +C1,1

k−1)−1(L1,j+1
k−1 +B1,j+1

k−1

+C1,j+1
k−1 )

Similarly, we have[
A1,1
k A1,θ

k

Ai+1,1
k Ai+1,θ

k

]
=

 A1,1
k−1 A1,2

k−1

A2,1
k−1 A2,2

k−1 +B1,1
k−1 +C1,1

k−1

Ai+2,1
k−1 Ai+2,2

k−1 +Bi+1,1
k−1 +Ci+1,1

k−1

A1,θ
k−1

A2,θ
k−1 +E1,θ

k−1 + F 1,θ
k−1

Ai+2,θ
k−1 +Ei+1,θ

k−1 + F i+1,θ
k−1

 (48)

[
A1,1
k A1,θ

k

Aθ,1
k Aθ,θ

k

]
=

 A1,1
k−1 A1,2

k−1

A2,1
k−1 A2,2

k−1 +B1,1
k−1 +C1,1

k−1

Aθ,1
k−1 Aθ,2

k−1 +Eθ,1
k−1 + F θ,1k−1

A1,θ
k−1

A2,θ
k−1 +E1,θ

k−1 + F 1,θ
k−1

Aθ,θ
k−1 +Eθ,θ

k−1 + F θ,θk−1

 (49)



Then, using Schur complement and Lemma 2, we can obtain
the recursion for Li,θk and Lθ,θk as

Li,θk = Li+1,θ
k−1 +Ei+1,θ

k−1 + F i+1,θ
k−1 − [Li+1,1

k−1 +Bi+1,1
k−1

+Ci+1,1
k−1 ][L1,1

k−1 +B1,1
k−1 +C1,1

k−1]−1[L1,θ
k−1 +E1,θ

k−1

+ F 1,θ
k−1] (50)

Lθ,θk = Lθ,θk−1 +Eθ,θ
k−1 + F θ,θk−1 − [Lθ,1k−1 +Eθ,1

k−1 + F θ,1k−1]

· [L1,1
k−1 +B1,1

k−1 +C1,1
k−1]−1[L1,θ

k−1 +E1,θ
k−1 + F 1,θ

k−1]
(51)

This completes the proof.
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