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Abstract—In networked estimation architectures, event-based
sensing and communication can contribute to a more efficient
resource allocation in general, and improved utilization of commu-
nication resources, in particular. In order to tap the full potential
of event-based scheduling, the design of transmission triggers and
estimators need to be closely coupled while two directions are
promising: First, the remote estimator can exploit the absence of
transmissions and translate it into implicit information about the
sensor data. Second, an intelligent trigger mechanism at the sensor
that predicts future sensor readings can decrease transmission
rates while rendering the implicit information more valuable. Such
an intelligent trigger has been developed in a recent paper based
on a Finite Impulse Response filter, which requires the sensor to
transmit an additional estimate alongside the measurement. In
the present paper, the communication demand is further reduced
by only transmitting the estimate. The remote estimator exploits
correlations to incorporate the received information. In doing so,
the estimation quality is also improved, which is confirmed by
simulations.

Index Terms—Event-based estimation, finite impulse response
filter, stochastic triggering

I. INTRODUCTION

Networked estimation is key to leveraging recent advances
of sensor, communication, and processing technologies. Sensor
data can be acquired ubiquitously and pervasively, e.g., by
wireless sensor networks [1], [2], the Internet-of-Things [3],
vehicular networks [4], or crowd sensing [5]. Distributed
estimation [6], [7] enables an in-network processing of the
accrued sensor data. Despite its advantages over centralized
processing architectures, distributed estimation brings a number
of additional challenges that have been addressed by a variety
of different approaches [8], [9]. Particular attention has been
directed towards correlations [10], [11] between the estimates
of different network nodes. Attaining optimal estimation
results is only possible under strict assumptions on network
topology, communication rates, and computational resources.
Examples include distributed formulations of the Kalman
filter equations or augmented state representations [12]-[14]
with some relaxations, e.g., in [15], [16]. For optimal fusion,
methods to keep track of correlations have been introduced
in [17] or [18]. Suboptimal fusion methods follow a different
direction, for which covariance intersection [19], [20] with its

further developments [21]-[23] is the most prominent solution.
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Fig. 1: Scheme of proposed event-based filtering

From an estimation point of view, networked sensor systems
should send as much data as often as possible. However,
resource efficiency becomes a major concern, in particular,
in battery-driven systems, and some resources like a shared
communication channel cannot be accessed at all times. For
this reason, greater attention is being devoted to finding trade-
offs between estimation quality and resource utilization in
networked sensor—estimator systems. To reduce the amount of
data, measurements and estimates can be quantized [24], [25]
without violating their consistency, or the most informative
parts can be selected [26]. To reduce the communication rate,
one can shift away from periodic transmission schedules to data-
driven transmissions [27]-[29]. Such event-based mechanisms
find particular application in networked control systems [30],
[31] and typically employ a trigger at the sensor to decide for
a transmission. Variance-based triggers [32], [33] or send-on-
delta schemes [34] are prominent examples of such mechanisms.
The design of the trigger is crucial to finding a trade-off between
communication rate and estimation quality. Finding good trade-
offs can be addressed at two places: At the sensor, an intelligent
trigger can further reduce the transmission rate by predicting the
system behavior to assess the measurement’s contribution to the
remote estimate. At the remote estimator, the absence of a trans-
mission still carries useful information about the sensor data if
the estimator knows the trigger’s decision rule. The estimator
still infers information about the actual measurement—called
implicit or negative information—to perform a measurement
update. For deterministic triggers, negative information refers
to set-membership measurement representations, which have
been exploited in different works [35]-[38] using a hybrid
estimator [39]. Another approach that is also followed by
this paper rests upon stochastic trigger mechanisms [40],
which preserve the Gaussianity of the implicit information.
In doing so, the remote estimator can be a standard Kalman
filter with only minor adaptions, which renders stochastic



triggering particularly appealing for distributed Kalman filtering.
Examples are the information [41] and consensus [42] filter
using stochastic triggers, which also include triggering on input
information [43].

In this paper, we will further investigate event-based esti-
mation with Gaussianity-preserving triggers that are reviewed
in Sec. III. As shown in our previous work [44], stochastic
triggers integrate well with intelligent prediction mechanisms at
the sensors. There, the sensor runs a Finite Impulse Response
(FIR) filter [45] in parallel to predict future measurements and
compares them with the actual sensor data to decide for a
transmission. The trigger inherits the advantageous properties
of the FIR filter e.g., no prior information is required, and
robustness against outliers is increased. The sensor, in particular,
becomes more resilient in the presence of unmodeled errors.
This approach also shows that the trigger can be designed
independently of the remote estimator. However, as described
in Sec. IV, solutions using estimate-based triggers have the
drawback that the sensor has to send both measurements and
the estimate, where the latter is required by the remote estimator
to compute the implicit information. In Sec. V, we will show
how a remote estimator can be designed that only uses the FIR
estimate and fuses it optimally with its own Kalman estimate
by exploiting correlations, which is illustrated in Fig. 1. This
approach not only reduces the data to be communicated but
also increases the remote estimation quality, which is confirmed
by the simulations in Sec. VI. Sec. VII discusses the results
and outlines possible extensions of this work.

II. NOTATION

An underlined variable £ € R"™ denotes a real-valued vector.
Lowercase boldface letters x are used for random quantities.
Matrices are written in uppercase boldface letters C € R™*",
and C~! and C7 are its inverse and transpose, respectively.
0., xn is the zero matrix with m rows and n columns. 0,, €
R™*™ or I, € R™*™ are the zero or identity square matrices,
respectively. The notation XZIR is used for an FIR estimate;

Xy, denotes an estimate of a Kalman filter.

III. GAUSSIANITY-PRESERVING TRIGGERING

This section introduces the models and concepts used
throughout this paper and gives an overview of Gaussianity-
preserving trigger designs.

A. System Model & State Estimation

Discrete-time linear system and measurement models are
considered, which are governed by

(D

X1 — Akik + Wy,
Y, =Crx, +vy,

where x; € R"= is the state at time step £ € IN, and y, €
R™ denotes the observation. The time-variant process and
measurement matrices are given by Ay € R"=*"= and Cy, €
R™*"= respectively. The process noise w,, ~ N (0, Q) and
measurement noise v,, ~ AN (0,R) are white and mutually
uncorrelated for arbitrary m,n € IN.

To estimate the state, a discrete-time Kalman filter is
considered. It is initialized with the prior estimate X, € R"~
and covariance matrix Py € R"=*"=. The time update or
prediction step yields

2
3)

K1k = Ak X
Pripp = AP AL +Q

where Py, is the covariance of the estimation error
Xj 41|k — Xp41- The measurement update using the observation
Y, is obtained by

Xk = Xpjp—1 + Ki (Xk - CrXgp) > “4)

Pk = (In, — Ki Ci) Prji_1 &)
“1

Ky =Py_1 Cp (CkPk|k—1 Cp + R) ) (6)

where K, is the Kalman gain. The zero-mean error X, — X,
has the covariance matrix Pyy.

B. Stochastic Triggering

Let y, € R™ represent the sensor data for which a trigger
decision is to be made. The variable v, = 1 denotes that an
event is triggered, and Y, is sent to the receiver. For v = 0,
no transmission is triggered. To determine -y, an independently
and identically distributed random variable &, is generated that
is uniformly distributed over [0, 1]. The decision scheme is
given by

e = 1, ék > ¢(Xk _Qk)a 7)
0, & <oy, —¢cu):

with ¢(y, —c;,) =exp (—% (Xk_Qk)T z! (Xk_gk)> to com-
pare y, against a chosen ¢;, € R"v. The matrix Zj, € R™Mv >y
is a design parameter to tune the transmission rate. Due to
the design of ¢(-) and the properties of £, the transmission
probability given y, yields

Pr{ve=1ly,} =1-0(y, ),

Priv =0]y,} = oy, — ). ®)
The likelihood Pr{~y; = 0|y, } is exploited in the following
to infer information about Y, when the sensor does not trigger
a transmission.

IV. EVENT-BASED KALMAN FILTERING
WITH FIR-BASED TRIGGERS

A predictive trigger design has been proposed in our earlier
publication [44], which equips the sensor with an FIR filter to
predict sensor readings. These predictions are fed as decision
variable ¢, into the trigger (7). This section briefly discusses
the FIR-based trigger mechanism and shows yet to be improved
properties.



A. FIR-Based Stochastic Triggering and Estimation

The sensor employs an advanced trigger by employing a
local FIR-based estimator as, e.g., described in [45]. For this
purpose, a horizon of (m—+ 1) time steps is considered, and the
acquired measurements are described by the stacked equation

Vi = Hi X, + 1y, 9
with
Xk- Ck
. Y1 . Cr—1 (AZ:})_
Yiast = : ) My = : ’
Yim Crm (A7)
and .Ag :=A;-A;_1-...-A;. Hence, the collected measure-

ments are expressed with respect to x;.. The horizon (m + 1)
must be chosen large enough so that H; has full column
rank. For the noise n,;, we study the measurement Y, for
le{l,...,m} and its corresponding row in (9), which yields

Y = CraiXp + 5y

_ 1 _
= Crt A (Rpm1 — W) Y5 =

!
)_1§k - Z C (AT
=1

From this equation, we can deduce the form of the vector n,
in (9), which summarizes the accumulated process and mea-
surement noise terms. It is hence given by

0

Cr—1 (A5~ 1)_1Ek—1 v,

—1
Wi i TVi_-

=Cy_ (AT,

and is zero mean with non-singular covariance matrix
Vi = Cov{n,} .

The block entries have the form

min(p,q)
k—py—1 k—q\—T
(V}“)(p+1)(q+1)zckp(Z(Akf) Q(Akff) )C;crq
i=1
+ R,
where J,, is the Kronecker delta with p,q € {0,1,...,m}

and the expression Z _, Tesults in 0. The joint covariance
matrix V|, characterizes the correlations between subsequent
measurements due to process and measurement noise. With
these equations, an uncertainty-aware FIR filter can be derived
that yields

5 FIR

— (HT V' Hy)  HE VS Y (10)

Like the Kalman filter estimate, the FIR estimate XFIR is

unbiased [45] with the error

~ ~ — —1 _
& = & g = (ML VT HE) T MG Ve, (D

and the corresponding error covariance matrix

E = Cov {#]}} = -

(HI Vi )
For the event-based estimator proposed [44], the sensor sends
both the measurement y Y, and the estimate X ~FIR to the remote
estimator if a transmission event is trlggered. Sensor and
estimator operate as follows.

1) Sensor: Given the FIR estimate XEI_% from the previous
time step and the current sensor reading y,, the trigger
mechanism first computes the predicted measurement

~FIR

¥ =CrAp 1 X (12)

and uses ¢(y i XEIR) in (7) to obtain 7 and decide whether
to transmit sensor information. Hence, the trigger variable ¢,
is set to yFIR The following two cases need to be considered:

a) v, = 1: In case of a transmission, the sensor computes
a new FIR estimate gi IR by means of eq. (10) using the current
and its buffered measurements. The current measurement and
the new FIR estimate are sent to the receiver.

b) v+ = 0: No transmission is triggered. The sensor
computes a predicted FIR estimate XEIR =Ar 1 XEE for the
next time step. Hence, no transmissions imply that the local
FIR estimate is not updated with the recent measurements and
only predicted.

In the following time step k + 1, these steps are repeated
with (b(XkJrl —f;i) and AEIH Cri1 Ay %™, To compute
the FIR estimates, the sensor keeps a buffer of (m + 1) mea-
surements. The matrix Zj is a design parameter determining a
trade-off between transmission rate and estimation quality.

2) Estimator: The remote estimator either receives a new
measurement or deduces implicit measurement information
from the absence of a transmission. For the latter, we assume
a reliable communication channel so that the trigger decision
is solely responsible for not sending. There are also studies
on channel models including packet delays and losses that
lead to more complicated estimator designs, which are not
used here. The remote Kalman filter computes an estimate
based on the received measurements with small modifications
to the formulas in Sec. III-A. Besides the measurements Yo
the remote estimator receives the FIR estimate xk R from
the sensor. For the prediction step, the remote Kalman filter
uses the standard equations (2) and (3). Additionally, x AFIR =
Ay gkﬁ is computed with the goal of keeping the FIR
estimate at the sensor and remote estimator synchronized. The
measurement update depends on the transmission decision:

a) vx = 1: In case of a transmission, the estimator
receives a new measurement y, from the sensor and performs
the update according to the standard formulas (4) and (5)
with Kalman gain (6). The local FIR estimate is replaced
with the received FIR estimate from the sensor to keep both
synchronized.

b) v, = 0: The estimator does not receive the actual mea-
surement and translates the absence into implicit measurement
information. It makes use of the stochastic trigger (7) and its



corresponding likelihood (8). As described in [40] or [44], the
likelihood for v, = 0 given the state x; becomes

Pr{v = O|§k}:/ Pr {’Yk = 0|Xk75k.}~Pr {Xklik}dzk
R7Ly

= —c )P d
Rny¢(Xk ) T{Xk |§k} Yy

o exp (—3(cx — Crxy) " (Ze + R) ey — Crxy))

and preserves its Gaussianity. By comparing this to the density
representation of the Kalman filter, the implicit measurement
is ¢;, and has the covariance matrix (Zj + R). The sensor uses
cL = XI;;IR from (12), which states the reason why the remote
estimator needs a copy of the FIR estimate XEIR. The remote

Kalman filter can now update its estimate according to
. ~FIR .
Xk = Xpj—1 + Ky (Zk - Cy §k|k,1) ;
Pip = (In, — Ki Ci) Py (13)
-1
K) = Py CF (CkPk|k_1 cr+2z, + R)

with the implicit measurement XEIR

ment covariance.

and an increased measure-

B. Notes, Discussion, and Open Questions

A stochastic trigger mechanism like the discussed scheme
offers the advantage of reducing the communication rate sig-
nificantly while keeping the required computations simple. The
relationship between communication rate and error covariance
is, for instance, studied in [40], [46]. The exploitation of
implicit information bounds the worst-case estimation error to
the case where only (13) is used for the measurement update.
Without the implicit information, the remote estimator has to
skip the measurement update leading to potentially unbounded
errors. The bounds also allow asymptotic studies of the scheme
when time-invariant models are considered and contribute to
finding suitable parameters for the trigger (7). In this paper, we
employ time-variant models and trigger matrices Zj. Although
the scheme is more general with such models, we have to be
aware that the sensor and the estimator have to use the same
model parameters to keep the FIR estimates synchronized.

There is a wide range of possibilities to define the trigger
mechanism. A simple send-on-delta scheme that sets ¢, to
the last transmitted measurement can be ignorant about the
underlying system model. However, a more intelligent trigger
design that tries to predict the course of future sensor readings
is typically much more efficient but requires the sensor
to understand the underlying process. The trigger can also
implement a Kalman filter or receives a feedback from the
remote estimator [46]. The FIR-based scheme revisited in this
paper offers some advantages as compared to a Kalman filter-
based scheme: First, the sensor does not need prior information
about the state. Second, transmissions from remote estimator
to sensor are not required. Third, the trigger design inherits the
robustness to outliers from the FIR filter, which leads to lower
transmission rates in the presence of unmodeled disturbances.

A disadvantage of the filter-based triggers is the required
synchronization between the sensor and the remote estimator. In
the discussed scheme [44], the sensor needs to transmit both y .
and XEIR. However, the measurement information is already
encoded in the FIR estimate which renders the transmitted
data redundant. Hence, we intend to redesign the trigger such
that only X} '™ is sent to the estimator for v, = 1. As a
consequence, we need to adapt the remote Kalman filter such
that it can incorporate the FIR estimate in the measurement
update for v; = 1. Such a scheme will have two advantages:

1) The sensor needs to transmit less data. This is particularly
advantageous for high-dimensional measurements. It is
also possible to consider a multisensor system as sender
in place of a single sensor. In this case, the transmission
of the FIR estimate could also be more effective than
sending all measurements.

2) The FIR estimate comprises also past measurements
while the remote estimator in [44] only incorporates
the current received measurement. Suppose that multiple
transmissions have not been triggered, i.e., Yx_1—; =
... = Yk—1 = 0,1 > 0. The estimator then has only
access to the implicit measurements yﬁl_fi_l, . ,y?j.
For v, = 1 at time step k, the estimator now receives the
FIR estimate from the sensor. Fusing X}:IR into the remote
estimator should improve the estimation performance with
the included information about the past measurements.

The following section describes the proposed event-based
estimator exploiting the FIR-based trigger.

V. EVENT-BASED KALMAN FILTERING
WITH CORRELATED FIR-ESTIMATES

The critical step of the proposed concept is the fusion
of the sent FIR estimate with the remote Kalman estimate.
For this purpose, we employ the Bar-Shalom—Campo fusion
formulas [10] that yield optimal fusion results provided that
the cross-covariance matrix is known. We determine the cross-
covariance matrix by analyzing the error terms of both estimates.
As a starting point, we define

Uy = (HTV He)  HE V!

and
Ony XNy 1 Ony XNy
. Ckfl({t’zj)
Com( 1) o G

to rewrite equation (11) as

" =" - x = U (~Lewi ) (14
with
Wi Vi
wit=| o |eRMM Vv = eRMH 1y,
Ekfm kam

The error of the FIR estimate is a linear combination of the
noise terms of the (m + 1) recent steps, and the FIR estimate



is uncorrelated to older noise terms. Therefore, we will write
the error of the Kalman estimate in terms of the (m + 1)
recent noise terms as well. To compute the correlations with
the remote Kalman filter estimate, we will bring the Kalman
estimate into a similar form.

For the Kalman estimate, we introduce the matrices Fyy,
and Gy, and a variable w“"“ that represents all noise terms
that are uncorrelated with the FIR estimate. These matrices are
designed such that the estimation error of the Kalman filter
can be represented in the form

last ~rest

i]qk; = Xk\k —XE = }-k\kﬂllgs{ + gk\k v, + Zk|k (15)

resembling (14). Given the matrices Fj | and Gy, we can
compute the cross-covariance matrix for X, and XEIR, ie.,

= E{(Xkﬂc - zk)(XEIR - Xk-)T}
= —Fue - Q- LLU + Grom1 - R Uy, (16)

with Q E {wl"‘s‘ ',S“)T} € and R =
E{vi* (viHT} e R(mH+1)n=x(m+1)n = which are block-
diagonal matrices with Q and R as the diagonal blocks,
respectively. Hence, we need to determine the matrices Fy,y,
and Gy, in each time step k. For k = 0, the matrices are
initialized with zero and the following subsections show how
to predict and update these matrices alongside the Kalman
estimate. In particular, the FIR estimate is fused with the
Kalman estimate using the Bar-Shalom—Campo formulas.

COV[ik\k’ Xgm]

R e Xmng

A. Prediction

In this section, we describe how the prediction step of the
remote Kalman filter affects the matrices Fy;, and Gy i By
using eq. (1) and (2), the estimation error can be written as

Tpp1pk = X1 e — X1 = ArXpp — (Apxy + wy)

=Ag (Xkuc - Xk) - Wy
= A (Frpwi™ + G ™) + ARZiy ) — wy,

last

with (15). We intend to express this equation in terms of w;™};

last
and vy, to attain

~rest

~ _ last last
Zp1je = Frate Wit + Gr1je Vi1 + Z - (17)

To compute the desired matrices Fj 1), and Gpqqx, We
introduce the shifting matrices

Nu) — |:07Lf><(m—1)n_,
(m—1)ng
o |:0ny XMNy,

Imny

Onm
0<m1>nzxnz] ’
0,, ]

Omnyxny .

In doing the updated matrices become
Frr1je = ApFppNow — [In
Gtk = AkGrppNo -

The remaining term ifill , can be computed accordingly,

which now includes the error terms w,,_,, and v, _,.. The

estimation error &, does not depend on v;, which is

already part of vl,jjﬁl It will enter the error in the filtering step.

N, :

Onw X(mfl)nll )

B. Filtering

Given the matrices Fy,_; and Gy ,—1 from the previous
prediction step, the filtering step of the Kalman filter requires
the computation of the updated matrices Fy, and Gy x. In
the event-based scheme illustrated in Fig. 1, either the remote
estimator receives a new FIR estimate, or it has to resort to
implicit measurement information. Depending on the triggering
decision, the following update rules apply.

a) vx = 1: In this case, the sensor transmits the FIR
estimate XEIR. The cross covariance matrix

pereov . COV[&qk,l,XgIR] (18)

can be computed as described earlier by equation (16). The
receiver employs the Bar-Shalom—Campo formulas [10] to
achieve an optimal fusion with X, ;,_;, which yields

X = (In, — KRO) &1 + KEO&L™

Py = Prp1 — KRS (Ppjpmy — PY)
K]]zC _ (Pk\k—l _ Pcrcov) .

(Pk|k71 + Vk _ Ppercov -1 .

_ (Pcrcov)T)

These computations represent the major differences to the
previous scheme described in Sec. III. For the following
computations, e.g., another measurement update with (18) in
the subsequent time step, the matrices Fy, and Gy, need to
be computed using the estimation error

)X Kk 1—|—KBC SFIR

= (In, — )xk\k 1 +K2Cm£IR

= (L., — K3O) (Frpo1 W™ + Grpo1vi™)
+K1}3c (—Ltﬁ Wlasl+u Vlasl)
+ (I, — KBCYff}Z 1

Lk = (I, — — X

by using (14) and (17). With this relationship, both matrices
can be updated through

Fipk = (In, — K§O) Frpor — KRUL,
Grie = (In, — Kllzc)gldk—l + KU,

which also characterize a full correlation between the Kalman
estimate and the FIR estimate at the sensor as the latter has
been fully incorporated into the former.

b) v+ = 0: If no transmission is triggered at the
sensor, the remote estimator exploits the implicit measurement
information (12). This update is performed as described in
Sec. 1V, part 2)b). Also in this step, the matrices Fp,;_; and
Gjk—1 have to be updated. The implicit measurement

~FIR

tri tri,
V., = Cixp vy +v ®

= y + v
is related to the actual measurement y, affected by an
additional independent noise vk & introduced by the stochastic
trigger mechanism (13). The estimation error then becomes



FIR

Ty = Xppp—1 T Ki (ﬁk - Ck3k|k—1) — Xy,

=Ty + Ki ( —Cryp g + vy, + !Zrig)
= (Tn, — KpCp)&yp—1 + Kivy, + Ky, ™®

= (I, — KiCp) (Frpp—1Wp™ + G vi™)
+ Kk!k + Kk!z,rlg + (Inx - Kk'Ck)iletcfl :

The last two terms are summarized in @f‘s}c As a result, we
can infer the following update equations

Frpre = (In, — K Cr) Fji—1 5
gk\k = (InT - chk)gk\k—l + [Kk Onyxmny]

C. Summary

Compared to the approach in [44], the proposed scheme
requires adaptions at the remote estimator. The prediction and
filtering step of the Kalman filter are now accompanied by
the computation of the matrices Fy, and Gy . Also, Uy
and L need to be computed for the cross-covariance matrix
in (18) when a transmission has been triggered. However, this
computational overhead at the receiver rewards us with a lower

amount of data to be transmitted and a better estimation quality.

The latter can in particular be seen when low communication
rates are aspired, which is demonstrated in the following.
VI. SIMULATION

In this section, we study Monte-Carlo simulations to evaluate
the proposed scheme, which is abbreviated by FusionFIR in

the following. For each time step k, we simulate a state x.

State transitions and measurements are done as described in
section III-A, a simulation run consists of 100 time steps.

The simulation consists of a sensor and a remote state
estimator. The sensor employs the FIR-based trigger mechanism
as described in IV-A1. With the abbreviation KFFIR, we denote
the concept that employs a remote estimator as described
in IV-A2, which is the solution from [44]. We use the
mean squared error (MSE) over 5,000 runs to compare the
performance of FusionFIR and KFFIR. The process noise w,,,
the measurement noise v; and the trigger noise &, are
generated for each run and step independently.

We choose a two-dimensional nearly-constant-velocity model
as a basis for our evaluation. The state is given by x =
(Pe va Py vy T and the position is measured by a remote
sensor. The system and sensor models are characterized by the
following matrices

_1%
Ay = 80
LO 0

oo
~poo

:|a Ck:

[A%/3 A%/2 0 0

- A%Z/2 A 0 0
Qe=a"|"0" o as3n
A%/2 A

1 0
) Rk|:0 1:|7

where A = 0.1 is the sampling interval, and g is a power
spectral density. Initially, we set ¢ = 0.1. The horizon for the

0 0

FIR estimate is set to m = 4. We control the communication
rate via a scalar z by setting Z = z - I,. To get an initial XEIR
at the sensor, we simulate at least m previous time steps. All
measurements before time step £k = 0 are transmitted, and
each scheme uses a standard Kalman filter to incorporate them
optimally. In doing so, each scheme has access to the same
information at the time step k = 0 to ensure a fair comparison.
For this purpose, we set P_,,, = 10-1,,%x_,, = 0 and sample
X, ~N(,P_,,) for each run.

Fig. 2.a) shows the results depending on the communication
rate. For communication rates below 50%, the differences
become clearly visible, and the estimations made by FusionFIR
are far better than the estimations made with KFFIR. The
figures also include a lower bound, for which we assume
that the sensor just sends all measurements acquired between
triggering events, and the optimal remote Kalman estimate
is then computed given all received measurements. We see
that FusionFIR is close to that lower bound. We compare the
approaches more deeply by the following variations.

1) Impact of communication rates around 100 %:
Fig. 2.a) also shows that FusionFIR may perform slightly
worse than KFFIR for communication rates around 100%. The
explanation of this phenomenon is the nature of the optimality
of the Bar-Shalom—Campo fusion formulas; the fusion formulas
are only optimal in an ML sense but not in an MMSE sense [11].
Since KFFIR is for a communication rate of 100% identical to
a standard Kalman filter and thus optimal in an MMSE sense.
This case can outperform the fusion with an FIR estimate.

2) Impact of the horizon m + 1: In Fig. 2.a), the results
of FusionFIR and the lower bound are close. This means that
the FIR estimates XEIR sent by the sensor do carry a similar
amount of information like an optimal Kalman estimate. This
indicates that the measurements which are considered by the
Kalman estimate but not by the FIR estimate are of little value,
which raises the question of whether this is also true for smaller
horizons. We, therefore, reduce the horizon to 3, i.e., m = 2.

The results are shown in Fig. 2.b). The plots of FusionFIR
and the lower bound are now slightly more apart. This is
expected because an FIR estimate with a smaller horizon is
lacking information. However, the smaller horizon also changes
the sensor’s trigger decisions: These directly depend on the
quality of the FIR state estimates. Therefore, reducing the
horizon also makes trigger decisions more likely. This is also
visible in Fig. 2.b). Compared to Fig. 2.a) (with the exception
of 100% communication rate) the plot is shifted to the right
side, meaning that for the same values of the matrix Z, a
trigger decision is more likely with a reduced horizon. For
example, communication rates around 40% lead to an MSE
for all methods below 2 if m = 4. The MSE increases to 2
and higher if the horizon is reduced to 3, i.e., m = 2.

3) Impact of the system noise: Compared to the measure-
ment noise, the system noise of the chosen system is small.
We have increased the system noise by a factor 10 to see the
impact of the system noise. Fig. 2.c) shows the results. The gap
in estimation quality between FusionFIR and KFFIR shrinks.
Also, the gap between the lower bound and FusionFIR is now
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Z = 10-1I,. An unmodeled impulse is applied after 50 steps.

reduced. A higher process noise implies that the information
gain by processing old measurements is reduced.

4) Impact of initial and temporary unmodeled errors:
We want to conclude our evaluation by analyzing the impact
of initial and temporary unmodeled errors. We introduce such
temporary unmodeled errors by setting x5, to Asg - X5 +
Wso + 2.5 - 1, which means we add an impulse to the state
prediction. The trigger and estimator are ignorant about this
error. We use the parameters ¢ = 0.1, A = 0.1, m = 4 and
Z = 10 - I, which yields an average communication rate of
25%. We compute the MSE for each time step k and also
increase the number of runs to 50 000.

The results are illustrated in Fig. 3. FusionFIR recovers from
the initialization error faster and converges to a lower MSE
than KFFIR. The performance of FusionFIR is similar to the
lower bound method. This is expected and goes along with
Fig. 2.a). Applying an unmodeled impulse causes different
reactions: Directly after application, the MSE is lower if
KFFIR is used, but FusionFIR and the lower bound algorithm
recover from the temporary error much faster and FusionFIR
is better than KFFIR after a few steps. Both effects are
due to the processing of old measurements. The FusionFIR
algorithm incorporates older measurements. The application of
the impulse renders these old measurements useless, because
the impulse is unmodeled. Therefore, the FusionFIR still
includes the outlier over a horizon and leads to higher MSE,
and KFFIR performs better directly after application of the
impulse. However, after some steps, the FIR estimate does only
contain measurements obtained after the impulse, FusionFIR
then outperforms the KFFIR method. It may even recover faster
than the lower bound, which is essentially an optimal Kalman
filter incorporating delayed measurements. This reflects that
an FIR filter is less affected by temporary unmodeled errors

than a Kalman filter, making the FIR-based trigger mechanism
attractive.

VII. CONCLUSIONS

Using an FIR-based stochastic trigger offers several bene-
ficial properties like resilience to unmodeled disturbances, a
simple initialization, and high estimation quality paired with a
low communication rate. Despite the additional computation of
the FIR estimate at the sensor, the formulation in [44] requires
the sensor to transmit both the sensor data and the FIR estimate
when an event is triggered. The remote Kalman filter uses the
former for the measurement update and the latter to deduce
implicit information in future time steps. With this paper, the
sensor only needs to transmit the FIR estimate so that less
data is transmitted rendering this scheme particularly useful
for high-dimensional sensor data. The measurement update for
v, = 1 is replaced by an optimal fusion with the received
FIR estimate exploiting the cross-covariances. In doing so, the
quality of the remote estimate is further improved as the FIR
estimate incorporates past measurements which is a second
major advantage of this approach and has been demonstrated
in the simulations. A drawback of the proposed scheme can
be additional resource requirements for the computation and
bookkeeping of the cross-covariance matrices needed for fusion.

Future directions include the extension to multisensor sys-
tems as well as other trigger mechanisms that require adapted
fusion formulas. Also, a promising research question is whether
further improvements to the remote estimate are possible as
the optimal fusion does not yield the optimal estimate given
all measurements [11]. Another challenge to be addressed are
unreliable communication channels affected by packet delays
and drops [47]. In this case, the remote estimate cannot discern
whether the trigger or other effects account for the absence of
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