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Abstract
An extension to the quantum-mechanical laser master equation for the density operator is derived to incorporate the beam-
splitter effect caused by typical dielectric laser output couplers. This effect gives rise to a significant change in the photon 
statistical distribution of the part of the laser light reflected back into the resonator and, therefore, may have an influence on 
the total laser output photon statistics. Different cases without and with additional intra-cavity losses were discussed and 
their influence on the expected laser photon statistics was deduced. As a result, it was found that the well-known Poisson 
distribution of laser light is in most cases the result of additional losses or absorption, which act uncorrelatedly on single 
photons. In a laser with negligible additional losses where outcoupling is dominated by the beam-splitter effect, the photon 
statistics reveal to be mainly non-Poisson. A Poisson distribution would only occur for very low outcoupling rates, i.e., high 
finesse cavities. It is found that in the limit of strong outcoupling even the distribution of thermal light can result.

Keywords  Laser theory · Beam splitter · Photon statistics · Poisson distribution

1  Introduction

Quantum-mechanical theories of lasers exist since the early 
days of laser research, being more or less complex in terms 
of how the various laser transition types and interactions 
with the outside world are taken into account. Therein differ-
ent approaches are known using different but equivalent for-
mulations either based on a density matrix description or on 
the Fokker–Planck equation [1, 2]. In all these descriptions 
an important approximation and assumption have been used 
since: The outcoupling of photons out of the laser resonator 
was modeled by a loss term in analogy to what an equivalent 
intra-cavity absorption of photons would cause to the laser 
quantum state, thereby incorporating the finite cavity Q-fac-
tor into the description of the laser. Although this procedure 
is consistent in terms of energy and average photon number 

it has so far not been considered that a typical dielectric laser 
output mirror is not just a photon extracting device like an 
absorbing or scattering object. Moreover, such an output 
coupler has a complex action on the incoming intra-cavity 
photon state and is in fact nothing else than a beam splitter 
with a certain splitting ratio. The photon state, therefore, 
reflected back into the laser resonator is not just shifted to 
a lower average photon number by the number of lost pho-
tons but a rather complex combination of various number 
states that are binomially distributed. The goal of this paper 
is to investigate the consequences of these findings on the 
laser photon statistics of a continuous-wave (cw) laser and 
to compare the results with the common laser theory used 
so far.

2 � The laser output coupler—a beam splitter

In many cases, lasers are equipped with an output coupler 
(OC) mirror that physically is simply a beam splitter with a 
dielectric coating and thus a certain reflectivity R and trans-
mission T as shown in Fig. 1. Assuming a loss-less OC we 
find R + T = 1 . This, however, has specific consequences for 
a quantum state that passes through, or is reflected by, that 
beam splitter. The goal of this section is to derive the temporal 
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evolution of a quantum state in an empty laser resonator sub-
jected only to outcoupling via said beam splitter. The effects 
caused by the laser medium will be treated in Sect. 3.

To derive the effect of the beam-splitting property of the 
OC has on the quantum state of a laser in Sect. 3, we first 
consider a given state

incident onto the OC mirror from inside the laser cavity 
(beam splitter input channel 1). Therein, �n,m are the coef-
ficients of the density operator in number-state representa-
tion and n and m are the photon number state indices. The 
laser output is considered as the beam splitter output chan-
nel 2. When there is no back reflection of the outcoupled 
laser beam into itself, nor an intentional external state to be 
launched into the lasing mode through the OC from outside 
the laser cavity (e.g. by injection), we can consider that the 
input channel 2 of the beam splitter is the vacuum state

A beam splitter is a quantum mechanically described by the 
operator [3]

with a and b being the annihilation operators acting on the 
input states 1 and 2, respectively, and � being a mixing angle. 
Therein, we have neglected eventual additional phase shifts 
that may arise from the specific design of the beam splitter 
but which are of no importance to the findings in this paper. 
The result of the beam splitting operation in the output chan-
nels can be described by the output annihilation operators

acting on the output states 1 and 2, respectively. Therein 
�c� = √

R = cos �  and  �s� = √
T = sin �  ,  such  tha t 

|c|2 + |s|2 = 1 . We can thus easily derive the generally com-
bined output state generated by the beam splitter interaction 
from the input state 𝜌in,1 ⊗ 𝜌in,2 as

(1)�in,1 =
�
n,m

�n,m�n⟩⟨m�,

(2)�in,2 = �0⟩⟨0�.

(3)B� = ei�(a
†b−ab†),

(4)
a� =B�aB

†

�
= ac − bs,

b� =B�bB
†

�
= as + bc,

Therein, 
(
n

k

)
= n!∕(k!(n − k)!) is the binomial coefficient 

and q and r are additional numbering indices arising from 
the sum expansion of the binomial formulas, related to the 
number states in the laser output beam. Using the identity

we obtain

Thus a general superposition of combined output states of 
the beam splitter results in which each laser output state 
�q⟩⟨r� in the output channel 2 is accompanied by a reflected 
state in the output channel 1 of

(5)

�out =�out,1 ⊗ �out,2 = B�
(

�in,1 ⊗ �in,2
)

B†
�

=B�
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√
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√
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�
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∑

n,m
�n,m

(
(

a′†
)n

√

n!
|0⟩⟨0|
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)

=
∑
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√
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|0⟩

(
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)m

√
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=
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n,m
�n,m

1
√
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1

√
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n
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q=0

(

n
q

)
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√
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×
m
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(
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)

(

c∗
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)r√(m − r)! r!
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=
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q=0

m∑
r=0

≡

∞∑
q=0

∞∑
r=0

∞∑
n=q

∞∑
m=r

,

(7)

�out =
∞
∑

q=0

∞
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Fig. 1   Schematic view of a laser cavity with a high-reflective mirror 
HR and its output coupler OC acting as a beam splitter (laser medium 
not shown)
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However, we have to consider that the outcoupled laser 
beam, i.e., the state of the output channel 2 of the beam 
splitter, will usually be measured. This measurement quan-
tum mechanically has as result that we have to take the trace 
over the channel 2 output states, thereby finally defining the 
state being reflected by the OC into the cavity (i.e., the new 
intra-cavity state after beam-splitter action,)

with its coefficients

The �nm in Eq. 9 are the Kronecker symbols evaluating to 
unity for identical indices n and m while being zero other-
wise. Both versions are equivalent as a result of the sym-
metry of the binomial coefficient. Itcan be easily shown that 
the distribution in Eq. 10 is normalized to

and thus represents a physical distribution, which is not the 
case for the distribution in Eq. 8. Accordingly, it can be 
easily shown that the average photon number reflected back 
into the cavity is

Therefore, in each reflection step, i.e., after each round-trip 
in the empty laser cavity, the originally contained average 
photon number is reduced according to the reflectivity R 
of the OC as expected. The average photon number after k 
round trips thus obtains as

As the photon state is, however, spread over the whole cav-
ity and not localized, outcoupling is happening in a con-
tinuous way. One round trip takes the cavity round-trip time 
�RT = 2Lo∕c with Lo being the optical length of the cavity, 
and thus we can set k → t∕�RT to obtain

(9)��
out,1

=

∞�
p=0

∞�
q=0

∞�
r=0

�out,1(�q⟩⟨r�)�qp�rp,

(10)

��
n,m

=

∞∑
p=0

�n+p,m+p

(
n + p

p

) 1

2

(
m + p

p

) 1

2

cn(c∗)
m|s|2p

=

∞∑
p=0

�n+p,m+p

(
n + p

n

) 1

2

(
m + p

m

) 1

2

cn(c∗)
m|s|2p.

(11)
∞∑
n=0

��
n,n

= 1,

(12)⟨n⟩� =
∞�
n=0

n��
n,n

=

∞�
k=0

k�k,k�c�2 = �c�2⟨n⟩ = R⟨n⟩.

(13)⟨n⟩k = �c�2k⟨n⟩0 = ek ln �c�2⟨n⟩0.

As a consequence, the cavity photon lifetime is given by

being identical to the semi-classically derived value [4]. This 
allows us to derive the equation of motion of an empty reso-
nator with an outcoupling beam splitter according to

Therein, Δt is an effective time interval over which the tran-
sition �n,m → �′

n,m
 takes place. It can be determined from the 

equivalence with the decay corresponding to Eq. 14 by 
evaluating the decay of the average photon number, for 
which the derivative of the photon number in time has to be 
identical to the photon number multiplied by the negative 
exponential decay rate 1

�c
:

The effective time interval thus gradually changes from very 
short times for R → 0 to the round-trip time �RT for R → 1 as 
can be seen in Fig. 2.

(14)⟨n⟩(t) = ⟨n⟩(0)e ln �c�2
�RT

t
= ⟨n⟩(0)e− t

�c .

(15)�c = −
�RT

ln |c|2 = −
�RT

lnR
= −

2Lo

c lnR
,

(16)𝜌̇n,m|OC =
Δ𝜌n,m

Δt
=

𝜌�
n,m

− 𝜌n,m

Δt

(17)⟨ṅ⟩ =
∞
∑

n=0
n�̇n,n|OC =

∞
∑

n=0

n�′n,n − n�n,n
Δt

=
|c|2 − 1

Δt
⟨n⟩

!
= − 1

�c
⟨n⟩

(18)⇒Δt =
(
1 − |c|2)�c = −

(
1 − |c|2)
ln |c|2 �RT = −

1 − R

lnR
�RT.
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Fig. 2   Effective time interval of the transition �
n,m → �′

n,m
 in fractions 

of the round-trip time as a function of the OC reflectivity R 



	 M. Eichhorn 

1 3

  181   Page 4 of 12

As the result, the equation of motion of the empty resona-
tor with an outcoupling beam splitter is given by

3 � The density‑operator master equation 
of the laser

3.1 � The original master equation

The quantum-mechanical description of the temporal evolu-
tion of the intra-cavity laser state is governed by the well-
known master equation for the density-operator coefficients 
in number-state representation, here in its original form 
taken from [1]

with � being the laser angular frequency and

A is the unsaturated linear gain proportional to the pump rate 
Rp , B is a saturation parameter, � is the decay constant of 
the upper laser level and g the field coupling constant of the 
laser transition, proportional to the vacuum Rabi frequency. 
In this master equation, the first two terms describe the 
changes to the density operator matrix elements due to gain 
and gain saturation, while the latter two terms in the equa-
tion introduce cavity outcoupling by assuming an absorption 
of photons inside the cavity by injected atoms in the ground 

(19)

�̇n,m|OC = −
ln |c|2

(

1 − |c|2
)

�RT

×

⎛

⎜

⎜

⎜

⎝

�n,m −
∞
∑
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�n+p,m+p

(

n + p

n

)

1
2
(

m + p

m

)

1
2

cn(c∗)m|s|2p
⎞

⎟

⎟

⎟

⎠

.

(20)

𝜌̇n,m = −
N�
n,m

A

1 + Nn,mB∕A
𝜌n,m +

√
nmA

1 + Nn−1,m−1B∕A
𝜌n−1,m−1

−
1

2

𝜔

Qc

(n + m)𝜌n,m +
𝜔

Qc

√
(n + 1)(m + 1)𝜌n+1,m+1,

(21)A =2

(
g

�

)2

Rp

(22)B =4

(
g

�

)2

A = 8

(
g

�

)4

Rp

(23)N�
n,m

=
1

2
(n + m + 2) +

(n − m)2B

8A

(24)Nn,m =
1

2
(n + m + 2) +

(n − m)2B

16A
.

state, such that this absorption yields the corresponding 
Q-factor of the laser cavity, Qc [1]. It directly follows from 
this original version of the master equation that changes in 
�n,m arising from outcoupling are only due to a coupling to 
�n,m itself and to �n+1,m+1 . However, from Eq. 19 we imme-
diately see that the random partitioning of the beam splitter 
behavior of the OC mirror causes much more complicated 
couplings and therefore, Eq. 20 may not correctly describe 
laser photon statistics (and laser photon state dynamics) in 
a general way. As the original master equation gives rise to 
a Poisson photon statistics, no discrepancy may been so far 
suspected.

3.2 � The new master equation based 
on beam‑splitter effects

In analogy to Eq. 20 we define a new master equation 
of the laser by replacing the last two terms, emulating 
outcoupling by absorption, by the temporal change of the 
matrix elements in Eq. 19. The new master equation thus 
is given by

and therefore the equation of motion of the diagonal ele-
ments, i.e., the evolution of the statistical distribution of the 
photons, becomes

Therein,

is the pump-rate independent saturation parameter.

3.2.1 � Laser rate equation

In this paragraph, we will compare the laser rate equation 
deduced from the new master equation with the one arising 
from the original description. Therefore, the rate equation 
for the average photon number is deduced as

(25)

𝜌̇n,m = −
N�
n,m

A

1 + Nn,m𝜍
𝜌n,m +

√
nmA

1 + Nn−1,m−1𝜍
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ln �c�2�
1 − �c�2�𝜏RT

×

�
𝜌n,m −

∞�
p=0

𝜌n+p,m+p

�
n + p

n

� 1

2

�
m + p

m

� 1

2

cn(c∗)
m�s�2p

�
,

(26)

�̇n,n = −
(n + 1)A

1 + (n + 1)�
�n,n +

nA
1 + n�

�n−1,n−1 −
ln |c|2

(

1 − |c|2
)

�RT

×

(

�n,n −
∞
∑

p=0
�n+p,n+p

(

n + p
n

)

|c|2n|s|2p
)

.

(27)� =
B

A
= 4

(
g

�

)2

,
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Therein, we were using the identity

For comparison, we perform the same operation on Eq. 20 
and obtain

(28)

d⟨n⟩
dt

=

∞�
n=0

n𝜌̇n,n
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∞�
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∞
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Comparing Eq. 28 with Eq. 30 shows that also the typical 
laser rate equation does not change its form when assum-
ing a beamsplitter as OC and the correct correspondence 
between the cavity Q factor Qc and the cavity photon lifetime 
is given by

As a result we can, therefore, state, first, that in terms of its 
consequence on the laser rate equation, beam-splitter out-
coupling cannot be distinguished from outcoupling emulated 
by appropriate absorption terms. This means that in both 
descriptions of a laser we obtain an identical power-to-
pump-rate dependence, i.e., especially the same threshold 
and same slope efficiency. We obtain the semi-classical CW 
solution to Eq. 28 by assuming a very narrow photon dis-
tribution, i.e., in the limit ��,� = 1 for n = � , with � being 
the intra-cavity photon number, and �n,n = 0 for n ≠ � . This 
results in

with the solution

which is depicted for different saturation parameter values in 
Fig. 3. For operation far above threshold, i.e., by neglecting 
the first term under the root, we obtain

from which we can deduce the semi-classical laser slope �p 
(wrt. pump rate) and threshold Ath as

Second, whenever additional intra-cavity losses occur that 
act on single photons, e.g., reabsorption or scattering, this 
can be well modeled by a term

analogous to the term of the original master equation, 
modified to take into account only the loss-related decay. In 
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analogy to Eq. 15 we obtain this loss-related lifetime �loss for 
an intra-cavity round-trip loss LRT as

3.2.2 � Detailed balance in CW operation

To describe the photon statistics of a continuous wave (CW) 
laser under pure beam-splitter outcoupling, we have to find 
the steady-state solution of Eq. 26, i.e., 𝜌̇n,n = 0 ∀n . This is 
given when the input flow of probability into each �n,n equals 
the output flow of probability from each �n,n . Fig. 4 depicts 
the different flows occurring in the diagonal elements of 
the new master equation given by Eq. 26. In contrast to the 
detailed balance of the diagonal elements of the original 
master equation [1] given by

the beam-splitter outcoupling generates a multitude of cou-
plings between the different diagonal elements. Looking, 
e.g., at the �n,n level in Fig. 4, the upward pointing blue arrow 
is the only flow of probability that goes to higher levels than 
n, n. All flows depicted by dark red arrows outgoing from �n,n 
and all corresponding flows to lower lying states depicted 
by the other red arrows only cause re-distributions of prob-
ability within these lower-lying states. All flows depicted by 
green arrows ending in the levels k, k with k = 0...n therefore 
constitute the inflow of probability entering into the set of 
states k = 0...n which, as probability is conserved, has to be 
compensated by the upward outflow from �n,n . Therefore, a 
detailed balance in the diagonal elements of the new master 
equation is obtained by the condition

(38)�loss = −
2Lo

c ln
(
1 − LRT

) = −
�RT

ln
(
1 − LRT

) .

(39)
(n + 1)A

1 + (n + 1)�
�n,n =

�

Qc

(n + 1)�n+1,n+1,

4 � Laser photon statistics

To derive the laser photon statistics under pure beam-splitter 
outcoupling, i.e., while neglecting additional cavity losses, 
we rewrite the detailed balance condition in Eq. 40 using 
|s|2 = 1 − |c|2 as

Therein, we define the contribution function of the higher 
photon states by

This contribution function defines the precise coupling 
between the different matrix elements and thus has an 
important impact on the photon statistical distribution in 
CW operation.

The contribution function has a specific shape depend-
ing on the outcoupling as R = |c|2 changes as can be seen 
in Fig. 5. For high OC reflectivities, i.e., low outcoupling 
or a high-finesse cavity, the contribution function mainly 
allows for a significant contribution of the next higher state 
l = n + 1 only while for lower OC reflectivities it gradually 
allows more and more higher states to contribute. In the 
limit of very low OC reflectivity, i.e., strong outcoupling, 
all states higher than n contribute equally to state n in the 
detailed balance.

A closer look at the form of Eq. 42 shows that Fl
n

(|c|2) 
can be seen as a scaled cumulative distribution function

of a binomial probability distribution in k given by

(40)

(n + 1)A
1 + (n + 1)�

�n,n = −
ln |c|2

(

1 − |c|2
)

�RT

n
∑

k=0

∞
∑

l=n+1
�l,l

(

l
k

)

|c|2k|s|2(l−k).

(41)

(n + 1)A
1 + (n + 1)�

�n,n

= −
ln |c|2

�RT

∞
∑

l=n+1
�l,l

1
1 − |c|2

n
∑

k=0

(

l

k

)

|c|2k|s|2(l−k)

= −
ln |c|2

�RT

∞
∑

l=n+1
�l,l

1
1 − |c|2

n
∑

k=0

(

l

k

)

|c|2k
(

1 − |c|2
)(l−k)

= −
ln |c|2

�RT

∞
∑

l=n+1
�l,lFl

n
(

|c|2
)

.

(42)

Fl
n

(|c|2) ∶= 1

1 − |c|2
n∑

k=0

(
l

k

)
|c|2k(1 − |c|2)(l−k) ∀l > n.

(43)Fl
n

(|c|2) = 1

1 − |c|2
n∑

k=0

B
(
l, |c|2;k),

(44)B
(
l, |c|2;k) =

(
l

k

)(|c|2)k(1 − |c|2)(l−k).
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Fig. 3   Semi-classical photon number � from Eq.  33 as a func-
tion of relative pump rate A∕�

c
 for different saturation parameters 

� = 1, 0.1, 10−3, 10−6, 10−9 (from bottom to top, respectively)
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As such a binomial distribution in k, shown as an example 
in Fig. 6 for an OC reflectivity of R = |c|2 = 0.2 and differ-
ent l ,  has a mean of � = l|c|2 and a var iance 
�2 = l|c|2(1 − |c|2) , we can derive the following important 
behavior of the contribution function: For � = n , i.e., 
l = lHW ∶=

n

|c|2 the cumulative distribution function reaches 

approximately 1/2 of its maximum value, as in Eq. 43 the 
summation adds over approximately half of the total distri-
bution. Figure 6 gives an example for this reasoning. There-
fore, we can define an effective half width of the contribution 
function as

Thus, the contribution function couples approximately all 
higher states from l = n + 1, ..., l = n∕|c|2 to contribute to 
state n in the detailed balance and gradually discards all 
further higher lying states.

As the contribution function is only defined for l > n 
and monotonically falling towards higher l, it has its peak at 
l = n + 1 with

(45)ΔnHW ∶= lHW − n =
n

|c|2 − n =

(
1

|c|2 − 1

)
n.

(46)

Fl=n+1
n

(|c|2) = 1

1 − |c|2
n∑

k=0

(
n + 1

k

)
|c|2k(1 − |c|2)(l−k)

=
1

1 − |c|2
(
1 −

(
n + 1

n + 1

)
|c|2(n+1)

)

=
1 − |c|2(n+1)
1 − |c|2 .

Fig. 4   View of the different flows of probability arising from the dif-
ferent terms of the new master equation. The blue arrows show the 
effect of the first two terms of Eq. 25 providing the upward flow of 

probability. The green-scale arrows denote downward flows arising 
from above the level of �

n,n while the red-scale arrows indicate redis-
tributions from this level or below of that level
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Fig. 5   Contribution function Fl

n

(|c|2) on the example of n = 14 and 
|c|2 = R = 0.99, 0.9, 0.8, 0.5, 0.2, 0.1, 0.01 (from left peak to right 
flat line at an abscissa of approximately 1). The dashed line shows 
the point at l = 70 , where the curve for |c|2 = 0.2 is at about its half 
maximum, cf. Fig. 6
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4.1 � Laser photon statistics at low outcoupling

At low outcoupling, i.e., in the limit R = |c|2 → 1 , the width 
of the contribution function ΔnHW narrows to zero while its 
peak value approaches

as can be easily seen by applying l’Hopital’s rule on the final 
term in Eq. 46. Therefore, the detailed balance in Eq. 41 
approaches

Rearranging the terms result in the recursion relation

(47)lim
|c|2→1

Fl=n+1
n

(|c|2) = n + 1,

(48)

(n + 1)A

1 + (n + 1)�
�
n,n = −

ln |c|2
�RT

∞∑
l=n+1

�
l,lF

l

n

(|c|2)

|c|2→1

≈ −
ln |c|2
�RT

(n + 1)�
n+1,n+1.

(49)

�n+1,n+1 ≈ −
�RT

ln �c�2
A

1 + (n + 1)�
�n,n

=�0,0

�
A�RT

− ln �c�2
�n+1

∏n+1

k=1
(1 + k�)

=�0,0

�
A�RT

−� ln �c�2
�n+1

∏n+1

k=1

�
1

�
+ k

� ,

which for large n >> 1∕𝜍 , i.e., for laser operation far above 
threshold, approaches the well-known Poisson distribution

with the mean

This result coincides with the one originally deduced from 
the master equation that emulated outcoupling by absorption 
of intra-cavity photons and is the one well-known from uni-
versity courses on lasers [1]. It is the reason why we always 
think of lasers being generators of coherent states of light 
with a Poisson photon statistics. However, as we will see 
in the next paragraph, this no longer holds for a laser with 
strong beamsplitter outcoupling only.

In addition, as we can see in Fig.  7, the coupling to 
the next higher state only, resulting in the Poisson dis-
tribution, is only obtained at extremely low outcou-
pling. Looking at the values of Fl

n

(|c|2)∕Fl=n+1
n

(|c|2) for 
l = n + 2, n + 3, n + 4, n + 5 at only 1% of outcoupling, i.e., 
at |c|2 = R = 0.99 , we see that the state n is only coupled to 
state n + 1 with already a significant reduction of the cou-
pling to state n + 2 for n << 123 , defined as the point at 
which the contribution of l = n + 2 is half that of l = n + 1 . 
Mathematically, this point is given by

Therein, W−1(x) is the lower branch of the Lambert W func-
tion, satisfying W(x)eW(x) = x . It has to be noted, that no solu-
tion for n1∕2 exists for |c|2 < 0.5 , as then Fl=n+2

n
(

|c|2
)

∕Fl=n+1
n

(

|c|2
) 

is always greater than 1/2 (see Fig. 8). This shows, that for 
|c|2 < 0.5 many higher adjacent states contribute to the 
detailed balance and thus the distribution is non-Poisson 
for pure beam-splitter outcoupling.

In contrast to this, e.g., at |c|2 = R = 0.9 , for a state n 
with n > 100 at least the five higher lying states contribute 
equally to the detailed balance of state n, thus causing a 
deviation from a pure Poisson statistics.

This can be defined more rigorously by the condition that 
ΔnHW < 1 for at least all n up to and around the average photon 
number ⟨n⟩ . Therefore, we obtain a minimum OC reflectivity 
Rmin depending on the average photon number for which the 
coupling of each state to the next higher state is the only sig-
nificant contribution in the detailed balance, given by

(50)�n,n ≈ �0,0

�
A�RT

−� ln �c�2
�n

∏n

k=1

�
1

�
+ k

� → �0,0
⟨n⟩n
n!

= e−⟨n⟩
⟨n⟩n
n!

,

(51)⟨n⟩ = A�RT

−� ln �c�2 =
A�c

�
.

(52)
n1∕2 =

1
ln
(

|c|2
)W−1

⎛

⎜

⎜

⎝

|c|
1

1−|c|2 ln
(

|c|2
)

2
(

1 − |c|2
)

⎞

⎟

⎟

⎠

− 1
2
(

1 − |c|2
) − 1 ∀ 0.5 ≤ |c|2 ≤ 1.
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Fig. 6   Binomial distribution function B
(
l, |c|2;k) on the example of 

|c|2 = 0.2 and l = 15, 20, 30, 40, 50, 60, 70, 80, 90 (from left peak to 
right peak). The dashed line shows k = 14 , i.e., in the contribution 
function Fl

n=14

(|c|2 = 0.2
)
 in Fig. 5 the above binomial distributions 

are summed up over k until that line k = 0...n = 14 for each value of 
l. As for n = 14 and |c|2 = 0.2 we obtain n∕|c|2 = 70 , the dashed line 
falls on the mean of the binomial distribution with l = 70 . Therefore, 
the corresponding contribution function Fl

n=14

(|c|2 = 0.2
)
 reduces to 

about its half maximum at l = 70
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As in typical lasers, the average photon numbers are often 
much larger than 106 , we see that only extremely low out-
coupling, which is technically difficult to achieve, creates an 
inter-state coupling that causes a pure Poisson distribution 
under beam-splitter outcoupling.

4.2 � Laser photon statistics at strong outcoupling

At strong outcoupling, i.e., in the limit R = |c|2 → 0 , the width 
of the contribution function ΔnHW → ∞ such that we can set

(53)
ΔnHW(⟨n⟩) =

(

1
|c|2

− 1
)

⟨n⟩

< 1 ⇔ Rmin = |c|2min =
⟨n⟩

⟨n⟩ + 1
.

Therefore, the detailed balance in Eq. 41 approaches

Rearranging the terms and exploiting the normalization con-
dition for the diagonal elements results in the relation

which can easily be solved inductively starting from �0,0 . As 
a result, we obtain

For large n >> 1∕𝜍 , i.e., for laser operation far above thresh-
old, we can approximate this distribution to

and obtain the well-known Bose–Einstein distribution with 
identical mean as in Eq. 51. Thus, for strong outcoupling, 
we find the statistics of thermal light.

Several attempts have been performed by the author to 
find other analytical solutions to the photon statistics for 
finite values of outcoupling other than the extremes of 

(54)lim
|c|2→0

Fl
n

(|c|2) = 1.

(55)

(n + 1)A

1 + (n + 1)�
�
n,n = −

ln |c|2
�RT

∞∑
l=n+1

�
l,lF

l

n

(|c|2)

|c|2→0

≈ −
ln |c|2
�RT

∞∑
l=n+1

�
l,l.

(56)

�n,n ≈ −
ln |c|2
�RT

1 + (n + 1)�

(n + 1)A

∞∑
l=n+1
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� ln |c|2
A�RT

(
1
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+ 1

)(
1 −

n∑
l=0

�l,l

)
,

(57)�0,0 ≈
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A�RT

(
1

�
+ 1
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−� ln |c|2
A�RT

(
1

�
+ 1

)
+ 1
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A�RT

(
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A�RT
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same color, curves from top to bottom within one group) at 
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R → 0 and R → 1 , but without success. Therefore, it cur-
rently seems that in all other cases a numerical calculation 
will most likely be necessary, which, however, will be very 
time and memory consuming when real laser states at high 
photon numbers are to be investigated.

4.3 � Laser photon statistics including losses

Nevertheless, there is an important influence that we have so 
far discarded in the above description: Intra-cavity losses. If 
we take losses into account which act on single photons and 
thus can be described by Eq. 37, we introduce an additional 
coupling in the detailed balance that predominantly couples 
states n with n + 1 . The detailed balance then reads

Therefore, beam-splitter outcoupling losses and additional 
losses create fundamentally different couplings and thus 
affect the photon statistics evolution in a completely dif-
ferent way. Whenever the loss-related coupling dominates, 
i.e., when

a Poisson distribution results. The round-trip loss LRT yield-
ing at least the same coupling as for the l = n + 1 term in the 
beam-splitter outcoupling therefore results in

with

The intra-cavity loss needed to obtain this equivalence 
point is shown in Fig. 9. As can be seen, already at very low 
loss values we obtain a dominant coupling of the next higher 
state l = n + 1 and thus the statistics will develop into a Pois-
son statistics as soon as n increases significantly. This arises 
from the fact that the loss term contains the factor n + 1 , while 
the contribution function Fl=n+1

n

(|c|2) reaches n + 1 only for 
|c|2 → 1 , see Eq. 47. For large values of n, additional losses 
on the order of 1/n at low outcoupling already cause a domi-
nance of these losses with respect to the outcoupling losses 
concerning photon statistics. Therefore, it will be very difficult 
to experimentally realize a laser that generates pure beam-
splitter OC dominated statistics. If we calculate the maximum 

(61)

(n + 1)A

1 + (n + 1)�
�n,n = −

ln |c|2
�RT

∞∑
l=n+1

�l,lF
l
n

(|c|2)

+
n + 1

�loss
�n+1,n+1.

(62)
n + 1

𝜏loss
> −

ln |c|2
𝜏RT

Fl=n+1
n

(|c|2) = −
ln |c|2
𝜏RT

1 − |c|2(n+1)
1 − |c|2 ,

(63)LRT = 1 − e
−

�RT

�loss ,

(64)
�RT

�loss
= −

1 − |c|2(n+1)(
1 − |c|2)(n + 1)

ln |c|2.

intra-cavity losses not to surpass to have the chance to observe 
the beam-splitter effect on photon statistics for a given average 
photon number ⟨n⟩,

we obtain the curves in Fig. 10. At low outcoupling, the 
loss should be smaller than 1∕⟨n⟩ while at higher values of 
outcoupling, the allowable losses can be higher, yet still very 
low. Therefore, we evaluate the relative maximum loss at 
large ⟨n⟩

As can be seen in Figs. 10 and 11 the allowable losses can 
be higher for strong outcoupling. For a typical 1 mW laser at 
visible or near-infrared wavelengths, i.e., for ⟨n⟩ ≈ 106–107 
at around 1–2% outcoupling, the intra-cavity losses need to 
be lower than 10−6–10−7.

5 � Discussion

The results presented before show, based on a simple QM 
approach to the description of a laser, that the appearance 
of a Poisson photon statistics is not intrinsically related to 
the laser process, i.e., stimulated emission, but the result of 
(uncorrelated) loss mechanisms acting on single photons. 
It can be stated therefore that so far unavoidable losses 
in laser resonators are the reason for the Poisson photon 
statistics that we commonly attribute to lasers. However, 

(65)Lmax
RT

= 1 − e
ln �c�2 1−�c�2(⟨n⟩+1)

(1−�c�2)(⟨n⟩+1) = 1 − �c�2
1−�c�2(⟨n⟩+1)
(1−�c�2)(⟨n⟩+1) ,

(66)
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= lim⟨n⟩→∞
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⟨n⟩ − ⟨n⟩�c�2

1−�c�2(⟨n⟩+1)
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�
=

− ln �c�2
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Fig. 9   Necessary loss, LRT from Eq.  63, needed to create loss-
dominated coupling in the detailed balance for OC reflectivities 
of |c|2 = R = 0.99, 0.9, 0.8, 0.5, 0.2, 0.1, 0.01 (from bottom to top, 
respectively). For large values of n the loss curves show the same 
power law and fall as 1/n, shown by the blue line
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it could be shown that the correlations arising from the 
beam-splitting properties of commonly used laser output 
couplers may in general cause highly interesting couplings 
that allow for non-Poisson distributions. Unexpectedly to 
first sight, in the limit of high output coupling and very 
low losses even the statistics of thermal light may be pro-
duced by a laser even when being above threshold. This is 
a consequence of the strong statistical mixing occurring 
as a result of the beam-splitter action of the output coupler 
at low reflectivities. However, as was shown also in the 
above calculations, extreme care will have to be taken in 
designing and realizing a laser experiment for this purpose 
as even small additional passive losses or absorption will 

cause significant coupling that will force the statistics evo-
lution into a Poisson distribution.

6 � Conclusion

In conclusion, the QM laser master equation for the den-
sity operator has been extended to incorporate the beam-
splitter effect caused by typical dielectric laser output 
couplers. Different cases without and with additional intra-
cavity losses were discussed and their influence on the 
expected laser photon statistics was deduced. As a result 
it was found that the well-known Poisson distribution of 
laser light is in most cases the result of additional losses 
or absorption, which act uncorrelatedly on single photons. 
In a theoretical laser with negligible losses where outcou-
pling is dominated by the beam-splitter effect, a Poisson 
distribution would only occur for very low outcoupling 
rates, i.e., high finesse cavities, while more complex dis-
tributions are expected for larger outcoupling rates. In the 
limit of strong outcoupling and low intra-cavity losses 
even the distribution of thermal light results. The findings 
of this theory, therefore, shed light on the complex QM 
interactions and couplings that can be caused by the beam-
splitting effect of an outcoupling mirror of a laser resona-
tor, but they also show the limits to be taken into account 
for future experiments that may try to realize these effects 
in extremely low-loss laser resonators only subjected to the 
beam-splitter outcoupling effect. Further research will be 
performed on the investigation of possible influences of 
the beam-splitter effect on laser linewidth and coherence.
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included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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