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Abstract—Estimating the position and orientation of 3-D objects
is a ubiquitous challenge. In our novel filter, the position and
orientation of objects are modeled using the Cartesian product
of R3 for the position and a 3-D hyperhemisphere. The latter is
used to describe orientations in the form of unit quaternions. The
hyperhemisphere is subdivided into equally sized areas. The joint
density for the position and orientation is split up into a marginal
density for the orientation and a density for the position that
is conditioned on the orientation. In our filter, we assume that
the function values of the marginal density and the conditional
density is the same for all points within that area. By assuming
all conditional densities to be Gaussians, efficient formulae can
be implemented for the update and prediction steps. The filter is
evaluated based on a simulation scenario, for which it showed
very high accuracy at low run times.

Index Terms—Grid filter; nonlinear filtering; periodic manifold;
special Euclidean group

I. INTRODUCTION

Tracking the pose objects in 3-D is a ubiquitous problem in
engineering. A full description of an object’s pose comprises its
position and orientation. Poses can be seen as elements of the
special Euclidean group SE(3) [1]. For practical algorithms,
different representations of poses are used. While the position
is generally described by a vector in R3, there are multiple
common ways to represent 3-D orientations. There are also
representations that do not inherently separate the position
from the orientation, such as unit dual quaternions [2].

A variety of different approaches to tracking on SE(3)
have been employed in the literature. One approach is to
use an extended or unscented Kalman filter [3] and hence to
assume that the space is locally linear. Generally, the error
state extended Kalman filter [4] and the error state unscented
Kalman filter [5] are preferred over the regular extended and
unscented Kalman filter. In [6], it was proposed to use multiple
measurements of specific forms to obtain a linear measurement
model. Another approach is to consider the Lie algebra of
SE(3) [1], [7]. Particularly for inertial navigation, the recently
introduced Lie group SE2(3) [8], [9] has also gained interest.

For SE(3), it is possible to employ the invariant extended
Kalman filter [10], [11], the invariant unscented Kalman
filter [12], and the unscented Kalman filter for manifolds [13].
Moreover, it is not difficult to adapt a particle filter (PF) [14]
to the domain. Out of the approaches mentioned, only the PF
allows increasing the accuracy of the estimates by increasing
the number of parameters. However, the convergence of the
PF is slow and the PF does not provide a continuous density.
The approach we propose in this paper provides a continuous
density and its accuracy can be increased by increasing the
number of parameters.

Recently, the state space subdivision filter (S3F) [15] was
proposed for estimating planar poses, which can be seen as
elements of SE(2). Planar poses can be described by a 2-D
translatory part xτ and an orientation xω , which is merely an
angle in 2-D. The foundation of the S3F is to rewrite the joint
density for the position and orientation f(xτ , xω) as the product
of the marginalized density for the periodic part fω(xω) and
the conditional density f c(xτ |xω). Then, the circular manifold
is subdivided into n equal-sized areas. The marginalized density
is represented using function values on a grid, as is done in the
grid filter for the unit circle presented in [16]. For each area, one
stores the function value γi = fω(βi), and the marginal density
is assumed to be precisely γi in that area. The conditional
densities are assumed to be Gaussian. The conditional density
can be different for each of the areas. For each area, the mean
vector µ

i
and covariance matrix Ci of the conditional density

are stored. Using some additional assumptions, which we get
into detail later in this paper, prediction and update steps can
be performed.

In this paper, we present the S3F for SE(3). We parameterize
SE(3) states using a 3-D translatory part xτ and an orientation
xω in the form of a unit quaternion. Unit quaternions lie on
the 3-D unit hypersphere S3. However, since the quaternions
q and −q describe same orientation, it is sufficient to consider
the upper (along the last dimension) hyperhemisphere of
the unit hypersphere, which we denote by H3. Considering
only the upper hemisphere avoids redundancies and prevents
asymmetries, which could be caused by approximation errors
or numerical imprecision. In our parameterization, the full state
vector comprising xτ and xω is an element of H3 × R3.

We use a grid-based filter for hyperhemispheres [17] as the
basis for the S3F for SE(3). In this filter, H3 is partitioned into
a set of n areas A = {A1, . . . , An}. To partition the domain,
we presented a symmetrized version of equal area partitioning
algorithm [18] in [17]. By considering only the areas on the
upper hemisphere, a partition of H3 can be obtained. The
subdivision of H3×R3 would thus be {Ai×R3|i ∈ {1, . . . , n}}.
However, the focus of our considerations will be on the
elements in A, and we will use the term area to refer to
an element Ai ⊂ H3.

In the next section, we explain the assumptions that underlie
our filter and how a given density can be approximated in
the required parametric form. The formulae for the update
and prediction steps are derived in Sec. III. An evaluation is
provided in fourth section. We provide a conclusion and an
outlook in Sec. V.



II. ASSUMPTIONS AND DENSITY REPRESENTATION

We begin by formally defining the domain and explaining
the relationship between the areas, grid points, and grid values.
Then, we detail the assumption that underlie our filter in the
first subsection of this section. The second subsection addresses
how existing densities are approximated.

If one defined H3 as the points in R4 with norm 1 and x4 >

0, it would not contain certain points, e.g.,
[
1 0 0 0

]⊤
. If

one used the condition x4 ≥ 0, H3 would contain, e.g., both[
1 0 0 0

]⊤
and

[
−1 0 0 0

]⊤
. Therefore, we define

H3 = {x ∈ R4 : ∥x∥ = 1 ∧ (x4 > 0 ∨ x4 = 0 ∧ x3 > 0

∨ x4 = 0 ∧ x3 = 0 ∧ x2 > 0 ∨ x =
[
0 0 0 1

]⊤
)}

to ensure that a unit quaternion q is in H3 if and only if
−q ̸∈ H3.

The subdivision of H3 presented in [17] ensures that there
is a well-defined center for each area Ai. The centers are used
as grid points B = {β

1
, . . . , β

n
}. As explained more formally

in the first subsection, the grid value γi describes the function
value of the marginal density fω in the corresponding area.
Note that while A and B are sets, they may only be reordered
in the same way, which also requires reordering the entries of
the corresponding vector of grid values γ.

A. Assumptions
Our filter is based on assumptions that are used to obtain grid-

based representations of densities, likelihoods, and transition
densities. We first consider densities and likelihoods. Besides
the previously mentioned constantness of fω in each area, we
assume that the conditional densities are the same for every
xτ in each area and that they are all Gaussians. Formally, our
assumptions are as follows.
(A1) The marginal density fω(xω) (or likelihood Lẑ) is

constant within each area, i.e., ∀xω ∈ Ai : f
ω(xτ ) = γi

(or ∀α ∈ Ai : Lẑ(x
τ ) = γi).

(A2) The conditional density f c(xτ |xω) (or likelihood
Lc
ẑ (x

τ |xω)) is the same for all xω ∈ Ai.
(A3) f c(xτ |xω) is Gaussian for every considered xω .
By combining (A2) with (A3), we know that the conditional
densities for all xω ∈ Ai, which we denote by f c

i (x
τ ), can

be parameterized by a single mean vector µ
i

and covariance
matrix Ci. The entire density or likelihood can be described
by the n-tupel of triples

(
(γi, µi

,Ci)
)n

i=1
.

For the prediction step, we need a suitable parameterization
for the transition density, which can be written as

fT(xτ
t+1, x

ω
t+1|xτ

t , x
ω
t )

= fT,c,full(xτ
t+1|xω

t+1, x
τ
t , x

ω
t )f

T,ω,full(xω
t+1|xτ

t , x
ω
t ) .

We introduce a different set of assumptions for the transition
density. The first is that the next orientation must not depend
on the current translation. In other words, there is a density
fT,ω(xω

t+1|xω
t ) that does not depend on xτ

t but returns the same
function values as fT,ω,full(xω

t+1|xτ
t , x

ω
t ). For our discretization-

based approximation, we see the transition density as a function
on R3 ×H3 × R3 ×H3 and discretize H3 ×H3. While other

subdivisions would be possible, we shall always use A×A as
the subdivision of H3×H3. Our grid values are then B×B. The
grid values describe the function values of fT,ω(xω

t+1|xω
t ) in

the areas A×A and are stored in a matrix ΓT. For each of the
grid points, one can have a different linear model with white
Gaussian noise that is parameterized by a transition matrix
Ft,i,j , an input vector ût,i,j , and a system noise covariance
matrix C

w
t,i,j . Note that the transition matrix, the input vector,

and the covariance matrix may depend (nonlinearly) on the
regions for the orientation at time step t and t+ 1. They may
also only depend on the current orientation xω

t .
Formally, we obtain the following four assumptions.

(B1) ∀xτ
t ∈ R3 : fT,ω,full(xω

t+1|xτ
t , x

ω
t ) = fT,ω(xω

t+1|xω
t ).

(B2) ∀xω
t+1 ∈ Ai∀xω

t ∈ Aj :

fT,ω(xω
t+1|xω

t ) = fT,ω(βi|βj) = γT
i,j .

(B3) The conditional density fT,c,full(xτ
t+1|xω

t+1, x
τ
t , x

ω
t ) is the

same function for all xω
t+1 ∈ Ai and xω

t ∈ Aj . We denote
it by fT,c

i,j (x
τ
t+1|xτ

t ).
(B4) Each conditional density can be written as

fT,c
i,j (x

τ
t+1|xτ

t ) = fN
(
xτ
t+1;Ft,i,jx

τ
t + ût,i,j ,C

w
t,i,j

)
,

(1)
with fN being a Gaussian density with the specified
parameters.

Throughout this paper, we assume that one can write the
transition density in such a form. In our implementation, we
set fT,c

i,j (x
τ
t+1|xτ

t ) to fT,c,full(xτ
t+1|βi, x

τ
t , βj), i.e., we use the

conditional density that is obtained by setting xω
t+1 to βi and

xω
t to βj .

B. Density Approximation
Our filter uses parametric densities and likelihoods with

the assumptions explained in the previous subsection. We
now consider how to obtain parameters for given densities
and likelihoods. We put our focus on (normalized) densities.
The process can be applied similarly for likelihoods, and we
briefly highlight some differences. For the system model, we
assume we are given it a suitable parametric form. Note that all
intermediate results of the filter are given in parametric form,
and thus, approximating a given density is only necessary
as part of the initialization or if the likelihood must be
approximated anew in each time step. We start by explaining
how the grid values can be obtained. Then, we address how
we can get the parameters of the conditional densities. Finally,
we explain how we can ensure the normalization, which is
only relevant for densities and not for likelihoods.

If the density or likelihood is given in the form of a product
of a marginal density and a conditional density, the grid values
can be obtained directly from the marginal density. If we
assume the marginal density to be constant (as assumed in
A1), we can simply evaluate the marginal density at the grid
points. If we only have the joint density, we can compute the
grid values according to

γ̆i = fω(β
i
) =

∫
R3

f(xτ , β
i
)dxτ .

The original marginal density is not necessarily constant in
each of the areas. In this case, the normalization of the marginal



density represented by the grid values may not be ensured,
which we indicate by the use of the ˘ decorator in our paper.
As an alternative, one could integrate the marginal density
fω over Ai (or f over Ai × R3) and divide the result by
the size of Ai. While this approach may be beneficial if
the marginal density is highly variable within the area, it
involves calculating high-dimensional integrals. Therefore, we
do not employ this approach for our practical implementation.
Instead, we normalize the density as explained at the end of
this subsection.

If the conditional densities are not directly given, we need
to obtain them from the joint density. We always use the
conditional density at respective the grid point, i.e., f c(xτ |β

i
)

for the conditional density for each area. When the grid values
are chosen to be the function values at the grid points (and
not the average function value) the conditional density is given
according to

f c
i (x

τ ) = f c(xτ |β
i
) =

f(xτ , β
i
)

fω(β
i
)

=
1

γ̆i
f(xτ , β

i
) .

If the conditional densities are not Gaussians, we approximate
them with Gaussians by calculating the mean and covariance. If
no analytic way to obtain the mean and covariance is available,
one can employ the well-known formulae

µ
i
=

∫
R3

xτf c
i (x

τ )dxτ

for the mean vector and

ci,j,k =

∫
R3

(xτ
j − µi,j)(x

τ
k − µi,k)f

c
i (x

τ )dxτ

for the entry in column j and row k of the covariance matrix
for the conditional density for area i. For n areas, n 3-D
integrals are required to determine the grid values, and 3n and
6n integrals are required for the mean vectors and covariance
matrices, respectively. While the approximation of the prior
density can be done offline and the low run times are thus not
vital, the likelihood may need to be approximated during run
time. Therefore, the filter is most efficient when the parameters
of the likelihood can be obtained analytically.

As mentioned in the beginning of this subsection, the
marginal density represented by the grid values may not be
normalized when one uses the function values at the grid
points as the grid values. Therefore, the joint density may
not be normalized, even though the conditional densities are
inherently normalized because they are Gaussians. This can be
seen via ∫

R3

∫
H3

f
(
xτ , xω;

(
(γi, µi

,Ci)
)n

i=1

)
dxωdxτ

=

n∑
i=1

∫
Ai

fω(xω)

∫
R3

f c
i (x

τ )dxτdxω

=

n∑
i=1

γ̆i |Ai| =
π2

n

n∑
i=1

γ̆i =
π2

n

∥∥γ̆∥∥
1
,

with
∥∥γ̆∥∥

1
being the sum of all entries of the vector γ̆ and

|Ai| being the size of Ai, which is π2

n for equal-sized areas

because
∣∣H3

∣∣ = π2. From the formula of the integral, we can
also see that scaling all values in the vector of grid values by
a constant leads to a function whose integral is scaled by that
constant. Therefore, we can obtain the vector γ describing the
normalized density by dividing all entries of γ̆ by π2

n

∥∥γ̆∥∥
1
.

Note that likelihood functions need not be normalized. As gets
evident in Sec. III-A, our filter works even if the integral of
the approximation of the likelihood over the entire domain is
not equivalent to the integral of the original likelihood.

III. FILTER DERIVATION

In our derivation, we proceed similarly as in the derivation
of the S3F for SE(2) [15]. For the derivation, we require the
fundamental Gaussian identity

fN(Mx;µr,Cr)fN(x;µ
s,Cs)

= fN(µ
r;Mµs,Cr +MCsM⊤)fN(x;µ

q,Cq)
(2)

with

Cq =
(
M⊤ (Cr)

−1
M+ (Cs)

−1
)−1

,

µq = Cq
(
M⊤ (Cr)

−1
µr + (Cs)

−1
µs

)
.

The update step is derived in the first subsection and the
prediction step in the second subsection.

A. Update Step

In the update step, the measurement ẑt is used according to
the likelihood function Lẑt

to improve our knowledge about
the current state. We denote the prior density at time step t
that only considers all measurements until time step t− 1 by
f p
t and the posterior density also considering ẑt by f e

t . Using
Bayes’ formula, we obtain

f e
t (x

τ
t , x

ω
t |ẑ1, . . . , ẑt)

∝Lẑt
(xτ

t , x
ω
t )f

p
t (x

τ
t , x

ω
t |ẑ1, . . . , ẑt−1) ,

in which ∝ indicates that the two terms only differ by a
nonnegative factor. From now on, we denote the product of
the likelihood and the prior density by f̆ e

t , and we omit the
dependencies on the measurements for brevity. We further
omit the time indices of the densities because it is always t in
the update step. Because f e ∝ f̆ e, we can implement Bayes’
formula by first determining f̆ e via a multiplication and then
normalizing the result.

Based on our assumptions, the parametric prior density
before the update step is

f p
(
xτ
t , x

ω
t ,

(
(γp

j , µ
p
j
,Cp

j

)n

j=1

)
=

n∑
j=1

1 {xω
t ∈ Aj} γp

jfN

(
xτ
t ;µ

p
j
,Cp

j

)
, (3)

with 1 being the indicator function that is 1 when the condition
in braces is met and 0 otherwise. The parameters are either
obtained from the previous prediction step or by approximating



the initial prior density as explained in Sec. II-B. Similarly,
the likelihood is given by

Lẑt

(
xτ
t , x

ω
t ;

(
(γL

i ;µ
L
i
,CL

i )
)n

i=1

)
=

n∑
i=1

1 {xω
t ∈ Ai} γL

i fN

(
xτ
t ;µ

L
i
,CL

i

)
.

The unnormalized posterior density is given by the multipli-
cation result, leading to

f̆ e (xτ
t , x

ω
t ) =

n∑
i=1

n∑
j=1

1 {xω
t ∈ Ai}1 {xω

t ∈ Aj}

· γL
i γ

p
jfN

(
xτ
t ;µ

L
i
,CL

i

)
fN

(
xτ
t ;µ

p
j
,Cp

j

)
.

All terms with i ̸= j are zero, and thus, we can omit the second
sum and set j to i. Then, we further employ the fundamental
Gaussian identity (2) to obtain

f̆ e (xτ
t , x

ω
t ) =

n∑
i=1

1 {xω
t ∈ Ai}

γL
i γ

p
i fN

(
µp
i
;µL

i
,CL

i +Cp
i

)
fN

(
xτ
t ;µ

e
i
,Ce

i

)
,

(4)

with

Ce
i =

(
(CL

i )
−1 + (Cp

i )
−1

)−1
, (5)

µe
i
= Ce

i((C
L
i )

−1µL
i
+ (Cp

i )
−1µp

i
) . (6)

The parameters of the conditional densities are directly given
by (5) and (6).

From (4), we obtain the formula

γ̆e
i = γL

i γ
p
i fN

(
µp
i
;µL

i
,CL

i +Cp
i

)
fN

(
xτ
t ;µ

e
i
,Ce

i

)
for the grid values of the unnormalized posterior density. Then,
we determine the vector γe describing the normalized result

by dividing γ̆e by
(
π2

∥∥γ̆e∥∥
1

)
(see Sec. II-B for information

on the normalization). For n areas, all operations involved are
in O(n).

B. Prediction Step

The prediction step provides the prior density for time step
t+ 1 based on the posterior density for time step t, which is
obtained from the most recent update step. Our prediction step
is based on the Chapman–Kolmogorov equation

f p
t+1(x

τ
t+1, x

ω
t+1|ẑ1, . . . , ẑt)

=

∫
R3

∫
H3

fT
t (x

τ
t+1, x

ω
t+1|xτ

t , x
ω
t )f

e
t(x

τ
t , x

ω
t |ẑ1, . . . , ẑt)︸ ︷︷ ︸

f j
t(x

τ
t+1,x

ω
t+1,x

τ
t ,x

ω
t )

dxω
t dx

τ
t ,

in which the system model is given in the form of a transition
density fT

t that fulfills Sec. II-A. We implement the prediction
step by first multiplying fT

t with f e
t , which yields the joint

density f j
t(x

τ
t+1, x

ω
t+1, x

τ
t , x

ω
t ) as an intermediate result. We

then marginalize xω
t and xτ

t out to obtain f p
t+1.

First, we write out the transition density based on the
assumptions (B1)–(B3), leading to

fT
(
xτ
t+1, x

ω
t+1|xτ

t , x
ω
t ;

{
γT
i,j ,Fi,j , û

τ
i,j ,C

w
i,j

}
(i,j)∈{1,...,n}2

)
=

n∑
i=1

n∑
j=1

1
{
xω
t+1 ∈ Ai

}
1 {xω

t ∈ Aj} γT
i,jf

T,c
i,j

(
xτ
t+1

∣∣xτ
t

)
.

(7)

The joint density is then the product of the double sum for the
transition density (7) and the sum for the posterior density. We
first multiply out the sum and then reduce the resulting triple
sum to a double sum by considering that all terms with k ̸= j
are zero, yielding

f j(xτ
t+1, x

ω
t+1, x

τ
t , x

ω
t )

=

n∑
i=1

n∑
j=1

n∑
k=1

1
{
xω
t+1 ∈ Ai

}
1 {xω

t ∈ Aj}1 {xω
t ∈ Ak}

· γT
i,jγ

e
kf

T,c
i,j

(
xτ
t+1

∣∣xτ
t

)
f e
k (x

τ
t )

=

n∑
i=1

n∑
j=1

1
{
xω
t+1 ∈ Ai

}
1 {xω

t ∈ Aj}

· γT
i,jγ

e
jf

T,c
i,j

(
xτ
t+1

∣∣xτ
t

)
f e
j (x

τ ) .

We now define γj
i,j = γT

i,jγ
e
j and marginalize out xω

t and
xτ
t to obtain the predicted density

f p
t+1

(
xτ
t+1, x

ω
t+1

)
=

∫
H3

∫
R3

n∑
i=1

n∑
j=1

1
{
xω
t+1 ∈ Ai

}
1 {xω

t ∈ Aj}

γj
i,jf

T,c
i,j

(
xτ
t+1

∣∣xτ
t

)
f e
j (x

τ
t ) dx

τ
t dx

ω
t

=

n∑
i=1

1
{
xω
t+1 ∈ Ai

} n∑
j=1

∫
R3

γj
i,j

fT,c
i,j

(
xτ
t+1

∣∣xτ
t

)
f e
j (x

τ
t ) dx

τ︸ ︷︷ ︸
ζ

∫
H3

1 {xω
t ∈ Aj} dxω

t︸ ︷︷ ︸
η

.
(8)

η is the size of Aj . In our subdivision using equal-sized areas,
η is π2

n . We now write out the densities, which are assumed
to be Gaussian according to (A3) and (B4), and apply the
fundamental Gaussian identity to obtain

ζ = fN
(
xτ
t+1;Fi,jx

τ
t + ûτ

i,j ,C
w
i,j

)
fN

(
xτ
t ;µ

e
j
,Ce

j

)
=

(
Fi,jx

τ
t ;x

τ
t+1 − ûτ

i,j ,C
w
i,j

)
fN

(
xτ
t ;µ

e
j
,Ce

j

)
= fN

(
xτ
t+1 − ûτ

i,j ;Fi,jµ
e
j
,C

w
i,j + Fi,jC

e
jF

⊤
i,j

)
fN

(
xτ
t ;µ

q,Cq
)
.

The values in µq and Cq in the final expression are irrelevant.
The density of the normal distribution is the only term that
depends on xτ

t in the integral (8) over the entire domain, which
is 1 because the normal distribution is normalized.



We then consider the remaining terms of f p
t+1 and define∥∥∥γj

i,:

∥∥∥
1
=

∑n
k=1 γ

j
i,k and pull the factor out of the second

sum, yielding

f p
t+1

(
xτ
t+1, x

ω
t+1

)
=

n∑
i=1

1
{
xω
t+1 ∈ Ai

} π2

n

n∑
j=1

γj
i,jfN

(
xτ
t+1;Fi,jµ

e
j
,+ûτ

i,j ,C
w
i,j + Fi,jC

e
jF

⊤
i,j

)
=

n∑
i=1

1
{
xω
t+1 ∈ Ai

} π2

n

∥∥∥γj
i,:

∥∥∥
1

(9)

n∑
j=1

γj
i,j∥∥∥γj
i,:

∥∥∥
1︸ ︷︷ ︸

wi,j

fN

xτ
t+1;Fi,jµ

e
j
+ ûτ

i,j︸ ︷︷ ︸
vi,j

,C
w
i,j + Fi,jC

e
jF

⊤
i,j︸ ︷︷ ︸

Ui,j

 .

(10)

The expression in (9)–(10) is already close to the desired
form (3). Each grid value γp

i is π2

n

∥∥∥γj
i,:

∥∥∥
1
. Instead of a single

Gaussian, we have a Gaussian mixture with weights wi,j , mean
vectors vi,j , and covariance matrices Ui,j as the conditional
density in (10).

To get to the desired form (3) that fulfills all assumptions,
we perform Gaussian mixture reduction. There are several
approaches to Gaussian mixture reduction [19]. We choose
moment matching as a highly efficient way. The mean vector
µp
i

for the Gaussian for the area i is the weighted combination
of the original mean vectors, i.e.,

µp
i
=

n∑
j=1

wi,jvi,j .

Each predicted covariance depends on both the covariances
of the mixture components and the differences in the mean
vectors. For this, the sample covariance is added to the weighted
combination of the covariances, leading to

Cp
i =

 n∑
j=1

wi,jUi,j

 +

n∑
j=1

(
vi,j − µp

i

)(
vi,j − µp

i

)⊤

for the predicted covariance for the area i.

IV. EVALUATION

In this chapter, we compare the S3F with a PF that we
adapted to the SE(3) domain. We consider different number of
parameters, i.e., different numbers of areas or particles. Both
filters are part of the latest version of libDirectional [20].

A. Scenario Description
We simulate the motion of an object for 10 time steps. The

random vector for the initial position xτ
1 is distributed according

to a normal distribution N (0, I), with 0 and I being the 3-D
zero vector and identity matrix, respectively. For the orientation,
we constrain a Watson distribution [21, Sec. 9.4.2], which
is a antipodally symmetric distribution on the sphere, to the
upper hemisphere. This hyperhemispherical Watson distribution

Fig. 1. Errors over number of areas or particles.

is only defined on the upper hemisphere and has twice the
density of a regular Watson distribution. The initial prior
xω
1 is distributed according to a hyperhemispherical Watson

distribution HWD with mean value µ =
[
0 0 0 1

]⊤
and

concentration parameter 1.
The heading angle in time step t+1 is distributed according

to

xω
t+1 ∼ HWD(xω

t , 1) .

The object moves one unit per time step in the direction it is
facing. Moreover, some additive Gaussian noise wτ

t ∼N (0, I)
is added. Denoting the rotation matrix that corresponds to the
quaternion q by R(q), the motion model for the translatory
component is

xτ
t+1 = xτ

t +R(xω
t ) +wτ

t .

It can easily be seen that the next position depends on the
current orientation, and thus, the estimation problem cannot be
split up into two separate parts for the position and orientation.

As measurements, only position measurements are obtained.
The measurements are perturbed by additive white Gaussian
noise. The full measurement model is zt = xτ

t + vt with
vt ∼ N (0, I) for all time steps.

B. Evaluation Metrics

4000 runs were performed for all filters. All evaluation
metrics are condensed into a single number by determining
the average.

One criterion we consider for the two filters is the run time.
The run times are given as the average run time per time step,
i.e., we divide the total run time of the filter by 10. The run
times were measured on a server running Red Hat Enterprise
Linux 8.2. Two cores of an Intel Xeon Gold 6230 and 3 GB
of RAM were allocated to the job.

For the errors, we consider the Euclidean distance between
the estimate provided by the filter (after the update step) and the
actual position at the last time step. Because we consider the
estimate at the 10th time step and the position and orientation
are dependent, the quality of the orientation estimates also
plays a role.



Fig. 2. Run time over number of areas or particles.

Fig. 3. Error over run time.

C. Evaluation Results
In Fig. 1, the average errors are shown for the two filters and

different numbers of parameters. Using only 5 areas, the S3F
already yields highly accurate results. The PF requires 10000
particles to achieve an accuracy that is comparable to (but still
worse than) that of the S3F using 15 areas. Using 25 areas
only leads to an improvement of less than 10−3 compared
with the S3F using 15 areas. That the S3F does not improve
significantly further may indicate that the filter configuration
is already close to the accuracy an optimal Bayes filter would
achieve.

The run times are shown in Fig. 2. As expected, the run
time of the PF scales linearly in the number of particles. In
our implementation, the S3F is still faster than the PF for the
considered number of parameters, which shows that none of
the operations in the S3F is forbiddingly expensive. In the
configurations considered, the S3F appears to scale almost
linearly in the number of parameters. However, due to its
quadratic complexity, one can expect the S3F to have higher
run times for higher numbers of parameters.

Since the limiting factor in most cases is run time and not
RAM, we also compare the filters on a run time basis in Fig. 3.
A configuration that is to the lower left of another led to more
accurate results at a lower run time. The configurations of the
S3F with 15 and 25 areas are to the lower left of all considered
configurations for the PF. Being able to produce more accurate
results at lower run times, the S3F is clearly superior to the
PF in this scenario.

V. CONCLUSION AND OUTLOOK

In this paper, we presented the S3F for SE(3). The key
idea of the S3F is to split the joint density for the position
and orientation up into a marginal part for the orientation and
a part for the position that is conditioned on the orientation.
While only the unit circle had to be discretized for the SE(2)
variant of the S3F, the S3F for SE(3) relies on a discrete
filter for hyperhemispheres. Each update step is in O(n), and
O(n2) operations are required for the prediction step. Thus,
its asymptotic run time behavior is equivalent for that of the
original discrete filter for hyperhemispheres.

In our evaluation, the S3F outperformed a PF even for a high
number of particles. The S3F provided highly accurate results at
low run times and is thus a good option for estimation problems
on SE(3). One limitation is the assumption that the conditional
densities are unimodal. However, one could alleviate this issue
by allowing for mixtures, which may be the subject of future
work. Another limitation is assumption (B1). This assumption
does not allow for a direct influence of the current position
on the next orientation. If such a dependency is required, one
can consider conditioning on the mean of the Gaussian in the
respective area or the mean of the marginalized density for the
position considering all areas (which is a Gaussian mixture).

As part of future work, one may consider integrating linear
and angular velocities into the S3F. While one only has to
use higher-dimensional Gaussians for the linear velocities,
integrating angular velocities can be more tricky. One way to
describe angular velocities is to use a vector in R3. However,
one cannot directly integrate the angular velocity as a quantity
in R3 into the conditional density because assumption (B1)
would not allow for considering the angular velocity for the
next orientation. One possible solution is to limit the angular
velocity, which would lead to a bounded domain. Alternatively,
one could consider turn rates greater than one revolution per
time step equivalent to a lower turn rate that results in the same
orientation in the next time step. For example, if an object
turns by 2π + 0.1 per time step around an axis of rotation,
the orientation in the next time step will be the same as if
the object turned by 0.1 around the same axis. Using such
considerations, one can encode turn rates using elements of a
manifold of bounded size. Then, one could derive a grid-based
filter for the Cartesian product of the manifold for the turn rate
and H3 to simultaneously describe the orientation and turn rate
in the marginal density, allowing for the implementation of a
good model while preserving assumption (B1). Another area
for future work would be to apply the S3F to simultaneous
localization and mapping [22] by integrating marker positions
into the state.
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