
Architectural Optimization for Confidentiality
under Structural Uncertainty⋆

Maximilian Walter1, Sebastian Hahner1, Stephan Seifermann1, Tomas Bures2,
Petr Hnetynka2, Jan Pacovský2, and Robert Heinrich1

1 KASTEL – Institute of Information Security and Dependability, Karlsruhe
Institute of Technology (KIT), Karlsruhe, Germany

{maximilian.walter,sebastian.hahner,stephan.seifermann,robert.heinrich}@kit.edu
2 Charles University, Czech Republic

{bures,hnetynka,pacovsky}@d3s.mff.cuni.cz

Abstract. More and more connected systems gather and exchange data.
This allows building smarter, more efficient and overall better systems.
However, the exchange of data also leads to questions regarding the con-
fidentiality of these systems. Design notions such as Security by Design
or Privacy by Design help to build secure and confidential systems by
considering confidentiality already at the design-time. During the design-
time, different analyses can support the architect. However, essential
properties that impact confidentiality, such as the deployment, might be
unknown during the design-time, leading to structural uncertainty about
the architecture and its confidentiality. Structural uncertainty in the soft-
ware architecture represents unknown properties about the structure of
the software architecture. This can be, for instance, the deployment or
the actual implementation of a component. For handling this uncertainty,
we combine a design space exploration and optimization approach with a
dataflow-based confidentiality analysis. This helps to estimate the confi-
dentiality of an architecture under structural uncertainty. We evaluated
our approach on four application examples. The results indicate a high
accuracy regarding the found confidentiality violations.

Keywords: Uncertainty · Confidentiality · Design Space Exploration
· Software Architecture · Access Control · Information Flow

1 Introduction

The gathering of more data and, at the same time, the exchange of existing
data enables more efficient and smarter systems. This enables, for instance, the
⋆ This work was supported by the German Research Foundation (DFG) under project

number 432576552, HE8596/1-1 (FluidTrust), as well as by funding from the topic
Engineering Secure Systems (46.23.03) of the Helmholtz Association (HGF) and
by KASTEL Security Research Labs. Additionally, it was supported by the Czech
Science Foundation project 20-24814J, and also partially supported by Charles Uni-
versity institutional funding SVV 260451.



2 M. Walter et al.

digitization of the production process [21] or eHealth services. These systems
often include different stakeholders such as customers, suppliers, or public ser-
vice providers. Each of these stakeholders has different systems and often dif-
ferent regulations. However, they exchange data and, therefore, build a complex
network. Nevertheless, this exchange shall still keep the confidentiality of the
involved stakeholders’ data. Confidentiality is a part of information security. It
is the ”property that information is not made available or disclosed to unautho-
rized individuals, entities, or processes” [24]. It is also part of privacy such as in
the General Data Protection Regulation (GDPR) [10]. However, privacy often
contains more aspects like the right to forget or delete data. Violations against
the GDPR can have high costs [40]. Understanding these complex networks and
finding confidentiality violations is very difficult. In addition, confidentiality is
not the only relevant quality of a system. Other quality attributes such as costs
or performance also need to be considered, and this consideration of multiple
different attributes complicates the development further.

Approaches such as Security by Design or Privacy by Design want to tackle
these confidentiality issues. They propose to continuously consider the security
concern in all phases of the software development [45]. These phases include espe-
cially the design-time. Additionally, finding and repairing flaws in earlier phases
can reduce later costs significantly [4]. This can also be seen in cohesion with the
new ”Insecure Design” [37] category from the OWASP10 [38] list. This list con-
tains the top 10 categories of security problems for web applications. Therefore,
analyzing the system during design-time for confidentiality issues might reduce
this type of confidentiality problem. However, not all decisions are already made
during the design-time, and some remain unclear. Especially, the impact on con-
fidentiality is unknown [19]. For instance, the concrete deployment might be
unknown during the early design-time, e.g., cloud vs on-premise or within EU or
outside EU. Therefore, an uncertainty exists regarding the future confidentiality
of the system. In a previous publication, we classified uncertainty [6] regard-
ing the confidentiality of software architectures. Based on this classification, we
would classify the deployment as structural uncertainty. This paper is the first
step to handle uncertainty and confidentiality during the design-time. Therefore,
we choose first to consider structural uncertainty since it can be represented by
the creation of different architecture variations. For this variation creation, there
exists already approaches such as design space exploration approaches. In an-
other previous publication, we already applied design-time confidentiality anal-
ysis for handling environmental uncertainty [5]. However, this approach is not
immediately applicable to handle structural properties of software architectures.

Our contribution for tackling this problem is the combination of a design
space exploration, and optimization approach [30] together with a dataflow-
based confidentiality analysis [49]. This goes beyond the pure confidentiality
analysis [47] by explicitly considering uncertainty. Using this combination, ar-
chitects can first model different design decisions. These design decisions are
then used to automatically create different architecture variations, which are
analyzed for confidentiality. Since we reuse an existing approach for the design



Architectural Optimization for Confidentiality under Structural Uncertainty 3

space exploration [30], our approach can consider, besides the newly added con-
fidentiality, additional quality attributes, such as costs, and calculate the Pareto
optimal candidate regarding all considered quality metrics. This optimization en-
ables software architects to make informed trade-off decisions between different
quality metrics.

We evaluated our approach based on four application examples for feasibil-
ity and accuracy regarding the consideration of confidentiality violations. All
application examples are based on either the design space exploration or the
confidentiality research domain. The results for these examples indicate that our
approach is feasible and has a high accuracy regarding the detection of confi-
dentiality violations in our examples.

The paper is structured as follows. We first introduce our running example
in Section 2. Afterwards, we describe in Section 3 our foundations. Then, we
describe the used confidentiality analysis in Section 4. In Section 5, we describe
our new design space exploration integration. The evaluation follows in Section 6.
In Section 7, we describe related work and Section 8 concludes the paper.

2 Running Example

We illustrate our approach by using a running example based on [32,18]. It
represents a simplified online shop inside the European Union (EU) with EU
customers. The example consists of two components and two deployment lo-
cations, shown in Figure 1. The Online Shop component provides the basic
shop system and is deployed on an On Premise Server within the EU. The
Database Service component that persists data can either be deployed on the
same EU-based server or a Cloud Service outside the EU. Both deployments
are technically feasible.

Online Shop Database Service

?

On Premise Server 
(European)

Cloud Service 
(Non-European)

«deploy» «deploy»

Fig. 1. Component and deployment diagram under uncertainty (denoted by "?")

However, they might not be legally possible since we need to consider the sen-
sitivity of the data. The GDPR [10] forbids to transfer personal data outside
of the EU except several conditions are met. Thus, if the Database Service is
used to store personal data, the component cannot be deployed outside the EU.



4 M. Walter et al.

Therefore, a design decision regarding the allocation is necessary. This decision
is affected by the type of the transferred data. Leaving this architectural design
decision open introduces uncertainty about the structure of the system. In the
worst case, this introduces confidentiality issues that violate the GDPR. This de-
sign decision is a common design decision companies face today if they consider
moving from on premise solutions to cloud-based solutions. Note that this exam-
ple is very basic, and the design decisions are mostly obvious. However, it helps
to describe and easily understand the involved activities. The approach itself
can be also used for more complicated systems that are subject to a multitude
of different design decisions like multiple deployment questions or to compare
different implementations.

3 Foundations

For modelling the software architecture, we use the Architecture Description
Language (ADL) Palladio [43]. For the optimization of the architecture regarding
different quality metrics, we use PerOpteryx [30].

3.1 Palladio

We choose the Palladio Component Model (PCM) [43] as our ADL since there
exists already an optimization process, and it supports various quality analyses
such as performance, reliability, and costs. Additionally, it has a well-established
tooling support, which is freely available. PCM is developed for the component-
based development process and consists of five different models. Architects can
model components and their required and provided interfaces in the repository
model. The interfaces specify services with parameters and return values. These
services are implemented by components with the so-called ServiceEffectSpec-
ifications (SEFF). Different components can be instantiated and connected in
the system (assembly) model. Additionally, the public interfaces of the system
are instantiated there. The services of these public interfaces are the services
that directly interact with the user. The user behavior is described in the usage
model. Also, PCM models the deployment of components. Here, the resource
environment describes hardware resource containers such as servers and other
computing devices and linking hardware resources such as network nodes (e.g.,
switches). The allocation model specifies the placement of components to par-
ticular hardware resources.

3.2 PerOpteryx

PerOpteryx [30] is a design space exploration and optimization approach for
PCM. It supports the generation of different architectural variations and the
optimization for different quality attributes. It uses evolutionary search algo-
rithms and calculates the Pareto optimal architectural variation. The different
variation points of the architecture are specified in the design decision model.



Architectural Optimization for Confidentiality under Structural Uncertainty 5

Here, architects can define which entities in the software architecture can be
configured. For instance, in our running example, this is the allocation of the
Database Service component to the EU and the non-EU servers. The different
quality attributes are defined as quality dimensions. There exist various quality
dimensions, such as costs or performance.

However, there is no quality dimension for confidentiality, which would be
required for our running example. The optimization approach is guided by the
Quality of Service Modeling Language (QML) [15] contracts [36]. Here, architects
can specify which quality dimension should be optimized and what the desired
values should be. Additionally, they can specify restrictions for the optimization,
e.g., that the costs cannot be higher than a certain threshold. Each generated
and evaluated variation is called a candidate. Besides the optimal candidates,
PerOpteryx also yields all the investigated candidates.

4 Architecture-Centric Confidentiality Analysis

For determining the confidentiality of a system, an automatic analysis based on
the properties of the system, such as deployment locations or user roles, is ben-
eficial. With this analysis, architects can analyze different scenarios regarding
their confidentiality. For instance, based on our running example, an architect
can model the scenario using the EU server first and the scenario using a server
outside of the EU afterwards. Both scenarios could be analyzed regarding con-
fidentiality, and afterwards, the most beneficial scenario could be chosen. To
support this use case, we need to model the different scenarios and analyze
the modeled scenarios. For the modeling part, we choose to extend the exist-
ing ADL PCM [43] with confidentiality annotations [46]. Based on the extended
metamodel, we then create a PCM model representing the software architecture
with confidentiality properties. This extended PCM model is then transformed
into a dataflow diagram [48,49]. These dataflow diagrams are then combined
with dataflow constraints and analyzed regarding violations of these constraints.
We described this analysis method in previous publications [46,47].

4.1 Modeling Confidentiality in PCM

Modeling confidentiality aspects of software architectures in PCM serves two
purposes: First, aspects, which are relevant for reasoning about confidentiality
are documented. Second, a structured documentation of these aspects enables
automated analyses. In the following, we focus on the second purpose since we
later on use this for our analysis.

The analysis on dataflow diagrams, which we reuse to analyze software ar-
chitectures given in PCM, is based on label propagation [49]. To make use of the
existing analyses [49], PCM has to provide all information to derive a label prop-
agation graph. In our extended PCM model, we call labels characteristics. They
are strongly typed and defined in a so-called data dictionary. Listing 1.1 illus-
trates an excerpt of the data dictionary for our running example. We first define



6 M. Walter et al.

an enumeration Location with the literals EU and nonEU. The same is done for
the Sensitivity levels. The enumerations define value ranges. Additionally, we
specify characteristic types (here ServerLocation and DataSensitivity), that
reference the enumerations and give the values a meaning. For instance, a loca-
tion can be used as a value for a characteristic, which describes the location of a
node or the origin of data, which is allowed to flow to the node. A characteristic
always has its type and potentially multiple values.

1 enum Location {
2 EU
3 nonEU
4 }
5 enum Sensitivity {
6 Personal
7 Public
8 }
9

10 enumCharacteristicType ServerLocation using Location
11 enumCharacteristicType DataSensitivity using Sensitivity

Listing 1.1. Simplified textual representation of a data dictionary

The characteristics for nodes can be added to resources, users and deployed
components in PCM. Resources host components, so the characteristics also
apply to the components deployed on the resource. Figure 2 illustrates these
annotations for our running example by using the PCM tool support. Here
we have two servers (OnPremiseServer, CloudServer). Their characteristics
are shown as green labels. Both characteristics refer to the characteristic type
ServerLocation. One characteristic refers to the value EU and the other one
refers to the value nonEU. These characteristics are transformed to labels of the
nodes in the label propagation graph during the analysis.

The characteristics of data flows stem from the characteristics that are as-
signed to parts of the system. In PCM, data is represented by parameters or
return values of services. We refer to both types of data as variables. PCM can
apply characteristics to such variables. We extended the means for modeling
this application of characteristics to support the characteristic types from data
dictionaries: For every variable, a software architect can define multiple assign-
ments. An assignment applies a characteristic, which is specified on the left-hand
side of an assignment, if the expression on the right-hand side of an assignment

<<ResourceContainer>>
OnPremiseServer

ServerLocation: EU

<<ResourceContainer>>
CloudServer

ServerLocation: nonEU

<<LinkingResource>>
PublicInternet

CommunicationLinkResourceSpecification

Latency: 
Throughput: 
Failure Probability: 0.0

Fig. 2. Resource containers of the running example with location characteristics



Architectural Optimization for Confidentiality under Structural Uncertainty 7

<<UsageScenario>>
ShopingUsageScenario

<<ScenarioBehaviour>>
UsersViewItemsAndBuyItems

<<EntryLevelSystemCall>>
BuyEntryLevelSystemCall
UserInterface.buy

InputVariableUsageCompartment

userData

userData.DataSensitivity.Personal := true

OutputVariableUsageCompartment

<<EntryLevelSystemCall>>
ViewEntryLevelSystemCall
UserInterface.view

InputVariableUsageCompartment

OutputVariableUsageCompartment

Fig. 3. Usage Scenario of the running example with characteristics assignments

evaluates to true. The right-hand side can be a constant assignment of a truth
value, a query for the existence of a characteristic on another variable or a log-
ical connection such as a conjunction of the previously mentioned expressions.
It is possible to express a characteristic propagation that uses incoming charac-
teristics to produce outgoing characteristics. In the analysis, these assignments
become label propagation functions and the characteristics are treated as labels.

Figure 3 illustrates an assignment in a usage scenario of the PCM tool sup-
port. In our running example, there is a service called buy. This service has,
among other parameters, the parameter userData. For this parameter, we would
like to specify that the sensitivity is personal. We can write this as an assign-
ment of a constant: userData.DataSensitivity.Personal := true. This describes
that the variable userData should be assigned the DataSensitivity Personal.
Describing all details of the expressions and the mapping to dataflow diagrams
as part of the analysis are out of scope of the paper. Instead, we refer to previous
publications for details on expressions [49] and the mapping [46].

A model to model transformation transforms the extended PCM to a label
propagation graph. Figure 4 illustrates a simplified graph based on the running
example. We omit all edges that do not represent relevant data for our anal-
ysis. Labels on nodes, such as the EU label at the actor, define properties of
these nodes. Labels on data, such as the Personal label at the dataflow origi-
nating from the actor, define properties of the exchanged data. Nodes propagate
the received labels through outgoing dataflows. In our example, every node is
forwarding the data without modification of its properties. The question mark
indicates the structural uncertainty introduced by the unknown allocation. After
the propagation, every exchanged data has a label. Afterwards, the policy, which
in this particular case demands that data with a Personal label must never flow
to nodes with a nonEU label, can be checked.



8 M. Walter et al.

Database

[Database Service] 
Load Inventory

    User

[Online Shop] 
View Items

     nonEU

     Public

     Public

     Public

     EU

?

[Database Service] 
Store User Data

[Online Shop] 
Buy Items

     Personal
     Personal

Policy

     Personal

     nonEU

   
 

     Personal

   
 ?

Data Source / Actor

Process

Data Store / File

Uncertainty Impact

Data Label (Sensitivity)

Node Label (Location)

Fig. 4. Simplified label propagation graph under uncertainty of the running example

4.2 Defining and Analyzing Dataflow Constraints

To find confidentiality violations in architectural models, we have to specify
prohibited behavior, first. We defined a domain-specific language (DSL) that
enables software architects to model dataflow constraints on architectural ab-
straction [20]. Together with the modeling capabilities using characteristics and
assignments, this provides means for architects to analyze confidentiality.

1 type DataSensitivity : DataSensitivity
2 type ServerLocation : ServerLocation
3
4 constraint NoPersonalDataToNonEUServers {
5 data.attribute.DataSensitivity.Personal NEVER FLOWS
6 element.property.ServerLocation.nonEU
7 }

Listing 1.2. Constraint for prohibiting flows of personal data to non-EU servers

In our running example, a confidentiality violation occurs if personal data flows
to components that are located outside the EU. Listing 1.2 shows this con-
straint formulated using the DSL. We start by reusing the type definitions from
the data dictionary. Then, we define the named constraint that shall restrict the
flow of personal data to non-EU servers. Each constraint consists of at least one
data selector and one element selector. In our example, we select data that has
the characteristic value Personal of type DataSensitivity. We select all ele-
ments with the characteristic ServerLocation set to nonEU. The directive never
flows implicates that selected dataflows are always forbidden. Thus, whenever a
selected dataflow is detected, a violation is automatically reported. The complete
analysis process is automated and transparent to software architects [47].



Architectural Optimization for Confidentiality under Structural Uncertainty 9

Please note that this only represents a very basic use case of the DSL. For
example, we added capabilities to define variables and variable sets that are filled
and compared dynamically during the analysis execution. By doing so, architects
can describe more complex constraints such as enforcing role-based access control
(RBAC) [14]. We also added selectors to reference a specific element of the
architectural model or to prohibit any type of dataflow.

The tooling [47] uses Prolog to analyze the architectural model. After the
modeling by software architects, both the architectural model and the constraints
are automatically transformed to executable Prolog code. Here, the model is
transformed into a set of clauses, that represent the dataflows in the system
[49]. The dataflow constraint—formulated using the DSL—is transformed into a
Prolog query and executed [20]. Besides the DSL, architects can also formulate
Prolog queries directly if the DSL is too limiting. Whenever the Prolog engine
successfully satisfies the query, a dataflow violation has been found. The results
are translated back into the architectural domain and displayed to the architects.
By doing so, the violations can be enriched with contextual information such
as where the violation occurred, and which characteristics were set. Also, the
complete process of transformation of models, constraints, and results as well as
the analysis are automated and transparent to the architects.

5 Considering Confidentiality under Uncertainty

With the dataflow analysis from the previous section, we can analyze architec-
tures for confidentiality issues without taking uncertainty into account. As we
discussed in previous publications [6,18] the confidentiality of the system can be
influenced by uncertainty. This uncertainty can exist in different forms such as
in the environment, e.g., no reliable information about the location of users, or
the system structure, e.g., the deployment location assumed during the design-
time [6]. There exist different means to handle uncertainty such as fuzzy policy
evaluation [9] to compensate uncertainty during runtime or probabilistic model
solver such as PRISM [23].

In our case, we concentrated on the uncertainty of structural elements such
as the deployment or the binding of components. For this type of uncertainty, a
possible solution is the creation of different variations without uncertainty. For
instance, for our running example, this would involve a different variation of
the software architecture for each deployment location. One solution, that uses
such variations, is model averaging [39]. Here, multiple variations are created,
and afterwards, the results are combined. However, using an average value for
confidentiality is not useful since it is a binary decision, whether systems are con-
fidential or not. Therefore, we want to discard solutions that have confidentiality
issues. Additionally, creating these different variations manually is cumbersome
and error-prone, and analyzing all variations can be very time-consuming. Be-
sides these drawbacks, architects seldom want to optimize regarding only one
quality attribute such as confidentiality but want to find the overall best archi-
tecture. Therefore, it is beneficial to integrate our dataflow analysis in an existing



10 M. Walter et al.

architecture design space exploration tool (see Subsection 3.2). In our case, we
used PerOpteryx [29], since it already supports an architectural design decision
model for modeling uncertain design decisions, the optimization of multiple qual-
ity attributes such as costs or performance and is well integrated into the PCM.
The first step for integrating our analysis approach is defining a new QML con-
tract for a new quality dimension named confidentiality. These QML contracts
define the quality dimensions PerOpteryx [30] can consider. Quality dimensions
are the different quality attributes PerOpteryx can optimize. While PerOpteryx
already contains a security dimension [8], we decided against it since we wanted
to explicitly target confidentiality. The existing security domain is focused more
on the costs of introducing security measures and costs of failure.

The confidentiality dimension is modeled as real values where decreasing val-
ues are better solutions, since the optimization approach of PerOpteryx currently
only support real values. However, we mapped these to a binary classification
for the confidentiality analysis results. For each quality dimension, PerOpteryx
defines handlers, which can analyze a model for the given quality dimension.
Therefore, we defined a new confidentiality handler for the confidentiality do-
main. This handler acts as an adapter between PerOpteryx and our original
dataflow analysis. The main task is to provide the input models for our analysis,
run the dataflow analysis and transform the results of our analysis as parameters
for the optimization process of PerOpteryx. For the input models, we need to
extract the current architecture candidate models. These are the varied archi-
tectures models based on the evolutionary search and the design decision model
from PerOpteryx. The candidate model of our running example contains one
concrete design decision, for instance the deployment of the database on Non-
EU servers. This candidate model is now extracted from PerOpteryx and loaded
into our analysis. Additionally, the adapter provides the confidentiality require-
ments for the dataflow analysis. After executing the analysis, we transform the
results to the newly added confidentiality dimension. Our analysis can only iden-
tify violations based on confidentiality requirements. Currently, these violations
are not ranked, and we cannot differentiate which violations are worse since the
ranking of confidentiality is not obvious. Even obvious solutions for ranking is-
sues, such as the number of violations, are problematic since scenarios with a
higher number of violations might only leak not relevant data or leak data only
in very rare cases. At the same time, scenarios with a low number could leak
highly sensitive data.

The ranking of violations or quantification of confidentiality can be seen as
another research area. Therefore, we choose here a binary classification with the
classes confidential and non-confidential. However, because the confidentiality
dimension uses real values, we need to transform the binary classifications. Also,
choosing another representation than real values is not possible due to the under-
lying extension mechanism of PerOpteryx. Also, developing another optimization
approach that supports binary classifications would come with additional draw-
backs, such as missing integration of other quality metrics. Our adapter trans-
forms confidential results to -1 and non-confidential results to 1. Despite the



Architectural Optimization for Confidentiality under Structural Uncertainty 11

binary-classification of the dataflow analysis [49] results, the dataflow analysis
can support multiple attributes as input values. For instance, in a previous publi-
cation [49], we successfully analyzed role-based access control or attribute-based
access control approaches. The results then enable the PerOpteryx optimization
to rank confidential candidates higher than non-confidential ones. Again, the
value of the mapping is partly given by technical restrictions. Since we want to
use the restriction option of PerOpteryx to filter/discard non-confidential can-
didates, the confidential result needs to be lower than the non-confidential one.
PerOpteryx currently only supports filtering candidates with too high values.
However, the choosing of negative values, does not affect the optimization ap-
proach since it explicitly accepts a decreasing integer range as an optimization
criterion. Also, the value ∞ is reserved as an error code, as it is usually in the
PerOpteryx domain.

In addition to defining the confidentiality dimension and the adapter between
PerOpteryx and our dataflow analysis, we extended PerOpteryx by a new con-
tract type for confidentiality. These types are used in the optimization definition
of PerOpteryx and define which quality attributes should be optimized. In our
case, these would be the confidentiality dimension.

The application of our approach looks like this: First, software architects need
to specify the architectural model and extend it with our dataflow extensions
(see Subsection 4.1). For the specification, they can user our developed Eclipse
tool [47], which provides graphical editors to our models. It extends the existing
notions of PCM. Figure 2 illustrate how this extension looks for the resource
environment and our running example. Additionally, they need to define the
confidentiality constraints either with our DSL (see Subsection 4.2) or use a
Prolog constraint. For our running example, the DSL specifications looks like
in Listing 1.2. The architectural variations are modeled in the design decision
model from Peroperyx. For instance, for our running example, the architect can
define here that the database service component can be deployed on two different
servers. Besides design decisions, architects need to specify the optimization
aspects. Here, PerOpteryx reuses QML contracts [15,36] (see Subsection 3.2). For

sensitivity dimension

deployment dimension
CloudOn Premise

Personal

Public

db

dbdb

db

Fig. 5. Overview for possible confidentiality results based on the deployment for the
database component and the sensitivity level of the stored data



12 M. Walter et al.

our running example, the architect creates a new QML contract with the target
to achieve -1 in the confidentiality dimension. This is modeled by an objective
with the value -1 as a goal. This represents a system without confidentiality
violations. Afterwards, the architect will get a CSV file with the tested variations
and a separate file for the Pareto optimal variation.

The possible results for our running example are illustrated in Figure 5. On
the vertical axis, the sensitivity level of the data is shown. In our case, these
are Personal and Public. On the horizontal axis the deployment possibilities,
i.e., On Premise and Cloud, are shown. We added the results for the database
service component (db) by using different colored ellipses. The grey ones are
configurations without confidentiality violations. The black one contains confi-
dentiality violations. We only illustrate the database component since it is in our
case the deciding factor. In our running example, we modeled that the database
stores Personal data. Therefore, our approach returns only the variation with
the Database Service on premise.

6 Evaluation

In the evaluation, we focus on the combination of PerOpteryx and the dataflow-
based confidentiality analysis. The evaluation for PerOpteryx can be found in
[30] and for the dataflow-based confidentiality analysis in [48,49]. Our evalua-
tion exploits these results and focuses on the integration of both approaches.
Our evaluation follows roughly the Goal Question Metric [3] approach. We first
describe our goals, questions, and if applicable the metrics and the study design
afterward. Then, we discuss the results, threats to validity, and limitations of
the approach.

6.1 Evaluation Goals, Questions, and Metrics

The first goal G1 is to evaluate the feasibility of our approach. Our evaluation
question is Q1: Is it possible to use design space exploration to create different
architectural variations which represent the influencing structural uncertainty
and required confidentiality? We do not provide a metric for this question, but
we will discuss our experience in our result section.

The second goal G2 is to evaluate the accuracy of the approach. A high
accuracy guarantees that the approach results are meaningful and can be used
for design decisions. The first question for the second goal is Q2.1: What is
the accuracy of our approach for analyzing confidentiality based on the software
architecture? With this question, we investigate whether the integration will
affect the dataflow analysis and might change its result. The second question
is Q2.2: What is the accuracy of considering confidentiality results in the soft-
ware architecture optimization to identify the Pareto optimal candidate? Here,
we investigate whether the results of the confidentiality analysis are correctly
interpreted and used for the optimization process. For both questions, we use
the metrics precision and recall [53]. For each investigated evaluation scenario,



Architectural Optimization for Confidentiality under Structural Uncertainty 13

we create a manual reference output, and this manual reference output is then
compared against the automatic result. Each incorrectly classified result is a false
positive fp, and each correctly classified result is a true positive tp. An expected
but missing result is counted a false negative fn. The accuracy is then calculated
by precision M1.1 = tp

tp+fp
, and recall M1.2 = tp

tp+fn
.

6.2 Evaluation Design

We perform our evaluation based on four different application examples from
the confidentiality [27,32] or design space exploration research community [30].

For answering Q1, we combined the input model of PerOpteryx and the
dataflow analysis. During this, we checked the model for contradicting model
elements. After combining the input models, we run our new analysis and checked
whether an error exists.

For answering Q2.1, we investigate for each example the generated candi-
dates from PerOpteryx. PerOpteryx also stores the configuration for every can-
didate and the results of the quality analysis. In our case, this is the classification
in confidential and non-confidential. Two authors investigated whether for each
candidate the classification is correct. A classification is correct, if the original
dataflow [49] analysis would yield the same results also without PerOpteryx. The
two authors are not the developers of the original dataflow analysis. Afterwards,
we calculated precision and recall.

For answering Q2.2. we used the same example as for Q1. However, we
now looked at the optimization process of PerOpteryx. Here, we compared the
suggested Pareto optimal candidates to all generated candidates. Based on this,
we calculated precision and recall. If the example also considered other quality
attributes as confidentiality, we also included these for our evaluation. If not, we
only considered the confidentiality.

Table 1. Original research domains and source for the application examples

Application Examples Domain Source

TravelPlanner Confidentiality [27,49]
Business Trip Management Design Space Exploration [30]
Distance Tracker Confidentiality [27,49]
Online Shop Confidentiality [32,18]

6.3 Application Examples

Our requirements for our application examples are that they describe the sys-
tem from an architectural viewpoint. Additionally, the examples need to have
at least documentation about either uncertainty and different design decision



14 M. Walter et al.

or need documentation regarding the confidentiality properties. For application
examples missing one of these properties, we added the missing properties man-
ually based on our experience with similar examples and systems. For every
example, there is at least one design decision that produces a confidential can-
didate and one decision for a non-confidential candidate. We have selected our
examples from the design space exploration research or confidentiality research
domain. Table 1 shows the original research domain for our application examples
and their sources.

Our first example is the Travelplanner [27] scenario. It is a confidentiality
research scenario and is also used in the evaluation of different similar approaches
such as [48,49,56,31]. In our evaluation, we used the version from our ECSA
Tutorial [47]. This variant contains 7 components. The scenario describes a flight
booking system. A user can book a flight at an airline using their mobile app.
The user has to send the credit card data to the airline for booking the flight.
However, the credit card data is confidential and should be only accessible by the
user. Therefore, the user has to declassify the credit card data manually, and only
afterwards the data should be shared with the airline. We extended this basic
scenario with a potential design decision that would violate the confidentiality
constraint of the credit card data. In our scenario, structural uncertainty exists
because it is unknown, where the credit card data should be stored.

Our second example is the Business Trip Management from PerOpteryx [30].
It describes a system to organize and book business trips. For the system, multi-
ple design decisions are modeled. For instance, the deployment of the components
can be changed, and there exist multiple implementations of components. How-
ever, these different deployment locations and implementations of components
also have different costs. Here, we reused the original models from PerOpteryx
[30]. It contains 4 components. Since PerOpteryx so far has not considered con-
fidentiality, we extended this example with a confidentiality annotation. For
simplicity reasons, we used low and high as values to model the confidentiality.
Our confidentiality constraints describe that high data cannot flow to nodes con-
sidered low. This is similar to other information flow approaches. In this case,
the uncertainty is also the deployment. Additionally, we have a design decision
where we exchange some of the implemented components.

The third example is the Distance Tracker [27]. It was already used in the
evaluation of our dataflow-based confidentiality analysis [48]. It models a simple
mobile application, which tracks the walked distance of the user by a GPS tracker
application. The walked distance is then synchronized with a service provider.
However, this provider should have no access to the actual GPS data, only to
the walked distance. Here, we added a design decision that would let the service
provider access the GPS data. The system contains 8 components.

Our fourth example is our running example (see Section 2). We modeled the
PCM models and constraints based on the descriptions from [32,18].

The Travelplanner and Distance Tracker [27] are both from the confidentiality
research domain. They were both already investigated in previous confidential-
ity analysis publications [48,49]. Therefore, they fulfill our requirements. The



Architectural Optimization for Confidentiality under Structural Uncertainty 15

Business Trip Management [30] is investigated in [30]. It contains an architec-
tural model and multiple design decisions. Therefore, also our requirements are
met. The running example has one design decision leading to structural uncer-
tainty and the software architecture is modeled. Therefore, it also fulfills our
requirements.

6.4 Results and Discussion

We have investigated each research question for each application example. For
Q1, we have found no contradicting model elements. We could model every
aspect necessary for the example. Additionally, we executed every example and
looked for errors in the generated results. PerOpteryx marks each candidate with
an error during the analysis with an ∞ value. Our results did not contain any
∞ values, therefore we assume, that no significant errors happened. This finding
indicates that a combination is technically feasible.

For every question of G2 (Q2.1 and Q2.2), we get a precision and a recall
of 1.0, which are the perfect results. The results are good because our exam-
ple models are small, which simplifies the output. Also, most of the decisions
are easily understandable and can be deduced easily without automatic tooling.
However, these smaller scenarios are better to identify implementation problems
or other errors easily. Additionally, in more complex scenarios, deducing the con-
fidentiality is not that easy, especially if there are multiple different deployment
decisions for components. Table 2 illustrates the results of our analysis. It shows
an excerpt of the analyzed candidate models for the Business Trip Management.
The first column is the cost. The second column are the confidentiality results
(with -1 for confidential and +1 for non-confidential). The next three columns
describe the deployment locations for components. The last column describes the
used implementation (the normal implementation (BookingSystem) or a faster
one (QuickBooking)). For brevity reasons, we only show an excerpt of the re-
sults. In this configuration the Server1 and Server3 are considered as High and
Server2 as low. Based on these values we calculated precision and recall.

For Q2.1, the results indicate that using the architectural candidates from
PerOpteryx as variations for the confidentiality analysis will not affect the con-
fidentiality analysis. The results for our examples are the same as if we would
have manually created model variations based on the uncertainty and afterwards
analyzed them with our dataflow analysis [49]. For Q2.2, the results indicate
that the optimization process of PerOpteryx can successfully consider the confi-
dentiality results. This could enable PerOpteryx to optimize the architecture for
confidential systems and even discard non-confidential architectural variations.

In summary, these results could enable architects to optimize software ar-
chitectures regarding different quality metrics including confidentiality. This is
indicated by our results for G1 and G2. G1 demonstrates that both analy-
ses can be combined into one working analysis for our examples. So far there
are no conceptual problems known. The results for G2 indicate, that the found
architectural candidates can be successfully analyzed regarding their confiden-
tiality. Additionally, it indicates that the optimization process potentially can



16 M. Walter et al.

use the result from the confidentiality analysis. Therefore, our approach could
optimize for confidential software architectures. Also, our approach should be
less error-prone than creating manually the variations. At the manual creation
of variations, architects need to manually track the different variations. In con-
trast, in our analysis architects need only to specify the variation points and the
analysis automatically generates architecture candidates. In addition, since we
used PerOpteryx which supports optimization for many other quality attributes,
architects could get Pareto optimal candidates for the software architecture.

Table 2. Excerpt of results for candidates of the Business Trip Management example

Cost Confidentiality C1 C2 C3 BookingSystem

5734.33 -1 Server3 Server3 Server2 QuickBooking
2749.12 +1 Server2 Server2 Server3 BookingSystem
3924.26 -1 Server1 Server3 Server2 BookingSystem
3497.23 -1 Server3 Server3 Server2 BookingSystem
1570.53 -1 Server3 Server3 Server1 BookingSystem
1647.13 -1 Server3 Server2 Server3 BookingSystem
7609.77 +1 Server1 Server2 Server3 QuickBooking

...

6.5 Threats to validity

We categories our threats to validity based on the guidelines from Runeson and
Höst [44].

Internal Validity describes that only investigated factors affect the result. The
internal validity is threatened by the manual creation of the reference output and
the extension of the existing examples. To reduce the risk of the reference out-
put, we compared the reference output with the output of the dataflow analysis
[49] without our extension. Additionally, the small size helps to understand the
results. To reduce the second risk, we added the missing properties in the exam-
ples based on our experience with similar examples, where the missing properties
are modeled. Another threat to internal validity is that we only investigated the
adapter and not the optimization process of PerOpteryx or the accuracy of the
used confidentiality analysis. However, we integrated our integration by using
the dedicated extension mechanism in PerOpteryx and only adapted the user
interface. For the dataflow analysis [49], we only added an additional output
method. Otherwise, we have not changed the source code. Therefore, we con-
sider this threat to be low since both approaches are well established and are
thoroughly evaluated in different publications such as [48,49,46,29,8].



Architectural Optimization for Confidentiality under Structural Uncertainty 17

External Validity describes how transferable the results are for others. The usage
of application examples might provide better insights but might affect the gen-
eralizability of the results. Therefore, we chose mostly external examples from
different research domains. Our first and third examples are from the confi-
dentiality domain and the second one is originally an optimization example for
performance and cost. Using different examples lowers the risk. Nevertheless,
in the future, we want to investigate real application case studies and not only
research examples.

Construct Validity describes whether the intended properties are relevant for
the goal. Here the properties are the metrics precision and recall. These metrics
are also used in the evaluation of the original confidentiality analysis [49]. Using
the same metrics lowers the risk. We did not investigate the scalability of the
approach. However, since the added adapter contains not too much complex
logic the scalability should be similar to the foundational approaches.

Reliability is how reproducible the results are for other researchers. Using sta-
tistical metrics for G2 reduces the subjectivity of the result and increases re-
producibility. Konersmann et al. [28] state the lack of reproduction packages in
current software engineering research. Thus, we provide a dataset [55] containing
all the relevant models and the analysis. Furthermore, the extension is published
as an open-source tool3 as well as all the necessary dependencies. This allows
other researchers to reproduce the result more easily and increases the reuse.

6.6 Limitations

One limitation is currently the restricted variation creation based on the ar-
chitectural decision model of PerOpteryx. While this already allows modeling
structural uncertainty such as different deployments, other aspects like different
variations of user roles are not possible. However, this does not mean, that our
confidentiality analysis [49] approach cannot handle different roles. In fact, it
can use different roles or even arbitrary attributes like in Attribute-based ac-
cess control and we already demonstrated it in [49]. Only it does not support
uncertainty in these attributes, yet. A possible solution might be the extension
or the transformation of the design decision model to an uncertainty variation
model. This would also help to create an impact analysis that identifies affected
elements of uncertainty. Another limitation, so far, is the missing differentiation
of confidentiality issues. Currently, the optimization of PerOpteryx only binary
classifies the results and optimize to a system without confidentiality violations.
However, it might be beneficial to allow certain types of violations to get bet-
ter overall system performance. This is similar to Bures et al. [7], where access
control policies are adapted and sometimes lessened to guarantee a working sys-
tem. Another first approach for quantifying security within PCM is presented
by Reiche et al. [42]. Another problem is due to the design-time nature of our
3 https://github.com/FluidTrust/Palladio-Addons-DataFlowConfidentiality-DSE

https://github.com/FluidTrust/Palladio-Addons-DataFlowConfidentiality-DSE


18 M. Walter et al.

approach. Our model might differ from the actually implemented system, and
therefore, the result of the analysis might not be true for the actual system.
However, approaches like [57,35] try to tangle this issue. Additionally, we do not
consider an explicit attacker model. Therefore, we cannot consider different at-
tacker behaviors in the optimization process. A solution might be the integration
of our attacker analysis [56].

7 Related Work

We split our related work in design space exploration, model-driven confiden-
tiality analysis, and uncertainty.

7.1 Design Space Exploration

Sobhy et al. [50] present an overview of different design space exploration con-
sidering uncertainty. In it, PerOpteryx [30] is categorized as a search-based ap-
proach. Another design space exploration tool is ArcheOpterix [1]. It can also
optimize a given architecture for multiple criteria. However, it does not support
a confidentiality analysis, and the design space modeling is more restrictive.
GuideArch [12] uses fuzzy logic to handle uncertainty in the design phase. This
uncertainty can be reduced during the development and, therefore, GuideArch
might provide more precise results. However, currently, there is no support for
confidentiality. Last, there is already a PerOpteryx extension for security [8]. In
contrast to our approach, they modeled these by a concept of concerns. These
concerns describe which design decisions are dependent on each other. In our
analysis we focus on the direct impact on confidentiality.

7.2 Model-driven Confidentiality Analysis

UMLsec [25] extends UML by defining a security profile. It supports different
kinds of analyses, such as information flow or access control. In contrast to our
confidentiality analysis, it does not support access control on data, and there
is no support to handle structural uncertainty. Another UML security profile is
SecureUML [33]. It supports role-based access control together with OCL state-
ments to support dynamic properties. However, the analysis does also not con-
sider structural uncertainty. SecDFD [52] is also a dataflow analysis approach.
They do not support custom analysis definitions such as we with our DSL (see
Subsection 4.2) or the considering of structural uncertainty with our architec-
tural design decision model from PerOpteryx. Gerking et al. [17] and the iFlow
[26] approach are also information flow analyses. The first one targets especially
Cyber-physical systems and keeping the real-time properties. It again does not
support structural uncertainty. The same applies to the iFlow approach. We also
developed another confidentiality analysis for software architectures [56]. How-
ever, there the focus is on the architectural propagation of attackers and not
dataflow or uncertainty.



Architectural Optimization for Confidentiality under Structural Uncertainty 19

7.3 Uncertainty

Garlan [16] discusses why it is necessary to consider uncertainty during the
software engineering. Uncertainty itself is in general classified in Walker et al.
[54] without special relation to software engineering. Perez-Palacin and Miran-
dola [39] extended this classification and combined it with other classifications,
such as [2]. They also discuss mechanisms to handle different types of uncer-
tainty. However, they do not consider confidentiality. Additionally, they focus
on self-adaptive systems and do not specifically aim at handling uncertainty on
architectural abstraction.

Esfahani and Malek [11] also discuss uncertainty in the context of self-
adaptive systems. They highlight the problem of uncertainty in the environment
of a software system, e.g., due to the deployment. Ramirez et al. [41] present
different sources of uncertainty and a scheme to describe uncertainty in different
development phases. Regarding design-time confidentiality, they lack in preci-
sion and name related uncertainty as inadequate design or unverified design.
Still, they also list unexplored alternatives and misinformed trade-off analysis
which motivates our work. Troya et al. [51] provide a current survey of differ-
ent approaches regarding confidentiality. They provide another classification of
uncertainty and point out the growth of research with relation to uncertainty
in software models. However, they also mention the lack of repeatable results as
well as tool support which we tried to also address with our work.

Mahdavi et al. [22] investigated the research community of self-adaptive sys-
tems about uncertainty. They provide an overview of the current state of the
community. They find that the current state of the art lacks in including non-
functional requirements both as optimization goal as well as side effects. By
including confidentiality in the general PerOpteryx analysis, we can optimize
towards confidentiality but also detect violations. Thus, our approach addresses
this issue. We also at least partially address the mentioned problem of dealing
with concurrent sources of uncertainty, at least regarding structural uncertainty.

The Design-Time Uncertainty Management (DeTUM) [13] is a tool to handle
uncertainty during the design-time. It introduces uncertainty in the start phase
and then resolves it in later stages. However, the authors do not mention security-
related quality attributes like confidentiality. Lytra and Zdun [34] propose the
use of fuzzy logic to incorporate inherent uncertainty into reusable, architec-
tural design decisions. This shall enable software architects to share and reuse
knowledge about the impact of uncertainty on quality attributes. Although this
approach can also handle security-related quality attributes, violations due to
integration issues remain hidden. Here, the integration of a dedicated analysis—
such as our confidentiality analysis—helps identify also fine-grained problems.

Boltz et al. [5] present an approach to extend our dataflow-based confiden-
tiality analysis to handle environmental uncertainty. They use fuzzy inference
systems to calculate the impact of environmental variables on confidentiality-
related attributes. Although the there discussed environmental uncertainty is
another instance of known uncertainty, statements of its influence are not directly
comparable to statements about an architecture’s structure under uncertainty.



20 M. Walter et al.

In summary, there exist many approaches to categorize uncertainty and some also
provide approaches to handle certain uncertainty types. However, they have so
far not considered confidentiality explicitly. Also, there is a focus on self-adaptive
systems with a lack of systematic approaches on architectural abstraction [22].

8 Conclusion

We have presented an approach to consider structural uncertainty and confi-
dentiality in software architectures. For this, we combined our dataflow-based
confidentiality [48,49,47] with an architectural optimization approach [30]. Be-
sides considering confidentiality, our approach can be used to determine Pareto
optimal software architectures regarding multiple quality attributes. We demon-
strated that we could detect confidentiality violations for our examples, and these
exemplary confidentiality violations are correctly considered in the optimization
process. This indicates that our approach could work correctly and might help
architects to determine the Pareto optimal architecture candidate.

In the future, we want to extend the considered uncertainties and further
investigate the accuracy with real-world case studies. We also aim to better
understand the impact of different types of uncertainty on confidentiality and
create a classification scheme. This shall help in discussing the impact of uncer-
tainty and find appropriate mitigation strategies. Also, we want to extend the
presented approach of handling uncertainty by analyzing different architecture
variations. Last, we want to repeat the survey regarding the applicability and
usability of our dataflow approach, which we conducted during a tutorial. The
future study should include our new extension and address more participants.

Acknowledgement

We like to thank Oliver Liu, who helped in developing this approach during his
Bachelor thesis.

References

1. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: An extendable
tool for architecture optimization of AADL models. In: ICSE Workshop on Model-
Based Methodologies for Pervasive and Embedded Software. pp. 61–71 (2009).
https://doi.org/10.1109/MOMPES.2009.5069138

2. Armour, P.G.: The five orders of ignorance. Commun. ACM 43(10), 17–20 (oct
2000). https://doi.org/10.1145/352183.352194

3. Basili, G., Caldiera, V.R., Rombach, H.D.: The goal question metric approach.
Encyclopedia of software engineering pp. 528–532 (1994)

4. Boehm, B., Basili, V.: Software defect reduction top 10 list. Computer 34(1),
135–137 (Jan 2001). https://doi.org/10.1109/2.962984

https://doi.org/10.1109/MOMPES.2009.5069138
https://doi.org/10.1145/352183.352194
https://doi.org/10.1109/2.962984


Architectural Optimization for Confidentiality under Structural Uncertainty 21

5. Boltz, N., Hahner, S., Walter, M., Seifermann, S., Heinrich, R., Bures, T., Hne-
tynka, P.: Handling environmental uncertainty in design time access control anal-
ysis. In: 2022 48th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE (2022), accepted, to appear

6. Bures, T., Hnetynka, P., Heinrich, R., Seifermann, S., Walter, M.: Capturing dy-
namicity and uncertainty in security and trust via situational patterns. In: ISoLA
2020. Lecture notes in computer science (LNCS), vol. 12477, pp. 295–310. Springer
Verlag (2020). https://doi.org/10.1007/978-3-030-61470-6 18

7. Bureš, T., Gerostathopoulos, I., Hnětynka, P., Seifermann, S., Walter, M., Heinrich,
R.: Aspect-oriented adaptation of access control rules. In: 2021 47th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). pp. 363–
370 (2021). https://doi.org/10.1109/SEAA53835.2021.00054

8. Busch, A., Schneider, Y., Koziolek, A., Rostami, K., Kienzle, J.: Modelling the
structure of reusable solutions for architecture-based quality evaluation. In: 2016
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). pp. 521–526 (2016). https://doi.org/10.1109/CloudCom.2016.0091

9. Casola, V., Preziosi, R., Rak, M., Troiano, L.: A reference model for security level
evaluation: Policy and fuzzy techniques. J. Univers. Comput. Sci. 11(1), 150–174
(2005)

10. Council of European Union: REGULATION (EU) 2016/679 (general data protec-
tion regulation), https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04

11. Esfahani, N., Malek, S.: Uncertainty in Self-Adaptive Software Systems, p.
214–238. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

12. Esfahani, N., Malek, S., Razavi, K.: GuideArch: Guiding the exploration
of architectural solution space under uncertainty. In: 2013 35th Inter-
national Conference on Software Engineering (ICSE). pp. 43–52. IEEE
(2013). https://doi.org/10.1109/ICSE.2013.6606550, http://ieeexplore.ieee.
org/document/6606550/

13. Famelis, M., Chechik, M.: Managing design-time uncertainty. In: MODELS. p. 179.
IEEE Press (2017). https://doi.org/10.1109/MODELS.2017.24

14. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): Features
and motivations. In: ACSAC’95. pp. 241–248 (1995)

15. Frolund, S., Koistinen, J.: A language for quality of service specification. Tech.
rep., HP Labs Technical Report, California, USA (1998)

16. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research. p. 125–128.
FoSER ’10, Association for Computing Machinery, New York, NY, USA (2010).
https://doi.org/10.1145/1882362.1882389

17. Gerking, C., Schubert, D.: Component-Based Refinement and Verifi-
cation of Information-Flow Security Policies for Cyber-Physical Mi-
croservice Architectures. In: ICSA’19. pp. 61–70. IEEE (mar 2019).
https://doi.org/10.1109/ICSA.2019.00015, https://ieeexplore.ieee.org/
document/8703909/

18. Hahner, S.: Architectural access control policy refinement and verification un-
der uncertainty. In: Companion Proceedings of the 15th European Conference on
Software Architecture. CEUR Workshop Proceedings, vol. 2978. RWTH Aachen
(2021), 46.23.03; LK 01

19. Hahner, S.: Dealing with uncertainty in architectural confidentiality analysis. In:
Proceedings of the Software Engineering 2021 Satellite Events. p. 1–6. Gesellschaft
für Informatik, Virtual (2021)

https://doi.org/10.1007/978-3-030-61470-6_18
https://doi.org/10.1109/SEAA53835.2021.00054
https://doi.org/10.1109/CloudCom.2016.0091
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1109/ICSE.2013.6606550
http://ieeexplore.ieee.org/document/6606550/
http://ieeexplore.ieee.org/document/6606550/
https://doi.org/10.1109/MODELS.2017.24
https://doi.org/10.1145/1882362.1882389
https://doi.org/10.1109/ICSA.2019.00015
https://ieeexplore.ieee.org/document/8703909/
https://ieeexplore.ieee.org/document/8703909/


22 M. Walter et al.

20. Hahner, S., Seifermann, S., Heinrich, R., Walter, M., Bures, T., Hnetynka, P.:
Modeling data flow constraints for design-time confidentiality analyses. In: 2021
IEEE International Conference on Software Architecture Companion (ICSA-C).
pp. 15–21. IEEE (2021). https://doi.org/10.1109/ICSA-C52384.2021.00009

21. Heinrich, R., Seifermann, S., Walter, M., Hahner, S., Reussner, R., Bureš, T.,
Hnětynka, P., Pacovský, J.: Dynamic access control in industry 4.0 systems. In:
Digital Transformation, chap. 6. Springer (2022), accepted, to appear

22. Hezavehi, S.M., Weyns, D., Avgeriou, P., Calinescu, R., Mirandola, R.,
Perez-Palacin, D.: Uncertainty in self-adaptive systems: A research com-
munity perspective. ACM Trans. Auton. Adapt. Syst. 15(4) (dec 2021).
https://doi.org/10.1145/3487921

23. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: Prism: A tool for automatic
verification of probabilistic systems. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 441–444. Springer
(2006)

24. ISO Central Secretary: Information technology — security techniques — informa-
tion security management systems — overview and vocabulary. Standard ISO/IEC
27000:2018, International Organization for Standardization, Geneva, CH (2018),
https://www.iso.org/standard/73906.html

25. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development, vol. 2460,
p. 412–425. Springer Berlin Heidelberg (2002). https://doi.org/10.1007/3-540-
45800-X 32

26. Katkalov, K., Stenzel, K., Borek, M., Reif, W.: Model-driven development of in-
formation flow-secure systems with iflow. In: SOCIALCOM. pp. 51–56 (2013).
https://doi.org/10.1109/SocialCom.2013.14

27. Katkalov, K.: Ein modellgetriebener Ansatz zur Entwicklung informationsfluss-
sicherer Systeme. doctoralthesis, Universität Augsburg (2017)

28. Konersmann, M., et al.: Evaluation methods and replicability of software architec-
ture research objects. In: ICSA. IEEE (2022)

29. Koziolek, A.: Automated Improvement of Software Architecture Models for Perfor-
mance and Other Quality Attributes. Ph.D. thesis, Karlsruher Institut für Tech-
nologie (KIT) (2011). https://doi.org/10.5445/IR/1000024955

30. Koziolek, A., Koziolek, H., Reussner, R.: Peropteryx: automated application of tac-
tics in multi-objective software architecture optimization. In: Proceedings of the
joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT symposium–ISARCS
on Quality of software architectures–QoSA and architecting critical systems – IS-
ARCS. pp. 33–42 (2011)

31. Kramer, M., Hecker, M., Greiner, S., Bao, K., Yurchenko, K.: Model-driven speci-
fication and analysis of confidentiality in component-based systems. Tech. Rep. 12,
KIT-Department of Informatics (2017). https://doi.org/10.5445/IR/1000076957

32. Liu, O.: Design space evaluation for confidentiality under architectural uncertainty
(2021). https://doi.org/10.5445/IR/1000139590

33. Lodderstedt, T., Basin, D., Doser, J.: Secureuml: A uml-based modeling language
for model-driven security. In: «UML» 2002 — The Unified Modeling Language.
vol. 24, p. 426–441. Springer, Berlin, Heidelberg (2002), http://link.springer.
com/10.1007/3-540-45800-X_33

34. Lytra, I., Zdun, U.: Supporting architectural decision making for systems-
of-systems design under uncertainty. In: Proceedings of the First In-
ternational Workshop on Software Engineering for Systems-of-Systems. p.
43–46. SESoS ’13, Association for Computing Machinery (Jul 2013).
https://doi.org/10.1145/2489850.2489859

https://doi.org/10.1109/ICSA-C52384.2021.00009
https://doi.org/10.1145/3487921
https://www.iso.org/standard/73906.html
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1109/SocialCom.2013.14
https://doi.org/10.5445/IR/1000024955
https://doi.org/10.5445/IR/1000076957
https://doi.org/10.5445/IR/1000139590
http://link.springer.com/10.1007/3-540-45800-X_33
http://link.springer.com/10.1007/3-540-45800-X_33
https://doi.org/10.1145/2489850.2489859


Architectural Optimization for Confidentiality under Structural Uncertainty 23

35. Monschein, D., Mazkatli, M., Heinrich, R., Koziolek, A.: Enabling consistency be-
tween software artefacts for software adaption and evolution. In: ICSA. pp. 1–12
(2021). https://doi.org/10.1109/ICSA51549.2021.00009

36. Noorshams, Q., Martens, A., Reussner, R.: Using quality of service bounds for
effective multi-objective software architecture optimization. In: Proceedings of the
2nd International Workshop on the Quality of Service-Oriented Software Systems.
QUASOSS ’10, Association for Computing Machinery, New York, NY, USA (2010).
https://doi.org/10.1145/1858263.1858265

37. OWASP: A04:2021 – insecure design, https://owasp.org/Top10/A04_
2021-Insecure_Design/

38. OWASP: Top ten web application security risks, https://owasp.org/
www-project-top-ten/

39. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self- adaptive
systems: A taxonomy and an example of availability evaluation. In: Proceedings
of the 5th ACM/SPEC International Conference on Performance Engineering.
p. 3–14. ICPE ’14, Association for Computing Machinery, New York, NY, USA
(2014). https://doi.org/10.1145/2568088.2568095

40. Piper, D.: Dla piper gdpr fines and data breach survey: January 2022,
https://www.dlapiper.com/de/germany/insights/publications/2022/1/
dla-piper-gdpr-fines-and-data-breach-survey-2022/

41. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxonomy of uncertainty for dy-
namically adaptive systems. In: 2012 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). p. 99–108 (Jun
2012). https://doi.org/10.1109/SEAMS.2012.6224396

42. Reiche, F., Schiffl, J., Weigl, A., Heinrich, R., Beckert, B., Reussner, R.: Model-
driven quantification of correctness with palladio and key. Tech. rep., Karlsruher
Institut für Technologie (KIT) (2021). https://doi.org/10.5445/IR/1000128855

43. Reussner, R., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H.,
Kramer, M., Krogmann, K.: Modeling and Simulating Software Architectures –
The Palladio Approach. MIT Press, Cambridge, MA (10 2016), http://mitpress.
mit.edu/books/modeling-and-simulating-software-architectures

44. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study re-
search in software engineering. Empirical Software Engineering 14(2), 131 (2008).
https://doi.org/10.1007/s10664-008-9102-8

45. Schulz, S., Reiche, F., Hahner, S., Schiffl, J.: Continuous secure software develop-
ment and analysis. In: Proceedings of Symposium on Software Performance 2021.
Leipzig, Germany (Nov 2021)

46. Seifermann, S., Heinrich, R., Werle, D., Reussner, R.: A unified model to detect
information flow and access control violations in software architectures. In: Pro-
ceedings of the 18th International Conference on Security and Cryptography, SE-
CRYPT 2021, Virtual, Online, 6 July 2021 - 8 July 2021. pp. 26–37. SciTePress
(2021). https://doi.org/10.5220/0010515300260037

47. Seifermann, S., Walter, M., Hahner, S., Heinrich, R., Reussner, R.: Identifying
confidentiality violations in architectural design using palladio. In: ECSA-C 2021.
vol. 2978. CEUR-WS.org (2021), 46.23.03; LK 01

48. Seifermann, S., Heinrich, R., Reussner, R.: Data-driven software archi-
tecture for analyzing confidentiality. In: ICSA. pp. 1–10. IEEE (2019).
https://doi.org/10.1109/ICSA.2019.00009, https://ieeexplore.ieee.org/
document/8703910/

49. Seifermann, S., Heinrich, R., Werle, D., Reussner, R.: Detecting violations of access
control and information flow policies in data flow diagrams. JSS (2021)

https://doi.org/10.1109/ICSA51549.2021.00009
https://doi.org/10.1145/1858263.1858265
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1145/2568088.2568095
https://www.dlapiper.com/de/germany/insights/publications/2022/1/dla-piper-gdpr-fines-and-data-breach-survey-2022/
https://www.dlapiper.com/de/germany/insights/publications/2022/1/dla-piper-gdpr-fines-and-data-breach-survey-2022/
https://doi.org/10.1109/SEAMS.2012.6224396
https://doi.org/10.5445/IR/1000128855
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.5220/0010515300260037
https://doi.org/10.1109/ICSA.2019.00009
https://ieeexplore.ieee.org/document/8703910/
https://ieeexplore.ieee.org/document/8703910/


24 M. Walter et al.

50. Sobhy, D., Bahsoon, R., Minku, L., Kazman, R.: Evaluation of Software Architec-
tures under Uncertainty: A Systematic Literature Review. ACM Transactions on
Software Engineering and Methodology 1(1), 50 (2021)

51. Troya, J., Moreno, N., Bertoa, M., Vallecillo, A.: Uncertainty representation
in software models: a survey. Software and Systems Modeling 20 (08 2021).
https://doi.org/10.1007/s10270-020-00842-1

52. Tuma, K., Scandariato, R., Balliu, M.: Flaws in flows: Unveiling de-
sign flaws via information flow analysis. In: ICSA. p. 191–200 (2019).
https://doi.org/10.1109/ICSA.2019.00028

53. Van Rijsbergen, C., Van Rijsbergen, C.: Information Retrieval. Butterworths
(1979)

54. Walker, W., Harremoës, P., Rotmans, J., Sluijs, J., Asselt, M., Janssen, P.,
Kraus, M.: Defining uncertainty: A conceptual basis for uncertainty manage-
ment in model-based decision support. Integrated Assessment 4 (03 2003).
https://doi.org/10.1076/iaij.4.1.5.16466

55. Walter, M., Hahner, S., Seifermann, S., Bures, T., Hnetynka, P., Pacovský, J.,
Heinrich, R.: Dataset: Architectural optimization for confidentiality under struc-
tural uncertainty, https://doi.org/10.5281/zenodo.6569353

56. Walter, M., Heinrich, R., Reussner, R.: Architectural attack propagation analysis
for identifying confidentiality issues. In: ICSA (2022)

57. Yurchenko, K., et al.: Architecture-driven reduction of specification overhead
for verifying confidentiality in component-based software systems. In: MODELS
(Satellite Events). pp. 321–323 (2017)

https://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.5281/zenodo.6569353

