
Net load forecasting using different 
aggregation levels
Maximilian Beichter1†, Kaleb Phipps1*†, Martha Maria Frysztacki1, Ralf Mikut1, Veit Hagenmeyer1 and 
Nicole Ludwig2 

From The 11th DACH+ Conference on Energy Informatics 2022 
Freiburg, Germany. 15-16 September 2022

Introduction
Balancing energy supply and demand in energy systems is essential to maintain grid fre-
quency stability (Schmietendorf et al. 2017). Any imbalance problems are managed in 
today’s energy systems by including enough conventional fossil fuel-based generators to 
react to emergencies and keep the electricity system stable. However, this controllable 
reserve capacity will likely not exist in future energy systems characterised by a higher 
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gregated strategy that forecasts demand and supply from each generator separately. 
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best, suggesting that a balance between specifically tailored forecasting models and 
aggregation is advantageous.
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penetration of renewable energy sources. In such renewable energy systems, it will be 
more difficult to react to grid imbalances spontaneously (Schmietendorf et  al. 2017; 
Kroposki et  al. 2017), through controllable generation. Furthermore, storage systems 
that will assist with grid stability must be efficiently scheduled to ensure enough reserve 
capacity is available in times of need (Zachary et  al. 2021). Therefore it is essential to 
accurately forecast the difference between expected demand and weather-dependent 
renewable supply, i.e. the so-called net load (Kaur et al. 2016). Accurate net load fore-
casts are crucial to enable efficient grid operation, such as demand side management 
(Barth et al. 2018), ensure grid stability can be maintained by scheduling storage systems 
(Zachary et al. 2021), and allow energy suppliers and network operators to communicate 
and coordinate dispatch plans in a smart grid (Zhang et al. 2016).

Numerous researchers have focused on the problem of net load forecasting. Garcia 
and Kirschen (2006) analyse net load forecasting in detail. As well as performing explor-
atory analysis of net load time series to determine valuable features, they compare the 
forecasting performance across various forecast horizons for traditional time series 
methods and various neural network architectures. However, all of their experiments are 
deterministic, and they do not consider probabilistic forecasts.

Regarding probabilistic net load forecasts, Taylor (2006) and Salem et al. (2019) both 
consider probabilistic net load forecasts with quantile-based approaches. Whilst Taylor 
generates density forecasts based on a combination of autoregressive integrated mov-
ing average (ARIMA) point forecasts and a volatility model (Taylor 2006), Salem et al.   
directly generate prediction intervals using quantile regression forests (Salem et  al. 
2019).

In recent years increasingly complex approaches have been considered. For example, 
Persio et al. (2017) compare variations of ARIMA models for net load forecasting based 
on data from the Italian energy system, and Sreekumar et al. (2020) propose grey systems 
theory-based methods for net load forecasting. Stratigakos et al. (2021) develop proba-
bilistic net load forecasts using singular spectrum analysis and long short-term memory 
(LSTM) neural networks. Despite these increasingly complex models, all approaches 
focus on directly forecasting the net load.

However, the net load is a difference between multiple time series, i.e. the demand time 
series on the one hand and multiple supply time series from different energy sources on 
the other hand. To the best of our knowledge, no previous work has considered using 
this underlying net load structure to investigate different forecasting strategies. There-
fore, in the present paper, we investigate the performance of three forecasting strate-
gies for the net load. One strategy where we directly forecast the net load, one where we 
forecast the demand and supply separately, and one where we forecast the demand and 
the supply from each renewable generator separately. Instead of developing new com-
plex forecasting models, we take existing models and compare their performance using 
these three forecasting strategies. Thereby, we investigate different assumptions about 
the qualities required for the best performing forecast associated with these strategies. 
For example, directly forecasting the net load assumes that aggregating all involved 
quantities will cause a smoothing effect and, therefore, a time series that is easier to fore-
cast. On the other hand, separately forecasting each generator and the demand assumes 
that it is beneficial to use tailored forecasting models. We compare these strategies for 
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deterministic approaches and probabilistic forecasts by applying a copula approach 
already tested in the context of energy systems by Li  et al. (2020). Given these strate-
gies, deterministic and probabilistic forecasts, we consider simulated data from a realis-
tic future energy system with enough renewable electricity generation to meet demand. 
With this future energy system, we evaluate the forecasting strategies using a simple 
(Neural Network (NN)) and a complex (Convolutional Neural Network (CNN)) model 
and compare their deterministic and probabilistic forecast performance.

The remainder of the present paper is structured as follows. First, we define net load 
and introduce our proposed forecasting strategies, including the extension to perform 
probabilistic forecasts in “Net load forecasting”. In the  “Evaluation” we describe the 
simulated energy system data and meteorological data used, the implementation of our 
forecasting models, the evaluation metrics, and we present our results. We critically dis-
cuss these results and highlight key observations in “Discussion”, before concluding and 
presenting future research directions in “Conclusion”.

Net load forecasting
The present paper investigates three strategies based on different aggregation levels for 
net load forecasting. In the following, we define net load before introducing our pro-
posed forecasting strategies in detail. We then discuss the extension of our strategies to 
probabilistic net load forecasting.

Definition

We consider the difference between the electricity demand (i.e. load) and the electricity 
supply from variable renewable energy sources as the net load. Formally this net load is 
then represented by simple subtraction, i.e.

where NL is the net load, D the electricity demand in the system, and S the electricity 
supply from renewable sources.

The expected renewable energy supply is, however, an aggregated value made up of all 
the individual renewable energy generators in the system, i.e.

where sg is the energy supplied from generator g, given G different renewable generation 
sources in the energy system. Based on this observation, the definition of net load in Eq. 
(1) can also be represented by

We can identify different time series aggregation levels based on these net load defini-
tions. For example, we could consider the supply from each generator separately or the 
total supply found by aggregating all of the generator time series together. These differ-
ent levels of aggregation form the foundation for our forecasting strategies, which we 
describe in detail in the following.

(1)NL = D − S,

(2)S =

g∈G

sg ,

(3)NL = D −
∑

g∈G

sg .
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Forecasting strategies

The three forecasting strategies, which we investigate in the present paper, differ in their 
level of aggregation used for the available time series. Based on the aforementioned defi-
nition of net load, we either use an aggregated strategy, a partially aggregated strategy or 
a disaggregated strategy. Figure 1 shows these strategies and we explain them in more 
detail in the following.

Aggregated strategy: For the aggregated strategy, we directly forecast the net load, 
i.e. the forecast is performed on the time series after subtracting the supply from the 
demand. The assumed advantage of the strategy is that more aggregation leads to a time 
series that is simpler to forecast as it fluctuates less with fewer extreme values and more 
explicit recurring patterns. However, one disadvantage of this aggregated strategy is that 
the relationship between net load and exogenous variables, such as the weather, might 
not be as straightforward as the weather primarily influences the output of the genera-
tors and not the net load itself.

Partially aggregated strategy: The partially aggregated strategy aims to keep the advan-
tage of aggregating time series to smooth them. Additionally, it aims to reduce the dis-
advantage mentioned above regarding exogenous variables by forecasting supply and 
demand separately. This partial aggregation, in which we only aggregate the renew-
able electricity supply time series, gives the forecasting models the chance to specialise 
and select e.g. weather features for the supply time series and calendar features for the 
demand time series.

Disaggregated strategy: We forecast each time series separately for the disaggregated 
strategy, thus allowing the forecasting models to specialise even more and select a 

Fig. 1  Representation of the different strategies for forecasting net load, where each box represents a 
forecasting model and ⊗ represents the combination of forecasting models
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unique subset of features for each renewable energy source and the demand. With this 
strategy, we assume that the advantages of individually modelling the time series out-
weighs any advantage aggregation could bring to smooth the time series.

Probabilistic extension

Our three strategies can be implemented for both deterministic and probabilistic forecasts. 
However, while individual forecasting models can be aggregated using addition and sub-
traction in the case of deterministic forecasts, the aggregation for probabilistic forecasting 
models is more complex. Therefore, this section describes how we aggregate the probabilis-
tic forecasting models.

When we perform probabilistic forecasts, we predict a probability density function (PDF) 
for different random variables and therefore when aggregating random variables, we need 
to predict a new PDF. For example, given two continuous random variables X and Y with 
PDF fX , fY : R → R+ and their joint PDF fXY  , then X + Y  is also a continuous random var-
iable (Casella and Berger 2021), with a PDF given by

This PDF can be calculated as the convolution of fX and fY  , if X and Y  are independ-
ent (Casella and Berger 2021). However, if the random variables are not independent, 
we have to account for their correlation in the joint PDF  fXY  as well. Since we consider 
various renewable generation sources, which are all dependent on meteorological condi-
tions, we cannot assume independence and therefore have to account for the correla-
tions in the joint PDF.

To account for the correlations between random variables we use a copula approach simi-
lar to Li et al. (2020). According to Sklar’s theorem (Sklar 1959), any multivariate joint dis-
tribution can be written in terms of the marginal distributions of each component and a 
copula that describes the dependency structure between the components. Following Sklar 
(1959), with Fx and FY  being the marginal cumulative density functions (CDFs) for X and Y, 
the joint CDF FXY  can then be expressed as

with u = FX (X ≤ x) , v = FY (Y ≤ y) , and the copula C(·) : [0, 1]2 → R+ being a continu-
ous real valued function. Based on this definition, we can find an expression for the joint 
PDF by firstly deriving C(·) : [0, 1]2 → R+ as,

and using this to express fXY  via

Thus, we obtain an expression for the joint PDF fXY  , without having to explicitly calcu-
late the unknown joint distribution and the integral in Eq. (4) can be expressed as

(4)fX+Y (X + Y = z) =

∫ ∞

−∞

fXY (w, z − w)dw.

(5)FXY (X ≤ x, Y ≤ y) = C(u, v),

(6)c(u, v) =
∂2C

∂u∂v
,

(7)fXY = c(u, v) · fX · fY .
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For our various forecasting strategies, we firstly generate a probabilistic forecast for the 
given quantity, either net load, demand, supply, or the electricity generated from one of 
the generators in the system. Depending on the level of aggregation considered, we then 
apply the copula method described above to determine the joint PDF. In the case of the 
aggregated strategies, no copula combination is required. For the partially aggregated 
strategy, we use the copula combination to calculate the combined PDF of supply and 
demand. Finally, for the disaggregated strategy, we apply the copula combination itera-
tively multiple times to calculate the final joint PDF. Thereby, multiple steps are required: 
first we apply the copula combination to calculate the combined PDF between demand 
and solar. Second, we use the copula combination on the resulting PDF and onshore 
wind to calculate the combined PDF of demand, solar, and onshore wind. Third, we 
repeat this process with the resulting PDF and the copula combination, including wind 
offshore in the next step, and finally, run of river. Following this iterative process, we can 
calculate the combined PDFs of supply and demand in a disaggregated manner.

Evaluation
To evaluate our three proposed forecasting strategies for net load forecasting based on 
different aggregation levels, we consider a hypothetical future scenario with enough 
renewable generation to meet demand and two exemplary forecasting models. In the 
following we first describe the data used for our evaluation before introducing the evalu-
ation metrics used for feature selection and evaluating the quality of our forecasts. We 
then describe the simple (NN) and complex (CNN) forecasting models, as well as our 
feature selection, hyperparameter optimisation, and extensions for probabilistic fore-
casting. Lastly, we report the forecasting performance for each forecasting strategy for 
both the simple and complex forecasting models.

Data

To evaluate our forecasting strategies, we require data for an energy system where 
renewable energy generation meets demand and weather data to perform accurate fore-
casts. In this section, we thus briefly describe both the simulated energy system data and 
the weather data used.

Energy system data: We use simulated data from a realistic future energy scenario 
to obtain energy system data with enough renewable generation to meet electricity 
demand. This data is generated using the open energy system model PyPSA-Eur (Hörsch 
et  al. 2018) and models Germany with a high spatial resolution of 100 nodes and an 
hourly temporal resolution. The aggregation is well described in a previous publica-
tion and details can be found in the methodology section of Frysztacki et al. (2021). The 
model comprises energy generated from onshore and offshore wind, solar, run of river, 
nuclear, oil, lignite and biomass. To ensure a realistic simulated energy system similar 
to the current system but with a higher share of renewable sources, the generation fleet 
of conventional carriers is set to the historical operation capacity of 2011 and is non-
extendable, whilst the capacity of renewable energy sources is subject to optimisation. 

(8)fX+Y (z) =

∫ ∞

−∞

c
(

u(w), v(z − w)
)

· fX (w) · fY (z − w)dw.
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This ensures that the resulting system is realistic regarding the generation mix but opti-
mised for a renewable future. As a result, the capacity is determined by minimising the 
total annual system costs and guaranteeing that electricity demand is met at all times 
and in all locations. The optimisation respects the physics of the system, including Kirch-
hoff’s circuit laws and accounts for the capacity limitations of transmission lines and 
generators. To simulate weather conditions and weather variability, we embed historical 
weather data of 2010 to the investment optimisation. The problem is further subject to 
reducing 80% of the carbon emissions of 1990 to guarantee a significant proportion of 
renewable generation that is capable of meeting the electricity demand. Some nuclear 
power plants are included in the scenario to account for future imports from neighbour-
ing countries, particularly France. This scenario is a possible pathway to a future fully 
renewable electricity system. The resulting capacity investments are displayed in Fig. 2 
together with the total electricity demand of 2010. Finally, to retrieve the generation 
profiles, we solve an operational problem where no capacity expansion is allowed for 
2010–2019, again using historical weather data. An exemplary generation profile of the 
model is visualised in Fig. 3, where the net load is highlighted with a red dashed line. 
Note that load shedding is below 0.01% of the annual demand for every simulated sce-
nario. Using the PyPSA-EUR model at a high spatio-temporal resolution has proven to 
reproduce historical results, particularly the amount of renewable curtailment (Frysz-
tacki and Brown 2020) and conventional power generation patterns as well as wind and 
solar production (Unnewehr et al. 2022). Therefore, the model provides a sound basis for 
investigating net load.

Fig. 2  The PyPSA model of Germany displaying optimal capacity and electricity demand for our future 
scenario
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Given this simulated data, we use the years 2010 to 2018 for feature selection, hyper-
parameter optimisation, and training and validation of our forecasting models. The year 
2019 is withheld from all training and used purely as test data for our final evaluation.

Weather data: Additionally to the energy system data, we also use historical weather 
data matching the temporal and spatial resolution of the simulated energy system as 
inputs for our forecasting models. More specifically, we use the ERA5 reanalysis data 
(Hersbach  et al. 2018), available via the Copernicus Climate Data Store.1 We acquire 
historical weather data in an hourly resolution for the geographical region of Germany, 
i.e. a grid from 45°–55° N by 5°–15° E, with a resolution of 0.25°. The variables we con-
sider are those with the highest impact on renewable energy generation, i.e. surface net 
solar radiation (ssr), surface net thermal radiation (str), temperature at two meters above 
ground (t2m), as well as the eastward (u100) and northward (v100) component of wind 
at 100 m above ground. In order to map the weather data to the simulated energy data 
we cluster the weather information into three onshore regions i.e. north Germany (51°–
54° N, 6°–14° E), south Germany (47°–50° N, 7°–13° E), and central Germany (50°–51° N, 
6°–14° E) and additionally cluster the data from the Baltic sea (53.5°–55° N, 9.5°–14° E) 
and North sea (53.5°–55°  N, 4°–9°  E) to provide weather information for the offshore 
forecast. Given these clusters, we calculate the mean weather information across the 
region and use these mean values as input features for our forecasting models.

Metrics

Given the above mentioned data, we require metrics for our feature selection and the eval-
uation of the probabilistic and deterministic forecast performance of our different fore-
casting strategies. Furthermore, we perform significance tests to determine if our results 
are significant. This section briefly describes the metrics used and the significance test 
performed.

Fig. 3  The generation profile, showing how the different suppliers make up total energy supply, for 
an exemplary week in our reference future electricity system scenario with a high share of renewable 
generation. Here, net load is displayed with a dashed red line

1  https://​cds.​clima​te.​coper​nicus.​eu/​cdsapp#​!/​home.

https://cds.climate.copernicus.eu/cdsapp#%21/home


Page 9 of 21Beichter et al. Energy Informatics  2022, 5(Suppl 1):19	

Root Mean Squared Error: For feature selection and to evaluate the determinis-
tic forecasts we use the Root Mean Squared Error (RMSE). The RMSE represents the 
square root of the second sample moment of the differences between predicted values 
and observed values. Therefore, given predictions ŷt , and observations yt for all samples 
t = 1, . . . ,N  in the test set, the RMSE is given by

Continuous Ranked Probability Score: To evaluate our probabilistic forecasts we 
use the Continuous Ranked Probability Score (CRPS) (Gneiting and Katzfuss 2014). The 
CRPS is a measure for calibration and sharpness of a predictive cumulative distribution 
function F and for all forecast time steps is given by

with z the integration variable, y the verifying observation, and 1 denoting an indicator 
function (Gneiting et al. 2005).

Significance test: To determine whether our results are significant we perform a Die-
bold Mariano (DM) test. The DM test determines whether a calculated loss differen-
tial dt is significantly larger than zero (Diebold et al. 1995). Given the mean of this loss 
differential

with µ = E[dt ] , and the autocorrelation of the loss differential

the DM test statistic for h ≥ 1 is

where h  is the order for the DM test statistic (Diebold et  al. 1995). Under the null 
hypothesis, that the loss differential is zero, i.e. µ = 0 , the test statistic follows a standard 
normal distribution

and therefore the null hypothesis can be rejected using the two-tailed critical value for 
the standard normal distribution.

For our application of the DM test, we select the difference between the calculated 
mean squared error for each time step as the loss differential to compare deterministic 
models and the difference between the CRPS for each time step as the loss differential 

(9)RMSE =

√

√

√

√

1

N

N
∑

t=1

(ŷt − yt)2.

(10)CRPS =
1

N

N
∑

t=1

∫

R

(

F(z)− 1{z ≤ yt}
)2
dz,

(11)d̄ =
1

N

N
∑

t=1

dt ,

(12)γk =
1

N

N
∑

t=k+1

(dt − d̄)(dt−k − d̄),

(13)DM =
d̄

[γ0 + 2 ·
∑h−1

k=1
γk ]/N

,

(14)DM ∼ N (0, 1),
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when comparing the probabilistic models (Gneiting and Katzfuss 2014; Gneiting and 
Raftery 2007).

Forecasting models

To evaluate our proposed strategies for forecasting net load, we implement a simple 
(NN) and a complex (CNN) model to show our results are not model dependent.2 We 
perform a careful feature selection and hyperparameter optimisation for both models. 
Therefore, in the following, we explain the feature selection and hyperparameter opti-
misation since this is the same for both forecasting models. We then describe the imple-
mentation of the forecast models before detailing the extensions required to generate 
probabilistic forecasts.

Feature selection: Our applied feature selection is the same for all forecast models 
implemented.3This feature selection is based on decision trees, which are valuable for 
feature selection because they are accurate and can explain when a feature is essential 
(Grömping 2009). This explanation is based on the measure of impurity, which is the 
variance in regression tasks. When training a decision tree, it is possible to measure how 
much each feature decreases the impurity, i.e. variance. Therefore, features that decrease 
this impurity are considered essential features (Grömping 2009; Chen et al. 2020).

We use decision tree regression in our feature selection and measure the RMSE based 
on different feature sets. These feature sets are chosen to include variables relevant for 
the model considered, i.e. for wind forecasts, we only consider features that are relevant 
for wind. Within these feature sets, we consider features such as hours of the day and 
day of the week as categorical to ensure that either all known temporal information from 
one category is considered or none. We provide the decision tree with all available fea-
tures and iteratively decrease the number of features. Hence, the decision tree can ini-
tially select all features; however, we restrict the decision tree to only selecting a subset 
in subsequent runs. In each run, we decrease the number of features the decision tree is 
allowed to select and calculate the RMSE to measure performance. Through this, we can 
generate multiple feature sets, each containing the k most essential features, as shown in 
Table 1. In Table 1, the number in each row indicates the smallest subset of features that 
still included the given feature, e.g., a value of 15 implies that the given feature was last 
selected in a subset of 15 features, and no longer selected when the subset was reduced 
to 14. These feature sets form the basis for the hyperparameter optimisation described 
in the following.

Hyperparameter optimisation: For the hyperparameter optimisation, we perform 
Bayesian optimisation. We perform 100 runs of Bayesian optimisation (Snoek  et al. 
2012) for each model, with a batch size of 128, using an individual hyperparameter space 
for each model, i.e. the number of neurons for the simple NN model, and filter and win-
dow sizes for each CNN layer in the complex CNN model. In each of these optimisation 
runs, we train four individual models and assess the performance based on the mean 
performance of these four models. These four models are obtained via fourfold time 

2  The implementation is available via https://​github.​com/​KIT-​IAI/​NetLo​adFor​ecast​ing.
3  Note that due to the small portion of run of river installed in the simulated energy system, no feature selection was 
performed for these models.

https://github.com/KIT-IAI/NetLoadForecasting
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Table 1  An overview of the progressive feature selection for each target time series

Target time series to be forecast

Onshore wind Offshore wind Solar Demand Net load Supply

Surface net solar radiation north 
Germany

14 34 32

Surface net solar radiation central 
Germany

9 12 14

Surface net solar radiation south 
Germany

2 2 2

Surface net thermal radiation north 
Germany

6 17 17

Surface net thermal radiation central 
Germany

3 27 20

Surface net thermal radiation south 
Germany

7 13 9

Temperature 2 m over ground north 
Germany

10 28 8

Temperature 2 m over ground central 
Germany

12 14 26

Temperature 2 m over ground south 
Germany

8 10 7

Eastward wind velocity Baltic sea 6 24 11

Eastward wind velocity North sea 4 31 31

Northward wind velocity Baltic sea 3 32 27

Northward wind velocity North sea 8 30 29

Resulting wind velocity Baltic sea 2 9 6

Resulting wind velocity North sea 2 6 2

Eastward wind velocity north 
Germany

5 35 24

Eastward wind velocity central 
Germany

13 18 18

Eastward wind velocity south 
Germany

4 11 13

Northward wind velocity north 
Germany

8 36 12

Northward wind velocity central 
Germany

9 20 23

Northward wind velocity south 
Germany

6 26 19

Resulting wind velocity north 
Germany

2 2 4

Resulting wind velocity central 
Germany

2 3 3

Resulting wind velocity south 
Germany

3 8 5

One hot encoded weekdays 5 5

One hot encoded hours 18 15 5 11 7 16

Public holiday 3 15

Partial public holiday of Germany 12 37

Summertime 19 16 4 13 33 15

Historical values (lags) for the last 0 h 7a 5b 2c 2d 4e 10f

Historical values (lags) for the last 24 h 15a 12b 13c 10d 21e 33f

Historical values (lags) for the last 48 h 17a 9b 19c 8d 29e 25f

Historical values (lags) for the last 72 h 10a 11b 15c 6d 23e 34f

Historical values (lags) for the last 96 h 14a 14b 17c 4d 19e 22f
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series cross-validation (Bergmeir and Benítez 2012). For this cross-validation, we always 
consider 8760 samples (1 year) for validation and begin the training with our training 
data in 2010.

We begin with the feature sets obtained through our initial feature selection to deter-
mine the optimal features. Starting with a first subset of feature sets (see Table 2), we 
then optimise each model with a decreasing number of features until no performance 
improvement is observed on the validation data for at least three feature set decreases in 
a row. Finally, the resulting feature set is selected as the best performing feature set for 
further model evaluation.

Simple neural network model: To evaluate the forecasting strategies, we select a 
feed-forward neural network (NN) as a simple model. In the following, we describe the 
structure of our NN and refer to Goodfellow et al. (2016) for a detailed theoretical back-
ground. As inputs, the NN receives the lagged features as well as all selected features 
for 24 h in the future. The NN comprises six hidden layers for the deterministic model 
and five hidden layers for the probabilistic extension. In both cases, the final hidden 
layer uses a linear activation function whilst all layers before use exponential linear unit 
(ELU) activation functions. The output  layer for the deterministic model uses a linear 
activation function, whilst the activation function for the output layer of  the probabil-
istic extension depends on the distribution selected (see “Probabilistic extension”). The 
number of neurons in each layer is determined through hyperparameter optimisation, 
where the hyperparameter space ranges from 64 to 256 neurons for the first layer, 32 
to 128 neurons for the second layer, 16  to  64 neurons for the third layer, and 8 to 32 
neurons for the fourth layer. The final two layers are fixed with 8 and 2 neurons, respec-
tively. The networks are trained with a batch size of 128 using kernel and bias regularisa-
tion. We use the Adam optimiser with an adaptive learning rate and early stopping for 
the training process. In each training step, fourfold cross-validation is applied, and the 
final model performance is, as with the hyperparameter optimisation, calculated as the 

Table 1  (continued)

Target time series to be forecast

Onshore wind Offshore wind Solar Demand Net load Supply

Historical values (lags) for the last 
120 h

12a 7b 11c 7d 25e 30f

Historical values (lags) for the last 
144 h

16a 10b 16 c 2d 16e 28f

Historical values (lags) for the last 
168 h

11a 13b 18c 9d 22e 21f

Starting with a large number of features we iteratively reduce the number of features that can be selected. The number in 
each row indicates the smallest subset of features that still included the given feature. We perform feature selection until a 
minimal feature set size of 2
a For onshore wind, the lags correspond to historical onshore wind values
b For offshore wind, the lags correspond to historical offshore wind values
c For solar, the lags correspond to historical solar values
d For demand the lags correspond to historical demand values
e For net load, the lags correspond to historical net load values
f For supply, the lags correspond to historical supply values
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mean performance of these four models. The best performing configuration is shown in 
Table 3.

Complex CNN model: To better account for the recurring patterns in energy time 
series and generate more accurate forecasts, we also develop a complex CNN model. We 
select a CNN since it has proven high performance when forecasting energy time series 
(Heidrich et al. 2020) and is relatively robust and simple to train in comparison to other 
machine learning methods, such as long short-term memory networks (Goodfellow 
et al. 2016). In the following, we again describe the structure of our CNN model, refer-
ring to Goodfellow et al. (2016) for detailed theoretical information. Our complex model 

Table 2  Summary of feature sets considered for the optimisation and the resulting best performing 
feature set selected for each forecasting model

Forecast type Model Complex Simple

Feature sets 
considered

Feature set 
selected

Feature sets 
considered

Feature set 
selected

Deterministic forecast Net load 37–29 37 37–29 36

Supply 34–26 32 34–28 32

Demand 13–10 13 13–10 13

Offshore wind 16–5 9 16–5 9

Onshore wind 19–7 14 19–12 18

Solar 19–9 17 19–10 16

Run of river 1 1 1 1

Probabilistic forecast Net load 37–29 37 37–32 36

Supply 34–29 32 34–27 32

Demand 13–10 13 13–9 13

Offshore wind 16–5 8 16–5 8

Onshore wind 19–8 14 19–15 19

Solar 19–10 18 19–10 14

Run of river 1 1 1 1

Table 3  Configuration of the best performing simple neural network forecasting models used

Model Number of neurons

Layer 1 Layer 2 Layer 3 Layer 4

Deterministic forecast Net load 192 128 12 32

Supply 96 128 64 18

Demand 64 64 48 32

Offshore wind 96 32 64 8

Onshore wind 160 80 64 8

Solar 64 80 64 32

Run of river 224 128 24 32

Probabilistic forecast Net load 64 32 48 24

Supply 64 32 48 22

Demand 64 32 48 8

Offshore wind 96 32 16 32

Onshore wind 64 32 16 18

Solar 256 128 48 32

Run of river 64 32 64 8
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CNN has two separate inputs, namely lagged features and all non-lagged features for the 
upcoming 24 h, as shown in Fig. 4. These two inputs are passed through two CNN lay-
ers, with batch normalisation, ELU activation functions, and max pooling between each 
layer. The outputs are flattened and passed into dense layers with batch normalisation 
and an ELU activation function following the second CNN layer. The two outputs are 
then concatenated and flattened before being passed to three more dense layers, with 
batch normalisation and ELU activation functions. The final output layer contains a lin-
ear activation function. The hyperparameter space for the complex model includes both 
the filter size and the window size for the CNN layers. This hyperparameter space is 
shown in Fig. 4. Given the optimal hyperparameters, the complex model is trained with 
a batch size of 128 using four-fold cross-validation and kernel and bias regularisation. 
The model is then evaluated on the mean of the folds. During training, we use the mean 
squared error (MSE) as the loss function and again the Adam optimiser with early stop-
ping. The best performing configuration for the complex model is shown in Table 4.

Probabilistic extension: To extend our approach to probabilistic forecasts, we adapt 
the forecasting models in the following ways. Firstly, the output is no longer a single 
point forecast but rather multiple neurons designed to estimate the distribution param-
eters of our assumed parametric distribution. Thereby, depending on the forecast par-
ametric distribution, we adjust the output activation function. For example, if we are 
forecasting a quantity with an assumed Beta or Gamma distribution we use the Soft-
plus activation function. In contrast, we use a linear activation function for an assumed 
Gaussian distribution. Finally, during training, we use a proper scoring rule as a loss 
function, namely, the logarithmic score (Gneiting and Raftery 2007), which is a robust 
training metric.

To aggregate the multiple probabilistic forecasts for the three forecasting strategies, 
we use copulas, as described in “Probabilistic extension”. We select a Frank copula for the 

Fig. 4  The architecture of the complex CNN model used for net load forecasting. The model takes two 
inputs, lagged features and non-lagged features for the upcoming 24 h. The hyperparameter space used for 
hyperparameter optimisation is shown on the right
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aggregation since the analysis of Li et al. (2020) shows that the Frank copula performs 
the best for aggregating energy forecasts. For our probabilistic forecast, we select par-
ametric distributions with a data-driven approach. Therefore, we analyse the data and 
select a parametric distribution that approximates the underlying empirical distribution, 
as shown in Fig. 5. In this process, we only select distributions that are differentiable to 
allow their integration into our gradient-based forecasting models. Based on this data-
driven approach, we thus assume a Gaussian distribution for the demand and a beta dis-
tribution for the supply, solar generation, offshore wind generation, run of river and net 
load. For the onshore wind generation, we assume a gamma distribution.

Results

Based on the simulated data from the realistic future scenario and our implemented 
forecast models, we evaluate the forecasting performance of our three net load forecast-
ing strategies. For this evaluation, we only consider the test year of 2019, and generate 
forecasts based on historical weather data, i.e. a now-cast with a forecast horizon of 0 h.4 
In this section, we, therefore, report the evaluation results, firstly focusing on determin-
istic forecasts before also discussing probabilistic forecasts.

Deterministic forecasts: Table 5 shows the RMSE on the test data for all three fore-
casting strategies and deterministic forecasts. These results show that using the com-
plex CNN model and the partially aggregated strategy significantly ( α = 0.01 ) performs 
best, with an RMSE of 4.018. The second best performing strategy is the disaggregated 
strategy using the complex CNN model, with an RMSE of 4.107, whilst the aggregated 
strategy performs worst. Additionally, the simple model ranks the forecasting strategies 
in the same order as the complex model, with the partially aggregated strategy again 

Table 4  Configuration of the best performing complex CNN forecasting models used

The brackets indicate the layers, i.e.  (layer one, layer two)

Model Lag input Feature input

Filter size Window size Filter size Window size

Deterministic forecast Net load (1, 1) (24, 1) (300, 1) (1, 4)

Supply (218, 17) (24, 4) (300, 5) (1, 4)

Demand (171, 20) (1, 4) (137, 18) (1, 1)

Offshore wind (1, 1) (1, 4) (300, 1) (7, 4)

Onshore wind (1, 20) (7, 4) (300, 1) (8, 3)

Solar (153, 7) (17, 3) (78, 12) (2, 3)

Run of river (128, 1) (7, 4) (300, 9) (9, 4)

Probabilistic forecast Net load (1, 20) (5, 1) (99, 10) (1, 3)

Supply (1, 20) (1, 2) (108, 5) (1, 4)

Demand (171, 5) (6, 2) (100, 20) (1, 3)

Offshore wind (1, 20) (17, 3) (147, 1) (8, 4)

Onshore wind (1, 16) (7, 1) (114, 1) (6, 4)

Solar (164, 8) (18, 2) (62, 9) (3, 4)

Run of river (234, 1) (1, 3) (224, 20) (24, 1)

4  Since our forecast models rely on exogenous inputs, given weather forecasts of a certain forecast horizon, we can eas-
ily integrate this weather forecast information to generate supply, demand, and net load forecasts of the same forecast 
horizon.
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Fig. 5  The predicted distribution function and the observed empirical distribution function for all considered 
variables. We observe, that the selected distributions, in general, are a good approximation for the data. Note 
that if the selected distribution required values between 0 and 1, e.g. for the Beta distribution, the data was 
scaled in advance
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performing best (RMSE = 4.132 ). However, all simple NN forecast models are outper-
formed by the complex CNN models.

Probabilistic forecasts: Table 6 shows the CRPS on the test data set for all three fore-
casting strategies and probabilistic forecasts. The probabilistic evaluation results mirror 
the deterministic ones. Again, the best performing strategy for net load forecasting is 
the partially aggregated strategy with a CRPS of 2.130. This difference is also significant 
( α = 0.01 ) compared to the second best strategy, the disaggregated strategy. As before, 
the simple NN model ranks all strategies in the same order as the complex CNN model, 
with the partially aggregated strategy performing significantly ( α = 0.001 ) better than 
the other strategies. The complex model outperforms the simple NN for all forecasts 
apart from the run of river forecast in the disaggregated strategy, where the simple 
model performs slightly better.

Discussion
This section discusses the evaluation of our proposed strategies for net load forecasting, 
first on the results of the deterministic evaluation before considering the probabilistic 
forecasts.

The evaluation of our forecasting strategies for deterministic forecasts shows that 
the partially aggregated strategy delivers the best performance. This result suggests 
that combining both aggregation and tailored forecasting models is advantageous. The 
advantage of the aggregation is probably due to the supply consisting of multiple renew-
able energy sources that are geographically dispersed throughout the simulated Ger-
man energy system. This dispersion and variety in renewable energy sources lead to a 
smoothing effect in the resulting supply time series when aggregating all generation 
sources. This smoothing effect may counteract the large fluctuations present in single 
generation time series. Such fluctuations could, for example, be the extreme difference 

Table 5  RMSE calculated on the test set for the different deterministic forecasting strategies

The best performing strategy is highlighted in bold. Significance levels are based on the DM test and show the significance 
between the two best performing forecasting strategies for the same forecasting model

Significance levels ***α = 0.001 , **α = 0.01 , * α = 0.1

Strategy Quantity Complex model Simple model

Aggregated Net load 5.068 5.448

Partially aggregated Supply 3.744 3.790

Demand 1.408 1.558

Net load 4.018** 4.132***

Disaggregated Offshore wind 1.186 1.281

Onshore wind 3.508 3.764

Solar 1.095 1.189

Run of river 0.089 0.100

Demand 1.408 1.558

Net load 4.107 4.481
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between high solar generation at midday and zero solar generation at midnight. On 
the other hand, the advantage of tailored forecasting models may be due to the varying 
characteristics of supply and demand considered in the partially aggregated approach. 
Recurring daily and weekly patterns resulting from human behaviour characterise the 
demand. However, meteorological inputs primarily influence the renewable supply, and 
it is not likely that they follow the same patterns as the demand. Therefore, the partially 
aggregated approach allows the development of two separate models emphasising these 
individual components instead of accounting for the interaction between them as in the 
aggregated approach. The observed ranking of forecasting strategies can be observed 
for both the simple (NN) and complex (CNN) model. This observation suggests that 
the partially aggregated strategy is advantageous, regardless of the selected forecasting 
model. This information is crucial for network operators and energy suppliers. Whilst 
more advanced forecasting models will improve forecast performance in the future, our 
results show that the fundamental strategy behind these forecasts is also important and 
should not be forgotten.

The probabilistic forecast evaluation further strengthens the results of the determinis-
tic forecasts. When considering the average CRPS, the forecasting strategies are ranked 
in the same order, the difference between the forecasting strategies is significant, and 
the simple and complex models are consistent in ranking. These results suggest that the 
partially aggregated strategy is not only the best strategy for performing standard deter-
ministic point forecasts but is also the best strategy for capturing the uncertainty and 
forecasting the PDF of net load.

Although the selected parametric distributions are a good approximation for the 
empirical distributions, they are not ideal. Furthermore, the requirement for differen-
tiable distributions for the gradient-based forecasting models eliminates some obvious 
distributions, i.e. the uniform distribution. Therefore, considering non-parametric dis-
tributions that better approximate the underlying empirical distribution and forecasting 
models capable of working with such non-parametric distributions could be interesting. 
Furthermore, whilst the probabilistic forecast quantifies the uncertainty and thus pro-
vides more information, it is not always simple to integrate into down stream operations, 

Table 6  CRPS calculated on the test set for the different probabilistic forecasting strategies

The best performing strategy is highlighted in bold. Significance levels are based on the DM test and show the significance 
between the two best performing forecasting strategies for the same forecasting model

Significance levels ***α = 0.001 , **α = 0.01 , * α = 0.1

Strategy Quantity Complex model Simple model

Aggregated Net load 2.676 2.987

Partially aggregated Supply 1.953 2.053

Demand 0.751 0.794

Net load 2.130*** 2.226***

Disaggregated Offshore wind 0.602 0.657

Onshore wind 1.810 1.911

Solar 0.343 0.379

Run of river 0.048 0.045

Demand 0.751 0.794

Net load 2.203 2.363
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and they may be computationally more expensive. Therefore, the probabilistic and deter-
ministic approaches may both be useful in future energy systems, depending on the 
required use case.

Finally, our approach has only considered one simulated future energy system and two 
different forecasting models. Whilst both the simple and complex forecasting models 
deliver similar results, it is possible that forecasting models optimised for each strategy 
may perform differently. Therefore, considering more data, optimising forecasting mod-
els for each given strategy, and comparing their performance in this situation should be 
considered. Furthermore, such analysis may also allow for the development of a fore-
casting model that uses the advantages different approaches. Such a model may be able 
to, for example, switch between the disaggregated and partially disaggregated approach 
depending on certain predetermined conditions.

Conclusion
The present paper investigates various net load forecasting strategies based on differ-
ent levels of aggregation. We propose three forecasting strategies; an aggregated strat-
egy that directly forecasts the net load, a partially aggregated strategy that forecasts the 
demand and supply separately, and a disaggregated strategy that forecasts the demand 
and the supply from each renewable generator in the system separately. We evaluate 
these three strategies on a simulated data set representing a realistic future energy sys-
tem with a higher net load than today’s systems. For this evaluation, we compare the 
deterministic and probabilistic forecast performance of a simple (NN) and complex 
(CNN) model.

Our evaluation shows that the partially aggregated strategy performs best for both 
probabilistic and deterministic forecasts regardless of the selected forecasting model. 
This result can be explained by a trade-off between the positive smoothing effects due 
to the aggregation of all individual suppliers and considering model-specific informa-
tion with separate and tailored forecasting models for supply and demand. Despite these 
consistent results, we only evaluate two separate forecasting models for one simulated 
future energy system.

Therefore, in future work, we propose first considering further forecasting models 
optimised for each forecasting strategy and comparing these on multiple alternative 
future energy scenarios. Furthermore, these scenarios should include higher contribu-
tions from other renewable sources, such as solar and run of river. Based on these sce-
narios, forecasting models that switch between various forecasting strategies depending 
on predetermined conditions or optimally combine different levels of aggregation 
should be investigated. Secondly, non-parametric distributions and forecasting models 
that can successfully work with these non-parametric distributions should be considered 
in future work. Thirdly, since the present paper only focused on hourly forecasts based 
on historical weather data and aggregated for an entire country, considering different 
temporal resolutions, such as 15 min, forecast horizons, and different aggregation levels, 
could also be of interest. Finally, to enable automation in future smart grid settings our 
forecasting strategies should be integrated into an automated forecasting pipeline, e.g. 
with pyWATTS (Heidrich et al. 2021).
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