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Abstract. We study virtual levels of N -particle Schrödinger operators and prove that if the

particles are one-dimensional and N ≥ 3, then virtual levels at the bottom of the essential
spectrum correspond to eigenvalues. The same is true for two-dimensional particles if N ≥ 4.

These results are applied to prove the non-existence of the Efimov effect in systems of N ≥ 4

one-dimensional or N ≥ 5 two-dimensional particles.

1. Introduction

In recent years the Efimov effect has attracted large interest. This effect is named after
the physicist V. Efimov and can be stated as follows: A system of three quantum particles in
dimension three, interacting through attractive short-range potentials, has an infinite number
of bound states if the subsystems do not have negative spectrum and at least two of them are
resonant [10], i.e. any arbitrarily small negative perturbation of the pair potential leads to a
negative spectrum. In this situation we also say that the two-body Hamiltonian of the system
has a virtual level.
The Efimov effect is a surprising phenomenon, because although the pair interactions are short-
range, the system of three particles behaves as a system of two particles with long-range potential.
Another interesting feature is its universality. This means that the existence of the effect as well
as the distribution of the eigenvalues do not depend on the shape of the potentials of interaction
of particles. It is only important that they are short-range and resonant. Indeed, the counting
function N(z) of the eigenvalues of the three-body Hamiltonian below z < 0 obeys the following
asymptotics

lim
z→0−

N(z)

| ln |z||
= A0 > 0, (1.1)

where the constant A0 depends on the masses of the particles, but not on the potentials [10].
For a long time the Efimov effect was regarded by many as a theoretical peculiarity. After the
theoretical discovery of the Efimov effect great efforts were made to verify it experimentally.
However, it took more than 30 years before in 2002 it was found in an ultra-cold gas of caesium
atoms [16]. This experiment was a milestone and opened the way to many further experiments
in different systems of ultra-cold atoms in many laboratories all over the world [11, 15, 7].
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In addition, it lead to a resurgence of interest to the Efimov effect, see for example the review
of P. Naidon and S. Endo [17], which contains 400 references. Since then, many predictions of
phenomena similar to the Efimov effect have been made [21, 22, 19, 20]. Some of these predictions
focus on the question whether an Efimov-type effect can be found in N -particle systems consisting
of one- or two-dimensional particles under the assumptions that the (N − 1)-particle subsystems
have a virtual level at the bottom of the essential spectrum. For example in [19] and [21] it
is predicted that such an effect occurs for systems of N = 4 two-dimensional or N = 5 one-
dimensional particles if the interactions in subsystems of less than N − 1 particles are absent.
In the table below we give a list of systems of N identical particles where the Efimov effect is
expected in the physics literature.

System
Art of Resonant

Predicted in
Does a mathematical

Interactions subsystems proof exist?

5 bosons, d = 1
four-body

four-body [21] Nono two-body
no three-body

4 bosons, d = 2
three-body

three-body [19] No
no two-body

3 bosons, d = 3 two-body two-body [10] Yes, [37]
3 fermions, d = 2 two-body two-body [20] Yes, [14]

Table 1. Systems for which an Efimov-type effect is expected by physicists

Besides these systems, effects similar to the Efimov effect are expected for systems with mixed
dimensions, i.e. where the particles move in the three-dimensional space, but some of them are
confined in a lower-dimensional space. Such an effect is called confinement-induced Efimov
effect, see for example [22]. From a mathematical point of view the question of existence or
non-existence of Efimov-type effects in systems with mixed dimensions is completely open.

The first mathematically rigorous proof of the Efimov effect for systems of three three-
dimensional particles was given by D. R. Yafaev [37] using a system of symmetrized Faddeev
equations combined with the low-energy asymptotics of the resolvents of the two-body Hamilto-
nians. In [39] he also showed that the Hamiltonian has only a finite number of bound states if at
most one of the subsystems is resonant. Later, A. V. Sobolev proved the asymptotics (1.1) for
the eigenvalue counting function [28]. In the years after the mathematical confirmation of the
Efimov effect different techniques were developed and many other mathematical results related
to this effect were obtained [35, 23, 31, 30, 6, 33].
In particular, it was proved in [35] that the existence of the Efimov effect depends on the nature
of the virtual levels in the subsystems. If the virtual level in the two-body subsystems correspond
to eigenvalues, which for example is the case if the three-particle Hamiltonian is considered on
certain symmetry subspaces of L2(R6), then the Efimov effect is absent.
For a long time it has been expected that due to the same reason the Efimov effect does not exist
for systems of N ≥ 4 three-dimensional bosons. However, to prove that virtual levels in subsys-
tems of N − 1 particles correspond to eigenvalues and not to resonances was a very challenging
problem, because the sum of the pair potentials does not decay in all directions at infinity, which
makes it difficult to use Green’s functions. This problem was first solved by D. Gridnev [13] and
recently a proof with simpler methods and less restrictions on the potentials was given in [6]. In
addition, it was shown in [6] that the Efimov effect can not occur in systems of N ≥ 4 one- or
two-dimensional spinless fermions.
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For the case of three two-dimensional spinless fermions, which is not covered by [6], it was pre-
dicted in the physics literature that an effect similar to the Efimov effect is present, namely the
so-called super Efimov effect [20]. The first mathematical proof of this prediction was given by
D. Gridnev [14]. Recently, this result was improved by H. Tamura, where the conditions on the
potentials [32] were less restrictive.
Much less is mathematically known about the existence of the Efimov effect in systems of N ≥ 3
one- or two-dimensional bosons or systems without symmetry restrictions. For such systems
consisting of three one- or two-dimensional particles the absence of the Efimov effect was first
proved by G. Zhislin and one of the authors of this paper in [34] under very strong restrictions
on the potentials. Later, in [36] these restrictions were relaxed, but unfortunately Lemma 1 in
[36] contains a mistake. We will correct this mistake in Section 6 at the end of this paper. For
systems of N ≥ 4 one- or two-dimensional bosons mathematical results are unknown. The main
goal of our work is to fill this gap, at least partially.
Our main results are the following: For systems of N ≥ 3 one-dimensional bosons or particles
without symmetry restrictions with pair interactions we prove that the existence of virtual levels
in the (N − 1)-particle subsystems does not imply the infiniteness of the number of negative
eigenvalues. For systems of N two-dimensional particles we prove the same result except for
N = 4.
The method of the proof is analogous to the proof in [6]. We study the decay of solutions of the
Schrödinger equation corresponding to a virtual level and show that these solutions are eigen-
functions. Then we use arguments similar to [35]. To obtain the decay rate of the solutions we
apply a modification of Agmon’s method [3], developed in [6]. This method requires estimates
on the quadratic form of a multi-particle Schrödinger operator on functions supported far from
the origin. In order to obtain these estimates we make a partition of unity of the configuration
space according to decompositions of the original system into clusters with careful estimates of
the localization error.
On the technical level however this work is very different from [6]. A crucial difference between
one- or two-dimensional particles and d-dimensional particles with d ≥ 3 is that in lower dimen-
sions the common Hardy inequality does not hold. This manifests in particular in the fact that
the one-particle Schrödinger operator h = −∆ + V in dimension one or two with a short-range
potential V 6≡ 0 has negative eigenvalues if

´
V (x) dx ≤ 0. Consequently, if we know that h

does not have negative spectrum, we can immediately say that
´
V (x) dx > 0. This simple

observation plays an important role in our proof.
On the other hand to localize regions in the configuration space in [6] we used a special type of
the cut-off functions constructed in [35]. For this choice of the cut-off functions, due to Hardy’s
inequality, the localization error can be compensated by a small part of the kinetic energy. Since
in one- and two-dimensional cases the Hardy inequalities are different, this construction can not
be applied in lower dimensions. To overcome this obstacle, we develop in Section 3 an advanced
way to construct the cut-off functions, which is better compatible with one- and two-dimensional
variants of Hardy’s inequality.
The paper is organized as follows. In Section 2 we discuss virtual levels of one-body Schrödinger
operators with short-range potentials in dimension one and two. We prove that virtual levels
correspond to resonances and give an estimate for the decay rate of the corresponding solutions.
This section is contained for completeness. Readers only interested in the multi-particle case can
skip it and go immediately to Section 3, where we extend the study of virtual levels to the multi-
particle case. We prove that for systems of N ≥ 3 one-dimensional or N ≥ 4 two-dimensional
particles virtual levels correspond to eigenvalues. We also derive lower bounds for the decay
rates of the zero energy eigenfunctions. In Section 4 we discuss systems of three two-dimensional
particles, which is the only case where a virtual level might correspond to a resonance. We show
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that there exists a solution of the Schrödinger equation in the space L2(R4, (1 + |x|)−δ), δ > 0.
Section 5 is devoted to the absence of the Efimov effect for multi-particle systems in dimension
one and two. In Section 6 we give the proof for the absence of the Efimov effect in systems of
three one- or two-dimensional particles.

2. Virtual levels of one-particle Schrödinger operators in dimension one and
two

Although the main subject of this paper are virtual levels of multi-particle systems consisting
of one- or two-dimensional particles and the non-existence of the Efimov effect in such systems,
in this section we discuss virtual levels of one-particle Schrödinger operators in these dimensions.
Some of the results of this section will be applied later to study the multi-particle case, others
are given for a better understanding of one- and two-dimensional systems.

2.1. Notation and assumptions. In this section we consider the one-particle Schrödinger
operator

h = −∆ + V (2.1)

in L2(Rd) with d = 1 or d = 2. Within the whole section we assume that V 6= 0. Furthermore,
we assume that V is relatively form bounded with relative bound zero, i.e. for every ε > 0 there
exists a constant C(ε) > 0, such that

〈|V |ψ,ψ〉 ≤ ε‖∇ψ‖2 + C(ε)‖ψ‖2 (2.2)

holds for any ψ ∈ H1(Rd). This condition is fulfilled if V ∈ Lploc(Rd) + L∞(Rd) with p = 1
if d = 1 and p > 1 if d = 2, [9]. Due to the KLMN-theorem [24, Theorem X.17] under this
assumption the operator h is self adjoint on L2(Rd) with the associated quadratic form

Q[ψ] = ‖∇ψ‖2 + 〈V ψ, ψ〉 (2.3)

with form domain H1(Rd). For any ε ∈ (0, 1) we define

hε = h+ ε∆. (2.4)

For any self-adjoint operator A we denote by S(A), Sess(A) and Sdisc(A) the spectrum, the
essential spectrum and the discrete spectrum of A, respectively.
Following [8] we introduce function spaces which will be important for our studies in this paper.

For dimension d ≥ 3 the homogenous Sobolev space H̃1(Rd) is defined as the completion of
C∞0 (Rd)-functions with respect to the norm

‖u‖H̃1 =

(ˆ
Rd
|∇u|2 dx

) 1
2

. (2.5)

It follows from Hardy’s inequality that for d ≥ 3 a sequence of functions un ∈ H̃1(Rd) with
‖un‖H̃1 → 0 converges to zero in L2

loc(Rd). It is also known (see, for example [8]) that for d = 1

and d = 2 the completion of C∞0 (Rd) with respect to (2.5) does not lead to a function space,
because constant functions are identified. In order to avoid this problem we add a local L2 norm
to the gradient semi-norm and define for d = 1 or d = 2

‖u‖H̃1 =

(ˆ
Rd
|∇u|2 dx+

ˆ
{|x|≤1}

|u|2 dx

) 1
2

. (2.6)

Let H̃1(Rd) be the completion of C∞0 (Rd) with respect to the norm (2.6), then

H̃1(Rd) =
{
u ∈ L1

loc(Rd),∇u ∈ L2(Rd)
}
. (2.7)
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In Appendix A we collect some elementary properties of the space H̃1(Rd), d = 1, 2, which we
use in this paper.

2.2. Properties of virtual levels of one-particle Schrödinger operators with short-
range potentials.

Definition 2.1. Assume that the potential V satisfies (2.2). We say that the operator h, defined
in (2.1), has a virtual level at zero if

h ≥ 0, inf S (hε) < 0 and inf Sess (hε) = 0 (2.8)

holds for any sufficiently small ε > 0.

Remark. Note that the Laplace operator is critical in dimension one and two, i.e. for any V ∈
L1(Rd) satisfying (2.2) and V 6= 0 with

´
Rd V (x) dx ≤ 0 the operator h has at least one negative

eigenvalue, see [27]. Consequently, for d = 1, 2 the condition h ≥ 0 implies
´∞
−∞ V (x) dx > 0. On

the other hand, the condition inf S(hε) < 0 yields that V (x) has a non-trivial negative part.

Let us briefly motivate our goals for this section. For the case d = 3 it was shown that the
one-particle Schrödinger operator h ≥ 0 with short-range potential has a virtual level if and only
if hψ = 0 has a solution in H̃1

(
R3
)
. This solution does not belong to L2

(
R3
)

and decays as

|x|−1 as |x| → ∞, see [38].
Moreover, by applying Hardy’s inequality one can see that in case d ≥ 3 for short-range potentials
the operator h has a virtual level at zero if and only if h ≥ 0 and for any ε > 0 the operator
h̃ = −∆ + V − ε(1 + |x|)−2 has a discrete eigenvalue below zero.
Our goal is to generalize these two statements to the cases d = 1, 2. This will be done in the
following two theorems.

Theorem 2.2 (Solutions of the Schrödinger equation corresponding to virtual levels). Assume
that d = 1 or d = 2 and that the potential V satisfies V 6= 0, condition (2.2) and

|V (x)| ≤ C (1 + |x|)−2−ν
, x ∈ Rd, |x| ≥ A (2.9)

for constants A,C, ν > 0. If h has a virtual level at zero, then the following assertions hold:

(i) There exists a solution ϕ0 ∈ H̃1(Rd), ϕ0 6= 0, of the equation −∆ϕ0 + V ϕ0 = 0, i.e. for

all ψ ∈ H̃1(Rd)
〈∇ϕ0,∇ψ〉+ 〈V ϕ0, ψ〉 = 0. (2.10)

(ii) Let d = 1. Then for the functions ϕ0 satisfying (2.10) we have

(1 + |x|)− 1
2−εϕ0 ∈ L2(R) for any ε > 0. (2.11)

(iii) Let d = 2. Then for the functions ϕ0 satisfying (2.10) we have

(1 + |x|)−1 (1 + | ln(|x|)|)−
1
2−ε ϕ0 ∈ L2(R2) for any ε > 0. (2.12)

(iv) If in addition the potential V is relatively −∆-bounded, i.e. there exists a constant C > 0,
such that

‖V ψ‖2 ≤ C
(
‖∆ψ‖2 + ‖ψ‖2

)
(2.13)

holds for all functions ψ ∈ H2(Rd), then there exists a constant δ0 > 0, such that for
any function ψ ∈ H1(Rd) satisfying 〈∇ψ,∇ϕ0〉 = 0

〈hψ, ψ〉 ≥ δ0‖∇ψ‖2. (2.14)

Remark. (i) Note that the left-hand side of (2.10) is well-defined due to condition (2.9)
and inequalities (A.4) and (A.5) in Appendix A.
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(ii) Similarly to Theorem 2.1 in [6] we use the condition (2.13) on the potential V only to be
able to apply the unique continuation theorem. Without this condition we are not able to
prove uniqueness of the solution ϕ0 of the equation−∆ϕ0+V ϕ0 = 0 in H̃1(Rd). However,

similarly to [6] we can show that the subspace M ⊂ H̃1(Rd) of functions ϕ satisfying

(2.10) is finite-dimensional and that for each ψ ∈ H̃1(Rd), satisfying 〈∇ϕ,∇ψ〉 = 0 for
all ϕ ∈M holds (2.14).

(iii) Theorem 2.2 gives a lower bound on the decay rate of solutions of the Schrödinger
equation corresponding to virtual levels. It is easy to see that if the potentials are
compactly supported and V (x) = V (|x|), then estimates (2.53) and (2.54) are almost
sharp. It is also easy to see that the solution can not be an eigenfunction, it is a zero
energy resonance.

Theorem 2.3 (Necessary and sufficient condition for a virtual level). Let d = 1, 2. We assume
that V 6= 0 satisfies (2.2) and (2.9) and that h ≥ 0. Further, let U be a continuous, strictly
negative potential satisfying for |x| ≥ A the condition

|U(x)| ≤ C|x|−2 if d = 1 and |U(x)| ≤ C|x|−2 ln−2(|x|) if d = 2 (2.15)

for some A,C > 0. Then h has a virtual level at zero if and only if for any ε > 0 we have

inf S (h+ εU) < 0. (2.16)

Remark. (i) Note that in dimension d ≥ 3 Hardy’s inequality yields that inf S(h+εU) = 0
for sufficiently small ε > 0 if h does not have a virtual level. For dimension d = 1 or
d = 2 it does not follow from Hardy’s inequality. However, Theorem 2.3 shows that it is
still true.

(ii) Assume that V 6= 0 satisfies (2.2) and (2.9), h ≥ 0 and that h does not have a virtual
level at zero. Then for small ε0 > 0 the operator hε0 > 0 also does not have a virtual
level and therefore Theorem 2.3 can be applied to the operator hε0 . Hence, there exists
ε1 > 0, such that

(1− ε0)‖∇ψ‖2 + 〈V ψ, ψ〉+ ε1〈Uψ,ψ〉 ≥ 0 (2.17)

holds for any function ψ ∈ H1(Rd) with U defined as in Theorem 2.3. This modification
of Theorem 2.3 will be used in the case of multi-particle systems in the next sections.

(iii) Assume that h ≥ 0 does not have a virtual level and that the potential V 6= 0 satisfies
(2.2) and (2.9). Then by choosing U according to Theorem 2.3 with U(x) = −1 for

|x| ≤ 1 we obtain from (2.17) that for any ψ ∈ H̃1(Rd)

‖ψ‖2
H̃1 ≤

1 + ε1 − ε0

ε1
‖∇ψ‖2 +

1

ε1
〈V ψ, ψ〉. (2.18)

Theorem 2.3 will be proved in Appendix B, where similar statements for multi-particle Schrödinger
operators are established. We turn to the

Proof of Theorem 2.2. Since for any ε > 0 we have inf Sdisc(hε) < 0, we find a sequence of
eigenfunctions ψn ∈ H1(Rd), corresponding to eigenvalues En < 0 of the operator hn−1 , i.e.

−
(
1− n−1

)
∆ψn + V ψn = Enψn. (2.19)

We normalize the functions ψn by the condition ‖ψn‖H̃1 = 1. Then there exists a subsequence,

also denoted by (ψn)n∈N, which converges weakly in H̃1(Rd) to a function ϕ0 ∈ H̃1(Rd). At first,

we prove that ϕ0 is a solution of the equation −∆ϕ0 + V ϕ0 = 0 in H̃1(Rd) and that ϕ0 6= 0.
Indeed, we have the following
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Lemma 2.4. Assume that h has a virtual level at zero and that V satisfies (2.2) and (2.9).

Then the function ϕ0 defined above is not zero and for any ψ ∈ H̃1(Rd)
〈∇ϕ0,∇ψ〉+ 〈V ϕ0, ψ〉 = 0. (2.20)

Proof of Lemma 2.4. Since ϕ0 is the weak limit of the sequence (ψn)n∈N in H̃1(Rd), we have
ϕ0 ∈ L2

loc(Rd) and by Proposition A.1 (iii) ψn → ϕ0 strongly in L2
loc(Rd). First, we show thatˆ

{|x|≤R}
V (x)|ψn(x)|2 dx −→

ˆ
{|x|≤R}

V (x)|ϕ0(x)|2 dx as n→∞ (2.21)

for any fixed R > 0. We write

〈V ψn, ψn〉B(R) − 〈V ϕ0, ϕ0〉B(R) = 〈V (ψn − ϕ0), ψn〉B(R) + 〈V ϕ0, (ψn − ϕ0)〉B(R), (2.22)

where B(R) = {x ∈ Rd : |x| ≤ R}. Let χ be a piecewise differentiable function satisfying
χ(x) = 1 for x ∈ B(R) and χ(x) = 0 if x /∈ B(R+ 1). Then we get by Cauchy Schwarz

〈|V ||ψn − ϕ0|, |ψn|〉B(R) ≤ 〈|V |
1
2 |ψn − ϕ0|χ, |V |

1
2 |ψn|χ〉

≤ (〈|V ||ψn − ϕ0|χ, |ψn − ϕ0|χ〉)
1
2 (〈|V ||ψn|χ, |ψn|χ〉)

1
2 .

(2.23)

We estimate the two factors on the r.h.s. of (2.23) separately. By assumption (2.2) we get

〈|V ||ψn − ϕ0|χ, |ψn − ϕ0|χ〉 ≤ ε‖∇0 (|ψn − ϕ0|χ) ‖2 + C(ε)‖(ψn − ϕ0)χ‖2. (2.24)

Due to ‖∇0ψn‖ ≤ 1, ‖∇0ϕ0‖ ≤ 1, 0 ≤ χ ≤ 1 and |∇0χ| ≤ C for some C > 0, the first term
on the r.h.s. of (2.24) is arbitrarily small if ε > 0 is small enough. The second term tends to
zero as n → ∞ because ψn → ϕ0 in L2

loc(Rd). Similarly, we can show that 〈|V ||ψn|χ, |ψn|χ〉 is
bounded and therefore 〈|V ||ψn − ϕ0|, |ψn|〉B(R) tends to zero as n → ∞. Analogously we get
〈V (ψn − ϕ0), ϕ0〉B(R) → 0 as n→∞. Hence, we get (2.21).
By taking R > A, condition (2.9) together with inequality (A.4) for d = 1 and (A.5) for d = 2,
respectively, implies ˆ

{|x|>R}
|V (x)||ψn(x)|2 dx ≤ C

ˆ
{|x|>R}

|ψn(x)|2

(1 + |x|)2+ν
dx

≤ C̃R− ν2 ‖ψn‖2H̃1 = C̃R−
ν
2

(2.25)

for some constants C, C̃ > 0. Since ‖ϕ0‖H̃1 ≤ 1, by the same arguments we getˆ
{|x|>R}

|V (x)||ϕ0(x)|2 dx ≤ C̃R− ν2 , (2.26)

which together with (2.21) implies that 〈V ϕ0, ϕ0〉 is well-defined and

〈V ψn, ψn〉 → 〈V ϕ0, ϕ0〉 as n→∞. (2.27)

Recall that

〈V ψn, ψn〉 ≤ −
(
1− n−1

)
‖∇ψn‖2

=
(
1− n−1

)(
−1 +

ˆ
{|x|≤1}

|ψn|2 dx

)
−→ −1 +

ˆ
{|x|≤1}

|ϕ0|2 dx.
(2.28)

Sending n to infinity and using (2.27) yields

〈V ϕ0, ϕ0〉 ≤ −1 +

ˆ
{|x|≤1}

|ϕ0|2 dx = −1− ‖∇ϕ0‖2 + ‖ϕ0‖2H̃1 . (2.29)

Since ‖ϕ0‖H̃1 ≤ 1 and the operator h is non-negative, we get ‖ϕ0‖H̃1 = 1 and

‖∇ϕ0‖2 + 〈V ϕ0, ϕ0〉 = 0. (2.30)
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Standard arguments show that ϕ0 satisfies (2.20) for any ψ ∈ H̃1(Rd). �

Now we turn to the proof of statements (ii) and (iii) of Theorem 2.2, i.e. the estimate of the
weighted L2(Rd) norm of ϕ0. At first, we prove a weighted L2(Rd)-estimate for the functions
ψn.

Lemma 2.5. Assume that h has a virtual level at zero and that V satisfies (2.2) and (2.9). Let
(ψn)n∈N be a sequence of eigenfunctions corresponding to negative eigenvalues En < 0 of the
operator hn−1 , normalized as ‖ψn‖H̃1 = 1. Then the following assertions hold:

(i) If d = 1, then for any α0 <
1
2 there exists a C > 0, such that for all n ∈ N we have

‖∇ (|x|α0ψn) ‖ ≤ C and ‖(1 + |x|)α0−1ψn‖ ≤ C. (2.31)

(ii) If d = 2, then for any α0 <
1
2 there exists a C > 0, such that for all n ∈ N we have

‖∇ (| ln(|x|)|α0ψn) ‖ ≤ C and ‖(1 + |x|)−1(1 + | ln(|x|)|)α0−1ψn‖ ≤ C. (2.32)

Proof of Lemma 2.5. The proof is a modification of the proof of Lemma 2.4 in [6]. At first, we
prove the Lemma for the case d = 1. For any ε > 0 and R > 0 we define the function

Gε(x) =
|x|α0

1 + ε|x|α0
χR(x), (2.33)

where χR is a C1-cutoff function with

χR(x) =

{
0, |x| ≤ R,
1, |x| ≥ 2R.

(2.34)

We multiply the eigenvalue equation

− (1− n−1)∆ψn + V ψn = Enψn (2.35)

by G2
εψn and integrate by parts to obtain(

1− n−1
)
〈∇ψn,∇

(
G2
εψn

)
〉+ 〈V ψn, G2

εψn〉 = En‖Gεψn‖2 < 0. (2.36)

Since

Re〈V ψn, G2
εψn〉 = 〈V ψn, G2

εψn〉 and ReEn‖Gεψn‖2 = En‖Gεψn‖2, (2.37)

we have
Re〈∇ψn,∇

(
G2
εψn

)
〉 = 〈∇ψn,∇

(
G2
εψn

)
〉. (2.38)

Note that

Re〈∇ψn,∇(G2
εψn)〉 = Re〈∇ψn, Gεψn∇Gε〉+ Re〈(∇ψn)Gε,∇(Gεψn)〉

= Re〈∇(ψnGε), ψn∇Gε〉 − Re〈ψn∇Gε, ψn∇Gε〉
+ Re〈∇(ψnGε),∇(ψnGε)〉 − Re〈ψn∇Gε,∇(ψnGε)〉

= Re〈∇(ψnGε),∇(ψnGε)〉 − Re〈ψn∇Gε, ψn∇Gε〉.

(2.39)

Therefore, we obtain

〈∇ψn,∇(G2
εψn)〉 = ‖∇(ψnGε)‖2 − ‖ψn∇Gε‖2. (2.40)

This together with (2.36) yields(
1− n−1

)(
‖∇(ψnGε)‖2 −

ˆ
|ψn|2|∇Gε|2 dx

)
+

ˆ
V |ψnGε|2 dx < 0. (2.41)

Now we estimate the function |∇Gε|. For |x| > 2R we have

|∇Gε| =
α0|x|α0−1

(1 + ε|x|α0)2
≤ α0|x|−1|Gε|. (2.42)
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For |x| ∈ [R, 2R] the function |∇Gε| is uniformly bounded in ε, which impliesˆ
{R≤|x|≤2R}

|∇Gε|2|ψn|2 dx ≤ C0

ˆ
{R≤|x|≤2R}

|ψn|2 dx, (2.43)

for some C0 > 0 which depends on R only. Now we use inequality (A.4) to estimate the r.h.s. of
(2.43). We getˆ

{R≤|x|≤2R}
|ψn|2 dx ≤ (1 + 4R2)

ˆ
{R≤|x|≤2R}

|ψn|2

1 + x2
dx ≤ CH(1 + 4R2)‖ψn‖2H̃1 , (2.44)

where CH is a Hardy-type constant in (A.4). This, together with (2.43) and ‖ψn‖H̃1 = 1 impliesˆ
{R≤|x|≤2R}

|∇Gε|2|ψn|2 ≤ C1 (2.45)

for some C1 > 0 which is independent of n ∈ N and ε > 0. Substituting (2.42) and (2.45) into
(2.41) we obtain(

1− n−1
)
‖∇(ψnGε)‖2 + 〈V Gεψn, Gεψn〉 − α2

0

ˆ
{|x|>2R}

|Gεψn|2

|x|2
dx ≤ C2, (2.46)

where C2 > 0 does not depend on n ∈ N or ε > 0. The function Gεψn is supported outside the
ball with radius R. Therefore, choosing R > A we can use (2.9) and apply Hardy’s inequality
for the half-line, which yields

(1− γ0)‖∇(Gεψn)‖2 + 〈V Gεψn, Gεψn〉 − α2
0〈|x|−2Gεψn, Gεψn〉 ≥ 0 (2.47)

for all α2
0 <

1
4 and γ0 < (1− 4α2

0). For n > 2γ−1
0 estimates (2.46) and (2.47) imply

γ0

2
‖∇(Gεψn)‖2 ≤ C2. (2.48)

Taking the limit ε→ 0 yields ‖∇ (|x|α0ψn) ‖ ≤ C for some C > 0.
Applying Hardy’s inequality for the half-line to the function Gεψn and taking the limit ε → 0
implies

‖(1 + |x|)α0−1ψn‖ ≤ C. (2.49)

This completes the proof of Lemma 2.5 for d = 1. Now we assume d = 2. For ε > 0 and
0 < α0 <

1
2 let

Gε(x) =
| ln(|x|)|α0

1 + ε| ln(|x|)|α0
χR(x), (2.50)

where χR is a C1-cutoff function with

χR(x) =

{
0, |x| ≤ R,
1, |x| ≥ 2R.

(2.51)

Due to (2.9) and Hardy’s inequality in dimension two we get similarly to (2.47) that

(1− γ0)‖∇(Gεψn)‖2 + 〈V Gεψn, Gεψn〉 − α2
0〈|x|−2 (ln |x|)−2

Gεψn, Gεψn〉 ≥ 0 (2.52)

for all α2
0 < 1

4 and γ0 < (1 − 4α2
0). Now the proof is a straightforward modification of the

one-dimensional case. �

Statements (ii) and (iii) of Theorem 2.2 follow from the following

Corollary 2.6. The weak limit ϕ0 of the sequence (ψn)n∈N has the following properties.

(i) If d = 1, then

(1 + |x|)α0−1ϕ0 ∈ L2(R) for any α0 <
1

2
. (2.53)
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(ii) If d = 2, then

(1 + |x|)−1 (1 + ln(|x|))α0−1
ϕ0 ∈ L2(R2) for any α0 <

1

2
. (2.54)

Proof of Corollary 2.6. Let d = 1. Since (ψn)n∈N converges to ϕ0 in L2
loc(R) and for any α0 <

1
2

we have the estimate ‖(1 + |x|)α0−1ψn‖ ≤ C uniformly in n ∈ N, for every α0 <
1
2 we get

(1 + |x|)α0−1ψn → (1 + |x|)α0−1ϕ0 in L2(R) as n→∞. (2.55)

The case d = 2 follows analogously. �

To complete the proof of Theorem 2.2 it remains to prove statement (iv). This is a straightfor-
ward generalization of Lemma 2.10 in [6], which is based on the the unique continuation theorem
[25, Theorem 2.1]. �

3. Virtual levels of systems of N one- or two-dimensional particles

In this section we introduce virtual levels of Schrödinger operators corresponding to systems
consisting of N one- or two-dimensional particles. We prove several results on the decay rate of
solutions of the Schrödinger equation corresponding to virtual levels of multi-particle systems.
The main result of this section is Theorem 3.2, where we give sufficient conditions in terms of a
Hardy-type constant, such that virtual levels of multi-particle Schrödinger operators correspond
to eigenvalues and prove an estimate for the decay rate of the corresponding eigenfunctions. In
Corollaries 3.3 and 3.4 and Theorem 3.5 we discuss applications of Theorem 3.2 to multi-particle
systems.

3.1. Notation and definitions for multi-particle systems. We consider a system of N ≥ 3
quantum particles in dimension d = 1 or d = 2 with masses mi > 0 and position vectors
xi ∈ Rd, i = 1, . . . , N . Such a system is described by the Hamiltonian

HN = −
N∑
i=1

1

mi
∆xi +

∑
1≤i<j≤N

Vij(xij), xij = xi − xj (3.1)

acting on L2(RdN ). The potentials Vij describe the particle pair interactions and in the following
we assume that they satisfy Vij 6= 0 and the conditions (2.2) and (2.9).

Separation of the center of mass of the system. We will consider the operator HN in the center-
of-mass frame. Following [26], we denote by 〈·, ·〉m the scalar product on RdN which is given
by

〈x, y〉m =

N∑
i=1

mi〈xi, yi〉, |x|2m = 〈x, x〉m, x, y ∈ RdN . (3.2)

Here, 〈·, ·〉 is the standard scalar product on Rd. Let X be the space RdN equipped with the
scalar product 〈·, ·〉m and let

X0 =

{
x = (x1, . . . , xN ) ∈ X :

N∑
i=1

mixi = 0

}
(3.3)

be the space of positions of the particles in the center of mass frame and Xc = X 	X0 be the
space of the center of mass position of the system. We denote by P0 and Pc the orthogonal
projections from X on X0 and Xc, respectively.
Furthermore, we introduce −∆, −∆0 and −∆c as the Laplace-Beltrami operators on L2(X),
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L2(X0) and L2(Xc), respectively. Then, corresponding to the decomposition L2(X) = L2(X0)⊗
L2(Xc) we find

−∆ = −∆0 ⊗ Id + Id⊗ (−∆c). (3.4)

Since for every x ∈ X we have

(P0x)i − (P0x)j = xi − xj , (3.5)

the potential V (x) =
∑

1≤i<j≤N Vij(xij) satisfies

V (x) = V (P0x). (3.6)

Therefore, HN is unitarily equivalent to the operator

H ⊗ Id + Id⊗ (−∆c), (3.7)

where
H = −∆0 + V. (3.8)

In view of (3.7) the center of mass of the system moves like a free particle and the operator H
corresponds to the relative motion of the system.

Clusters and Cluster Hamiltonians. A cluster C of the system is defined as a non-empty subset
of {1, . . . , N} and we denote by |C| the number of particles contained in C. For 1 < |C| < N we
define the space of the relative positions of the particles in the cluster C by

X0[C] = {x ∈ X0 : xi = 0 if i 6∈ C}. (3.9)

Let −∆0[C] be the the Laplace-Beltrami operator on L2(X0[C]) and

V [C] =
∑

i,j∈C, i<j
Vij (3.10)

the potential of the interactions between the particles in the cluster C. Then for 1 < |C| < N
the cluster Hamiltonian with reduced center of mass, acting on L2(X0[C]), is given by

H[C] = −∆0[C] + V [C] (3.11)

and describes the internal dynamics of the cluster C. For C = {1, . . . , N} we have X0[C] = X0,
so we set H[C] = H. For |C| = 1 we have X[C] = {0} and we set H[C] = 0.
Let P0[C] be the orthogonal projection from X0 to X0[C] and for x ∈ X0 let

q[C] = P0[C]x. (3.12)

Partitions of the system. We say that Z = (C1, . . . , Cp) is a partition or cluster decomposition
of the system of order |Z| = p if and only if

Ci 6= ∅, Ci ∩ Cj = ∅,
p⋃
j=1

Cj = {1, . . . , N} (3.13)

holds for all i, j = 1, . . . , p with i 6= j. We refer to C ⊂ Z as a cluster of the partition Z =
(C1, . . . , Cp) if C = Ci for some i = 1, . . . , p. Let

X0(Z) =
⊕
Ck⊂Z

X0[Ck], Xc(Z) = X0 	X0(Z). (3.14)

This gives rise to the decomposition

L2(X0(Z)) =
⊗
Ck⊂Z

L2(X0[Ck]). (3.15)

By abuse of notation we denote the operator

Id⊗ · · · ⊗ Id⊗ (−∆0[Ck])⊗ Id⊗ · · · ⊗ Id and Id⊗ · · · ⊗ Id⊗H[Ck]⊗ Id⊗ · · · ⊗ Id, (3.16)
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acting on L2(X0(Z)), by −∆0[Ck] and H[Ck], respectively. The cluster decomposition Hamil-
tonian of the partition Z is defined by

H(Z) =
∑
Ck⊂Z

H[Ck] (3.17)

and describes the joint internal dynamics of the clusters in Z. Let −∆0(Z) be the Laplace-
Beltrami operator on L2(X0(Z)). Then

−∆0(Z) =
∑
Ck⊂Z

−∆0[Ck]. (3.18)

We denote the potential of the inter-cluster interaction by

I(Z) = V −
∑
Ck⊂Z

V [Ck]. (3.19)

Then the Hamiltonian of the whole system can be written as

H = H(Z)⊗ Id + Id⊗ (−∆c(Z)) + I(Z), (3.20)

where −∆c(Z) is the Laplace-Beltrami operator on L2(Xc(Z)). We introduce the projections
P0(Z) and Pc(Z) from X0 on X0(Z) and Xc(Z), respectively. For x ∈ X0 let

q(Z) = P0(Z)x, ξ(Z) = Pc(Z)x. (3.21)

To emphasize the dependence on q(Z) and ξ(Z) we will write

−∆q(Z) = −∆0(Z) and −∆ξ(Z) = −∆c(Z) (3.22)

and

H = −∆q(Z) −∆ξ(Z) + V or H = H(Z)−∆ξ(Z) + I(Z). (3.23)

Note that the i-th coordinates of q(Z) and ξ(Z) are vectors qi and ξi given by

qi = xi − xCl , ξi = xCl (3.24)

where Cl is the cluster which contains the particle i. Here,

xCl =
1∑

j∈Cl mj

∑
j∈Cl

mjxj (3.25)

is the center of mass of the cluster Cl.
For κ > κ′ > 0, R > 0 and partitions Z with 1 < |Z| < N we define the regions

B(R) = {x ∈ X0 : |x|m ≤ R} ,
K(Z, κ) = {x ∈ X0 : |q (Z) |m ≤ κ|ξ (Z) |m} ,
KR(Z, κ) = {x ∈ X0 : |q (Z) |m ≤ κ|ξ (Z) |m, |x|m ≥ R} ,

KR(Z, κ′, κ) = KR(Z, κ) \KR(Z, κ′).

(3.26)

For the entire system Z = {1, . . . , N} we set

K(Z, κ) = {x ∈ X0 : |x|m ≤ κ}. (3.27)

We will use the regions defined in (3.26) to make a partition of unity of X0 corresponding to
different cluster decompositions of the N -particle system. Now we extend Definition 2.1 of a
virtual level to the case of multi-particle systems but first we give two remarks which justify our
assumptions.
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(i) For three-particle systems with the essential spectrum starting at zero, the existence of
resonances in two-particle subsystems may lead, to the appearence of an infinite series
of negative eigenvalues accumulating logarithmically at zero, the so-called Efimov effect.
These eigenvalues and the corresponding eigenfunctions have many interesting properties.
One of the goals of our work is to study whether similar effects may occur in systems of
N one- or two-dimensional particles. Due to this specific interest we will consider only
the case when Sess(H) = [0,∞). By the HVZ theorem this yields H[C] ≥ 0 for any
cluster C with |C| < N .

(ii) The assumption H[C] ≥ 0 is a strong restriction on the potentials Vij . Since we consider
one-or two-dimensional particles only, this in particular implies

´
Vij dx > 0.

Definition 3.1. Assume that the potentials Vij satisfy (2.2) and (2.9). Let C ⊆ {1, . . . , N} be
a cluster. We say that H[C] has a virtual level at zero if H[C] ≥ 0 and

(i) there exists a constant ε0 ∈ (0, 1), such that

inf Sess (H[C] + ε0∆0[C]) = 0, (3.28)

(ii) for any ε ∈ (0, 1) we have

inf S (H[C] + ε∆0[C]) < 0. (3.29)

Remark. (i) Note that if (3.28) is fulfilled for some ε0 > 0, then it also holds for all
0 < ε̃0 < ε0.

(ii) Let H[C] ≥ 0. Then condition (3.28) can not be fulfilled if there exists a subcluster

C̃ ⊂ C with 1 < |C̃| < |C| such that H[C̃] has a virtual level. Indeed, in this case we

have inf S
(
H[C̃] + ε∆0[C̃]

)
< 0 for any ε ∈ (0, 1) and according to the HVZ theorem

(3.28) does not hold.
On the other hand, if (3.28) does not hold for a cluster C and any ε0 ∈ (0, 1), then

due to the HVZ theorem there exists at least one subcluster C̃ of the cluster C with
1 < |C̃| < |C|, such that for any ε ∈ (0, 1) we have

inf S
(
H[C̃] + ε∆0[C̃]

)
< 0. (3.30)

Among these subclusters we choose one with the smallest number of particles and denote
it by C0. If C0 has only two particles, then inf Sess(H[C0]+ε0∆0[C0]) = 0 and according
to the definition of a virtual level, the operator H[C0] has a virtual. Let |C0| ≥ 3.
Then, since C0 is the smallest cluster for which (3.30) holds for any ε ∈ (0, 1), for any
subcluster C ′ ( C0 with |C ′| > 1 inequality (3.30) can not hold for all ε ∈ (0, 1), i.e. for
some ε1 ∈ (0, 1) we have

inf S (H[C ′] + ε1∆0[C ′]) = 0. (3.31)

Obviously, this is also true for all 0 < ε̃1 < ε1. Since C0 has only a finite number
of subclusters, we can choose ε1 > 0 in (3.31), such that this inequality holds for all
subclusters of C0. Applying the HVZ theorem yields

inf Sess (H[C0] + ε0∆0[C0]) = 0 (3.32)

for any ε0 ∈ (0, ε1). At the same time, inf S (H[C0] + ε∆0[C0]) < 0 for any ε ∈ (0, 1).
Hence, H[C0] has a virtual level at zero.

(iii) Similarly to the case of one-particle Schrödinger operators we can give necessary and
sufficient conditions for the operator H to have a virtual level at zero in terms of pertur-
bations of the operator with additional potentials. This result can be found in Appendix
B, Theorem B.1.
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3.2. Statements of our results on the decay rates of solutions corresponding to virtual
levels. Now we give our main results of this section, namely the existence of solutions of the
Schrödinger equation in the presence of a virtual level and estimates of the decay rate of these
solutions. For these estimates certain Hardy-type constants play an important role. Let

M =
{
ψ ∈ C1

0 (X0 \B(1)) : ψ(x) = 0 for xi = xj , 1 ≤ i, j ≤ N, i 6= j
}

(3.33)

and let

C̃H(X0) = inf
0 6=ψ∈M

‖∇0ψ‖
‖|x|−1

m ψ‖
. (3.34)

Remark. If the particles are two-dimensional, the sets {xi = xj} have co-dimension two and

the set M is dense in H1 (X0 \B(1)). In this case the constant C̃H(X0) coincides with the

Hardy constant CH(X0) = d(N−1)−2
2 = N − 2 of the d(N − 1)-dimensional space X0, see for

example inequality (2.18) in [8]. However, for one-dimensional particles the sets {xi = xj} are
hyperplanes and the closure ofM with respect to the H1(X0) norm includes only functions with

trace zero on {xi = xj}. Below we will see that in this case we have C̃H(X0) ≥ N−1
2 .

The main result of this section is the following

Theorem 3.2. Let H be the Hamiltonian of a system of N ≥ 3 d-dimensional particles with
d ∈ {1, 2}, where the potentials Vij 6= 0 satisfy (2.2) and (2.9). Assume that H has a virtual

level at zero and for the constant C̃H(X0) defined in (3.34) we have C̃H(X0) > 1. Then

(i) zero is a simple eigenvalue of H and for the corresponding eigenfunction ϕ0 we have

∇0 (|x|αmϕ0) ∈ L2(X0) and (1 + |x|m)α−1ϕ0 ∈ L2(X0) (3.35)

for any 0 ≤ α < C̃H(X0).
(ii) There exists a constant δ0 > 0, such that for any function ψ ∈ H1(X0) satisfying

〈∇0ϕ0,∇0ψ〉 = 0
(1− δ0)‖∇0ψ‖2 + 〈V ψ, ψ〉 ≥ 0. (3.36)

Corollary 3.3. If d = 2 and N ≥ 4, then we have C̃H(X0) = CH(X0) = N − 2 > 1. There-
fore, Theorem 3.2 can be applied. In particular, it shows that in this case the solution ϕ0 of
the Schrödinger equation corresponding to the virtual level is a non-degenerate eigenfunction
satisfying

(1 + |x|m)α−1ϕ0 ∈ L2(X0) for any α < N − 2. (3.37)

Corollary 3.4. If d = 1 and N ≥ 4, each of the hyperplanes {xi = xj} divides the space X0

into two half-spaces. Taking one of these hyperplanes and using that the Hardy constant for the
half-space is given by N−1

2 [18, Proposition 4.1] we get C̃H(X0) ≥ N−1
2 > 1. Hence, Theorem

3.2 can be applied. This implies that zero is a simple eigenvalue of H and the corresponding
eigenfunction ϕ0 satisfies

(1 + |x|m)α−1ϕ0 ∈ L2(X0) for any α <
N − 1

2
. (3.38)

Remark. We can significantly improve the estimate from below for the constant C̃H(X0) given
in Corollary 3.4 by taking into account that the traces of functions in M are zero not only on
one of the hyperplanes {xi = xj}, but on all of them. For example, if we have a system of
N = 4 identical particles, then there are six hyperplanes {xi = xj} which cut the space X0 into
congruent sectors Si. One can show that the hyperplanes are the nodal set of a homogeneous
harmonic polynomial of degree six. Its restriction to the unit sphere is a spherical harmonic of
degree six and an eigenfunction corresponding to the first eigenvalue of the Dirichlet-Laplacian
on Si∩S2. This, together with [18, Proposition 4.1] implies that in this case the constant C̃H(X0)

is given by C̃H(X0) =
(

1
4 + 42

) 1
2 = 13

2 .
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Note that the constant C̃H(X0), which gives a lower bound on the decay rate of the eigen-
function ϕ0, does not depend on the potentials. However, for one-dimensional particles it does
depend on the ratios of the masses of the particles. In particular if d = 1, N = 3 we get the
following

Theorem 3.5. For a system of three one-dimensional particles with masses m1, m2, m3 > 0 let

θi = arccos

( √
mjmk√

mi +mj
√
mi +mk

)
. (3.39)

Then we have
C̃H(X0) =

π

θ0
, where θ0 = max{θi, i = 1, 2, 3}. (3.40)

Remark. (i) It is easy to see that for d = 1, N = 3 we have π
3 ≤ θ0 ≤ π

2 . The constant

C̃H(X0) takes its maximal value C̃H(X0) = 3 for θ0 = π
3 , which corresponds to the case

m1 = m2 = m3. On the other hand, if one of the masses mi tends to infinity, then
θ0 → π

2 and therefore C̃H(X0)→ 2.
(ii) Corollary 3.3, Corollary 3.4 and Theorem 3.5 show that for all multi-particle systems

consisting of one- or two-dimensional particles, except for the case d = 2 and N = 3,
virtual levels correspond to eigenvalues. This fact will be used in Section 5 to prove the
absence of the Efimov effect in multi-particle systems in dimension one and two.

(iii) Note that if the dimension of the particles is d ≥ 3, the eigenfunction ϕ0 corresponding
to a virtual level decays with the same rate as the fundamental solution of the Laplace
operator [6], [5]. Theorem 3.2 shows that for one-dimensional particles the decay rate is
higher.

For d = 2, N = 3 we do not expect that solutions of the Schrödinger equation corresponding
to a virtual level are eigenfunctions. We will discuss this case in Section 4.

3.3. Proof of Theorem 3.2 – Auxiliary results. To prove Theorem 3.2 we need several
auxiliary results. The first one is a generalization of Theorem 2.2 to potentials which do not
necessarily decay at infinity.

Theorem 3.6. Let h = −∆ +V acting on L2(Rk), k ∈ N, where the potential V satisfies (2.2).
Suppose that h has a virtual level at zero and that there exist constants α0 > 1, b > 0 and
γ0 ∈ (0, 1), such that for any function ψ ∈ H1(Rk) with supp (ψ) ⊂ {x ∈ Rk : |x| ≥ b} we have

〈hψ, ψ〉 − γ0‖∇ψ‖2 − α2
0〈|x|−2ψ,ψ〉 ≥ 0. (3.41)

Then zero is a simple eigenvalue of h and the corresponding eigenfunction ϕ0 satisfies

(1 + |x|)α−1ϕ0 ∈ L2(Rk) if k 6= 2,

and (1 + |x|)α−1(1 + | ln(|x|)|)−1ϕ0 ∈ L2(Rk) if k = 2
(3.42)

for any α < α0. Moreover, there exists a constant δ0 > 0, such that for any function ψ ∈ H1(Rk)
with 〈∇ψ,∇ϕ0〉 = 0

〈hψ, ψ〉 ≥ δ0‖∇ψ‖2. (3.43)

Remark. (i) By Lemma C.1 condition (3.41) implies inf Sess(hε) = 0 for sufficiently small
ε > 0.

(ii) Theorem 3.6 is a generalization of Theorem 2.1 in [6] to dimensions k = 1 and k = 2.
Therefore, we only need to prove the theorem for these dimensions.

(iii) Note that Theorem 3.6 does not require that the potential V decays in all directions,
which is the case if we consider multi-particle systems where V is the sum of the pair-
potentials.
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(iv) For dimension k = 1 or k = 2 Theorem 3.6 considers the case which is in some sense
complementary to the one studied in Theorem 2.2. In Theorem 2.2 we assumed that the
potential V decays fast at infinity. In Theorem 3.6 we do not require any decay of the
potential. Instead of this we need inequality (3.41) for functions ψ which are supported
far away from the origin. This condition can not be fulfilled for k = 1 and k = 2 if
V decays fast at infinity. Moreover, under the conditions of Theorem 3.6 virtual levels
correspond to eigenvalues of h. In contrast to that, under the conditions of Theorem 2.2
they correspond to resonances.

Proof of Theorem 3.6 for dimensions k = 1 and k = 2. Since inf S(hε) < 0 for every
ε > 0, we find a sequence of eigenfunctions ψn ∈ H1(Rk), corresponding to eigenvalues En < 0
of the operator hn−1 , i.e.

−
(
1− n−1

)
∆ψn + V ψn = Enψn. (3.44)

We normalize the functions ψn by the condition ‖ψn‖H̃1 = 1. In the first step we show a uniform

bound for the L2(Rk) norm of the functions ψn.

Lemma 3.7. Assume that h has a virtual level at zero, where V satisfies (2.2) and suppose that
(3.41) holds for some α0 > 1. Then there exists a constant C > 0, such that for any eigenfunc-
tion ψn ∈ H1(Rk) corresponding to a negative eigenvalue of the operator hn−1 , normalized by
‖ψn‖H̃1 = 1, we have

‖∇(|x|α0ψn)‖ ≤ C (3.45)

and

‖(1 + |x|)α0−1ψn‖ ≤ C if k = 1

and ‖(1 + |x|)α0−1(1 + | ln(|x|)|)−1ψn‖ ≤ C if k = 2.
(3.46)

The proof of Lemma 3.7 is a straightforward generalization of the proof of Lemma 2.5 in
Section 2 and Lemma 2.4 in [6] and we omit it here.
Since we have normalized the sequence (ψn)n as ‖ψn‖H̃1 = 1, there exists a subsequence, also

denoted by (ψn)n∈N, which converges weakly in H̃1(Rk) to a function ϕ0 ∈ H̃1(Rk).
Now we show that ϕ0 is an eigenfunction of h corresponding to the eigenvalue zero. This is done
in the following

Lemma 3.8. Assume that h has a virtual level at zero, where V satisfies (2.2) and suppose
that (3.41) holds for some α0 > 1. Then the function ϕ0 given above is an eigenfunction of the
operator h corresponding to the eigenvalue zero, satisfying ‖ϕ0‖H̃1 = 1.

Proof of Lemma 3.8. By Lemma 3.7 estimate (3.46) holds for some α0 > 1. Hence, we get
convergence of the subsequence (ψn)n∈N in L2(Rk) and the limit satisfies (1 + |x|)α ϕ0 ∈ L2(Rk)
for any α < α0 − 1. In particular, ϕ0 ∈ H1(Rk).
Due to the semi-continuity of the norm we have ‖ϕ0‖H̃1 ≤ 1. Since (ψn)n∈N converges to ϕ0 in

L2(Rk) and V satisfies (2.2), we get

〈V ψn, ψn〉 → 〈V ϕ0, ϕ0〉, (n→∞). (3.47)

Now it follows analogously to the proof of Lemma 2.5 that ϕ0 satisfies

‖∇ϕ0‖2 + 〈V ϕ0, ϕ0〉 = 0 (3.48)

and ‖ϕ0‖H̃1 = 1. Recall that ϕ0 ∈ H1(Rk) and therefore is an eigenfunction of h corresponding
to the eigenvalue zero. This completes the proof of Lemma 3.8. �

It remains to prove (3.43) and the uniqueness of ϕ0. This is a straightforward modification of
the proof of (2.9) in [6]. The only difference is that we normalize the sequence of eigenfunctions
by ‖ψn‖H̃1 = 1 instead of ‖∇ψn‖ = 1.
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A new estimate of the localization error. To prove Theorem 3.2 we will follow the strategy
of the proof of Theorem 4.4 in [6], where so-called geometric methods were used to get lower
bounds for the quadratic form of the multi-particle Schrödinger operator. These methods in-
clude, for example, a separation of regions K(Z, κ) corresponding to different partitions Z. A
crucial element of these methods is a partition of unity of the configuration space, which requires
an appropriate estimate of the localization error. Note that in fact the localization error is re-
sponsible for the existence or non-existence of the Efimov effect.
If the dimension of the particles is d ≥ 3, one can use a localization error estimate given in [35,
Lemma 5.1]. This estimate shows that when we separate a cone K(Z, κ), then the localization
error can be estimated as ε|q(Z)|−2 with arbitrarily small ε > 0. Using Hardy’s inequality this
term can be controlled by a small part of the kinetic energy. However, if the particles are one-
or two-dimensional, the estimate given in [35] cannot be used, because Hardy’s inequality fails
in dimension one and two. Therefore, we need a significant improvement of the estimate of the
localization error. This is done in the following

Theorem 3.9. Given ε > 0 and κ > 0, for each partition Z with |Z| ≥ 2 one can find a constant
0 < κ′ < κ and piecewise continuously differentiable functions uZ , vZ : X0 → R, such that

u2
Z + v2

Z = 1, uZ(x) =

{
1, x ∈ K (Z, κ′) ,

0, x /∈ K (Z, κ) ,
(3.49)

and

|∇0uZ |2 + |∇0vZ |2 < ε
[
|vZ |2|x|−2

m + |uZ |2|q|−2
m ln−2

(
|q|m|ξ|−1

m

)]
(3.50)

for x ∈ K (Z, κ′, κ). Here q = q(Z) and ξ = ξ(Z).

To prove Theorem 3.9 we will use an auxiliary result for scalar functions, namely the following

Lemma 3.10. For any ε > 0 and 0 < β < 1 one can find a constant 0 < α < β2 and a
non-increasing function u ∈ H1(α, β) ∩ C([α, β]), such that u(α) = 1, u(β) = 0 and

(u′(t))2 ≤ εt−2 ln−2(t), α ≤ t ≤ β. (3.51)

Proof of Lemma 3.10. Let ε > 0 and β ∈ (0, 1) be fixed. For any 0 < γ < 1 and α ∈ (0, β2) let
u : [α, β]→ R be given by

u(t) :=

{∣∣ln(αβ−1)
∣∣−γ ∣∣ln(tβ−1)

∣∣γ if α ≤ t ≤ β2,∣∣ln(αβ−1)
∣∣−γ |lnβ|γ−1 ∣∣ln(tβ−1)

∣∣ if β2 ≤ t ≤ β.
(3.52)

Obviously, u ∈ C([α, β]) ∩H1(α, β) with u(β) = 0 and u(α) = 1.
At first, we prove the claimed estimate for (u′(t))2 for α ≤ t ≤ β2 by choosing the constant γ > 0
sufficiently small. For α < t < β2 we have

(u′(t))
2

= γ2
∣∣ln(αβ−1)

∣∣−2γ ∣∣ln(tβ−1)
∣∣2(γ−1)

t−2. (3.53)

Note that αβ−1 < 1 and tβ−1 < 1 for α ≤ t ≤ β2 and therefore
∣∣ln(αβ−1)

∣∣ ≥ ∣∣ln(tβ−1)
∣∣, which

yields

(u′(t))
2 ≤ γ2

∣∣ln(tβ−1)
∣∣−2

t−2, α < t < β2. (3.54)

Furthermore, for t ≤ β2 we have
∣∣ln(tβ−1)

∣∣ ≥ | ln√t| = 1
2 |ln t| . This implies

(u′(t))
2 ≤ 4γ2| ln t|−2t−2, α < t < β2. (3.55)

Choosing 0 < γ <
√
ε

2 we get

(u′(t))
2 ≤ ε| ln t|−2t−2, α < t < β2. (3.56)
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Now we estimate (u′(t))2 for β2 < t < β. In this case we have

(u′(t))
2

=
∣∣ln(αβ−1)

∣∣−2γ |lnβ|2(γ−1)
t−2. (3.57)

Since β < 1, we have | lnβ2| ≥ | ln t| for β2 ≤ t ≤ β and therefore

(u′(t))
2 ≤

∣∣ln(αβ−1)
∣∣−2γ |lnβ|2(γ−1) | lnβ2|2| ln t|−2t−2

= 4
∣∣ln(αβ−1)

∣∣−2γ |lnβ|2γ | ln t|−2t−2 ≤ ε| ln t|−2t−2
(3.58)

if α is chosen small enough. This completes the proof of Lemma 3.10 �

Now we turn to the

Proof of Theorem 3.9. Let Z be a partition with |Z| ≥ 2 and let ε > 0 and 0 < κ < 1 be fixed.
We construct functions uZ , vZ which satisfy the conditions of Theorem 3.9.
Let v1 ∈ H1(R+) be a non-decreasing function with v1(t) = 1 for t ≥ κ and 0 ≤ v1(t) < 1 for

t < κ, such that v′1(t)(1− v2
1)−

1
2 → 0 as t↗ κ. For x ∈ X0, x = q + ξ, let

vZ(x) = v1

(
|q|m
|ξ|m

)
, uZ(x) =

√
1− v2

Z(x). (3.59)

Then for x ∈ K(Z, κ) we have

|∇0uZ |2 + |∇0vZ |2 = |∇0vZ |2
(
1− v2

Z

)−1

= (v′1(t))2
(
1− v2

1(t)
)−1 (

1 + |q|2m|ξ|−2
m

)
|ξ|−2
m ,

(3.60)

where t = |q|m|ξ|−1
m . For x ∈ K(Z, κ) we have |ξ|−2

m ≤
(
1 + κ2

)
|x|−2

m . This implies

|∇0uZ |2 + |∇0vZ |2 ≤ (v′1(t))2
(
1− v2

1(t)
)−1

(1 + κ2)2|x|−2
m . (3.61)

Since v′1(t)(1− v2
1(t))−

1
2 → 0 as t↗ κ, we can find 0 < κ′′ < κ so close to κ that

(v′1(t))2
(
1− v2

1(t)
)−1

(1 + κ2)2 ≤ εv2
1(t), κ′′ ≤ t < κ. (3.62)

This implies

|∇0uZ |2 + |∇0vZ |2 ≤ εv2
Z |x|−2

m , x ∈ K(Z, κ) \K(Z, κ′′). (3.63)

Now we define vZ for x ∈ K(Z, κ′′). By Lemma 3.10, for given ε̃ > 0 we find a constant
0 < κ′ < κ′′ and a non-decreasing function v2, such that

v2(κ′) = 0, v2(κ′′) = v1(κ′′) and (v′2(t))
2 ≤ ε̃|t|−2 ln−2 t for κ′ < t < κ′′. (3.64)

Let v2 be such a function and for x ∈ K(Z, κ′′), x = q + ξ, let

vZ(x) = v2

(
|q|m
|ξ|m

)
, uZ(x) =

√
1− v2

Z(x). (3.65)

Then, similar to (3.60) we have(
|∇0uZ |2 + |∇0vZ |2

)
u−2
Z = (v′2(t))2

(
1− v2

2(t)
)−1

u−2
Z

(
1 + |q|2m|ξ|−2

m

)
|ξ|−2
m , (3.66)

where t = |q|m|ξ|−1
m . Since v2 is non-decreasing, we have (1− v2

2(t))−1u−2
Z ≤

(
1− v2

2(k′′)
)−2

for
t ≤ κ′′. Substituting this estimate into (3.66) we have(

|∇0uZ |2 + |∇0vZ |2
)
u−2
Z ≤ (v′2(t))2

(
1− v2(k′′)2

)−2 (
1 + (κ′′)2

)
|ξ|−2
m . (3.67)

Recall that v2(κ′′) is close to one, but strictly less then one. Due to (v′2(t))
2 ≤ ε̃|t|−2 ln−2 t we

get (
|∇0uZ |2 + |∇0vZ |2

)
u−2
Z ≤ ε̃|t|

−2 ln−2 t
(
1− v2(k′′)2

)−2 (
1 + (κ′′)2

)
|ξ|−2
m . (3.68)
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Choosing ε̃ > 0 so small that ε̃
(
1− v2(k′′)2

)−2 (
1 + (κ′′)2

)
< ε and using t = |q|m|ξ|−1

m completes
the proof of Theorem 3.9. �

3.4. Proof of Theorem 3.2. Now we turn to the proof of Theorem 3.2. It is an application of
Theorem 3.6 and we use geometrical methods to prove that all conditions of the latter theorem are
fulfilled. Since the pair potentials Vij are relatively form bounded, so is V =

∑
1≤i<j≤N Vij(xij).

Hence, we only need to show that condition (3.41) is fulfilled for any 0 ≤ α < C̃H(X0). This is
done in the following

Lemma 3.11. Let d ∈ {1, 2} and N ≥ 3. Assume that the potentials Vij satisfy (2.2) and (2.9).

Further, suppose that H has a virtual level at zero. Then for any 0 ≤ α < C̃H(X0) there exist
constants γ0, R > 0, such that for any function ϕ ∈ H1(X0) with supp (ϕ) ⊂ {x ∈ X0 : |x|m ≥ R}
we have

L[ϕ] := (1− γ0)‖∇0ϕ‖2 + 〈V ϕ, ϕ〉 − α2‖|x|−1
m ϕ‖2 ≥ 0. (3.69)

In the proof of Lemma 3.11 we use the following

Lemma 3.12. Let Z be a partition of the system, such that dim(X0(Z)) = 2. Furthermore, let
0 < κ < 1. Then there exists ε > 0, such that for any function ψ ∈ H1(R0) with supp(ψ) ⊂
KR(Z, κ) and any 0 < κ′ < κ we have

‖∇qψ‖2 − ε
∥∥|q|−1

m ln−1
(
|q|m|ξ|−1

m

)
ψ
∥∥2

KR(Z,κ′,κ)
≥ 0. (3.70)

Proof of Lemma 3.12. We introduce the new variable y = q
|ξ|m . Then we get

‖∇qψ‖2 − ε
∥∥|q|−1

m ln−1
(
|q|m|ξ|−1

m

)
ψ
∥∥2

KR(Z,κ′,κ)

≥
ˆ ˆ

{κ′|ξ|m≤|q|m≤κ|ξ|m}

(
|∇qψ|2 − ε|q|−2

m

∣∣ln−2
(
|q|m|ξ|−1

m

)∣∣ |ψ|2) dq dξ

=

ˆ
1

|ξ|2m

ˆ
{κ′|≤|y|m≤κ}

(
|∇yψ̃(y, ξ)|2 − ε|y|−2

m

∣∣ln−2 (|y|m)
∣∣ |ψ̃(y, ξ)|2

)
dy dξ,

(3.71)

where ψ̃(y, ξ) = ψ(y|ξ|m, ξ). Note that ψ̃(y, ξ) = 0 for |y|m ≥ κ. Due to κ < 1 we have
(ln |y|m)−2 ≤ C(1 + (ln |y|m)2)−1 for some C > 0 and |y|m ≤ κ. Therefore, applying Corollary

A.3 to the function ψ̃(y, ξ) for fixed ξ shows that the r.h.s. of (3.71) is non-negative for sufficiently
small ε > 0. This completes the proof of Lemma 3.12. �

Now we turn to the

Proof of Lemma 3.11. The proof follows the idea of the proof of Theorem 4.4 in [6]. We make a
partition of unity of the support of ϕ, separating regions K(Z, κ) which correspond to different
partitions Z of the system into clusters.
We start by estimating the functional L[ϕ] in regions K(Z, κ) corresponding to partitions Z into
two clusters. Let κ2 ∈ (0, 1) be so small that KR(Z, κ2) and KR(Z ′, κ2) for clusters Z 6= Z ′ with
|Z| = |Z ′| = 2 do not overlap. Such a constant κ2 exists according to [4] (an English version can
be found in [6, Theorem B.2]). By Theorem 3.9 we get

L[ϕ] ≥
∑

Z:|Z|=2

L2[ϕuZ ] + L′2[V(2)ϕ], (3.72)
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where V(2) =
√

1−
∑
Z:|Z|=2 u

2
Z and the functionals L2, L

′
2 : H1(X0)→ R are given by

L2[ψ] = (1− γ0)‖∇0ψ‖2 + 〈V ψ, ψ〉 − α2‖|x|−1
m ψ‖2

− ε‖|q(Z)|−1
m ln−1

(
|q(Z)|m|ξ(Z)|−1

m

)
ψ‖2KR(Z,κ′2,κ2),

L′2[ψ] = (1− γ0)‖∇0ψ‖2 + 〈V ψ, ψ〉 − (α2 + ε)‖|x|−1
m ψ‖2,

(3.73)

where ε > 0 can be chosen arbitrarily small if κ′2 > 0 is sufficiently small. Recall that the functions
uZ are supported in the region K(Z, κ2), i.e where the two clusters in Z are far away from each
other. Note also that the terms ε‖|x|−1

m ψ‖2 and ε‖|q(Z)|−1
m ln−1

(
|q(Z)|m|ξ(Z)|−1

m

)
ψ‖2KR(Z,κ′2,κ2)

come from the estimate for the localization error given in Theorem 3.9.
Let Z be an arbitrary partition into two clusters, q = q(Z), ξ = ξ(Z) and ψ = ϕuZ . Our goal is
to show that L2[ψ] ≥ 0. We have

L2[ψ] =〈H(Z)ψ,ψ〉 − γ0‖∇qψ‖2 + (1− γ0) ‖∇ξψ‖2 + 〈I(Z)ψ,ψ〉

− α2
∥∥|x|−1

m ψ
∥∥2 − ε

∥∥|q|−1
m ln−1

(
|q|m|ξ|−1

m

)
ψ
∥∥2

KR(Z,κ′2,κ2)
.

(3.74)

First, we estimate the inter-cluster potential I(Z) by

|I(Z)(x)| ≤ C|ξ|−2−ν
m ≤ ε|ξ|−2

m (3.75)

for x ∈ supp(ψ) and sufficiently large R > 0. Furthermore, on the support of ψ we have
|q|m ≤ κ2|ξ|m and therefore the Poincaré-Friedrich inequality [1, Theorem 6.30] yields

γ0‖∇qψ‖2 ≥
γ0

4κ2
2

‖|ξ|−1
m ψ‖2. (3.76)

By choosing κ2 > 0 small enough this implies

γ0‖∇qψ‖2 + 〈I(Z)ψ,ψ〉 − α2
∥∥|x|−1

m ψ
∥∥2 ≥ 0 (3.77)

and therefore

L2[ψ] ≥ 〈H(Z)ψ,ψ〉 − 2γ0‖∇qψ‖2 − ε
∥∥|q|−1

m ln−1
(
|q|m|ξ|−1

m

)
ψ
∥∥2

KR(Z,κ′2,κ2)
. (3.78)

To estimate the r.h.s. of (3.78) we distinguish between several cases.
(i) If dim(X0(Z)) = 1, we have d = 1 and N = 3. Assume that Z = (C1, C2) with |C1| = 2,
then H[C2] = 0 and

〈H(Z)ψ,ψ〉 = 〈H[C1]ψ,ψ〉 and ‖∇q(Z)ψ‖ = ‖∇q[C1]ψ‖. (3.79)

We estimate the last term on the r.h.s. of (3.74) by

ε
∥∥|q|−1

m ln−1
(
|q|m|ξ|−1

m

)
ψ
∥∥2

KR(Z,κ′2,κ2)
≤ ε‖(1 + |q|m)−1ψ‖2KR(Z,κ′2,κ2) (3.80)

for κ2 > 0 small enough and R > 0 sufficiently large. This yields

L2[ψ] ≥ 〈H[C1]ψ,ψ〉 − 2γ0‖∇q[C1]ψ‖2 − ε‖(1 + |q|m)−1ψ‖2KR(Z,κ′2,κ2). (3.81)

Since by the remark after Definition 3.1 the operator H[C1] does not have a virtual level and
V [C1] 6= 0, we can use Theorem 2.3 to conclude that L2[ψ] ≥ 0 for ε > 0 and γ0 > 0 small
enough and R > 0 sufficiently large.
(ii) If dim(X0(Z)) ≥ 2, we use again that for clusters C with 1 < |C| < N the operator H[C]
does not have a virtual level, which implies

〈H(Z)ψ,ψ〉 − 3γ0‖∇qψ‖2 ≥ 0 (3.82)

for small γ0 > 0 and therefore

L2[ψ] ≥ γ0‖∇qψ‖2 − ε
∥∥|q|−1

m ln−1
(
|q|m|ξ|−1

m

)
ψ
∥∥2

KR(Z,κ′2,κ2)
. (3.83)
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If dim(X0(Z)) = 2, we apply Lemma 3.12 with κ = κ2 and κ′ = κ′2 to conclude that L2[ψ] ≥ 0.
If dim(X0(Z)) ≥ 3, we use (3.80) and Hardy’s inequality in the form of (A.21). This implies
L2[ψ] ≥ 0.
Now we estimate L′2[V(2)ϕ]. If N = 3, the function V(2)ϕ is supported in the region where all
particles are separated, i.e. there exists a constant c > 0, such that |xij | ≥ c|x|m for all i 6= j.
This implies

|V (x)| ≤ C|x|−2−ν
m ≤ ε|x|−2

m , (3.84)

where ε > 0 can be chosen arbitrarily small for sufficiently large R > 0. Therefore,

L′2[V(2)ϕ] ≥ (1− γ0)‖∇0(V(2)ϕ)‖2 − (α2 + 2ε)‖|x|−1
m V(2)ϕ‖2. (3.85)

Since V(2)ϕ can be approximated (in the norm of H1(X0)) by functions in M, we get

‖∇0(V(2)ϕ)‖2 ≥
(
C̃H(X0)

)2

‖|x|−1
m V(2)ϕ‖2. (3.86)

Due to α < C̃H(X0) we obtain L′2[V(2)ϕ] ≥ 0 for the case N = 3 by choosing γ0, ε > 0 small
enough.
If N ≥ 4, we make a partition of unity of the support of V(2)ϕ. Let κ3 ∈ (0, 1) be so small

that K(Z, κ3) and K(Z̃, κ3) do not overlap on the support of V(2)ϕ for partitions Z 6= Z̃ with

|Z| = |Z̃| = 3. Such a constant κ3 exists due to [4] (see [6, Theorem B.2] for an English version).
Applying Theorem 3.9 we get

L′2[V(2)ϕ] ≥
∑

Z:|Z|=3

L3[V(2)ϕuZ ] + L′3[V(3)ϕ], (3.87)

where V(3) = V(2)
√

1−
∑
Z u

2
Z and the functionals L3, L

′
3 : H1(X0)→ R are given by

L3[ψ] = (1− γ0)‖∇0ψ‖2 + 〈V ψ, ψ〉 − (α2 + ε)2‖|x|−1
m ψ‖2

− ε‖|q(Z)|−1
m ln−1

(
|q(Z)|m|ξ(Z)|−1

m

)
ψ‖2KR(Z,κ′3,κ3),

L′3[ψ] = (1− γ0)‖∇0ψ‖2 + 〈V ψ, ψ〉 − (α2 + ε)‖|x|−1
m ψ‖2

(3.88)

for some ε > 0 which can be chosen arbitrarily small. Let Z be an arbitrary partition into
three clusters. Then by the same arguments as for partitions Z with |Z| = 2 we can prove
L3[V(2)ϕuZ ] ≥ 0. If N ≥ 5, we continue this process for all partitions Z with |Z| ≤ N − 1 and
finally arrive at the point where it remains to estimate the functional

L′[ψ̃] := (1− γ0)‖∇0ψ̃‖2 + 〈V ψ̃, ψ̃〉 − (α2 + ε)‖|x|−1
m ψ̃‖2 ≥ 0 (3.89)

for functions ψ̃ := V(N−1)ϕ supported in the region where all particles are separated from each
other, i.e. there exists a constant c > 0, such that |xij | ≥ c|x|m for x ∈ supp (V(N−1)ϕ).
Therefore, we have

|V (x)| ≤ C(1 + |x|m)−2−ν ≤ ε(1 + |x|m)−2 (3.90)

on the support of V(N−1)ϕ if R > 0 is large enough. This implies

L′[V(N−1)ϕ] ≥ (1− γ0)‖∇0

(
V(N−1)ϕ

)
‖2 − (α2 + 2ε)‖|x|−1

m V(N−1)ϕ‖2. (3.91)

Similarly to (3.86) we have∥∥∥∇0

(
V(N−1)ϕ

)∥∥∥2

≥
(
C̃H(X0)

)2 ∥∥∥|x|−1
m V(N−1)ϕ

∥∥∥2

. (3.92)

Since α < (C̃H(X0)), we can choose γ0, ε > 0 sufficiently small to obtain L′[V(N−1)ϕ] ≥ 0. This
completes the proof of Lemma 3.11 and therefore the proof of Theorem 3.2. �
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3.5. Proof of Theorem 3.5. Now we turn to the proof of Theorem 3.5. Since in the case of
three one-dimensional particles the configuration space X0 is two-dimensional, we are able to
improve the geometric methods and therefore to derive the exact value of the constant C̃H(X0).
The proof of the theorem follows from the following lemma, where we collect some geometric
properties of the space X0.

Lemma 3.13. Let d = 1 and N = 3. Then the following statements hold.

(i) The lines x1 = x2, x1 = x3 and x2 = x3 divide the space X0 into six sectors S1, S2, . . . , S6

with angles θ1 = θ4, θ2 = θ5 and θ3 = θ6. The angles θi, i = 1, 2, 3 are given by

θi = arccos

( √
mjmk√

mi +mj
√
mi +mk

)
. (3.93)

(ii) Let ψ ∈ H1
0 (Si). Then we have

‖∇0ψ‖ ≥
π

θi
‖|x|−1

m ψ‖. (3.94)

Proof of Lemma 3.13. The half lines x1 = x2 ≥ 0, x1 = x3 ≥ 0 and x2 = x3 ≤ 0 in X0 are
spanned by the vectors

u12 =

(
1, 1,−m1 +m2

m3

)>
, u13 =

(
1,−m1 +m3

m2
, 1

)>
and u23 =

(
m2 +m3

m1
,−1,−1

)>
, respectively.

(3.95)

Let S1 be the sector between the half-lines x1 = x2 ≤ 0 and x1 = x3 ≥ 0, S2 the sector between
the half-lines x1 = x2 ≥ 0 and x2 = x3 ≤ 0 and S3 the sector between the half-lines x2 ≤ x3 ≥ 0
and x1 = x3 ≥ 0. Here, we always choose the one sector with angle 0 < θi < π, see Figure
1. To illustrate the situation we choose an orthogonal basis {v1, v2} of X0 with v1 = u12 and

v2 = (m2,−m1, 0)
>

.

x2 = x3 ≤ 0

x1 = x2 ≥ 0

x1 = x3 ≥ 0

v2

S2

S3

S1

θ1 θ2
θ3

Figure 1. The sectors S1, S2, S3

Let S4, S5 and S6 be the sectors which we get by reflecting the sectors S1, S2 and S3 at the origin.
Obviously, θi = θi+3, i = 1, 2, 3. Since 〈−u12, u13〉m > 0, we have θ1 ∈

(
0, π2

)
and analogously

we see that θ2, θ3 ∈
(
0, π2

)
. The angle θ1 can be computed by the formula

cos(θ1) =
〈−u12, u13〉m
|u12|m|u13|m

=

√
m2m3√

m1 +m2
√
m1 +m3

. (3.96)

Similarly we can see that the angles θ2 and θ3 also satisfy (3.93). This completes the proof of
statement (i) of Lemma 3.13.
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Now we turn to the proof of the Hardy-type inequality (3.94) for the sectors Si. According to
[18, Proposition 4.1] functions v ∈ H1(R2) supported in a sector S ⊂ R2 satisfy

‖∇v‖ ≥ (Λ(G))
1
2 ‖|x|−1v‖, (3.97)

were Λ(G) is the first eigenvalue of the Dirichlet problem for the Laplace-Beltrami operator in
G = S ∩ S1. In dimension two G can be identified with the interval (0, θ) where θ is the angle
of S. The Dirichlet eigenvalues of the Laplacian on an interval of length l > 0 are given by

λk =
(
kπ
l

)2
. Therefore, we have Λ(G) =

(
π
θ

)2
, which implies that for any function v ∈ H1(R2)

supported in S we have

‖∇v‖ ≥ π

θ
‖|x|−1v‖. (3.98)

This completes the proof of Lemma 3.13 and therefore of Theorem 3.5. �

4. Virtual levels of systems of three two-dimensional particles

In this section we consider systems of three two-dimensional particles. This is the only case of
multi-particle systems in lower dimensions where we have C̃H(X) = 1, which leaves a possibility
for virtual levels to correspond to resonances and not to eigenvalues. We give the following

Theorem 4.1 (Virtual levels of systems of three two-dimensional particles). Let H be the Hamil-
tonian of a system of three two-dimensional particles. Assume that the potentials Vij 6= 0
satisfy (2.2) and (2.9) and that H has a virtual level at zero. Then there exists a function

ϕ0 ∈ H̃1(X0), ϕ0 6= 0, satisfying

‖∇0ϕ0‖2 + 〈V ϕ0, ϕ0〉 = 0 (4.1)

and

(1 + |x|m)
−α

ϕ0 ∈ L2(X0) for any α > 0. (4.2)

Proof. To prove Theorem 4.1 we take a sequence (ψn)n∈N of eigenfunctions corresponding to
eigenvalues En < 0 of the operator H + n−1∆0, i.e.

−
(
1− n−1

)
∆0ψn + V ψn = Enψn. (4.3)

We normalize the functions ψn by ‖∇0ψn‖ = 1. Then there exists a subsequence of (ψn)n∈N,

also denoted by (ψn)n∈N, which converges weakly in H̃1(X0) to a function ϕ0 ∈ H̃1(X0). Due
to the Rellich-Kondrachov theorem we have convergence of ψn to ϕ0 in L2

loc(X0).
At first, we show that ϕ0 6= 0 and establish the decay property (4.2) of the function ϕ0. Due to
Lemma 3.11 there exist constants γ0 > 0 and R > 0, such that for every function ψ ∈ H1(X0)
supported in the region {|x|m ≥ R}

(1− γ0)‖∇0ψ‖2 + 〈V ψ, ψ〉 ≥ 0. (4.4)

Applying Lemma 2.3 in [6] we see that the weak limit ϕ0 ∈ H̃1(X0) of the sequence (ψn)n∈N of
eigenfunctions normalized by ‖∇0ψn‖ = 1 is not zero.
In the next step we show that ϕ0 satisfies the estimate (4.2) on the decay rate. To do this we
first give the following estimate for a weighted L2 norm of the functions ψn.

Lemma 4.2. Let H be the Hamiltonian of a system of three two-dimensional particles. Assume
that the potentials Vij satisfy (2.2) and (2.9) and that H has a virtual level at zero. Then, for
any 0 ≤ α < 1 there exists a constant C > 0, such that for all n ∈ N we have

‖∇0 (|x|αmψn) ‖ ≤ C and ‖ (1 + |x|m)
α−1

ψn‖ ≤ C. (4.5)

Proof. The proof is a straightforward modification of the proof of Lemma 2.4 in [6]. �
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By Lemma 4.2 we get convergence of (ψn)n∈N to ϕ0 in L2(X0, (1 + |x|m)−αdx) for any α > 0.
This shows that the function ϕ0 satisfies (4.2).
Our next goal is to prove that

‖∇0ϕ0‖2 + 〈V ϕ0, ϕ0〉 = 0. (4.6)

Note that first we have to prove that 〈V ϕ0, ϕ0〉 is well defined. Since we do not know whether
ϕ0 is square-integrable, we can not use the arguments of Lemma 3.8. We prove that 〈Vijϕ0, ϕ0〉
is well-defined for each pair of particles β = (i, j). By Corollary A.2 to do this, it is sufficient to
show that ˆ ˆ

{|qβ |m≤1}
|ϕ0|2 dqβ dξβ <∞. (4.7)

In other words, it is enough to prove that the restriction of the function ϕ0 to cylindrical regions
{|qβ |m ≤ 1}, β ∈ {(1, 2), (1, 3), (2, 3)}, is square-integrable. Here and in the following for β =
(i, j) we denote by qβ , ξβ the variables q[C], ξ[C], where C = {i, j}.
To prove (4.7) we need to make several steps. Let (ψn)n∈N be the sequence of eigenfunctions of
the operator H + n−1∆0, normalized by ‖∇0ψn‖ = 1. Furthermore, let χ1 : R+ → [0, 1] be a

function with χ1 ∈ C1(R+) and (1− χ2
1)

1
2 ∈ C1(R+), satisfying

χ1(t) = 0, 0 ≤ t ≤ 1, χ1(t) = 1, t ≥ 2. (4.8)

For b > 0 let χ(x) = χ1

(
|x|m
b

)
. The first step to prove that 〈Vijϕ0, ϕ0〉 is well-defined is the

following

Lemma 4.3. Let ψn and χ be defined as above. Then, for any ε > 0 we can find b > 0 and
n0 ∈ N, such that for all n > n0 we have

(i) ‖∇0 (χψn) ‖ < ε, (ii) 〈Vijχψn, χψn〉 < ε, i, j ∈ {1, 2, 3}. (4.9)

Proof of Lemma 4.3. For ψ ∈ H1(X0) let

L[ψ] = ‖∇0ψ‖2 + 〈V ψ, ψ〉. (4.10)

Then, by definition of the functions ψn we have L[ψn] ≤ 1
n‖∇0ψn‖2 = 1

n . On the other hand,
by the IMS localisation formula we get

L[ψn] = L[(1− χ2)
1
2ψn] + L[χψn]−

ˆ
X0

(
|∇0χ|2 + |∇0(1− χ2)

1
2 |2
)
|ψn|2 dx. (4.11)

We estimate the terms on the r.h.s. of (4.11) separately. Due to H ≥ 0 the first term is
non-negative. Since χ is supported in the region {|x|m ≥ b}, by Lemma 3.11 with α = 0 we get

L[χψn] ≥ γ0‖∇0 (χψn) ‖2 (4.12)

for some γ0 > 0 if b > 0 is large enough. Now we estimate the last term on the r.h.s. of (4.11).

Note that ∇0χ and ∇0

(
1− χ2

) 1
2 are supported in the region {b ≤ |x| ≤ 2b} and satisfy

|∇0χ|2 + |∇0

(
1− χ2

) 1
2 |2 ≤ C

b2
(4.13)

for some C > 0 which does not depend on b. This, together with the estimate (4.5) on the decay
rate of ψn we get, uniformly in n ∈ N,ˆ

X0

(
|∇0χ|2 + |∇0(1− χ2)

1
2 |2
)
|ψn|2 dx ≤ 4C

ˆ
{|x|m≥b}

|ψn|2

|x|2m
dx ≤ ε1(b) (4.14)

for some ε1(b) with ε1(b)→ 0 as b→∞. Combining this with (4.11) and (4.12) we obtain

L[ψn] ≥ γ0‖∇0 (χψn) ‖2 − ε1(b). (4.15)
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Since L[ψn] ≤ 1
n , it follows from (4.15) that for fixed ε > 0 we can choose n0 ∈ N and b > 0

large enough, such that ‖∇0 (χψn) ‖2 ≤ ε holds uniformly for n ≥ n0. This completes the proof
of statement (i) of the Lemma.
Now we turn to the proof of assertion (ii). At first, we note that for any pair (i0, j0) we have

〈Vi0j0χψn, χψn〉 = L[χψn]− ‖∇0 (χψn) ‖2 −
∑

(i,j)6=(i0,j0)

〈Vijχψn, χψn〉, (4.16)

i.e. 〈Vi0j0χψn, χψn〉 can be estimated by estimating the r.h.s. of (4.16). For the first term we
get by (4.11) and (4.13)

L[χψn] ≤ L[ψn] + C

ˆ
{|x|m≥b}

|ψn|2

|x|2m
dx. (4.17)

Now, by using L[ψn] ≤ 1
n and the estimate (4.5) for the functions ψn we obtain

L[χψn] ≤ 1

n
+ ε2(b), (4.18)

where ε2(b)→ 0 as b→∞. Substituting this in (4.16) we get

〈Vi0j0χψn, χψn〉 ≤
1

n
+ ε2(b)−

∑
(i,j)6=(i0,j0)

〈Vijχψn, χψn〉. (4.19)

Now we estimate the last term on the r.h.s. of (4.19). Since the Hamiltonians of the clusters
consisting of two particles do not have negative spectrum, we have

〈Vijχψn, χψn〉 ≥ −‖∇0 (χψn) ‖2 ≥ −ε, (4.20)

where according to statement (i) of the Lemma the constant ε > 0 can be chosen arbitrarily
small if b > 0 and n ∈ N are sufficiently large. Inserting this in (4.19) we get

〈Vi0j0χψn, χψn〉 ≤
1

n
+ ε2(b) + 2ε, (4.21)

which completes the proof of Lemma 4.3. �

Now we turn to the proof of the well-definedness of 〈Vijϕ0, ϕ0〉. Recall that we need to show
that ˆ ˆ

{|qβ |m≤1}
|ϕ0|2 dqβ dξβ <∞. (4.22)

Since the cluster Hamiltonians for non-trivial clusters do not have virtual levels and Vij 6= 0, by
the remark (iii) after Theorem 2.3 we getˆ ˆ

{|qβ |m≤1}
|χψn|2 dqβ dξβ ≤ C1‖∇qβ (χψn)‖2 + C2〈Vijχψn, χψn〉 (4.23)

for some constants C1, C2 > 0 and β = (i, j). Now by Lemma 4.3 we see that the r.h.s. of (4.23)
can be done arbitrarily small if the constant b > 0 in the definition of the function χ and n ∈ N
are sufficiently large. Hence, for any ε > 0 we find b > 0, such thatˆ ˆ

{|qβ |m≤1}
|χψn|2 dqβ dξβ ≤ ε. (4.24)

Recall that for |ξβ |m > 2b we have χ(x) = 1 and thereforeˆ
{|ξβ |m≥2b}

ˆ
{|qβ |m≤1}

|ψn(x)|2 dx =

ˆ
{|ξβ |m≥2b}

ˆ
{|qβ |m≤1}

|χψn(x)|2 dx ≤ ε (4.25)
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for b > 0 and n ∈ N large enough. Furthermore, we have ψn → ϕ0 in L2
loc(X0). Therefore, we

get ˆ
{|ξβ |m≤2b}

ˆ
{|qβ |m≤1}

|ψn|2 dqβ dξβ →
ˆ
{|ξβ |m≤2b}

ˆ
{|qβ |m≤1}

|ϕ0|2 dqβ dξβ . (4.26)

This, together with (4.25) shows that the integralˆ ˆ
{|qβ |m≤1}

|ϕ0|2 dqβ dξβ (4.27)

is bounded and thus 〈Vijϕ0, ϕ0〉 is well-defined.
Now we show that 〈Vijψn, ψn〉 → 〈Vijϕ0, ϕ0〉 as n→∞. At first, we consider the integralˆ

{|ξβ |m≥2b}

ˆ
|Vij ||ψn|2 dqβ dξβ (4.28)

and prove that it can be done arbitrarily small if b > 0 and n ∈ N are large enough. By Corollary
A.2 we haveˆ

{|ξβ |m≥2b}

ˆ
|Vij ||ψn|2 dqβ dξβ

≤ C
ˆ
{|ξβ |m≥2b}

(ˆ
|∇qβψn|2 dqβ +

ˆ
{|qβ |m≤1}

|ψn|2 dqβ

)
dξβ .

(4.29)

Note that by Lemma 4.3 we get for arbitrary ε > 0ˆ
{|ξβ |m≥2b}

ˆ
|∇qβψn|2 dqβ dξβ =

ˆ
{|ξβ |m≥2b}

ˆ
|∇qβ (χψn)|2 dqβ dξβ ≤ ε (4.30)

if b > 0 and n ∈ N are large enough. Substituting this inequality and inequality (4.25) in (4.29)
yields ˆ

{|ξβ |m≥2b}

ˆ
|Vij ||ψn|2 dqβ dξβ ≤ 2ε. (4.31)

Due to ˆ
|Vij ||ϕ0|2 dqβ dξβ <∞ (4.32)

we also obtain ˆ
{|ξβ |m≥2b}

ˆ
|Vij ||ϕ0|2 dqβ dξβ ≤ ε (4.33)

for b > 0 large enough. Now we consider the region {|ξβ |m ≤ 2b}. Due to the decay property
(2.9) of the potentials Vij and the estimates (4.5) and (4.2) for the functions ψn and ϕ0 we getˆ

{|ξβ |m≤2b}

ˆ
{|qβ |m≥b1}

|Vij ||ψn|2 dqβ dξβ < ε (4.34)

and ˆ
{|ξβ |m≤2b}

ˆ
{|qβ |m≥b1}

|Vij ||ϕ0|2 dqβ dξβ < ε (4.35)

where ε > 0 can be chosen arbitrarily small if b1 > 0 is large enough and estimate (4.34) holds
uniformly in n ∈ N.
Estimates (4.31) - (4.35) show that to prove convergence 〈Vijψn, ψn〉 → 〈Vijϕ0, ϕ0〉 it suffices to
show that 〈Vijψn, ψn〉Ω → 〈Vijϕ0, ϕ0〉Ω for the compact set

Ω := {x ∈ X0 : |qβ |m ≤ b1, |ξβ |m ≤ 2b}. (4.36)
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We write

〈Vijψn, ψn〉Ω − 〈Vijϕ0, ϕ0〉Ω = 〈Vij(ψn − ϕ0), ψn〉Ω + 〈Vijϕ0, (ψn − ϕ0)〉Ω. (4.37)

Since ψn converges to ϕ0 in L2
loc(X0), ‖∇qβψn‖ ≤ 1, ‖∇qβϕ0‖ ≤ 1 and the potential Vij satisfies

(2.2), both summands on the r.h.s. of (4.37) tend to zero as n → ∞. Combining this with the
estimates (4.31) - (4.35) we conclude 〈Vijψn, ψn〉 → 〈Vijϕ0, ϕ0〉 for every pair (i, j) of particles
and therefore 〈V ψn, ψn〉 → 〈V ϕ0, ϕ0〉 as n→∞.
Since by definition of the functions ψn

〈V ψn, ψn〉 ≤ −
(
1− n−1

)
, (4.38)

we get 〈V ϕ0, ϕ0〉 ≤ −1. On the other hand, H ≥ 0 and ‖∇0ϕ0‖ ≤ 1. This shows

‖∇0ϕ0‖2 + 〈V ϕ0, ϕ0〉 = 0, (4.39)

which completes the proof of Theorem 4.1. �

5. Absence of the Efimov effect in multi-particle systems consisting of one- or
two-dimensional particles

In this section we prove that the Efimov effect does not occur in systems of N ≥ 4 one-
dimensional or N ≥ 5 two-dimensional particles. The absence of the Efimov effect for such
systems is mainly caused by the fact that in these cases virtual levels of the cluster Hamiltonians
H[C] with |C| = N − 1 correspond to eigenvalues, as we have shown in Section 3. We follow the
strategy of the proof of Theorem 5.1 in [6], which itself is based on ideas of [35]. However, on
a technical level the proof in this section is slightly different from those in [6] and [35] because
Hardy’s inequality, which plays an important role in [6] and [35], is different in lower dimensions.
The main result of this section is the following

Theorem 5.1. Let d = 1 and N ≥ 4 or d = 2 and N ≥ 5. Suppose that every pair potential
Vij 6= 0 satisfies (2.9) and is operator bounded with respect to −∆ with relative bound zero, i.e.
for any ε > 0 there exists a constant C(ε) > 0, such that

‖Vijψ‖2 ≤ ε‖∆ψ‖2 + C(ε)‖ψ‖2, ψ ∈ H2(Rd). (5.1)

Furthermore, assume that H[C] ≥ 0 for all clusters C with |C| = N−1 and there exists ε ∈ (0, 1),
such that

Sess (−(1− ε)∆0[C] + V [C]) = [0,∞). (5.2)

Then the discrete spectrum of H is finite.

Remark. We emphasize that in Theorem 5.1 the cluster Hamiltonian H[C] with |C| = N − 1
may have a virtual level at zero. For clusters C ′ with 1 < |C ′| < N−1 however, the Hamiltonian
H[C ′] are not allowed to have a virtual level, which is a consequence of (5.2) and the HVZ
theorem.

Proof of Theorem 5.1. For ε > 0 we define the functional L : H1(X0)→ R as

L[ϕ] := 〈Hϕ,ϕ〉 − ε‖|x|−2
m ϕ‖2 (5.3)

and prove that L[ϕ] ≥ 0 for any function ϕ ∈ H1(X0) with supp (ϕ) ⊂ {|x|m ≥ R} if R > 0 is
large enough and ε > 0 is small enough. This implies finiteness of the discrete spectrum of H,
see Lemma C.1 in Appendix C (see also [40]).
We fix a constant κ > 0, such that KR(Z, κ) ∩ KR(Z ′, κ) = ∅ for all partitions Z 6= Z ′ with
|Z| = |Z ′| = 2. By applying Theorem 3.9 we get

L[ϕ] ≥
∑

Z:|Z|=2

L2[ϕuZ ] + L′2[ϕV], (5.4)
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where V =
√

1−
∑
Z:|Z|=2 u

2
Z and the functionals L2 and L′ are defined by

L2[ψ] := 〈Hψ,ψ〉 − ε‖|x|−2
m ψ‖2

− ε1

∥∥|q(Z)|−1
m | ln(|q(Z)|m|ξ(Z)|−1

m )|−1ψ
∥∥2

KR(Z,κ′,κ)
,

L′2[ψ] := 〈Hψ,ψ〉 − (ε+ ε1)‖|x|−2
m ψ‖2.

(5.5)

Here, the constants κ > 0 and ε1 > 0 can be chosen arbitrarily small and κ′ ∈ (0, κ) depends
on κ and ε1 only. For the sake of simplicity we omit the index Z in the following computations
and write q and ξ instead of q(Z) and ξ(Z), respectively. At first, we prove L2[ϕuZ ] ≥ 0. We
distinguish between the following two types of partitions Z = (C1, C2):

(i) |C1| < N − 1 and |C2| < N − 1,
(ii) |C1| = N − 1 or |C2| = N − 1.

In the first case the operators H[C1] and H[C2] do not have virtual levels, which implies that
there exists a constant µ0 > 0, such that

〈H(Z)ψ,ψ〉 ≥ µ0‖∇qψ‖2 (5.6)

holds for any function ψ ∈ H1(X0). Repeating the arguments which were used in the proof of
Lemma 3.11 we get L2[ϕuZ ] ≥ 0.
We turn to case (ii), where the Hamiltonian H[C1] or H[C2] may have a virtual level. Suppose
that |C1| = N − 1 and that H[C1] has a virtual level. According to Theorem 3.2, Corollaries
3.3 and 3.4 and Theorem 3.5 zero is a simple eigenvalue of the operator H[C1]. Let ϕ0 be the
corresponding eigenfunction normalized by ‖ϕ0‖ = 1. Let

f(ξ) := ‖∇qϕ0‖−2〈∇q (ϕuZ(·, ξ)) ,∇qϕ0〉L2(X0(Z)) (5.7)

and
g(q, ξ) := ϕuZ(q, ξ)− f(ξ)ϕ0(q). (5.8)

Then we have
ϕuZ = fϕ0 + g and 〈∇qg(·, ξ),∇qϕ0〉L2(X0(Z)) = 0 (5.9)

for almost every ξ. For |ξ|m ≤ R
2 we have f(ξ) = 0 and g(q, ξ) = 0, because ϕuZ = 0 for |x| ≤ R.

We write

L2[ϕuZ ] = 〈H[C1] g, g〉+ 〈H[C1]ϕ0f, ϕ0f〉+ 2 Re〈g,H[C1]ϕ0f〉
+ ‖∇ξ (ϕuZ) ‖2 + 〈I(Z)ϕuZ , ϕuZ〉 − ε‖|x|−2

m ϕuZ‖2

− ε1‖|q|−1
m | ln(|q|m|ξ|−1

m )|−1ϕuZ‖2KR(Z,κ′,κ).

(5.10)

Due to H[C1]ϕ0 = 0 the second term and the third term on the r.h.s. of (5.10) are zero. Now
we estimate the term 〈I(Z)ϕuZ , ϕuZ〉. For fixed ε2 > 0 we get

|I(Z)(x)| ≤ C|ξ|−2−ν
m ≤ ε2

4
| ln(|ξ|m)|−2|ξ|−2

m (5.11)

for x ∈ KR(Z, κ) if R > 0 is large enough. Since ϕuZ(q, ξ) = 0 for |ξ|m ≤ R
2 , we can apply the

one- or two- dimensional Hardy inequality in the ξ-variable to obtain

|〈I(Z)ϕuZ , ϕuZ〉| ≤
ε2

4
‖| ln(|ξ|m)|−1|ξ|−1

m ϕuZ‖2 ≤ ε2‖∇ξ(ϕuZ)‖2. (5.12)

This, together with (5.10) implies

L2[ϕuZ ] ≥〈H[C1]g, g〉+ (1− ε2)‖∇ξ (ϕuZ) ‖2 − ε‖|x|−2
m ϕuZ‖2

− ε1‖| ln(|q|m|ξ|−1
m )|−1|q|−1

m ϕuZ‖2KR(Z,κ′,κ).
(5.13)

Since ∥∥|x|−2
m ϕuZ

∥∥2 ≤
∥∥|ξ|−1

m (ln−1 |ξ|m)ϕuZ
∥∥2

(5.14)
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for |x|m > 1 and we have |ξ|m ≥ R
2 on the support of ϕuZ , we get

4ε‖∇ξ (ϕuZ) ‖2 − ε‖|x|−2
m ϕuZ‖2 ≥ 0. (5.15)

Substituting this inequality into (5.13) yields

L2[ϕuZ ] ≥ 〈H[C1]g, g〉+ (1− ε3)‖∇ξ (ϕuZ) ‖2

− ε1‖| ln(|q|m|ξ|−1
m )|−1|q|−1

m ϕuZ‖2KR(Z,κ′,κ),
(5.16)

where ε3 = ε2 + 4ε. Now we estimate the term

〈H[C1]g, g〉 − ε1‖| ln(|q|m|ξ|−1
m )|−1|q|−1

m ϕuZ‖2KR(Z,κ′,κ). (5.17)

This is done in the following

Lemma 5.2. Let 1 < α < C̃H(X0) and let C1 be a cluster with |C1| = N − 1 and the functions
f, g be defined by (5.7) and (5.8). Then for ε1 > 0 small enough and R > 0 sufficiently large

〈H[C1]g, g〉 − ε1‖| ln(|q|m|ξ|−1
m )|−1|q|−1

m ϕuZ‖2KR(Z,κ′,κ)

≥ −
ˆ
{|ξ|m≥R2 }

|ξ|−2α
m |f(ξ)|2 dξ.

(5.18)

Proof of Lemma 5.2. Due to Theorem 3.2 the orthogonality in (5.9) implies

〈H[C1]g, g〉 ≥ δ0‖∇qg‖2 (5.19)

for some δ0 > 0. Therefore,

〈H[C1]g, g〉 − ε1‖| ln(|q|m|ξ|−1
m )|−1|q|−1

m ϕuZ‖2KR(Z,κ′,κ)

≥ δ0‖∇qg‖2 − ε1‖| ln(|q|m|ξ|−1
m )|−1|q|−1

m ϕuZ‖2KR(Z,κ′,κ).
(5.20)

Since ϕuZ = ϕ0f + g, we have

|∇q(ϕuZ)|2 = |∇q(ϕ0f + g)|2 ≤ 2|∇qϕ0f |2 + 2|∇qg|2, (5.21)

which yields

‖∇qg‖2KR(Z,κ′,κ) ≥
1

2
‖∇q(ϕuZ)‖2KR(Z,κ′,κ) − ‖∇qϕ0f‖2KR(Z,κ′,κ). (5.22)

Since ϕuZ = 0 for |q|m = κ|ξ|m, we get similarly as in the proof of Lemma 3.11 that

δ0
2
‖∇q(ϕuZ)‖2KR(Z,κ′,κ) − ε1‖| ln(|q|m|ξ|−1

m )|−1|q|−1
m ϕuZ‖2KR(Z,κ′,κ) ≥ 0 (5.23)

if ε1 > 0 is small enough. Combining this inequality with (5.22) and (5.20) yields

〈H[C1]g, g〉 − ε1‖| ln(|q|m|ξ|−1
m )|−1|q|−1

m ϕuZ‖2KR(Z,κ′,κ) ≥ −δ0‖∇qϕ0f‖2KR(Z,κ′,κ). (5.24)

Now we estimate the term ‖∇qϕ0f‖2KR(Z,κ′,κ). By Theorem 3.2 we have

|∇q (|q|αmϕ0)| ∈ L2(X0(Z)) and (1 + |q|m)α−1ϕ0 ∈ L2(X0(Z)) (5.25)

for any 0 ≤ α < C̃H(X0). This implies

|q|αm |∇qϕ0| ∈ L2(X0(Z)). (5.26)
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Due to |ξ|m ≥ R
2 for x ∈ KR(Z, κ) we get

ˆ
KR(Z,κ′,κ)

|∇qϕ0f |2 dx =

ˆ
{|ξ|m≥R2 }

|f(ξ)|2
ˆ κ|ξ|m

κ′|ξ|m
|∇qϕ0|2 dq dξ

=

ˆ
{|ξ|m≥R2 }

|f(ξ)|2
ˆ κ|ξ|m

κ′|ξ|m
|q|−2α
m |q|2αm |∇qϕ0|2 dq dξ (5.27)

≤ (κ′)−2α

ˆ
{|ξ|m≥R2 }

|ξ|−2α
m |f(ξ)|2

ˆ κ|ξ|m

κ′|ξ|m
|q|2αm |∇qϕ0|2 dq dξ,

where in the last inequality we used |q|m ≥ κ′|ξ|m. Since |q|αm|∇qϕ0| ∈ L2(X0(Z)), we have
ˆ κ|ξ|m

κ′|ξ|m
|q|2αm |∇qϕ0|2 dq ≤ (κ′)2αδ−1

0 (5.28)

for |ξ|m ≥ R
2 if R > 0 is sufficiently large. This yields

− δ0‖∇qϕ0f‖2KR(Z,κ′,κ) ≥ −
ˆ
{|ξ|m≥R2 }

|ξ|−2α
m |f(ξ)|2 dξ, (5.29)

which completes the proof of Lemma 5.2. �

We continue to estimate the functional L2[ϕuZ ]. Combining (5.16) with Lemma 5.2 we get

L2[ϕuZ ] ≥ (1− ε3)‖∇ξ(ϕuZ)‖2 − ε1

ˆ
{|ξ|m≥R2 }

|ξ|−2α
m |f(ξ)|2 dξ. (5.30)

In the next step we estimate the term ‖∇ξ(ϕuZ)‖2. This is done in the following

Lemma 5.3. Let δ > 0. There exists a constant ω > 0 which depends on ‖ϕ0‖, ‖∇qϕ0‖ and
‖∆qϕ0‖ only, such that

‖∇ξ (ϕuZ) ‖2 ≥ ω
(
‖|ξ|−1−δ

m ϕ0f‖2 + ‖|ξ|−1−δ
m g‖2

)
. (5.31)

Remark. For the case dimXc(Z) = 3, a statement similar to Lemma 5.3 was proved in [35]. In
the proof of Lemma 5.3 we follow the ideas of this work.

Proof of Lemma 5.3. Since ϕuZ(q, ξ) = 0 for |ξ|m ≤ R
2 , we can apply the one- or two-dimensional

Hardy inequality in the space Xc(Z) to the function ϕuZ(q, ·) for fixed q. This implies

‖∇ξ (ϕuZ) ‖2 ≥ 1

4
‖|ξ|−1−δ

m ϕuZ‖2 =
1

4
‖|ξ|−1−δ

m ϕ0f + |ξ|−1−δ
m g‖2

≥ 1

4

(
‖|ξ|−1−δ

m ϕ0f‖2 + ‖|ξ|−1−δ
m g‖2 − 2|〈|ξ|−1−δ

m ϕ0f, |ξ|−1−δ
m g〉|

)
.

(5.32)

Since 〈∇qϕ0,∇qg〉L2(X0(Z)) = 0, we have

〈∇q|ξ|−1−δ
m ϕ0f,∇q|ξ|−1−δ

m g〉 = 0 (5.33)

and by Lemma 5.3 in [35] we can find a constant ω > 0 which depends on ‖ϕ0‖, ‖∇qϕ0‖ and
‖∆qϕ0‖ only, such that∣∣〈|ξ|−1−δ

m ϕ0f, |ξ|−1−δ
m g〉

∣∣ ≤ 1

2
(1− 4ω)

(
‖|ξ|−1−δ

m ϕ0f‖2 + ‖|ξ|−1−δ
m g‖2

)
. (5.34)

Substituting this inequality in (5.32) yields

‖∇ξ (ϕuZ) ‖2 ≥ ω
(
‖|ξ|−1−δ

m ϕ0f‖2 + ‖|ξ|−1−δ
m g‖2

)
, (5.35)

which completes the proof of Lemma 5.3. �
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Combining (5.30) with (5.31) and using ‖ϕ0‖ = 1 we get

L2[ϕuZ ] ≥ (1− ε3)ω

ˆ
{|ξ|m≥R2 }

|ξ|−2−2δ
m |f(ξ)|2 dξ − ε1

ˆ
{|ξ|m≥R2 }

|ξ|−2α
m |f(ξ)|2 dξ. (5.36)

Choosing δ < α− 1 and ε1, ε3 > 0 small enough yields L2[ϕuZ ] ≥ 0.
To complete the proof of Theorem 5.1 it remains to show L′2[ϕV] ≥ 0 for every ϕ ∈ H1(X0) with
supp (ϕ) ⊂ {x ∈ X0 : |x|m ≥ R}, where L′2 is the functional defined in (5.5). Note that for
all partitions Z = (C1, . . . , Cp) with p = 3, 4, . . . , N − 1 the Hamiltonians H[Ci] do not have a
virtual level if |Ci| > 1. Hence, we can estimate the functional L′2[Vϕ] ≥ 0 in cones corresponding
to partitions Z with |Z| ≥ 3 in the same way as in the proof of Lemma 3.11. In the region which
remains after separation of the cones corresponding to all partitions Z with |Z| ≤ N −1 we have
|Vij(xij)| ≤ |x|−2−ν

m for all i 6= j. Applying Hardy’s inequality in the space X0 completes the
proof. �

6. Absence of the Efimov effect in systems
of three one- or two-dimensional particles

Now we prove that the Efimov effect is absent for systems of three one- or two-dimensional
particles. This was first proved in [34] under restrictive conditions on the pair potentials. There,
the potentials had to be compactly supported or short-range and negative at infinity. Later, in
[36] the restrictions on the potentials were relaxed. Unfortunately, Lemma 1 in [36] contains a
mistake. Below we follow the ideas of [36] and correct this mistake. We give the proof for both,
the one- and the two-dimensional case.

6.1. Systems of three one-dimensional particles.

Theorem 6.1 (Absence of the Efimov effect for systems of three one-dimensional particles). Let
H be the Hamiltonian corresponding to a system of N = 3 one-dimensional particles. Suppose
that each pair potential Vij satisfies (2.2) and (2.9) and that H[C] ≥ 0 for any cluster C with
|C| = 2. Then the discrete spectrum of H is finite.

In the proof of Theorem 6.1 we will use the following lemmas.

Lemma 6.2. Consider the Schrödinger operator h = −∆ + V in L2(R), such that h ≥ 0 and
the potential V satisfies (2.2) and (2.9). Then there exists a constant C > 0, such that for any
b0 > A and any function ψ ∈ H1(R)

J [ψ, b0] :=

ˆ b0

−b0

(
|ψ′(t)|2 + V (t)|ψ(t)|2

)
dt ≥ −Cb−1−ν

0

(
|ψ(b0)|2 + |ψ(−b0)|2

)
. (6.1)

Here, ν and A are the constants given by (2.9).

Proof of Lemma 6.2. Let ψ ∈ H1(R) and b0 > A. For n ≥ 2 we define the function ψn as
ψn(t) = ψ(t) for −b0 ≤ t ≤ b0, ψn(t) = 0 for t < −nb0 and for t > nb0, ψn(t) = ψ(−b0) nb0+t

b0(n−1)

for −nb0 < t < −b0 and ψn(t) = ψ(b0) nb0−t
b0(n−1) for b0 < t < nb0. Since ψ and ψn coincide for

−b0 ≤ t ≤ b0, we have

〈hψn, ψn〉 ≤
ˆ b0

−b0

(
|ψ′(t)|2 + V (t)|ψ(t)|2

)
dt+

−b0ˆ

−nb0

(
|ψ′n(t)|2 + |V (t)||ψn(t)|2

)
dt

+

nb0ˆ

b0

(
|ψ′n(t)|2 + |V (t)||ψn(t)|2

)
dt.

(6.2)
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At first, we estimate the two last integrals of the r.h.s of (6.2). Since ψ′n(t) = ψ(−b0)
b0(n−1) for

t ∈ (−nb0,−b0) and ψ′n(t) = − ψ(b0)
b0(n−1) for t ∈ (b0, nb0), we get

−b0ˆ

−nb0

|ψ′n(t)|2 dt+

nb0ˆ

b0

|ψ′n(t)|2 dt < ε, (6.3)

where ε > 0 can be chosen arbitrarily small if n is large enough. Moreover, 0 ≤ nb0+t
b0(n−1) ≤ 1 for

t ∈ (−nb0,−b0). This implies

−b0ˆ

−nb0

|V (t)||ψn(t)|2dt ≤ |ψ(−b0)|2
−b0ˆ

−nb0

|V (t)|dt (6.4)

and analogously we get

nb0ˆ

b0

|V (t)||ψn(t)|2dt ≤ |ψ(b0)|2
nb0ˆ

b0

|V (t)|dt. (6.5)

This, together with (6.2) and (6.3) yields

〈hψn, ψn〉 ≤ J [ψ, b0] + |ψ(−b0)|2
−b0ˆ

−nb0

|V (t)|dt+ |ψ(b0)|2
nb0ˆ

b0

|V (t)|dt+ ε. (6.6)

Now we estimate the integrals on the r.h.s of (6.6). For any 0 < δ < ν we have −1− ν+ δ < −1.
Since b0 ≥ A, we get by (2.9)ˆ nb0

b0

|V (t)|dt ≤ cb−1−δ
0

ˆ ∞
A

|t|−1−ν+δ dt ≤ c1b−1−δ
0 (6.7)

for some constants c, c1 > 0. Analogously we haveˆ −b0
−nb0

|V (t)|dt ≤ c1b−1−δ
0 . (6.8)

Due to h ≥ 0 we conclude from (6.6), (6.7) and (6.8) that

J [ψ, b0] ≥ −cb−1−δ
0

(
|ψ(b0)|2 + |ψ(−b0)|2

)
− ε.

Since ε > 0 can be chosen arbitrarily small, this completes the proof. �

Lemma 6.3. Let C0 > 0. Then for any sufficiently large b > 0 and for any ψ ∈ H1(R)ˆ ∞
b

(
|ψ′(t)|2 − C0t

−2−ν |ψ(t)|2
)

dt ≥ −2C0b
−1−ν |ψ(b)|2. (6.9)

Proof of Lemma 6.3. Let ψ ∈ H1(R) and ψ̃(t) = ψ(t)− ψ(b). Then ψ̃′(t) = ψ′(t) and we haveˆ ∞
b

(
|ψ′(t)|2 − C0t

−2−ν |ψ(t)|2
)

dt ≥
ˆ ∞
b

(
|ψ̃′(t)|2 − 2C0t

−2−ν |ψ̃(t)|2
)

dt

− 2C0

ˆ ∞
b

t−2−ν |ψ(b)|2 dt.

(6.10)

Since ψ̃(b) = 0, we can use the one-dimensional Hardy inequality, which for sufficiently large
b > 0 yields ˆ ∞

b

(
|ψ̃′(t)|2 − 2C0t

−2−ν |ψ̃(t)|2
)

dt ≥ 0. (6.11)



33

This, together with (6.10) implies
ˆ ∞
b

(
|ψ′(t)|2 − C0t

−2−ν |ψ(t)|2
)

dt ≥ −2C0|ψ(b)|2
ˆ ∞
b

t−2−ν dt. (6.12)

Computing the integral on the r.h.s. of (6.12) completes the proof. �

Lemma 6.4. Let b2 > b1. Then for any ψ ∈ H1(R)

|ψ(bi)|2 ≤ 2(b2 − b1)−1

ˆ b2

b1

|ψ(x)|2 dx+ 2(b2 − b1)

ˆ b2

b1

|ψ′(x)|2 dx, i = 1, 2. (6.13)

Remark. Lemma 6.4 is the one-dimensional analogue of Lemma 2 in [36].

Proof of Lemma 6.4. For x ∈ (b1, b2) we write

ψ(x) =

ˆ x

b1

ψ′(t) dt+ ψ(b1). (6.14)

Therefore, we have

|ψ(b1)|2 ≤ 2|ψ(x)|2 + 2

(ˆ b2

b1

|ψ′(x)|dx

)2

, x ∈ (b1, b2). (6.15)

Applying the Cauchy-Schwarz inequality to the integral on the r.h.s. of (6.15) yields

|ψ(b1)|2 ≤ 2|ψ(x)|2 + 2(b2 − b1)

ˆ b2

b1

|ψ′(x)|2 dx, x ∈ (b1, b2). (6.16)

Integrating both sides of (6.16) over (b1, b2) and dividing by (b2 − b1) implies

|ψ(b1)|2 ≤ 2(b2 − b1)−1

ˆ b2

b1

|ψ(x)|2 dx+ 2(b2 − b1)

ˆ b2

b1

|ψ′(x)|2 dx. (6.17)

Similarly we can prove the statement for b2. �

Proof of Theorem 6.1. As in the proof of Theorem 5.1 we show that

L[ϕ] :=

ˆ (
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx ≥ 0 (6.18)

holds for all functions ϕ ∈ H1(X0) with supp (ϕ) ⊂ {|x|m ≥ R} if ε > 0 is small enough and
R > 0 is sufficiently large. Let Z = (C1, C2) be a partition into two clusters with |C1| = 2.
First, we estimate the part of the quadratic form L corresponding to the cone K(Z, κ), where
κ > 0 is so small that cones K(Z, κ) and K(Z ′, κ) corresponding to different partitions do not
overlap. Denote the particles in C1 by i and j and the third particle by k. In the following we
will need subtle geometric arguments and therefore we introduce a basis of X0 and work with the
corresponding coordinates. Recall that dim(X0(Z)) = 1 and dim(Xc(Z)) = 1. Choosing a vector
u1 ∈ X0(Z) and a vector u2 ∈ Xc(Z), both normalized with respect to the norm |ui|m = 1, we

get an orthonormal basis of X0. Denote by q̃ and ξ̃ the coefficients corresponding to the basis
{u1, u2}. Then we have |q|m = |q̃|, |ξ|m = |ξ̃| and we can represent KR(Z, κ) as

KR(Z, κ) =
{

(q̃, ξ̃) ∈ R2 : |q̃| ≤ κ|ξ̃|, |q̃|2 + |ξ̃|2 ≥ R2
}

(6.19)
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and ϕ = ϕ(q̃, ξ̃) as a function of q̃ and ξ̃. We haveˆ
KR(Z,κ)

(
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx =

ˆ
KR(Z,κ)

(
|∂q̃ϕ|2 + Vij |ϕ|2

)
dx

+

ˆ
KR(Z,κ)

(
|∂ξ̃ϕ|

2 + (Vik + Vjk)|ϕ|2 − ε|x|−4
m |ϕ|2

)
dx

(6.20)

and estimate the two integrals on the r.h.s of (6.20) separately. By choosing κ > 0 small enough

we have |ξ̃| ≥ R
2 and thereforeˆ

KR(Z,κ)

(
|∂q̃ϕ|2 + Vij |ϕ|2

)
dx =

ˆ
{|ξ̃|≥R2 }

ˆ
{|q̃|≤κ|ξ̃|}

(
|∂q̃ϕ|2 + Vij |ϕ|2

)
dq̃ dξ̃. (6.21)

Applying Lemma 6.2 to the integral over q̃ in (6.21) with b0 = κ|ξ̃| we getˆ
{|ξ̃|≥R2 }

ˆ
{|q̃|≤κ|ξ̃|}

(
|∂q̃ϕ|2 + Vij |ϕ|2

)
dq̃ dξ̃

≥ −C
ˆ
{|ξ̃|≥R2 }

|ξ̃|−1−ν
(
|ϕ(κξ̃, ξ̃)|2 + |ϕ(−κξ̃, ξ̃)|2

)
dξ̃.

(6.22)

Now we estimate the second integral on the right hand side of (6.20). Note that for R > 0
sufficiently large we have

|Vik(xik)|+ |Vjk(xjk)| ≤ c|ξ̃|−2−ν (6.23)

for some c > 0. This, together with |x|−1
m ≤ |ξ̃|−1 impliesˆ

KR(Z,κ)

(
|∂ξ̃ϕ|

2 + (Vik + Vjk)|ϕ|2 − |x|−4
m |ϕ|2

)
dx

≥
ˆ
KR(Z,κ)

(
|∂ξ̃ϕ|

2 − C|ξ̃|−2−ν |ϕ|2
)

dx

(6.24)

for some C > 0, where without loss of generality we assumed that ν < 2. To estimate the
integral on the r.h.s. of (6.24) we first integrate over the variable ξ̃ for fixed q̃. Let us describe

the domain of integration first. The integral over ξ̃ is from the boundary of KR(Z, κ) to infinity.
Note that if |q̃| is small, then the boundary of KR(Z, κ) is given by an arc with radius R, see
Figure 2.

ξ̃

q̃

B(R)

KR(Z, κ2)

q̃ = κξ̃

q̃ = −κξ̃

R
2

η

Figure 2. The cone KR(Z, κ)
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By definition, the function ϕ vanishes on this arc. For large values of |q̃| the boundary of KR(Z, κ)

is given by the straight lines |q̃| = κ|ξ̃|. Let x = (q̃, ξ̃) be a point of intersection of the ball B(R)

with the set {|q̃| = κ|ξ̃|}. Then |q̃| =
(
1 + κ−2

)− 1
2 R =: η and we haveˆ

KR(Z,κ)

(
|∂ξ̃ϕ|

2 − c|ξ̃|−2−ν |ϕ|2
)

dx

=

ˆ
{|q̃|<η}

ˆ
{
|ξ̃|≥
√
R2−|q̃|2

}(|∂ξ̃ϕ|2 − c|ξ̃|−2−ν |ϕ|2
)

dξ̃ dq̃

+

ˆ
{|q̃|≥η}

ˆ
{|ξ̃|≥κ−1|q̃|}

(
|∂ξ̃ϕ|

2 − c|ξ̃|−2−ν |ϕ|2
)

dξ̃ dq̃.

(6.25)

Since ϕ(q̃, ξ̃) = 0 for |ξ̃| ≤
√
R2 − |q̃|2, the one-dimensional Hardy inequality impliesˆ

{|q̃|<η}

ˆ
{
|ξ̃|≥
√
R2−|q̃|2

}(|∂ξ̃ϕ|2 − c|ξ̃|−2−ν |ϕ|2
)

dξ̃ dq̃ ≥ 0 (6.26)

if R > 0 is large enough. To estimate the second integral on the r.h.s of (6.25) we apply Lemma
6.3 with b = κ−1|q̃|, which yieldsˆ

{|q̃|≥η}

ˆ
{|ξ̃|≥κ−1|q̃|}

(
|∂ξ̃ϕ|

2 − c|ξ̃|−2−ν |ϕ(x)|2
)

dξ̃ dq̃

≥ −C
ˆ
{|q̃|≥η}

|q̃|−1−ν (|ϕ(q̃, κ−1|q̃|)|2 + |ϕ(q̃,−κ−1|q̃|)|2
)

dq̃

(6.27)

for some C > 0. Combining (6.22) and (6.27) with (6.20) we getˆ
KR(Z,κ)

(
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx

≥ −C
ˆ
{|ξ̃|≥R2 }

|ξ̃|−1−ν
(
|ϕ(κ|ξ̃|, ξ̃)|2 + |ϕ(−κ|ξ̃|, ξ̃)|2

)
dξ̃

− C
ˆ
{|q̃|≥η}

|q̃|−1−ν (|ϕ(q̃, κ−1|q̃|)|2 + |ϕ(q̃,−κ−1|q̃|)|2
)

dq̃.

(6.28)

Note that the integrals on the r.h.s of (6.28) are in fact integrals of the function ϕ over the edges
of the cone K(Z, κ). We introduce polar coordinates (ρ, θ) in the space X0. Let θ0 = arctan(κ) ∈(
0, π2

)
. At first, we consider the integral over ξ̃ in (6.28) and integrate initially over the set where

ξ̃ > 0. We have ˆ
{ξ̃≥R2 }

ξ̃−1−ν |ϕ(κξ̃, ξ̃)|2 dξ̃ = c

ˆ ∞
R

ρ−1−ν |ϕ(ρ, θ0)|2 dρ (6.29)

and ˆ
{ξ̃≥R2 }

ξ̃−1−ν |ϕ(−κξ̃, ξ̃)|2 dξ̃ = c

ˆ ∞
R

ρ−1−ν |ϕ(ρ,−θ0)|2 dρ, (6.30)

where c is a constant depending on θ0 only. Together with the analogous integrals for ξ̃ < −R2
we get ˆ

{|ξ̃|≥R2 }
|ξ̃|−1−ν

(
|ϕ(κ|ξ̃|, ξ̃)|2 + |ϕ(−κ|ξ̃|, ξ̃)|2

)
dξ̃ (6.31)

= c

ˆ ∞
R

ρ−1−ν (|ϕ(ρ, θ0)|2 + |ϕ(ρ, π − θ0)|2 + |ϕ(ρ, π + θ0)|2 + |ϕ(ρ,−θ0)|2
)

dρ.
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Similarly we can represent the second integral on the r.h.s. of (6.28). Hence, we arrive atˆ
KR(Z,κ)

(
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx (6.32)

≥ −C
ˆ ∞
R

ρ−1−ν (|ϕ(ρ, θ0)|2 + |ϕ(ρ, π − θ0)|2 + |ϕ(ρ, π + θ0)|2 + |ϕ(ρ,−θ0)|2
)

dρ

for some C > 0. To estimate the r.h.s. of (6.32) let us estimate exemplarily the integral
ˆ ∞
R

ρ−1−ν |ϕ(ρ, θ0)|2 dρ. (6.33)

We choose κ′ > κ such that K(Z, κ′) and K(Z ′, κ′) do not overlap for any pair of two-cluster
partitions Z 6= Z ′ and denote θ1 = arctan(κ′) ∈

(
0, π2

)
. Applying Lemma 6.4 to the function

ϕ(ρ, ·) for fixed ρ and with b1 = θ0 and b2 = θ1 we get

|ϕ(ρ, θ0)|2 ≤ C(θ0, θ1)

ˆ θ1

θ0

(
|ϕ(ρ, θ)|2 + |∂θϕ(ρ, θ)|2

)
dθ (6.34)

for some C(θ0, θ1) > 0. Substituting inequality (6.34) into (6.33) we get
ˆ ∞
R

ρ−1−ν |ϕ(ρ, θ0)|2 dρ

≤ C(θ0, θ1)

ˆ ∞
R

ˆ θ1

θ0

ρ−1−ν (|ϕ(ρ, θ)|2 + |∂θϕ(ρ, θ)|2
)

dθ dρ

= C(θ0, θ1)

ˆ θ1

θ0

ˆ ∞
R

ρ−1−ν (|ϕ(ρ, θ)|2 + |∂θϕ(ρ, θ)|2
)

dρdθ.

(6.35)

Applying inequality (A.17) for fixed θ yields

C(θ0, θ1)

ˆ ∞
R

ρ−1−ν |ϕ(ρ, θ)|2 dρ ≤ ε
ˆ ∞
R

|∂ρϕ(ρ, θ)|2ρdρ (6.36)

where ε > 0 can be chosen arbitrarily small if R > 0 is large enough. Substituting this inequality
into (6.35) and using ∣∣∣∣∂ϕ∂ρ

∣∣∣∣2 +
1

ρ2

∣∣∣∣∂ϕ∂θ
∣∣∣∣2 ≤ |∇0ϕ|2 (6.37)

we obtain ˆ ∞
R

ρ−1−ν |ϕ(ρ, θ0)|2 dρ ≤ ε
ˆ
KR(Z,κ,κ′)

|∇0ϕ|2 dx (6.38)

for sufficiently large R > 0. We can estimate the other integrals on the r.h.s. of (6.32) by the
same arguments. Therefore, we obtainˆ

KR(Z,κ)

(
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx ≥ −4ε

ˆ
KR(Z,κ,κ′)

|∇0ϕ|2 dx. (6.39)

Summing inequality (6.39) over all partitions Z with |Z| = 2, inserting the resulting inequality
into the definition of L and using that the cones KR(Z, κ′) and KR(Z ′, κ′) do not intersect we
get

L[ϕ] ≥
ˆ
Kc
R(κ)

(
(1− 4ε)|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx, (6.40)
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where Kc
R(κ) = X0 \

(
B(R) ∪

⋃
Z:|Z|=2K(Z, κ)

)
. Note that Kc

R(κ) is the region in X0, where all

particles are far away from each other. Therefore, we can estimate |V (x)| ≤ C|x|−2−ν
m . Moreover,

we can assume ν < 2 and therefore |x|−4
m ≤ |x|−2−ν

m . Hence, we get

L[ϕ] ≥
ˆ
Kc
R(κ)

(
(1− 4ε)|∇0ϕ|2 − (C + ε)|x|−2−ν

m |ϕ|2
)

dx. (6.41)

Using polar coordinates (ρ, θ) and |∇0ϕ| ≥
∣∣∣∂ϕ∂ρ ∣∣∣ we find

L[ϕ] ≥
ˆ
ω∈I

ˆ ∞
R

(
(1− 4ε) |∂ρϕ|2 − (C + ε)ρ−2−ν |ϕ|2

)
ρdρdθ, (6.42)

where I ⊂ [0, 2π] is the set of angles corresponding to the region Kc
R(κ). Now since ϕ(ρ, θ) = 0

for ρ ≤ R, we can apply inequality (A.17) to the function u(ρ) = ϕ(ρ, θ) for fixed θ ∈ I. Choosing
R sufficiently large completes the proof of Theorem 6.1. �

6.2. Systems of three two-dimensional particles. Now we turn to systems of three two-
dimensional bosons or three non-identical two-dimensional particles. For systems of three spinless
fermions in dimension two there exists the so-called super Efimov effect, see [14]. We prove that
for systems without symmetry restrictions such an effect can not occur. Our result is the following

Theorem 6.5 (Absence of the Efimov effect for systems of three two-dimensional particles). Let
H be the Hamiltonian corresponding to a system of N = 3 two-dimensional particles. Assume
that H[C] ≥ 0 for any cluster C with |C| = 2 and that the pair potentials Vij satisfy (2.2) and
(2.9) and they are radially symmetric, i.e. Vij(xij) = Vij(|xij |). Then the discrete spectrum of
H is finite.

First, we give some auxiliary Lemmas which are analogous to Lemma 6.2 and Lemma 6.3 for
d = 2.

Lemma 6.6. Let d = 2 and consider the operator h = −∆ + V acting in L2
(
R2
)
, where h ≥ 0

and V (x) = V (|x|) satisfies (2.2) and (2.9). Then there exists a constant c > 0, such that for
any b0 > A and for any function ψ ∈ H1(R2) we have

J [ψ, b0] :=

ˆ
{|x|≤b0}

(
|∇ψ(x)|2 + V (x)|ψ(x)|2

)
dx ≥ −cb−ν0

ˆ 2π

0

|ψ(b0, θ)|2 dθ. (6.43)

Remark. Lemma 6.6 does not hold if we restrict the operator h to anti-symmetric functions.
This is the reason why our proof of Theorem 6.5 does not work for a fermionic system, where
the super Efimov effect is known to exist.

Proof of Lemma 6.6. Let ψ ∈ H1(R2) and b0 > A. We introduce polar coordinates x = (ρ, ω)

and write ψ(x) =
∞∑

n=−∞
ψn(x) with ψn(x) = Rn(ρ)einω. For k ∈ N, k ≥ 2, let

Rkn(ρ) :=


Rn(ρ) if ρ ≤ b0,
Rn(b0) ln

(
kb0ρ

−1
)

(ln k)
−1

if b0 < ρ ≤ kb0,
0 if ρ > kb0.

(6.44)

We set ψkn : R2 → C, ψkn(x) = Rkn(|x|)einω. Then we have J [ψkn, b0] = J [ψn, b0] and therefore

J [ψ, b0] =

∞∑
n=−∞

J [ψkn, b0] for any k ≥ 2. (6.45)
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Now we estimate J [ψkn, b0] for fixed k, n ∈ N with k ≥ 2. Due to

|∇ψ|2 = |∂ψ
∂ρ
|2 +

1

ρ2
|∂ψ
∂ω
|2 ≥ |∂ψ

∂ρ
|2 (6.46)

and V (x) = V (|x|) we can estimate

J [ψkn, b0] ≥ 2π

b0ˆ

0

(
|∂ρRkn(ρ)|2 + V (ρ)|Rkn(ρ)|2

)
ρdρ. (6.47)

Using 〈hψ̃kn, ψ̃kn〉 ≥ 0 for the radial function ψ̃kn(x) = Rkn(|x|) and (6.47) yields

J [ψkn, b0] ≥ −2π

∞̂

b0

(
|∂ρRkn(ρ)|2 + V (ρ)|Rkn(ρ)|2

)
ρdρ. (6.48)

Easy computation shows that

∂ρR
k
n(ρ) =

{
−Rn(b0) (ln(k))

−1
ρ−1 if b0 < ρ < kb0,

0 if ρ > kb0.
(6.49)

This implies
∞̂

b0

|∂ρRkn(ρ)|2 ρdρ ≤ |Rn(b0)|2(ln(k))−2

ˆ kb0

b0

ρ−1 dρ = |Rn(b0)|2(ln(k))−1. (6.50)

Since |V (ρ)| ≤ C (1 + ρ)
−2−ν

for ρ > b0, we get

∞̂

b0

|V (ρ)||Rkn(ρ)|2 ρdρ ≤ C|Rn(b0)|2(ln(k))−2

kb0ˆ

b0

(1 + ρ)−2−ν (ln(kb0ρ
−1)
)2
ρdρ

≤ C|Rn(b0)|2
kb0ˆ

b0

(1 + ρ)−2−ν ρdρ, (6.51)

where for the last inequality we used that (ln(k))−2
(
ln(kb0ρ

−1)
)2 ≤ 1 for ρ ∈ (b0, kb0). By

inserting
kb0ˆ

b0

(1 + ρ)−2−ν ρdρ ≤
∞̂

b0

ρ−1−ν dρ = b−ν0 (6.52)

in inequality (6.51) we find
∞̂

b0

|V (ρ)||Rkn(ρ)|2 ρdρ ≤ C|Rn(b0)|2b−ν0 . (6.53)

Combining (6.48) with (6.50) and (6.53) we obtain

J [ψkn, b0] ≥ −2πC|Rn(b0)|2b−ν0 − 2π|Rn(b0)|(ln(k))−1. (6.54)

Recall that the left hand side of (6.54) coincides with J [ψn, b0] and in particular does not depend
on k. Therefore, sending k to infinity and using

2π

∞∑
n=−∞

|Rn(b0)|2 =

ˆ 2π

0

|ψ(b0, ω)|2 dω (6.55)
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completes the proof of Lemma 6.6. �

The following lemma is analogous to Lemma 6.3

Lemma 6.7. Let C0 > 0. Then for any sufficiently large b > 0 and for any ψ ∈ H1(R2) we
have ˆ

{|x|≥b}

(
|∇ψ(x)|2 − C0|x|−2−ν |ψ(x)|2

)
dx ≥ −2C0b

−ν(2π)−1

ˆ 2π

0

|ψ(b, θ)|2 dθ. (6.56)

Proof of Lemma 6.7. Let ψ ∈ H1(R2). We write ψ = ψ0 + ψ1 with ψ0 = Pm=0ψ and ψ1 =
P |m|≥1ψ, where Pm is the projection onto the space of functions with angular momentum m.
Then for ψ1 we have

|∇ψ1|2 = |∂ρψ1|2 +
1

ρ2
|∂θψ1|2 ≥

1

ρ2
|ψ1|2 (6.57)

and therefore ˆ
{|x|≥b}

(
|∇ψ1(x)|2 − C0|x|−2−ν |ψ1(x)|2

)
dx ≥ 0 (6.58)

if b > 0 is sufficiently large. Hence, it suffices to prove inequality (6.56) for the spherically

symmetric function ψ0. For |x| ≥ b let ψ̃(|x|) = ψ0(|x|) − ψ0(b), such that ψ̃(b) = 0 and we

extend ψ̃ with zero to the region {|x| < b}. Then, similarly to the one-dimensional case we
obtainˆ

{|x|≥b}

(
|∇ψ0(x)|2 − C0|x|−2−ν |ψ0(x)|2

)
dx

≥
ˆ
{|x|≥b}

(
|∇ψ̃(x)|2 − 2C0|x|−2−ν |ψ̃(x)|2

)
dx−

ˆ
{|x|≥b}

2C0|x|−2−ν |ψ0(b)|2 dx.

(6.59)

Since ψ̃(|x|) = 0 for |x| ≤ b, we can apply the two-dimensional Hardy inequality to the function

ψ̃, which implies that the first integral on the r.h.s of (6.59) is non-negative. Hence, we arrive atˆ
{|x|≥b}

(
|∇ψ0(x)|2 − C0|x|−2−ν |ψ0(x)|2

)
dx ≥ −2C0

ˆ
{|x|≥b}

|x|−2−ν |ψ0(b)|2 dx. (6.60)

Computing the integral on the r.h.s. of (6.60) completes the proof of Lemma 6.7. �

Proof of Theorem 6.5. In the proof we follow the same strategy as in the proof of Theorem 6.1.
Let

L[ϕ] :=

ˆ (
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx. (6.61)

We show that L[ϕ] ≥ 0 for all functions ϕ ∈ H1(X0) with supp (ϕ) ⊂ {|x|m ≥ R} if ε > 0 is
small enough and R > 0 is sufficiently large. First, we estimate the part of L[ϕ] corresponding to
the cone K(Z, κ) for an arbitrary partition Z into two clusters. Assume that Z = (C1, C2) with
C1 = {i, j} and C2 = {k}. Note that the spaces X0(Z) and Xc(Z) are both two-dimensional.

We choose orthonormal bases of X0(Z) and Xc(Z) and denote by q̃1, q̃2, ξ̃1, ξ̃2 the corresponding

coordinates. We write q̃ = (q̃1, q̃2), ξ̃ = (ξ̃1, ξ̃2) and ϕ = ϕ(q̃, ξ̃). Similarly to (6.20) we writeˆ
KR(Z,κ)

(
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx =

ˆ
KR(Z,κ)

(
|∇q̃ϕ|2 + Vij |ϕ|2

)
dx

+

ˆ
KR(Z,κ)

(
|∇ξ̃ϕ|

2 + (Vik + Vjk)|ϕ|2 − ε|x|−4
m |ϕ|2

)
dx.

(6.62)
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To estimate the integrals on the r.h.s of (6.62) we introduce polar coordinates q̃ = (ρ1, β1) and

ξ̃ = (ρ2, β2) in the planar spaces X0(Z) and Xc(Z). For the first integral on the r.h.s. of (6.62)

we use Lemma 6.6 for fixed ξ̃ with b0 = κ|ξ̃|. Then similarly to (6.22) we get

ˆ
KR(Z,κ)

(
|∇q̃ϕ|2 + Vij |ϕ|2

)
dx =

ˆ
{|ξ̃|≥R2 }

ˆ
{|q̃|≤κ|ξ̃|}

(
|∇q̃ϕ|2 + Vij |ϕ|2

)
dx

≥ −C
ˆ
{|ξ̃|≥R2 }

|ξ̃|−ν
ˆ 2π

0

|ϕ(κ|ξ̃|, β1, ξ̃)|2 dβ1 dξ̃

(6.63)

for some C > 0. For the second integral on the r.h.s. of (6.62) we use Lemma 6.7 for fixed q̃ and
with b = κ−1|q̃|, which similarly to (6.27) yields

ˆ
KR(Z,κ)

(
|∇ξ̃ϕ|

2 + (Vik + Vjk)|ϕ|2 − ε|x|−4
m |ϕ|2

)
dx

≥ −C
ˆ
{|q̃|≥η}

|q̃|−ν
ˆ 2π

0

|ϕ(q̃, κ−1|q̃|, β2)|2 dβ2 dq̃,

(6.64)

where η =
(
1 + κ−2

)−1
R is analogous to the proof of Theorem 6.1. Combining (6.63) and (6.64)

with (6.62) implies

ˆ
KR(Z,κ)

(
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx

≥ −C
ˆ
{|ξ̃|≥R2 }

|ξ̃|−ν
ˆ 2π

0

|ϕ(κ|ξ̃|, β1, ξ̃)|2 dβ1 dξ̃

− C
ˆ
{|q̃|≥η}

|q̃|−ν
ˆ 2π

0

|ϕ(q̃, κ−1|q̃|, β2)|2 dβ2 dq̃.

(6.65)

In the set {(|q̃|, |ξ̃|) ∈ R+×R+} we introduce the polar coordinates (ρ, θ), where ρ2 = |q̃|2+|ξ̃|2 =

|x|2m and θ = arctan
(
|q̃|
|ξ̃|

)
∈ [0, π2 ). Then ρ1 = ρ sin(θ) and ρ2 = ρ cos(θ). We represent the

function ϕ(x) as a function ϕ̃(ρ, θ, β1, β2). Note that the integrals on the r.h.s of (6.65) are

integrals of the function |ϕ(x)|2 over the set where |q̃| = κ|ξ̃|, i.e. where θ0 = arctan(κ).
Therefore, for the first integral on the r.h.s of (6.65) we get

ˆ
{|ξ̃|≥R2 }

|ξ̃|−ν
ˆ 2π

0

|ϕ(κ|ξ̃|, β1, ξ̃)|2 dβ1 dξ̃

=

ˆ ∞
R
2

ˆ 2π

0

ˆ 2π

0

ρ−ν2 |ϕ(κρ2, β1, ρ2, β2)|2 dβ1 dβ2 ρ2dρ2,

= c

ˆ ∞
R

ˆ 2π

0

ˆ 2π

0

ρ−ν |ϕ̃(ρ, θ0, β1, β2)|2 dβ1 dβ2 ρdρ,

(6.66)

where c > 0 is a constant which comes from the transformation of variables if we represent the
function ρ2 7→ ϕ(κρ2, β1, ρ2, β2) as function ρ 7→ ϕ̃(ρ, θ0, β1, β2), where θ0 = arctan(κ). In the
first equality in (6.66) we used that dim (Xc(Z)) = 2, which implies that the Jacobian of the
transformation to polar coordinates in Xc(Z) gives a factor ρ2. In the last equality of (6.66) we
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used that the function ϕ̃ is zero for ρ < R. Similarly we getˆ
{|q̃|≥η}

|q̃|−ν
ˆ 2π

0

|ϕ(q̃, κ−1|q̃|, β2)|2 dβ2 dq̃

= c′
ˆ ∞
R

ˆ 2π

0

ˆ 2π

0

ρ−ν |ϕ̃(ρ, θ0, β1, β2)|2 dβ1 dβ2 ρdρ

(6.67)

for some c′ > 0 . Therefore, by combining (6.66) and (6.67) with (6.65) we obtainˆ
KR(Z,κ)

(
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx

≥ −C
ˆ ∞
R

ˆ 2π

0

ˆ 2π

0

ρ1−ν |ϕ̃(ρ, θ0, β1, β2)|2 dβ1 dβ2 dρ

(6.68)

for some C > 0. Now as in the proof of Theorem 6.1 we estimate the integral on the r.h.s. of
(6.68), which is an integral over the edge of K(Z, κ) given by {|q̃| = κ|ξ̃|}, by an integral over the
set K(Z, κ, κ′) for some κ′ which is slightly larger than κ. For this purpose let κ′ > κ be so small
that the cones KR(Z, κ′) and KR(Z ′, κ′) do not overlap for partitions Z 6= Z ′ with |Z| = |Z ′| = 2
and let θ1 = arctan(κ′). We apply Lemma 6.4 to the function ϕ(ρ, ·, θ1, θ2) for fixed ρ, θ1, θ2 and
with b1 = θ0, b2 = θ1. Then we getˆ ∞

R

ˆ 2π

0

ˆ 2π

0

ρ1−ν |ϕ̃(ρ, θ0, β1, β2)|2 dβ1 dβ2 dρ (6.69)

≤ C(θ0, θ1)

ˆ ∞
R

ˆ 2π

0

ˆ 2π

0

ˆ θ1

θ0

ρ1−ν(|ϕ̃(ρ, θ, β1, β2)|2 + |∂θϕ̃(ρ, θ, β1, β2)|2
)

dθ dβ1 dβ2 dρ,

where C(θ0, θ1) depends on θ0 and θ1 only. Using the scalar form of the four-dimensional Hardy
inequality [8, eq. (2.15)] we obtainˆ ∞

R

ρ1−ν |ϕ̃(ρ, θ, β1, β2)|2 dρ ≤
ˆ ∞
R

ρ3−ν |∂ρϕ̃(ρ, θ, β1, β2)|2 dρ. (6.70)

Therefore, we getˆ ∞
R

ρ1−ν (|ϕ̃(ρ, θ, β1, β2)|2 + |∂θϕ̃(ρ, θ, β1, β2)|2
)

dρ

≤ R−ν
ˆ ∞
R

ρ3

(
|∂ρϕ̃(ρ, θ, β1, β2)|2 +

|∂θϕ̃(ρ, θ, β1, β2)|2

ρ2

)
dρ.

(6.71)

Recall that (ρ, θ) are the polar coordinates corresponding to (|q̃|, |ξ̃|), which implies(
|∂ρϕ̃(ρ, θ, β1, β2)|2 +

|∂θϕ̃(ρ, θ, β1, β2)|2

ρ2

)
= |∂|q̃|ϕ|2 + |∂|ξ̃|ϕ|

2 ≤ |∇0ϕ|2. (6.72)

This yields

R−ν
ˆ ∞
R

ˆ 2π

0

ˆ 2π

0

ˆ θ1

θ0

ρ3

(
|∂ρϕ̃(ρ, θ, β1, β2)|2 +

|∂θϕ̃(ρ, θ, β1, β2)|2

ρ2

)
dθ dβ1 dβ2 dρ

≤ ε
ˆ
KR(Z,κ,κ′)

|∇0ϕ|2 dx, (6.73)

where ε > 0 can be chosen arbitrarily small if R > 0 is sufficiently large. Here we used that
the Jacobian of the transformation from the coordinates x = (q̃1, q̃2, ξ̃1, ξ̃2) to the variables
(ρ, θ, β1, β2) is given by ρ3 sin(θ) cos(θ) and we can estimate

0 < sin(θ0) cos(θ0) ≤ sin(θ) cos(θ) (6.74)
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for any θ ∈ (θ0, θ1) if 0 < κ < κ′ < 1. Combining (6.73) with (6.71), (6.69) and (6.68) we getˆ
KR(Z,κ)

(
|∇0ϕ|2 + V |ϕ|2 − ε|x|−4

m |ϕ|2
)

dx ≥ −ε
ˆ
KR(Z,κ,κ′)

|∇0ϕ|2 dx. (6.75)

This inequality is an analogue to (6.38) in the proof of Theorem 6.1. Now we can complete the
proof of Theorem 6.5 by repeating the same steps as in the proof of Theorem 6.1 if we replace the
scalar form of the two-dimensional Hardy inequality by the scalar form of the four-dimensional
one. �
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Appendix A. Properties of the space H̃1(Rd)

Here we collect some properties of the space H̃1(Rd) for dimensions d = 1 and d = 2. These
spaces were introduced M. Birman in [8, Section 2] and are intensively discussed in the book [12]
by R. Frank, A. Laptev and T. Weidl. For convenience we give the statements and some of these
properties below.

Proposition A.1 (Properties of H̃1(Rd), d = 1, 2). The following assertions hold.

(i) (Hardy’s inequality for the half-line, inequality (2.17) in [8]) Let d = 1 and u ∈ H̃1(R),
such that lim inft→0 |u(t)| = 0. Then

∞̂

0

|u(t)|2

t2
dt ≤ 4

∞̂

0

|u′(t)|2 dt. (A.1)

(ii) (Two-dimensional Hardy inequality, inequality (2) in [29]) Let d = 2 and assume that

u ∈ H̃1(R2), represented in polar coordinates (r, θ), satisfiesˆ 2π

0

u(1, θ) dθ = 0, (A.2)

where u(1, θ) is understood in the trace sense. Thenˆ
R2

|u|2

|x|2(1 + ln2(|x|))
dx ≤ 4

ˆ
R2

|∇u|2 dx. (A.3)

(iii) Let d = 1. Then there exists a constant C > 0, such that for all functions u ∈ H̃1(R)ˆ ∞
−∞

|u(x)|2

1 + x2
dx ≤ C‖u‖2

H̃1 . (A.4)

(iv) Let d = 2. Then there exists a constant C > 0, such that for all functions u ∈ H̃1(R2)ˆ
R2

|u(x)|2

1 + x2(ln |x|)2
dx ≤ C‖u‖2

H̃1 . (A.5)
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(v) Let u ∈ H̃1(Rd) and let (un)n∈N be a sequence in H̃1(Rd), such that un ⇀ u weakly

in H̃1(Rd). Then for every measurable bounded set B ⊂ Rd we have χBun → χBu in
L2(Rd).

Proof. (i) We borrow the proof of this inequality from the book [12], which is currently in
preparation. We are grateful to R. Frank, A. Laptev and T. Weidl for sharing it with us before
publishing.
By applying twice the product rule for weakly differentiable functions we get∣∣∣∣u′ − 1

2x
u

∣∣∣∣2 = |u′|2 +
1

4x2
|u|2 − 1

2x

(
|u|2
)′

= |u′|2 − 1

4x2
|u|2 −

(
1

2x
|u|2
)′
. (A.6)

Hence, for fixed 0 < ε < M <∞ we have

0 ≤
ˆ M

ε

∣∣∣∣u′ − 1

2x
u

∣∣∣∣2 dx =

ˆ M

ε

|u′|2 dx−
ˆ M

ε

1

4x2
|u|2 dx

− 1

2M

(
|u(M)|2

)
+

1

2ε

(
|u(ε)|2

)
.

(A.7)

Note that

|u(x)|2 ≤ x
ˆ x

0

|u′(y)|2 dy. (A.8)

Indeed, we have

|u(x)− u(x′)| =
∣∣∣∣ˆ x

x′
u′(y) dy

∣∣∣∣
≤
(ˆ x

x′
|u′(y)|2 dy

) 1
2
(ˆ x

x′
1 dy

) 1
2

≤
(ˆ x

0

|u′(y)|2 dy

) 1
2

x
1
2 .

(A.9)

Now (A.8) follows from the assumption that lim infx′→0 |u(x′)| = 0.
Now we take inequality (A.7) and let M → ∞. Note that the first integral on the r.h.s. of
(A.7) converges as M → ∞, because u′ ∈ L2(0,∞). By (A.8) we get supM |u(M)|M−1 < ∞.
Therefore, ˆ ∞

ε

|u|2x−2 dx <∞. (A.10)

The finiteness of this integral and the fact that x 7→ x−1 is not integrable implies

lim inf
x→∞

|u(x)|2x−1 = 0. (A.11)

Choosing M in (A.7) along a sequence where this lim inf is realized we obtain

0 ≤
ˆ ∞
ε

|u′|2 dx−
ˆ ∞
ε

1

4x2
|u|2 dx+

1

2ε

(
|u(ε)|2

)
. (A.12)

Now we let ε → 0. Since u′ ∈ L2(0,∞), the first integral on the r.h.s. of (A.12) converges.
By the same argument, together with (A.8) we get limε→0 |u(ε)|2ε−1 = 0. This shows that the
second integral on the r.h.s. of (A.12) also converges and we have

0 ≤
ˆ ∞

0

|u′|2 dx−
ˆ ∞

0

1

4x2
|u|2 dx. (A.13)

(ii) The proof can be found in [29].
(iii) We take a smooth function ξ with 0 ≤ ξ ≤ 1 on R+, ξ = 0 on (0, 1/2] and ξ = 1 on [1,∞).
Then ˆ ∞

0

|u|2

1 + x2
dx ≤ 2

ˆ ∞
0

(1− ξ)2 |u|2

1 + x2
dx+ 2

ˆ ∞
0

ξ2 |u|2

1 + x2
dx. (A.14)
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The first term on the r.h.s. of (A.14) can be controlled by

2

ˆ ∞
0

(1− ξ)2 |u|2

1 + x2
dx ≤ 2 sup

0≤s≤1

1

1 + s2

ˆ 1

0

|u|2 dx = 2

ˆ 1

0

|u|2 dx. (A.15)

The second term on the r.h.s. of (A.14) can be estimated by using the Hardy inequality as

2

ˆ ∞
0

ξ2 |u|2

1 + x2
dx ≤ 8

ˆ ∞
0

|(ξu)′|2 dx ≤ 16

ˆ ∞
0

(
ξ2|u′|2 + (ξ′)

2 |u|2
)

dx

≤ C
(ˆ ∞

0

|u′|2 dx+

ˆ 1

0

|u|2 dx

)
,

(A.16)

where C depends on ξ, but not on u.
(iv) The proof is a simple modification of the proof of assertion (iii).
(v) The proof follows immediately from the Rellich-Kondrachov theorem, see [2, Theorem 6.3]

�

Remark. Inequality (A.3) is equivalent to the scalar inequality

∞̂

0

|u(t)|2

t
(
1 + ln2(t)

) dt ≤ 4

∞̂

0

t(u′(t))2 dt, u(1) = 0. (A.17)

Corollary A.2. It follows from Proposition A.1 (iv) and (v) that if V satisfies (2.2) and (2.9),

then there exists a constant C > 0, such that for all u ∈ H̃1(Rd) we have
ˆ
Rd
|V (x)||u(x)|2 dx ≤ C‖u‖2

H̃1 . (A.18)

Corollary A.3. For any function u ∈ H̃1(R2) with supp (u) ⊂ {x ∈ R2 : |x| < 1} and any
constant ν ∈ (0, 1) we have

ˆ
{|x|≥ν}

|u|2

|x|2(1 + ln2(|x|))
dx ≤ 4

ˆ
{|x|≥ν}

|∇u|2 dx. (A.19)

Proof of Corollary A.3. Since the function v(x) = |x|−2
(
1 + (ln (|x|))2

)−1
is spherically symmet-

ric, due to the rearrangement inequality it suffices to show that the inequality holds for spherically
symmetric functions. Let u ∈ H̃1(R2) be spherically symmetric with supp (u) ⊂ {x : |x| < 1}.
Then the function ũ given by

ũ(x) =

{
u(x) if |x| ≥ ν,
u(ν) if |x| < ν

(A.20)

is also an element of H̃1(R2). Applying the two-dimensional Hardy inequality (A.3) to the
function ũ, using that ũ is constant for |x| ≤ ν and that ũ and u coincide for |x| ≥ ν proves
(A.19). �

Remark. Analogously to the proof of Corollary A.3 one can see that if d ≥ 3, then for any
function u ∈ H̃1(Rd) we have

ˆ
{|x|≥ν}

|u|2

|x|2
dx ≤ 4

(d− 2)2

ˆ
{|x|≥ν}

|∇u|2 dx. (A.21)
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Appendix B. Necessary and sufficient conditions for virtual levels

In this section we prove Theorem 2.3, which is stated for one-particle Schrödinger operators
in dimension one or two. Afterwards, we give an analogue of this theorem for the multi-particle
case.

Proof of Theorem 2.3. We only need to prove that the absence of a virtual level of h implies
that (2.16) does not hold. The proof of the other direction follows from Theorem 2.2 and the
variational principle.
Let d = 1. Note that we can assume that U(x) = −(1 + |x|)−2. For ψ ∈ H1(R) we write

ψ0(x) = ψ(x)− ψ(0). (B.1)

Then, ψ0(0) = 0 and we can apply Hardy’s inequality on the half line R+ to obtain
ˆ ∞

0

|ψ0(x)|2

|x|2
dx ≤ 4

ˆ ∞
0

|ψ′0(x)|2 dx = 4

ˆ ∞
0

|ψ′(x)|2 dx. (B.2)

Furthermore, we have

〈V ψ, ψ〉 =

∞̂

−∞

V (x)|ψ(0)|2 dx+

∞̂

−∞

V (x)|ψ0(x)|2 dx+ 2Re

∞̂

−∞

V (x)ψ(0)ψ0(x) dx

≥
∞̂

−∞

V (x)|ψ(0)|2 dx+

∞̂

−∞

V (x)|ψ0(x)|2 dx− 2

∞̂

−∞

|V (x)||ψ(0)ψ0(x)|dx.

(B.3)

Note that for any δ > 0

2|ψ(0)ψ0(x)| ≤ δ|ψ(0)|2 + δ−1|ψ0(x)|2, (B.4)

which together with (B.3) implies

〈V ψ, ψ〉 ≥ |ψ(0)|2
∞̂

−∞

(V (x)− δ|V (x)|) dx+

∞̂

−∞

|ψ0(x)|2
(
V (x)− δ−1|V (x)|

)
dx

≥ |ψ(0)|2
∞̂

−∞

(V (x)− δ|V (x)|) dx− (1 + δ−1)

∞̂

−∞

|V (x)||ψ0(x)|2 dx

≥ |ψ(0)|2
∞̂

−∞

(V (x)− δ|V (x)|) dx− C(1 + δ−1)‖ψ0‖2H̃1 ,

(B.5)

where in the last estimate we used Corollary A.2. Since ψ0(0) = 0, we have ‖ψ0‖2H̃1 ≤ C‖ψ′0‖2.

This, together with (B.5) yields

〈V ψ, ψ〉 ≥ |ψ(0)|2
∞̂

−∞

(V (x)− δ|V (x)|) dx− C(δ)

ˆ ∞
−∞
|ψ′0(x)|2 dx. (B.6)

Since
´∞
−∞ V (x) dx > 0, we can choose the constant δ > 0 sufficiently small, such that

´∞
−∞(V (x)−

δ|V (x)|) dx ≥ 1
2

´∞
−∞ V (x) dx =: C0. This, together with ψ′(x) = ψ′0(x) implies

|ψ(0)|2 ≤ C−1
0 〈V ψ, ψ〉+ C1(δ)‖ψ′‖2 (B.7)
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for some constant C1(δ) > 0 which depends on V and δ only. This yields

ε1

∞̂

−∞

|ψ(x)|2

1 + x2
dx ≤ 2ε1|ψ(0)|2

∞̂

−∞

1

1 + x2
dx+ 2ε1

∞̂

−∞

|ψ0(x)|2

1 + x2
dx

≤ ε1

(
2π|ψ(0)|2 + 8‖ψ′‖2

)
≤ ε1

(
2πC−1

0 〈V ψ, ψ〉+ C2(δ)‖ψ′‖2
)
,

(B.8)

where C2(δ) = C1(δ) + 8. We distinguish between two cases:
(i) If 2πC−1

0 〈V ψ, ψ〉 < C2(δ)‖ψ′‖2, then (B.8) yields

ε1

∞̂

−∞

|ψ(x)|2

1 + x2
dx ≤ 2ε1C2(δ)‖ψ′‖2. (B.9)

Now since h does not have a virtual level, we can choose ε1 > 0 sufficiently small to conclude
that

〈hψ, ψ〉 − ε1

ˆ ∞
−∞

|ψ(x)|2

1 + x2
dx ≥ 0. (B.10)

(ii) If 2πC−1
0 〈V ψ, ψ〉 ≥ C2(δ)‖ψ′‖2, we have 〈V ψ, ψ〉 > 0 and

ε1

∞̂

−∞

|ψ(x)|2

1 + x2
dx ≤ 4ε1πC

−1
0 〈V ψ, ψ〉. (B.11)

By choosing 0 < ε1 < (4π)−1C0 we obtain

〈hψ, ψ〉 − ε1

∞̂

−∞

|ψ(x)|2

1 + x2
dx ≥ ‖ψ′‖2 ≥ 0. (B.12)

This implies (B.10) and therefore the statement of Theorem 2.3 for the case d = 1.
Now we assume that d = 2. For ψ ∈ H1(R2) we write ψ0(x) = ψ(x)− a0, where

a0 =
1

2π

ˆ 2π

0

ψ(1, θ) dθ. (B.13)

Then
´ 2π

0
ψ0(1, θ) dθ = 0 and thus we can apply the two-dimensional Hardy inequality (A.3) to

the function ψ0. Proceeding as in the proof of the one-dimensional case yields the statement for
d = 2 and therefore completes the proof of Theorem 2.3. �

Now we extend Theorem 2.3 to the case of multi-particle Schrödinger operators.

Theorem B.1. Let H be the Schrödinger operator corresponding to a system of N ≥ 2 one- or
two-dimensional particles, where the potentials Vij 6= 0 satisfy (2.2) and (2.9) and let H ≥ 0.
Then H has a virtual level at zero if and only if the following two assertions hold.

(i) There exists an ε0 > 0, such that for any cluster C with 1 < |C| < N we have

H[C]− ε0

(
1 + |q[C]|2m(ln(|q[C]|m)2

)−1 ≥ 0. (B.14)

(ii) For any ε > 0 we have

inf S
(
H − ε

(
1 + |x|2m ln2(|x|m)

)−1
)
< 0. (B.15)
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Proof of Theorem B.1. For N = 2 the statement was proved in Theorem 2.3. Now assume that
N ≥ 3. First we prove that if H has a virtual level at zero, then (B.15) is true. According to
remark (ii) after Theorem 3.5 we know that if d = 1, N ≥ 3 or d = 2, N ≥ 4 zero is an eigenvalue
of H. Taking the corresponding eigenfunction as a trial function shows that (B.15) holds for any
ε > 0. For d = 2, N = 3 we do not know if zero is an eigenvalue. However, by Theorem 4.1
we know that there is a function ϕ0 ∈ H̃1(X0) with ‖∇0ϕ0‖2+〈V ϕ0, ϕ0〉 = 0, which yields (B.15).

In the rest of the proof we will use induction in the number of particles. Assume that the
system has N ≥ 3 particles and that the theorem holds for all system with the number of parti-
cles less or equal to N − 1.
If H has a virtual level and condition (B.14) does not hold, then there exists at least one cluster
C in this system with 1 < |C| < N , such that for this cluster C and all ε > 0 condition (B.14)
does not hold as well. Among such clusters we choose one with the smallest number of particles
and denote it by C0. Then we have

inf S
(
H[C0]− ε

(
1 + |q[C0]|2m(ln(|q[C0]|m)2

)−1
)
< 0 for any ε > 0. (B.16)

If C0 consists of only two particles, then by Theorem 2.3 this condition implies that H[C0] has
a virtual level at zero. However, by the remark after Definition 3.1 Hamiltonians of non-trivial
clusters can not have virtual levels at zero if the Hamiltonian of the whole system has a virtual
level. Therefore, C0 must consist of at least three particles. Now since C0 is the smallest cluster
for which (B.14) does not hold for any small ε > 0, for each cluster C̃ ( C0 with |C̃| > 1 we have

H[C̃]− ε0

(
1 + |q[C̃]|2m(ln(|q[C̃]|m))2

)−1

≥ 0 (B.17)

for some ε0 > 0. Since |C0| < N − 1, (B.16), (B.17) and the induction assumption yield that
H[C0] has a virtual level, which according to the remark after the Definition 3.1 contradicts the
assumption that H has a virtual level.
To complete the proof of the theorem we have to show that if condition (B.14) and (B.15) are
fulfilled, then H has a virtual level.
At first, we prove that condition (i) of Definition 3.1 is fulfilled, namely that there exists a
constant ε0 ∈ (0, 1), such that

inf Sess (H + ε0∆0) = 0. (B.18)

Recall that due to the remark after Definition 3.1 to prove (B.18) it suffices to show that for any
C with 1 < |C| < N the operator H[C] does not have a virtual level. Assume for contradiction
that there exists a cluster C1 with 1 < |C1| < N , such that H[C1] has a virtual level at zero.
Then, due to the induction assumption we have

inf S
(
H[C1]− ε

(
1 + |q[C1]|2m(ln(|q[C1]|m))2

)−1
)
< 0. (B.19)

This is a contradiction to (B.14). Hence, condition (i) of Definition 3.1 is fulfilled.
It remains to prove that if conditions (B.14) and (B.15) of Theorem B.1 hold, then condition
(ii) of Definition 3.1 is fulfilled, namely

inf S (H + ε∆0) < 0 for any ε ∈ (0, 1). (B.20)

If dim(X0) ≥ 3, we can use Hardy’s inequality to conclude that (B.20) holds. If dim(X0) < 3,
i.e. the system consists of three one-dimensional particles, (B.15) implies that for any n ∈ N
the operator H − n−1

(
1 + |x|2m(ln(|x|m))2

)−1
has a negative eigenvalue. We take a sequence of

eigenfunctions ψn corresponding to these eigenvalues, normalized by ‖ψn‖H̃1 = 1. Applying the
same arguments as in the proof of Theorem 3.5 we see that ψn converges in L2(X0) to a function
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ψ0 which is an eigenfunction of the operator H corresponding to the eigenvalue zero. For this
function we have

(1− ε)‖∇0ψ0‖2 + 〈V ψ0, ψ0〉 = −ε‖∇0ψ0‖2 < 0 (B.21)

for any ε > 0. This proves that condition (ii) of Definition 3.1 is fulfilled and completes the
proof of Theorem B.1. �

Appendix C. A sufficient condition for finiteness of the discrete spectrum

In this section we give a criterion for the finiteness of the number of negative eigenvalues,
which we used in the proofs of Theorem 5.1, Theorem 6.1 and Theorem 6.5. This criterion, in a
slightly different form, is due to G. Zhislin and is a part of the proof of the main result in [40].
For the convenience of the reader we give it here.

Lemma C.1. Let h = −∆ + V in L2(Rk), k ∈ N, where V satisfies (2.2). Assume there exist
constants β, ε, b > 0, such that

〈hψ, ψ〉 − ε〈|x|−βψ,ψ〉 ≥ 0 (C.1)

holds for any ψ ∈ H1(Rk) with suppψ ⊂ {x ∈ Rk, |x| ≥ b}. Then the following assertions hold.

(i) inf Sess(h) ≥ 0.
(ii) The operator h has at most a finite number of negative eigenvalues.

(iii) Zero is not an infinitely degenerate eigenvalue of h.

To prove Lemma C.1 we use the following

Lemma C.2. Assume that V satisfies (2.2). Let β > 0, ε > 0 and b̃ > b > 0. Then there exist
a constant C(ε, β) and a function χ1 ∈ C1(Rk), 0 ≤ χ1 ≤ 1, with

χ1(x) =

{
1, |x| ≤ b,
0, |x| ≥ b̃,

(C.2)

such that for all ψ ∈ H1(Rk) we have

〈hψ, ψ〉 ≥ 〈hψχ1, ψχ1〉 − C(ε, β)‖ψχ1‖2 + 〈hψχ2, ψχ2〉 − ε‖|x|−βψχ2‖2{b≤|x|≤b̃}, (C.3)

where χ2 =
√

1− χ2
1.

Proof of Lemma C.2. Let β, ε > 0 and b, b̃ > 0 with b̃ > b be fixed. Furthermore, let u : R+ →
[0, 1] be a C1-function, such that u(t) = 1, t ≤ b and u(t) = 0, t ≥ b̃. We assume that u is

strictly monotonically decreasing on (b, b̃). Let v =
√

1− u2. We choose u in such a way that

v′(t)(1− v2(t))−
1
2 → 0 as t→ b̃−. For x ∈ Rk let

χ1(x) = u(|x|), χ2(x) = v(|x|). (C.4)

Then we have

|∇χ1|2 + |∇χ2|2 =
|∇χ2|2

1− χ2
2

=
(v′(|x|))2

1− v2(|x|)
. (C.5)

Since v′(|x|)(1− v2(|x|))− 1
2 → 0 as |x| → b̃− and v(|x|) is close to one in a vicinity of |x| = b̃, we

can choose b′ so close to b̃ that

(v′(|x|))2

1− v2(|x|)
≤ εv2(|x|)|x|−β , b′ ≤ |x| ≤ b̃. (C.6)

This, together with (C.5) implies

|∇χ1|2 + |∇χ2|2 ≤ εχ2
2(x)|x|−β , b′ ≤ |x| ≤ b̃. (C.7)
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Now we estimate |∇χ1|2 + |∇χ2|2 for b ≤ |x| ≤ b′. Recall that u(t) > u(b′) > 0 for b < t < b′.
Hence, we get

(v′(|x|))2

1− v2(|x|)
≤ Cu2(|x|)|x|−β , b ≤ |x| ≤ b′ (C.8)

for some C > 0 which depends on b′ (which itself depends on ε and β). Due to the IMS formula
we have

〈hψ, ψ〉 = 〈hψχ1, ψχ1〉+ 〈hψχ2, ψχ2〉 −
ˆ (
|∇χ1|2 + |∇χ2|2

)
|ψ|2 dx. (C.9)

This, together with (C.7) and (C.8) completes the proof of Lemma C.2. �

Now we turn to the

Proof of Lemma C.1. We construct a finite-dimensional subspaceM ⊂ L2(Rk), such that 〈hψ, ψ〉 >
0 holds for any ψ ∈ H1(Rk), ψ 6= 0 which is orthogonal to M . Let ε, β, b > 0, such that (C.1)
is fulfilled. Let χ1 and χ2 be functions according to Lemma C.2. Then by assumption of the
lemma for any function ψ ∈ H1(Rk)

〈hψ, ψ〉 ≥ 〈hψχ1, ψχ1〉 − C(ε, β)‖ψχ1‖2 + 〈hψχ2, ψχ2〉 − ε‖|x|−βψχ2‖2{b≤|x|≤b̃}
≥ 〈hψχ1, ψχ1〉 − C(ε, β)‖ψχ1‖2,

(C.10)

because supp (χ2) ⊂ {x ∈ Rk : |x| ≥ b}. Thus, to prove statements (i)-(iii) it suffices to show
that

〈hψχ1, ψχ1〉 − C(ε, β)‖ψχ1‖2 ≥ 0 (C.11)

holds for any function ψ ∈ H1(Rk) with ψ ⊥ M (in L2(Rk)) for some finite-dimensional space
M ⊂ H1(Rk). By condition (2.2) we get

〈hψχ1, ψχ1〉 − C(ε, β)‖ψχ1‖2 ≥ (1− ε)‖∇ (ψχ1) ‖2 − C ′(ε, β)‖ψχ1‖2 (C.12)

for some C ′(ε, β) > 0. For l ∈ N let

Ml := {ϕ1χ1, . . . , ϕlχ1} , (C.13)

where {ϕ1, . . . , ϕl} is an orthonormal set of eigenfunctions corresponding to the l lowest eigenval-

ues of the Laplacian, acting on L2
(
{|x| ≤ b̃}

)
with Dirichlet boundary conditions. For ψ ⊥Ml

we have ψχ1 ⊥ ϕ1, . . . ϕl, which for sufficiently large l implies

‖∇(ψχ1)‖2 ≥ (1− ε)−1
C ′(ε, β)‖ψχ1‖2. (C.14)

Therefore, we conclude L[ψχ1] > 0. This proves statements (i)-(iii) of Lemma C.1. �
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