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Abstract. This paper investigates properties of complex-valued eigenvalue trajecto-

ries for the interior transmission problem parametrized by the index of refraction for

homogeneous media. Our theoretical analysis for the unit disk shows that the only

intersection points with the real axis, as well as the unique trajectorial limit points as

the refractive index tends to infinity, are Dirichlet eigenvalues of the Laplacian. Com-

plementing numerical experiments even give rise to an underlying one-to-one corre-

spondence between Dirichlet eigenvalues of the Laplacian and complex-valued interior

transmission eigenvalue trajectories. We also examine other scatterers than the disk

for which similar numerical observations can be made. We summarize our results in a

conjecture for general simply-connected scatterers.
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1. Introduction

While interior Dirichlet eigenvalues of the Laplacian (IDEs) are among the most

famous and long-understood eigenvalues in PDE history, the first appearance of interior

transmission eigenvalues (ITEs) reaches back to 1986, cf. [17], when Kirsch studied

denseness properties of the far field operator in the context of inverse scattering

problems. Accordingly, ITEs correspond to critical and scatterer-specific wave numbers

for which the feasibility of many shape-reconstructing sampling methods cannot be

ensured. Apart from its physical origins, the related eigenproblem (1) – the interior

transmission problem – has also attracted own interest from a functional analytical

perspective due to its non-linear and non-selfadjoint nature. ITEs therefore require, in

comparison with IDEs that are classified by a self-adjoint and linear operator, quite a

non-standard approach of mathematical investigation which is why they also exhibit
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surprising structural phenomena. One of those will be the focus of this article and

addresses a conjectured link between non-real ITEs and IDEs of the same scattering

object.

The importance of such a connection arises from the fact that only little is known

about complex-valued ITEs in general. One of the very first results in this direction

was the evidence of discreteness of the ITE spectrum for arbitrary scatterers D having

infinity as the only accumulation point, see [24, 8]. Further, it is known that for smooth

scatterers and smooth indexes of refraction n such that n > c > 1 all ITEs are located

in a horizontal strip around the real axis, see [25], and there is an ITE-free lemniscate

region centered at zero, see [6]. For the special case of a disk in 2D or a ball in 3D as

scatterer, existence of non-real ITEs was proven for spherically-stratified media in [21],

providing also a more detailed distribution analysis of ITEs, see [10], and first results

for the inverse spectral problem, see [9]. In particular, existence of non-real ITEs for

arbitrary scatterers D is still an open problem, although existence of infinitely many

real-valued ITEs could already be shown in [7], using the intermediate value theorem

to find roots of proper misfit functions which then coincide with ITEs by construction.

Luckily, there are many numerical algorithms available which indicate the existence of

non-real interior transmission eigenvalues for arbitrary scatterers, see for example [12,

Table 3], [18, Section 6.10], [11, Tables 4 and 5], [30, Section 5], [32, Section 5], [14,

Section 4], [15, Tables 1 and 2], [28, Section 4], [3, Table 5], [16, Tables 1 and 2], [31,

Tables 3 and 4], [22, Section 5], [26, Section 5], and [29, Section 5] to mention just a

few.

The current paper takes for the first time a dynamic approach to the

interior transmission problem and considers trajectories of complex-valued ITEs for

homogeneous media which are parametrized by the magnitude of the refractive index n.

Restricting toD as a disk first, our main results are that complex-valued ITE trajectories

can only intersect the real axis at IDEs as n varies. Conversely, we prove that for any

IDE there is n∗ ̸= 1 (in fact infinitely many) and a complex-valued ITE trajectory which

intersects that IDE as n → n∗. Our numerical results indicate that each trajectory

actually returns to the same IDE infinitely many times as 1 < n → ∞ and there are

no complex-valued ITE trajectories apart from IDEs. Hence, these findings suggest a

one-to-one correspondence between complex-valued ITEs and IDEs as 1 < n → ∞. We

can actually prove that those trajectories converge as a whole to the recurrent IDE as

1 < n → ∞. Regarding arbitrary scatterers D, our numerical results further show that

complex-valued ITE trajectories now keep away from the real axis for n > 1 and thus

fail to adopt the recurrent IDE behavior, but they still tend to spiral down towards a

unique IDE as n → ∞, giving again rise to an intrinsic link between complex-valued

ITEs and IDEs.

The rest of this paper is organized as follows: after a short introduction to the

interior transmission problem, Section 2 presents our theoretical results about complex

ITE trajectories for the unit disk. Section 3 provides complementing numerical results

for the unit disk as well as for other scatterers including an ellipse, a deformed ellipse,
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selected polygons and the unit ball in 3D. We conclude with a conjecture for simply-

connected scatterers on the observed relation between complex-valued ITEs and IDEs

followed by an outlook of future research in this direction.

2. Theory

The interior transmission problem in the acoustic regime reads

∆w + κ2nw = 0 in D ,

∆v + κ2v = 0 in D ,

v = w on ∂D ,

∂νv = ∂νw on ∂D ,

(1)

and is a system of Helmholtz equations coupled through the boundary data which

reflect continuous transmission conditions for time-harmonic waves. Here, D is a simply-

connected domain and n ∈ L∞(D) denotes the index of refraction that we assume to

be constant and positive throughout this work. We call a wave number κn ∈ C\{0}
for n ̸= 1 an ITE if there exist non-trivial vn, wn ∈ L2(D) solving (1) such that

(vn − wn) ∈ H2
0 (D). In this section we restrict to the unit disk D ⊂ R2 so that

ITP eigenfunction pairs are spanned by the Fourier Bessel functions

vn(r, φ) = Jp(κnr) cos(pφ) ,
(
vn(r, φ) = Jp(κnr) sin(pφ) , p ̸= 0

)
,

wn(r, φ) = αnJp(
√
nκnr) cos(pφ) ,

(
wn(r, φ) = αnJp(

√
nκnr) sin(pφ) , p ̸= 0

)
,

(2)

where p ∈ N0, αn ∈ C\{0} is a coefficient to match the ITP boundary conditions in (1)

and Jp solves

x2J ′′
p (x) + xJ ′

p(x) + (x2 − p2)Jp(x) = 0 . (3)

Hence, we see that ITEs κn are equivalently characterized as roots of

Fp(κ, n) := κ
(
J ′
p(κ)Jp(κ

√
n)−

√
nJp(κ)J

′
p(κ

√
n)
)
. (4)

To put ourselves into the framework of eigenvalue trajectories, recall from the implicit

function theorem that in a local open neighborhood of any n subject to ∂κFp(n, κ) ̸= 0

there is a unique continuously-differentiable mapping n 7→ κn (which we will also denote

by κn with derivative κ′
n) such that Fp(n, κ) = 0 if and only if κ = κn. For the rest of

this paper, a complex-valued ITE trajectory κn has to be understood as fulfilling κn ̸∈ R
for at least one n ∈ (nmin, nmax), where 0 < nmin < nmax ≤ ∞ are proper bounds for

the (possibly local) domain of definition. We start with a qualitative difference between

real- and non-real ITEs.

Lemma 1. Let κn be an ITE for some n ̸= 1 whose eigenfunction pair (vn, wn) is given

by (2) for some p ∈ N0. Then it holds that∫
D

|vn|2 − n|wn|2 dx =

{
(1−n)

2
Jp(κn)

2
∫ 2π

0
cos(pφ)2 dφ , for κn ∈ R ,

0 , else .
(5)
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Proof. Let (vn, wn) be as in (2) with cosine as angular part. If κn ̸∈ R, it follows by

Lemma 5 from [23, p. 43] that∫
D

|vn|2 − n|wn|2 dx = 0 .

In the other case, that is κn ∈ R, we obtain by using polar coordinates∫
D

v2n − nw2
n dx =

∫ 2π

0

cos(pφ)2 dφ

∫ 1

0

(
Jp(κnr)

2 − nα2
nJp(

√
nκnr)

2
)
r dr .

Next, we employ formula (5.14.5) from [20, p. 129] to evaluate∫ 1

0

Jp(κnr)
2r dr =

1

2

[
J ′
p(κn)

2 +

(
1− p

κ2
n

)
Jp(κn)

2

]
(6)

and similarly, including the ITP boundary conditions via α2
n > 0,

n

∫ 1

0

α2
nJp(

√
nκnr)

2r dr =
1

2

[
nα2

nJ
′
p(
√
nκn)

2 + n

(
1− p

nκ2
n

)
α2
nJp(

√
nκn)

2

]
=

1

2

[
J ′
p(κn)

2 +

(
n− p

κ2
n

)
Jp(κn)

2

]
.

(7)

Subtracting (7) from (6) yields∫
D

v2n − nw2
n dx =

(1− n)

2
Jp(κn)

2

∫ 2π

0

cos(pφ)2 dφ .

This completes the proof if cosine is the angular part of the eigenfunction pair. The

case of sine with p > 0 follows along the same lines, noting that∫ 2π

0

cos(pφ)2 dφ =

∫ 2π

0

sin(pφ)2 dφ = π .

Lemma 1 yields an immediate conclusion for the intersection points of complex-valued

ITE trajectories with the real axis.

Corollary 2. Let κn be a continuous ITE trajectory whose eigenfunction pair (vn, wn)

is given by (2) for some p ∈ N0. Let n ∈ (n∗ − ϵ, n∗ + ϵ), ϵ > 0 sufficiently small and

n∗ ̸= 1. If κn∗ ∈ R, but κn ∈ C\R for all n ∈ (n∗ − ϵ, n∗ + ϵ)\{n∗}, then κn∗ is an IDE

with Laplacian eigenfunction vn∗ (the same holds true for
√
n∗κn∗ and wn∗).

Proof. This follows by (5) and continuity of n 7→
∫
D
|vn|2 − n|wn|2 dx.

Next, we show that complex-valued ITE trajectories κn approach IDEs in specific

angles. At these points trajectories fail to be differentiable as indicated by the implicit

function theorem since they arise in complex-conjugated and thus intersecting pairs. In

particular, there is an ambiguity of ingoing and outgoing directions.
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Lemma 3. Let κn be a continuous ITE trajectory whose eigenfunction pair (vn, wn) is

given by (2) for some p ∈ N0. Let n ∈ (n∗ − ϵ, n∗ + ϵ), ϵ > 0 sufficiently small and

n∗ ̸= 1. If κn∗ is an IDE such that Jp(κn∗) = 0, then it holds that limn→n∗ |κ′
n| = ∞.

Further, limn↗n∗ arg(κ′
n) ∈ {±π/3, π} and limn↘n∗ arg(κ′

n) ∈ {±π/3, π} for n∗ > 1 and

limn↗n∗ arg(κ′
n) ∈ {0,±2π/3} and limn↘n∗ arg(κ′

n) ∈ {0,±2π/3} for 0 < n∗ < 1. In

particular, ingoing/outgoing angles at κn∗ which are integer multiples of π correspond

to real-valued trajectory parts, respectively.

Proof. By the implicit function theorem, κn is differentiable with

κ′
n = −

∂nFp(n, κ)|(n,κn)

∂κFp(n, κ)|(n,κn)

as long as

∂κFp(n, κ) = (n− 1)κJp(κ)Jp(
√
nκ) (8)

does not vanish for κ = κn. For this to happen, κn must be an IDE and in particular real-

valued. For the latter representation, we used the Bessel equation (3) to replace arising

second order derivatives of Jp. Similarly, incorporating additionally Fp(n, κn) = 0, we

obtain

∂nFp(n, κ)|(n,κn) =
(nκ2

n − p2)

2n
Jp(κn)Jp(

√
nκn) +

κ2
n

2
√
n
J ′
p(κn)J

′
p(
√
nκn) (9)

so that κ′
n becomes, exploiting again the ITP boundary conditions,

κ′
n = − (nκ2

n − p2)

2n(n− 1)κn

−
κnJ

′
p(κn)J

′
p(
√
nκn)

2
√
n(n− 1)Jp(κ)Jp(

√
nκ)

= − (nκ2
n − p2)

2n(n− 1)κn

−
κnJ

′
p(κn)

2

2n(n− 1)Jp(κn)2
.

(10)

In this form, we see that limn↗n∗ |κ′
n| = ∞ since Jp(κn∗) = 0 while J ′

p(κn∗) ̸= 0 which

follows from the classical fact that the roots of Jp and J ′
p are distinct.

In order to determine the ingoing/outgoing trajectory directions as n → n∗ but

circumvent the tangential blow-up behavior, we note that Jp(κ) = (κ−κn∗)h(κ), where

h(κn∗) = J ′
p(κn∗) ̸= 0. We can therefore rewrite (10) in a neighborhood of κn∗ as

[
(κn − κn∗)3

]′
= 3κ′

n(κn − κn∗)2 = − 3(nκ2
n − p2)

2n(n− 1)κn

(κn − κn∗)2 −
3κnJ

′
p(κn)

2

2n(n− 1)h(κn)2

and obtain by integration

(κn − κn∗)3 = −
∫ n

n∗

3(tκ2
t − p2)

2t(t− 1)κt

(κt − κn∗)2 +
3κtJ

′
p(κt)

2

2t(t− 1)h(κt)2
dt .

Since κn is continuous by assumption, n 7→ (κn − κn∗)3 ∈ C1((n∗ − ϵ, n∗ + ϵ)), so

lim
n→n∗

−
3κnJ

′
p(κn)

2

2n(n− 1)h(κn)2
= − 3κn∗

2n∗(n∗ − 1)
̸= 0
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yields that

lim
n→n∗

3 arg
(
(κn − κn∗)/(n− n∗)

)
= arg

(
[(κn − κn∗)3]′|n=n∗

)
= −π

for n∗ > 1 and

lim
n→n∗

3 arg
(
(κn − κn∗)/(n− n∗)

)
= arg

(
[(κn − κn∗)3]′|n=n∗

)
= 0

for 0 < n∗ < 1. Comparing with [(κn − κn∗)3]′ = 3(κn − κn∗)2κ′
n, we finally conclude

that limn↗n∗ arg(κ′
n) ∈ {±π/3, π} and limn↘n∗ arg(κ′

n) ∈ {±π/3, π} for n∗ > 1 and

limn↗n∗ arg(κ′
n) ∈ {0,±2π/3} and limn↘n∗ arg(κ′

n) ∈ {0,±2π/3} for 0 < n∗ < 1.

It remains to prove that the two angles which are integer multiples of π correspond

to real-valued trajectory parts, respectively. This follows, restricting to n ↗ n∗ for

the sake of presentation, if we can show that ℑ(κ′
n) ≷ 0 for all κn sufficiently close

to κn∗ such that ℑ(κn) ≷ 0 and further constrained by ℜ(κn − κn∗) > |ℑ(κn)| in

case of n∗ > n > 1 and ℜ(κn − κn∗) < −|ℑ(κn)| for 0 < n < n∗ < 1. These

complex-valued κn-regions excluding the real axis are by Corollary 2 indeed locally

non-restrictive for approaching κn∗ asymptotically tangential to the real axis, but imply

due to ℑ(κ′
n) ≷ 0 that limn↗n∗ ℑ(κn) ≷ 0 which then contradicts limn→n∗ κn ̸= κn∗ ∈ R.

The complementing case n ↘ n∗ can then be proven in a similar fashion, showing that

ITE trajectories κn cannot escape from the real axis tangentially. These results can be

seen as generalizations of the fact that poles of order 2 induce locally hyperbolic sectors

for autonomous holomorphic flows, see [5].

In order to verify that ℑ(κ′
n) ≷ 0 for n < n∗ sufficiently close and all ℑ(κn) ≷ 0

subject to the aforementioned constraints, we confine ourselves to ℑ(κn) > 0 since ITEs

occur in complex conjugated pairs. We define for fixed n the real-meromorphic function

dn(κ) := − (nκ2 − p2)

2n(n− 1)κ
− gp(κ)

2n(n− 1)(κ− κn∗)2

as a replacement for (10) and set

gp(κ) :=
κJ ′

p(κ)
2

h(κ)2
.

We show in the following that arg(dn(κ)) is dominated by

arg
(
− (n− 1)−1(κ− κn∗)−2

)
=

{
π − 2 arg(κ− κn∗) , if n > 1, ℜ(κ− κn∗) > ℑ(κ) > 0 ,

−2 arg(κ− κn∗) , if 0 < n < 1, ℜ(κ− κn∗) < −ℑ(κ) < 0

(11)

in a neighborhood of κn∗ which then yields our assertion since ℑ(−(n−1)−1(κ−κn∗)−2) >

0 for all κ under consideration. In order to make the argument rigorous, we observe that

gp(κn∗) = κn∗ > 0, and a straighforward yet lengthy calculation shows that g′p(κn∗) = 0

as well as

g′′p(κn∗) =
−8κ2

n∗ + 8p2 + 1

6κn∗
< 0 .
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The last inequality follows by standard lower bounds on the roots of Bessel functions, see

for instance [1, 4]. The second-order approximation of gp around κn∗ therefore reveals

for κ sufficiently close to κn∗ that

ℑ(gp(κ)) =

{
≤ 0 , if ℜ(κ− κn∗) > ℑ(κ) > 0 ,

≥ 0 , if ℜ(κ− κn∗) < −ℑ(κ) < 0 .

In the first case of the right-hand side above we can estimate for n∗ > n > 1

0 <
π

2
− θ < arg

(
− gp(κ)

2n(n− 1)(κ− κn∗)2

)
< arg

(
− (n− 1)−1(κ− κn∗)−2

)
< π ,

(12)

where we employed (11) and, for the lower bound, restrict additionally κ such that

−θ < arg(gp(κ)) ≤ 0 for any fixed 0 < θ < π/2. Note that θ can indeed be chosen

arbitrarily small in a neighborhood around κn∗ since arg(gp(κn∗)) = 0. In the other

case, that is ℜ(κ − κn∗) < −ℑ(κ) < 0 and κ sufficiently close to κn∗ correspondingly,

we obtain similarly for 0 < n < n∗ < 1

0 < arg
(
− (n− 1)−1(κ− κn∗)−2

)
< arg

(
− gp(κ)

2n(n− 1)(κ− κn∗)2

)
<

π

2
+ θ < π .

In both cases, we see that

ℑ
(
− gp(κ)

2n(n− 1)(κ− κn∗)2

)
> 0 (13)

and, to verify that ℑ(dn(κ)) is likewise positive, we are left to show that adding

−(nκ2 − p2)/(2n(n − 1)κ) to the left-hand side of (13) does not affect the sign. For

this we may confine to arg(κ−κn∗) close to 0 or π, respectively, since the sign of (13) is

in this range most sensitive to additive perturbations thanks to the definition of θ. We

first compute for 1 < n < n∗ and ℜ(κ− κn∗) > ℑ(κ) > 0

π < π + arg

(
(nκ2 − p2)

2n(n− 1)κ

)
< π + arg(nκ2 − p2) < π + arg(κ2 − p2)

< π + arg(κ2 − κ2
n∗) = π + arg

(
(κ− κn∗)(κ+ κn∗)

)
< π + 2arg(κ− κn∗) <

3π

2
.

(14)

Here, the first inequality from the bottom line holds since p < κn∗ as a root of Jp, see

again [1, 4]. Combining (12) and (14), we obtain for arg(κ− κn∗) > 0 small that

ℑ(dn(κ)) >
∣∣∣∣ (nκ2 − p2)

2n(n− 1)κ

∣∣∣∣ℑ (ei(π+2arg(κ−κn∗ ))
)

+

∣∣∣∣ gp(κ)

2n(n− 1)(κ− κn∗)2

∣∣∣∣ℑ (ei(π−2 arg(κ−κn∗ ))
)
.
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Since the first summand is bounded as κ → κn∗ while the second blows up, we can find

a neighborhood of κn∗ such that

ℑ(dn(κ)) >
(∣∣∣∣ gp(κ)

2n(n− 1)(κ− κn∗)2

∣∣∣∣− ∣∣∣∣ (nκ2 − p2)

2n(n− 1)κ

∣∣∣∣)ℑ
(
ei(π−2 arg(κ−κn∗ ))

)
> 0

which thus yields the assertion in the case n∗ > n > 1 and κ sufficiently close to κn∗

such that ℜ(κ − κn∗) > ℑ(κ) > 0. In the other case, that is ℜ(κ − κn∗) < −ℑ(κ) < 0

and 0 < n < n∗ < 1, we even have

ℑ
(
− (nκ2 − p2)

2n(n− 1)κ

)
> 0 (15)

as long as ℜ(nκ2) > p2 which is appropriate to assume since
√
n∗κn∗ > p as an

IDE according to Corollary 2 and [1, 4] again. In particular, (13) ensures that

also ℑ(dn(κ)) > 0 for 0 < n < n∗ < 1 and κ sufficiently close to κn∗ such that

ℜ(κ − κn∗) < −ℑ(κ) < 0. This finally completes the proof of limn↗n∗ arg(κ′
n) ̸∈ {0, π}

for ITE trajectories κn → κn∗ with non-trivial imaginary part.

Remark 4. According to Lemma 5, continuous ITE trajectories κn, which are locally

real-valued in n, can only escape from the real axis at selected IDEs κ∗. Theorem 5

below then guarantees that locally real-valued ITE trajecories admit natural extensions

across κ∗ which are globally real-valued. Likewise, one can argue that complex-valued

ITE trajectories can be extended to have continuous angle dependency when intersecting

the real axis. However, one could also consider continuous ITE trajectories with different

incident and outgoing directions at κ∗. As we will see in the numerical section when

comparing complex-valued ITE trajectories of an ellipse with major axis 1 and minor

axis 0.5 with those of the unit disk, they are indeed only similar to each other if one

restricts complex-valued ITE trajectories for the latter to persist in the same half plane

as n → ∞, cf. Figures 1 and 4.

The next theorem shows that the three admissible angles at IDEs κ∗ such that

Jp(κ
∗) = 0 do even occur simultaneously by three corresponding ITE trajectories. As a

byproduct, it also yields an alternative existence proof for non-real ITEs near IDEs and

corresponding refractive indices.

Theorem 5. Let κn be a continuous and complex-valued ITE trajectory whose

eigenfunction pair (vn, wn) is given by (2) for some p ∈ N0. Let n ∈ (n∗ − ϵ, n∗ + ϵ),

ϵ > 0 sufficiently small and n∗ ̸= 1. If κn∗ is an IDE such that Jp(κn∗) = 0, then there

exists a further ITE trajectory κ̃n for the same p ∈ N0 which is continuous and passes

κn∗ as n → n∗ along the real axis. Conversely, if κ∗ is an IDE such that Jp(κ
∗) = 0, then

there locally exists a complex-conjugated pair of complex-valued ITE trajectories κn, κn

as well as a real-valued ITE trajectory κ̃n all of which are continuous, assigned to the

same p ∈ N0 and fulfill limn→n∗ κn = limn→n∗ κ̃n = κ∗ for infinitely many 1 ̸= n∗ > 0.
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Proof. For the first assertion, recall from (8) that

∂κFp(n, κ) = (n− 1)κJp(κ)Jp(
√
nκ) , (16)

which vanishes at (n∗, κn∗) according to Corollary 2 with Jp(κn∗) = Jp(
√
nκn∗) = 0

and J ′
p(κn∗) ̸= 0 ̸= J ′

p(
√
nκn∗). Hence, the multiplicity of the root κ = κn∗ within

the holomorphic function κ 7→ Fp(n
∗, κ) is 3. By Hurwitz’ theorem we know that the

total number of zeros of κ 7→ Fp(n, κ), including multiplicity, remains 3 in a small

neighborhood of κ = κn∗ for all n sufficiently close to n∗. Since κn is complex-valued for

n ̸= n∗ by assumption and approaches κn∗ as n → n∗ in complex-conjugated pairs, their

combined number of roots is even. Hence, there must be some real-valued trajectory

κ̃n which also goes to κn∗ as n → n∗. Continuity of κ̃n in n∗ also follows by Hurwitz

theorem and elsewhere by the implicit function theorem.

Conversely, let κ∗ be an IDE such that Jp(κ
∗) = 0. Then we can find infinitely

many κ∗∗ ̸= κ∗ such that Jp(κ
∗∗) = 0 and set

n∗ := (κ∗∗/κ∗)2 ̸= 1 . (17)

By the same reasoning as above, the total number of roots of κ 7→ Fp(n
∗, κ) including

multiplicity remains 3 in a small neighborhood of κ∗ for n sufficiently close to n∗. Thus

there exists trajectories κn,1, κn,2, κn,3 for n ∈ (n∗ − ϵ, n∗ + ϵ) for some ϵ > 0 such that

κn∗,1 = κn∗,2 = κn∗,3 = κ∗. These are, in particular, continuous in n∗ and differentiable

apart of κ∗ according to the implicit function theorem. Since ∂nFp(n, κ)|(n∗,κ∗) ̸= 0 by

(9), the 3 trajectories move indeed away from the critical point κ∗. Furthermore, either

all 3 of them stay real-valued for n ̸= n∗ or two of them arise in complex-conjugated

pairs. It remains to prove that only the latter can be true: assume contrarily that

κn,1, κn,2, κn,3 are real-valued trajectories for n ∈ (n∗ − ϵ, n∗ + ϵ). By Rolle’s theorem in

case of κn,i ̸= κn,j for some 1 ≤ i, j ≤ 3 (let then κn,i < κn,j without loss of generality)

or by the product rule otherwise, there must be a critical point κn,i,j of the real-analytic

function κ 7→ Fp(n, κ) for n ∈ (n∗ − ϵ, n∗ + ϵ) such that

κn,i ≤ κn,i,j ≤ κn,j , (18)

in particular κn∗,i,j = κ∗. Since the roots of Jp are discrete, we get for ϵ sufficiently small

that

∂κFp(n, κn,i,j) = 0 ⇔ κn,i,j = κ∗ or κn,i,j =

√
n∗κ∗
√
n

according to (16). In both of the latter cases it holds that limn→n∗ |κ′
n,i,j| < ∞. This

contradicts (18) as n → n∗ since, by the previous lemma, we know that limn→n∗ κ′
n∗,i =

−∞ for all 1 ≤ i ≤ 3.

Remark 6. The numerical computation of ITEs which are also IDEs can become rather

inaccurate if accompanied by complex-valued ITE trajectories. The reason is that most

solution methods also boil down to finding roots of certain residual quanitities similar

to κ 7→ Fp(n
∗, κ) which admit in case of non-simple roots a flat, zero-like behavior in a

whole neighborhood of the exact root, see [23, p. 106] for example.
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We can also specify the geometric multiplicity of ITEs κn∗ for some 1 ̸= n∗ > 0 that

are roots of Jp. It is at least 3 for p = 0, 5 for p = 1 and 6 for p > 1 (note a

multiplicity of 1 for p = 0 and 2 for integer p > 1 would be a priori expected according

to (2)). The increase originates from additional ITE trajectories κ̃n with Bessel index

p̃ ∈ {p−1, p+1} which passes the IDE as n → n∗ along the real axis. The latter follows

by (5) and Jp̃(κn∗) ̸= 0, cf. Bourget’s hypothesis in [27, p. 484].

Lemma 7. Let κn∗ be an ITE for some 1 ̸= n∗ > 0 such that Jp(κ
∗) = 0. Then

vq(r, φ) = Jq(κn∗r) cos(qφ) ,
(
vq(r, φ) = Jq(κn∗r) sin(qφ) , q ̸= 0

)
,

wq(r, φ) = αn

√
n∗Jq(

√
nκn∗r) cos(qφ) ,

(
wq(r, φ) = αn

√
n∗Jq(

√
nκn∗r) sin(qφ) , q ̸= 0

)
,

with q ∈ {p − 1, p + 1} for p > 0 and q = 1 for p = 0, are linear independent ITP

eigenfunction pairs for the ITE κn∗.

Proof. By Theorem 5 there exists a continuous ITE trajectory κn in a neighborhood of

n∗ which is differentiable for n ̸= n∗. Consider the limit quotients

ṽq(r, φ) := lim
n↗n∗

Jp(κnr)− Jp(κn∗r)

κn − κn∗
cos(qφ) = J ′

p(rκn∗)r cos(qφ) ,

w̃q(r, φ) := lim
n↗n∗

αnJp(
√
nκnr)− αn∗Jp(

√
n∗κn∗r)

κn − κn∗
cos(qφ)

= αn∗J ′
p(r

√
n∗κn∗)r

√
n∗ cos(qφ)

+ lim
n↗n∗

(
αnJ

′
p(r

√
nκn)r

κn

2
√
nκ′

n

+
α′
n

κ′
n

Jp(r
√
nκn)

)
cos(qφ) ,

whose right-hand sides are obtained by l’Hospital’s rule. Here, α′
n denotes the derivative

of

αn =
J ′
p(κn)√

nJ ′
p(
√
nκn)

. (19)

This representation is indeed well-defined in a neighborhood of n∗ since the roots of Jp
and J ′

p are distinct and Jp(κn∗) = 0 by assumption. We thus obtain

α′
n =

J ′′
p (κn)κ

′
n

√
nJ ′

p(
√
nκn)− J ′

p(κn)
[

1
2
√
n
J ′
p(
√
nκn) +

√
nJ ′′

p (
√
nκn)

(
κn

2
√
n
+
√
nκ′

n

)]
nJ ′

p(
√
nκn)2

= (n− 1)J ′
p(κn)Jp(

√
nκn)κ

′
n ,

where we replaced the second-order derivatives of Jp above via (3). It follows from

limn→n∗ |κ′
n| = ∞ by Lemma 3 that

lim
n↗n∗

αnJ
′
p(r

√
nκn)r

κn

2
√
nκ′

n

+
α′
n

κ′
n

Jp(r
√
nκn) = 0
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within the definition of w̃q(r, φ). Thus, we have that both the Dirichlet data of ṽq and

w̃q coincide as well as their Neumann data. The same also holds for

v̂q(r, φ) :=
2p

rκn∗
Jp(rκn∗) cos(qφ) ,

ŵq(r, φ) := αn∗
√
n∗ 2p

r
√
n∗κn∗

Jp(r
√
n∗κn∗) cos(qφ) .

However, neither (ṽq, w̃q) nor (v̂q, ŵq) satisfy the PDE conditions of (1). Instead, adding

or subtracting the recurrence relations

2J ′
p(x) = Jp−1(x)− Jp+1(x) and

2p

x
Jp(x) = Jp−1(x) + Jp+1(x) .

from each other, respectively, we find that

vp+1(r, φ) :=
v̂p+1(r, φ)− ṽp+1(r, φ)

2
= Jp+1(κn∗r) cos((p+ 1)φ) ,

wp+1(r, φ) :=
ŵp+1(r, φ)− w̃p+1(r, φ)

2
= αn∗

√
n∗Jp+1(

√
n∗κn∗r) cos((p+ 1)φ)

and

vp−1(r, φ) :=
v̂p−1(r, φ) + ṽp−1(r, φ)

2
= Jp−1(κn∗r) cos((p− 1)φ) ,

wp−1(r, φ) :=
ŵp−1(r, φ) + w̃p−1(r, φ)

2
= αn∗

√
n∗Jp−1(

√
n∗κn∗r) cos((p− 1)φ)

are linear independent ITP eigenfunction pairs for the ITE κn∗ as long as p ̸= 0. If

p = 0, we effectively generate only one additional ITE eigenfunction pair in this way

since J−1(x) = −J1(x) for all x. We can still repeat the proof with sine in place of cosine

as angular part, provided q ̸= 0 and which therefore only affects the case p = 1.

We finally prove a result for the limiting behavior of complex-valued trajectories as

n → ∞.

Theorem 8. Let κn be a continuous ITE trajectory whose eigenfunction pair (vn, wn)

is given by (2) for some p ∈ N0. Assume that κn = κ∗ for infinitely many n > 1, where

Jp(κ
∗) = 0, and y− ≤ ℜ(κn) ≤ y+ as well as −C ≤ ℑ(κn) ≤ C for all n > 1. Here,

C > 0 and y− < y+ are two κ∗-interlacing values that are larger/smaller than the next

nearest root of Jp, respectively. Then it holds that limn→∞ κn = κ∗.

Proof. Assume contrarily that there is a sequence nk → ∞ such that either (note that

complex-valued ITE trajectories arise in conjugated pairs)

ℑ(κnk
) > c > 0

or that

|ℜ(κnk
)− κ∗| > c > 0
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for all k ∈ N and some c > 0. We only present a contradiction to the first inequality

under the given assumptions since the second follows by a similar reasoning. Without

loss of generality we can even assume, without relabeling, that the k are chosen such

that nk are local maxima of n 7→ ℑ(κn). Since κn is differentiable at nk by the implicit

function theorem, we conclude that

κ′
nk

∈ R (20)

for all k ∈ N. Comparing with the expression of κ′
n in (10), however, we see with

ℑ(κnk
) > c and the boundedness of κn by assumption that

ℑ
(

nkκ
2
nk

− p2

2nk(nk − 1)κnk

)
> ℑ

(
κnk

J ′
p(κnk

)2

2nk(nk − 1)Jp(κnk
)2

)
for k sufficiently large due to the different powers of nk involved on both sides of the

inequality. This yields ℑ(κ′
nk
) ̸= 0 for corresponding k which is a contradiction to

(20).

Remark 9. All our findings for the unit disk directly extend to the unit ball in 3D. This

follows from the fact that the Fourier Bessel ansatz (2) in 2D just needs to be replaced

by

vn(r, φ, θ) = jp(κnr) cos(pφ)P
ℓ
p(cos(θ)) ,(

vn(r, φ, θ) = jp(κnr) sin(pφ)P
ℓ
p(cos(θ)) , p ̸= 0

)
and

wn(r, φ, θ) = αnjp(
√
nκnr) cos(pφ)P

ℓ
p(cos(θ)) ,(

wn(r, φ, θ) = αnjp(
√
nκnr) sin(pφ)P

ℓ
p(cos(θ)) , p ̸= 0

)
,

where p ∈ N0 and ℓ ∈ {−p, . . . , p}. Here, P ℓ
p is the associated Legendre polynomial and

jp(x) =
√

π
2x
Jp+ 1

2
(x) is the spherical Bessel function of the first kind of order p satisfying

the second-order ordinary differential equation

x2j′′p (x) + 2xj′p(x) +
(
x2 − p(p+ 1)

)
= 0 .

The latter is structurally similar to (3) so that corresponding proofs of this section only

require minor adaptions. Finally, (4) also becomes

fp(κ, n) := κj′p(κ)jp(κ
√
n)− κ

√
njp(κ)j

′
p(κ

√
n) . (21)

3. Numerical Results

In this section, we present numerical results for some standard scattering shapes to

visualize our theoretical findings, but to also illustrate further interesting phenomena.

The underlying Matlab program can be downloaded from:

https://github.com/kleefeld80/ITEtrajectory.
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Figure 1. The first three complex-conjugated pairs of complex-valued ITE trajectories

for the unit disk and p ∈ {0, 1, 2} without counting multiplicity, respectively, using

n ∈ (1, 16].

3.1. The unit disk for n > 1

The first complex-valued roots κn of the function Fp from (4) (ordered by real parts) are

computed for p ∈ {0, 1, 2} and sufficiently many n ∈ (1, 16] via Beyn’s second integral

algorithm, see [2, p. 3860]. Using interpolation with respect to n to obtain smooth

curves, Figure 1 shows the resulting output where the color bar refers to the varying

index of refraction n > 1.

As we observe, the trajectories come in complex-conjugated pairs and arise at

certain points satisfying Im(κn) ̸= 0 for n close to one. For increasing n they reapproach

the first three IDEs of the unit disk which are marked by blue asterisks in Figure 1 and

are approximately given by 2.4048, 3.8317, and 5.1356, respectively, see [1]. For instance,

the first complex-conjugated trajectories pair corresponds to p = 0 and passes through

2.4048 for the first time at n ≈ 5.2689 and then for n ≈ 12.9491. These n coincide,

in agreement with (17), with the squared ratio of successive larger roots than 2.4048

of J0 and 2.4048 itself, respectively. In particular, the ambiguity of (17) is reflected by

recurrence of the complex-valued ITE trajectories towards the same IDE. Also note that

incident and outgoing angles at IDEs are restricted to ±π/3 as predicted by Lemma 3

which is highlighted additionally in the figure by green lines. Further, the trajectory

pair tends to converge as a whole towards 2.4048 for growing n, cf. Theorem 8. The
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other two complex-conjugated trajectory pairs in Figure 1 corresponding to p = 1 and

p = 2 behave likewise and are not discussed in further detail.

Most notably, we could not find any other ITE trajectories than the IDE-recurrent

ones in the complex plane. Also, within our numerical experiments every IDE has been

linked to exactly one complex-conjugated pair of recurrent and apparently convergent

trajectories. These observations have also been made for larger Bessel indices p > 2 or

larger IDEs. Also note that, since we restrict to (4) which ignores the angular parts of

ITP and thus also of IDE eigenfunctions, the unique link has to be understood including

eigenvalue multiplicity, cf. (2). Hence, there seems to be a one-to-one correspondence

between IDEs including multiplicity and complex-valued ITE trajectories.
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Figure 2. The first complex-conjugated pair of complex-valued ITE trajectories for

the unit disk and p = 0 from Figure 1 extended to n ∈ (0, 16] (color bar refers to n < 1

only).

3.2. The unit disk for 0 < n < 1

In Figure 2, we plot for p = 0 and the first complex-conjugated pair of complex-valued

ITE trajectories of the unit disk from the previous subsection the trajectory continuation

in 0 < n < 1. We observe that it connects continuously through n = 1 – for which the

ITP is formally not defined – to n > 1 (shown here in black for n ∈ (1, 16] and copied

from Figure 1). As before, we used Beyn’s second integral algorithm to generate the

trajectories.
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We directly notice that the eigenvalue tajectories for 0 < n < 1 behave different

from the ones for n > 1. Indeed, for 0 < n < 1 the trajectories are not recurrent any

more but escape to infinity as n → 0, crossing the real axis at successive IDEs instead.

For instance, the second IDE 5.5201 is hit for n ≈ 0.1898 and the third IDE 8.6537

for n ≈ 0.0772 which can again be verified by evaluating (17) correspondingly. Also

note that ingoing and outgoing directions at IDEs are now given by ±2π/3, cf. Lemma

3. Since κn = κ1/n/
√
n for any n > 1 by symmetry of the ITP, it suffices to confine

ourselves to the case n > 1 in the sequel.
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Figure 3. The first three complex-conjugated pairs of complex-valued ITE trajectories

for the unit ball and p ∈ {0, 1, 2} without counting multiplicity, respectively, using

n ∈ (1, 16].

3.3. The unit ball for n > 1

In Figure 3, we provide a 3D example with the first three complex-conjugated pairs

of complex-valued ITE curves for the unit ball using n ∈ (1, 16] and p ∈ {0, 1, 2}, cf.
Remark 9. For this purpose, we need to compute the complex-valued roots of (21)

instead of (4) and can then proceed as in Figure 1.

We recognize a similar behavior as for the unit disk. Specifically for p = 0, which is

the case of spherically symmetric ITP eigenfunctions, Colton & Leung already pointed

out in [9] that ITEs can only be real-valued for n = q2 or n = 1/q2, where q ∈ N. From
our perspective of ITE trajectories, this implies that there are simultaneous intersections
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with infinitely many IDEs for the same n. This can be seen from j0(κ) = sin(κ)/κ

which has equidistant roots (and thus IDEs) at κ∗ ∈ Nπ. Comparing with (17) yields

n∗ = (qmπ)2/(mπ)2 = q2 for any m ∈ N, that is, complex-valued ITE trajectories

intersect κ∗ = mπ for all m ∈ N simultaneously whenever n = q2, q ∈ N. Such a

simultaneous recurrence has not been observed for the unit disk. Note here that roots

of J0 as well as of higher order Bessel functions are only asymptotically equidistant, see

[1, 4].
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Figure 4. The first two complex-conjugated pairs of complex-valued ITE trajectories

for the ellipse with semi-axis 1 and 0.5 using n ∈ [4, 32].

3.4. The ellipse for n > 1

Next, we consider an ellipse with semi-axis 1 and b = 0.5 which can be regarded as

a small perturbation of the unit disk. Since a separation of variable ansatz does not

simplify to a decoupled analytical expression as in (4), we employ the modified method

of fundamental solution (modified MFS) to compute approximate ITEs, see [19, Section

3.2] for more details on this algorithm. In its original notation, we placed mI = 10

nodes on a circle with radius 0.8· b inside the ellipse, m = 40 collocation points along

the ellipse’s boundary and m = 40 source points on an exterior circle with radius 4.

When refering to the modified MFS in the remainder of this section, we assume that

all the auxiliary circles have the same center as the scattering object itself. Further,
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since ITEs are computed within the modified MFS as minimizers of some boundary

collocation misfit function, we always take the computed ITE from the previous n as

initial guess when incrementing n. Thus we are only left to set one independent initial

guess for the complex-valued ITE at the minimal n of interest which we will fix as n = 4.

For the ellipse with semi-axis 1 and b = 0.5, we picked 4± i and 5± i as independent

initial guesses to compute the first two complex-conjugated pairs of complex-valued ITE

trajectories, respectively. The resulting curves for n ∈ [4, 32] are shown in Figure 4.

Unlike for the disk or the ball, however, the ITE trajectories are not recurrent with

respect to IDEs any more, which were computed approximately as 3.777 and 5.010

according to the formula given in [13, pp. 9]. Instead, they tend to spiral down towards

a unique IDE without touching the real axis at all. We therefore still observe a one-

to-one correspondence between IDEs and complex-valued ITE trajectories which is now

more generally governed by the limiting behavior of the latter as n → ∞.
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Figure 5. The first two complex-conjugated pairs of complex-valued ITE trajectories

for the unit square using n ∈ [4, 32] and n ∈ [4, 20], respectively.

3.5. The unit square for n > 1

In order to also include more disk-unrelated scatterers into our scope of investigation, we

turn our attention now to the unit square as an example with a non-smooth boundary.

Here, the modified MFS has been exploited with mI = 20 nodes on an interior circle
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with radius 0.25, m = 61 collocation points along the boundary of the square apart

from its corners (as the outer normal ν would not be defined otherwise) and m = 61

source points on an exterior circle with radius 0.75. The first two complex-conjugated

pairs of complex-valued ITE trajectories are displayed in Figure 5, taking 4.5 ± i and

7± i as independent initial guesses at n = 4, respectively.

In contrast to the ellipse, the two trajectory pairs are now plotted with respect

to different yet overlapping parameter domains of n which is [4, 32] for the first and

[4, 20] for the second. The reason is that the modified MFS generally suffers from ill-

conditioning effects for large wave numbers. In particular, neither κn in vn nor
√
nκn

in wn can be too large within (2), so that especially the latter restricts the admissible

choices of n. In our plot both resulting trajectory pairs show again a spiral pattern

which approach for growing n the separated blue asterisks on the real axis, respectively.

They are given by
√
2π ≈ 4.4429 and

√
5π ≈ 7.0248 according to the first two IDEs of

the unit square in [13, pp. 6]. We still observe a one-to-one correspondence between

IDEs and complex-conjugated pairs of complex-valued ITE trajectories similar to the

ellipse.
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Figure 6. The first two complex-conjugated pairs of complex-valued ITE trajectories

for the equilateral triangle with side length one using n ∈ [4, 32] and n ∈ [4, 16],

respectively.
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3.6. The equilateral triangle for n > 1

We also consider an equilateral triangle with side length one for which the first two

IDEs are given by 4π/
√
3 ≈ 7.255 and 4π

√
7/3 ≈ 11.082, see [13, pp. 10–11]). Using

the same parameters within the modified MFS as for the unit square but changing

m = 61 to m = 51 for the first trajecory pair yields the two complex-conjugated pairs

of complex-valued ITE trajectories shown in Figure 6. The domain of n was n ∈ [4, 32]

for the first pair and n ∈ [4, 16] for the second. As independent initial ITE guesses at

n = 4 we took 7.3± 1.5i and 11± 2i, respectively. Altogether, we again observe a one-

to-one correspondence between IDEs and complex-conjugated pairs of complex-valued

ITE trajectories which tend to approach each other as n gets larger.

3.7. The deformed ellipse

At last, we present an example of a non-convex scatterer which is parametrized for

t ∈ [0, 2π) by

t 7→

(
0.75 cos(t) + 0.3 cos(2t)

sin(t)

)
. (22)

Its exact shape is illustrated in Figure 8. In this case, we employ the modified MFS

Figure 7. The deformed ellipse parametrized by (22)

both for computing the first two IDEs of the deformed ellipse and for generating the

first two pairs of complex conjugated ITE trajectories. Specifically, we distributed

mI = 20 nodes on an interior circle with radius 0.2, m = 51 collocation points along the

boundary of the scatterer and m = 51 source points on an exterior circle with radius

1.5. The independent initial guesses were chosen as 3± 0.8i and 4 + 0.8i for which the

corresponding output is shown in Figure 8 within the ranges n ∈ [4, 32] and n ∈ [4, 20],

respectively. We feel at this point like we have checked enough samples of scatterers all

of which admit the same characteristics for IDEs and complex-valued ITE trajectories

to finally formulate a more general conjecture below.

Conclusion

We have shown that complex-valued eigenvalue trajectories for the interior transmission

problem of the unit disk parametrized by the homogeneous index of refraction intersect
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Figure 8. The first two complex-conjugated pairs of complex-valued ITE trajectories

for the deformed ellipse from (22) using n ∈ [4, 32] and n ∈ [4, 20], respectively.

the real axis only at interior Dirichlet eigenvalues of the negative Laplacian. The

intersections occur at specific angles distinguishing the cases 0 < n < 1 and n >

1. Further, it is shown that IDE-recurrent complex-valued ITE curves are actually

convergent as n → ∞. Numerical results are given for an ellipse, a deformed ellipse,

a unit square, and an equilateral triangle which show a similar spiral behavior towards

IDEs as n grows. In addition, results are given for a unit sphere for which our provided

theory works the same way as for the unit disk. We conclude that there seems to be a

one-to-one correspondence between Dirichlet eigenvalues of the Laplacian and complex-

valued interior transmission eigenvalue trajectories. We state this finding in a conjecture

as follows:

Conjecture 1. There is a one-to-one correspondence between complex-valued ITE

trajectories and IDEs for simply-connected scatterers. More precisely, any complex-

valued ITE trajectory κn converges to some IDE as n → ∞. Converselely, for any

IDE (including multiplicity) there exists exactly one complex-conjugated pair of complex-

valued ITE trajectories which converges to that IDE as n → ∞.

Its further investigation will be subject of future research. From the numerical

point of view, we have seen that the modified method of fundamental solution produces

inaccurate results for large wave numbers and in particular for large n. Hence, we

will investigate on how to circumvent this problem probably through the use of the
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computationally more demanding boundary element collocation method. Finally, the

electromagnetic or elastic interior transmission problem will be investigated as well as

a potential generalisation of the current results to inhomogeneous media.
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