KIT | KIT-Bibliothek | Impressum | Datenschutz

Analyzing Social Media for Measuring Public Attitudes towards Controversies and their Driving Factors - A Case Study of Migration

Chen, Yiyi 1; Sack, Harald 1; Alam, Mehwish 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Among other ways of expressing opinions on media such as blogs, and forums, social media (such as Twitter) has become one of the most widely used channels by populations for expressing their opinions. With an increasing interest in the topic of migration in Europe, it is important to process and analyze these opinions. To this end, this study aims at measuring the public attitudes toward migration in terms of sentiments and hate speech from a large number of tweets crawled on the decisive topic of migration. This study introduces a knowledge base (KB) of anonymized migration-related annotated tweets termed as MigrationsKB (MGKB). The tweets from 2013 to July 2021 in the European countries that are hosts of immigrants are collected, pre-processed, and filtered using advanced topic modeling techniques. BERT-based entity linking and sentiment analysis, complemented by attention-based hate speech detection, are performed to annotate the curated tweets. Moreover, external databases are used to identify the potential social and economic factors causing negative public attitudes toward migration. The analysis aligns with the hypothesis that the countries with more migrants have fewer negative and hateful tweets. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000150536
Veröffentlicht am 12.09.2022
Originalveröffentlichung
DOI: 10.1007/s13278-022-00915-7
Scopus
Zitationen: 3
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1869-5450, 1869-5469
KITopen-ID: 1000150536
Erschienen in Social network analysis and mining
Verlag Springer
Band 12
Seiten Art.-Nr.: 135
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page