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Direct detection experiments are the only way to obtain indisputable evidence of the existence of dark 
matter (DM) in the form of a particle. These experiments have been used to probe many extensions 
of the Standard Model (SM) that provide DM candidates. Experimental results like the latest ones from 
XENON1T lead to severe constraints in the parameter space of many of the proposed models. In a simple 
extension of the SM, the addition of a complex singlet to the SM content, one-loop corrections need 
to be taken into account because the tree-level cross section is proportional to the DM velocity, and 
therefore negligible. In this work we study the case of a DM particle with origin in a singlet but in a 
larger framework of an extension by an extra doublet together with the extra singlet providing the DM 
candidate. We show that in the region of interest of the present and future direct detection experiments, 
electroweak corrections are quite stable with a K -factor very close to one.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The only way to unmistakably identify a dark matter (DM) particle is in direct detection experiments. In the mass region of the so-
called Weekly Interacting Massive Particles (WIMPs) the latest and most restrictive constraints were obtained by the PandaX-4T [1] and by 
the XENON1T collaboration [2,3] (we will include both bounds in our plots). In this type of experiments, when DM interacts with Xenon 
it creates light and electric charge and these signals provide information about the energy and location of the initial collision. Since direct 
detection experiments play the major role in probing the WIMP region it is important to understand in great detail the DM-nucleon cross 
sections in the different models. There is a particularly interesting case, the one of the extension of the SM by a complex singlet that 
leads to a tree-level DM-nucleon cross section proportional to the DM velocity and therefore to a negligible rate [4]. The calculation of 
the electroweak corrections to DM-nucleon scattering in this model was performed in [5–7] and shown to be several orders of magnitude 
above the tree-level result.

In previous works we have also calculated the electroweak corrections [8,9] in a vector DM model [10]. In this case the tree-level cross 
section is not negligible and electroweak corrections, in the region not excluded by XENON1T/PandaX-4T, are quite stable with a K -factor 
close to 1 (K = σNLO/σLO - the ratio of the next-to-leading order to the leading order cross section). In this letter we discuss a scenario 
where the DM candidate originates from a singlet but now within the larger framework of the Dark Singlet Phase (DSP) [11,12] of the next 
to 2-Higgs Doublet Model (N2HDM). The first point to note is that in this case there is no tree-level cancellation. Hence, the leading order 
cross section is not negligible. The main question we would like to answer is if the corrections are still stable and not too large when the 
parameter space of the visible sector is enlarged which is the case of the DSP of the N2HDM. The DM candidate is singlet-like but the 
visible sector is now a Z2 symmetric 2HDM, with a new set of parameters and extra contributions to the electroweak corrections. As we 
have discussed in great detail all the steps of the calculations in our previous works [7–9] and also because there are no major changes 
in the methodology we will whenever possible refer the reader to those works and will just focus on the differences for the model under 
study.
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The outline of the letter is as follows. In section 2, we will introduce the DSP of the N2HDM together with our notation. Section 3
contains a brief description of the renormalization procedure used in this work. In section 4 we calculate the electroweak corrections 
to the spin-independent direct detection cross section. In section 5, the results are presented and discussed. Finally, we present our 
conclusions in section 6.

2. The dark singlet phase of the N2HDM

The model considered in this work is the DSP of the N2HDM [13–15]. The Higgs sector of the SM is extended by one complex SU (2)L

doublet with hypercharge +1, and one real SU (2)L singlet with hypercharge 0. We focus on a particular phase of the four possible dark 
phases of the N2HDM, the DSP, where the singlet field has a vanishing vacuum expectation value (VEV) and does not couple to the SM 
fields, making it a DM candidate. A detailed discussion of the different dark matter phases of the N2HDM can be found in [11,16]. The 
Yukawa version of the model is type I meaning that all quarks and leptons couple to only one of the doublets. The Higgs potential is 
simplified by requiring invariance under the two Z2 symmetries,

Z(1)
2 : �1 → −�1, �2 → �2, �S → �S , (1)

Z(2)
2 : �1 → �1, �2 → �2, �S → −�S , (2)

which allows us to write the most general CP-conserving and renormalizable scalar potential invariant under these Z2 symmetries as

V scalar = m2
11�

†
1�1 + m2

22�
†
2�2 + λ1

2

(
�
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)2 + λ2
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2
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with three real mass dimension parameters m2
11, m

2
22, m

2
s and eight real dimensionless parameters λ1 · · ·λ8. The symmetry Z(1)

2 is sponta-

neously broken by the doublet VEV. In the DSP, both doublets acquire VEVs but the singlet VEV vanishes which leaves the symmetry Z(2)
2

unbroken. After electroweak symmetry breaking (EWSB) the doublet and singlet fields can be parametrized in terms of the VEVs v1 and 
v2, and component fields as

�1 =
(

φ+
1

1√
2
(v1 + ρ1 + iη1)

)
, �2 =

(
φ+

2
1√
2
(v2 + ρ2 + iη2)

)
, �s = ρs , (4)

where φ+
1 , φ+

2 are complex charged fields, ρ1, ρ2, ρs η1 and η2 are neutral fields. After EWSB, the CP-even fields ρ1 and ρ2 mix and give 
rise to the CP-even mass eigenstates h1 and h2 defined such that mh1 ≤ mh2 , and either h1 or h2 can be identified with the 125 GeV SM 
Higgs boson. Similarly η1 and η2 mix to give a pseudoscalar mass eigenstate A and the neutral Goldstone boson G0. Finally, φ+

1 , φ+
2 mix 

to give a charged Higgs H+ and the charged Goldstone boson G+ . The singlet field ρs does not mix with any of the doublet fields, nor 
does it couple to any SM particles. Moreover, the unbroken Z(2)

2 symmetry gives rise to a dark parity, such that ρs ≡ χ with mass mχ

emerges as a DM candidate in the model.
The mass eigenstates can be expressed in terms of the gauge eigenstates via rotation matrices as follows,⎛

⎝h1
h2
χ

⎞
⎠ = Rα

⎛
⎝ρ1

ρ2
ρs

⎞
⎠ ,

(
G0

A

)
= Uβ

(
η1
η2

)
,

(
G±
H±

)
= Uβ

(
φ±

1
φ±

2

)
, (5)

where the rotation matrices are parametrized as1

Rα =
⎛
⎝ cosα sinα 0

− sinα cosα 0
0 0 1

⎞
⎠ , Uβ =

(
cosβ sinβ

− sinβ cosβ

)
. (6)

The VEVs of the two doublets are related to the SM VEV (v ≈ 246.22 GeV) as

v1 = v cosβ , v2 = v sinβ , (7)

with v = 2mW /g , where mW is the mass of the W ± boson.
Further details on the minimization conditions can be found in [11,12]. The final set of independent input parameters chosen is

v ,α , tan β ,mχ ,mh1 ,mh2 ,mA ,mH± , λ6 , λ7 , λ8 . (8)

1 Note the different parametrization of Rα compared to [11,12].
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3. Renormalization of the model

In the following, we present the renormalization of the N2HDM DSP in order to calculate the electroweak (EW) corrections to the scat-
tering process of the scalar DM particle χ with a nucleon. We follow the prescription presented in [17] by adapting the renormalization 
of the unbroken phase of the N2HDM to our scenario. This is done by taking the limit vs = α2 = α3 = 0 and by additionally renormalizing 
the parameters λ7 and λ8, which are the ones that enter our calculation.

The bare input parameters p0 defined in Eq. (8) are expressed in terms of the renormalized parameters p and their respective coun-
terterms δp as

p0 = p + δp , (9)

whereas bare fields φ0 are expressed in terms of the renormalized fields φ and the wave-function renormalization factors (WFRs) Zφ as

φ0 = √
Zφφ (10)

where Zφ is a matrix in case the fields mix at one-loop. The renormalization conditions define the finite parts of the counterterms. 
In this work, we will use the on-shell (OS) renormalization scheme to fix the renormalization constants for the masses and fields. The 
tadpoles are treated in the Fleischer and Jegerlehner (FJ) [18] scheme. A detailed description of the scheme and its consequences for gauge 
independence can be found in [17,19–21]. In the following sections we just present a brief description of the renormalization of the model 
sector by sector, giving the expressions required for the renormalization of the direct detection process χ p → χ p.

3.1. Scalar sector

In the DSP of the N2HDM, after EWSB there are four neutral scalars (two CP-even, one CP-odd and the DM candidate χ ) and one 
charged Higgs pair. The OS conditions for the physical Higgs states result in the following mass counterterms,

δm2
hi

=Re[�tad
hihi

(m2
hi

)] , i ∈ {1,2}, δm2
χ = Re[�tad

χχ (m2
χ )] ,

δm2
A =Re[�tad

A A(m2
A)] , δm2

H± = Re[�tad
H± H±(m2

H±)] , (11)

where �tad(p2) are the self-energies containing all tadpole topologies. Since the tadpoles are absorbed into the self-energies, explicit 
tadpole counterterms do not appear in the mass counterterms [17]. The fields are renormalized in terms of the WFR constants δZφiφ j as

(
φi
φ j

)
→

⎛
⎝1 + 1

2 δZφiφi
1
2 δZφiφ j

1
2δZφ jφi 1 + 1

2 δZφ jφ j

⎞
⎠(

φi
φ j

)
, (12)

where {φi, φ j} = {h1, h2}, {G, A} or {G±, H±}. We will just show explicitly the 2×2 WFR matrices δZφi ,φ j for the case {hi, h j} which reads

(
δZh1h1 δZh1h2

δZh2h1 δZh1h1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−Re
∂�tad

h1h1
(p2)

∂ p2

∣∣∣∣
p2=m2

h1

2
Re

[
�tad

h1h2
(m2

h2
)
]

m2
h1

−m2
h2

2
Re

[
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h2h1
(m2

h1
)
]

m2
h2

−m2
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−Re
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h2h2
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p2=m2
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,

and the other two cases are obtained by replacing {h1, h2} by {G, A} and {G±, H±}.
Finally the field strength renormalization for the DM particle χ is expressed in terms of its self-energy �χχ (p2) as

δZχχ = −Re
∂�tad

χχ (p2)

∂ p2

∣∣∣∣∣
p2=m2

χ

. (13)

3.2. Gauge sector

The gauge sector of the model is renormalized through OS conditions. The masses, couplings and fields are expressed in terms of their 
counterterms as2

m2
W → m2

W + δm2
W , m2

Z → m2
Z + δm2

Z , (14)

e → e + δZe , g → g + δg , (15)

W ± →
(

1 + 1

2
δZW W

)
W ± , (16)(

Z
γ

)
→

(
1 + 1

2 δZ Z Z
1
2 δZ Zγ

1
2 δZγ Z 1 + 1

2 δZγ γ

)(
Z
γ

)
, (17)

2 The choice of the {α ≡ e2/(4π), mW , mZ } scheme instead of the {G F , mW , mZ } scheme is a pragmatic one as it allows us to make link to our previously computed 
electroweak corrections of the N2HDM Higgs decays [22] for future further investigations in connection with LHC phenomenology. The induced difference between the two 
schemes is of higher order and can be expected to be negligible compared to the effects investigated here [22,23].
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where mW and mZ are the W and Z boson masses, respectively, e is the electric charge and g is the weak SU (2)L coupling. The OS 
conditions for the masses give rise to the counterterms

δm2
W = Re�

tad,T
W W (m2

W ) and δm2
Z = Re�

tad,T
Z Z (m2

Z ) , (18)

where the superscript T indicates the transverse part of the self-energy, which also includes tadpole contributions. The counterterm for 
the electric charge is fixed in the Thomson limit as in the SM and is expressed in terms of the Weinberg angle θW as

δZe = 1

2

∂�T
γ γ (k2)

∂ p2

∣∣∣∣∣
p2=0

+ sin θW

cos θW

�T
γ Z (0)

m2
Z

. (19)

Using the above expression we can then fix the counterterm δg as

δg

g
= δZe + 1

2

1

m2
Z − m2

W

(
δm2

W − δm2
Z cos2 θW

)
. (20)

Finally, the WFR constants for the gauge fields are given by

δZW W = −Re
∂�

tad,T
W W (p2)

∂ p2
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p2=m2

W

, (21)

(
δZ Z Z δZ Zγ

δZγ Z δZγ γ

)
=

⎛
⎜⎜⎜⎝

−Re
∂�

tad,T
Z Z (p2)

∂ p2

∣∣∣∣
p2=m2

Z

2
�

tad,T
Zγ (0)

m2
Z

−2Re
�

tad,T
Zγ (m2

Z )

m2
Z

− ∂�
tad,T
γ γ (p2)

∂ p2

∣∣∣∣
p2=0

⎞
⎟⎟⎟⎠ . (22)

3.3. Quark sector

In the quark sector the OS scheme is applied for each quark. The renormalized quark fields are expressed in terms of their left- and 
right-handed components, with counterterms for each component as follows

qL/R →
(

1 + 1

2
δZ L/R

qq

)
q , (23)

with q ∈ {u, d, s, c, b, t}. In order to fix the counterterms we need to define the structure of the quark self-energies,

�q(p2) = /p�L
qq(p2)P L + /p�R

qq(p2)P R + m f (P L + P R)�S
qq(p2) , (24)

where the self-energy superscripts L, R and S respectively correspond to the left-handed, right-handed and scalar parts of the quark self-
energies, and P L,R are the left- and right-handed projectors. Using the above expression the quark WFR constants and mass counterterms 
in terms of the self-energies containing the tadpole topologies, are defined as

δZ L/R
q = − Re�

tad,L/R
q (m2

q) − m2
q

∂

∂ p2 Re
(
�

tad,L/R
qq (p2) + �

tad,R/L
qq (p2) + 2�tad,S

qq (p2)
)∣∣∣

p2=m2
q

,

δmq

mq
= 1

2
Re

[
�tad,L

qq (m2
q) + �tad,R

qq (m2
q) + 2�tad,S

qq

]
. (25)

3.4. Renormalization of the mixing angles

Following the renormalization prescription for mixing angles in the 2HDM, the angles α and β are renormalized as proposed in [17,24,
25]. The scheme connects δα and δβ to the off-diagonal WFR constants of the scalar sector. Following again [17] the angle counterterms 
are

δα = 1

4

(
δZh1h2 − δZh2h1

)
. (26)

The counterterm for δβ can be derived either from the charged sector or the CP-odd sector using the same steps, and therefore we have 
two possible expressions for δβ given by

δβ(1) = 1

4
(δZG± H± − δZ H±G±) (27)

and

δβ(2) = 1
(δZG0 A − δZ AG0) . (28)
4
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3.5. Renormalization of λ7 and λ8

We are left with the parameters λ7 and λ8 to complete the renormalization of the model. We will use a process-dependent scheme 
with the on-shell decays hi → χχ (i = 1, 2). The NLO amplitude AN L O consists of the LO decay amplitude AL O , the vertex corrections 
AV C and the counterterm amplitude AC T ,

AN L O
hi

= AL O
hi

+AV C
hi

+AC T
hi

, (29)

where the index hi denotes the decaying particle. The renormalization condition is such that we force the LO decay width to be equal to 
NLO decay width. With the Higgs coupling Cχχhi between hi and two DM particles given by

Cχχhi =
{

(λ7 cosβ cosα + λ8 sinβ sinα) 2mW
g , i = 1

(−λ7 cosβ sinα + λ8 sinβ cosα) 2mW
g , i = 2

(30)

this condition gives rise to a system of equations for δλ7 and δλ8 such that

∂AL O
h1

∂λ7
δλ7 + ∂AL O

h1

∂λ8
δλ8 = −

(
AV C

h1
+ 1

2
(AL O

h2
δZh2h1 +AL O

h1
δZh1h1 + 2AL O

h1
δZχχ )

+∂AL O
h1

∂m2
W

δm2
W + ∂AL O

h1

∂ g
δg + ∂AL O

h1

∂α
δα + ∂AL O

h1

∂β
δβ

)
(31)

∂AL O
h2

∂λ7
δλ7 + ∂AL O

h2

∂λ8
δλ8 = −

(
AV C

h2
+ 1

2
(AL O

h1
δZh1h2 +AL O

h2
δZh2h2 + 2AL O

h2
δZχχ )

+ ∂AL O
h2

∂m2
W

δm2
W + ∂AL O

h2

∂ g
δg + ∂AL O

h2

∂α
δα + ∂AL O

h2

∂β
δβ

)
, (32)

and this concludes our renormalization programme. We can now proceed to the calculation of the EW corrections.

4. Electroweak corrections to the SI cross section

The spin-independent (SI) DM-nucleon cross section can be written in terms of an effective coupling, αn , such that

αn

χ χ

n n

= iAn = iαnunun = i · 2mnαn , (33)

where unun = 2mn (mn is the nucleon mass) because we assume that the velocity of the DM particle is negligibly small. With this 
definition the DM-nucleon cross section takes the form

σn = 1

4π

(
mn

mn + mχ

)2

|αn|2 , (34)

where mχ is the DM mass. As the nucleon is a bound state, the DM-nucleon coupling receives contributions both from valence quarks 
(q = u,d, s) and from the gluons. The SI DM-nucleon cross section is calculated using a parton basis, with the operators considered in the 
non-relativistic limit. Its most general form is given by [26]

Leff =
∑

q

Cq
SO

q
S + C g

SO
g
S +

∑
q

Cq
TO

q
T , (35)

with the operators

Oq
S = mqχ

2q̄q , (36a)

Og
S = αs

π
χ2Ga

μνGaμν , (36b)

Oq
T = 1

m2
χ

χ2i∂μi∂ν 1

2
iq̄

(
∂μγν + ∂νγν − 1

2
gμν /∂

)
q︸ ︷︷ ︸

≡Oq
μν

, (36c)

which are built with the DM field χ , the quark spinor q and the gluon field strength tensor Ga
μν ; αs is the strong coupling constant. The 

quark-DM interaction is encoded in the operator Oq
S while the gluon-DM interaction is encoded in Og

S . Finally, the twist-2 operator Oq
μν

also contributes to the SI cross section. The expectation values of the operators in Eq. (36) are written as [27–29]
5
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χ χ

g g

hi

Fig. 1. Interaction of a DM particle and a gluon via a Higgs boson mediator and a quark loop.

〈n|mqq̄q |n〉 ≡ mn f n
q , (37a)

〈n| − αs

12π
Ga

μνGaμν |n〉 ≡ 2

27
mn f n

g , (37b)

where the nucleon matrix elements f n
q and f n

g are determined by lattice calculations. Their numerical values are given in Appendix A. 
The QCD trace anomaly relates the heavy quark Q = b, c, t operators with the gluon field strength tensor [29]

mQ Q̄ Q → − αs

12π
Ga

μνGaμν , (38)

corresponding to the Feynman diagram in Fig. 1 and can therefore be determined by first calculating the (heavy) external quark process 
and then using Eq. (38) to determine the effective gluon interaction. These amplitudes are then used to the extract the Wilson coefficients 
C g

S .
The DM nucleon cross section σn is given at NLO by

σn = 1

π

(
mn

mχ + mn

)2 (
| f L O

n |2 + 2Re
(

f L O
n f N L O

n

))
(39)

where, according to the previous discussion, the LO and NLO form factors are given as

f L O
n = mnCq

S

⎛
⎝ ∑

q=u,d,s

f n
q +

∑
q=c,b,t

2

27
f n

g

⎞
⎠ , (40)

f N L O
n = mn

⎛
⎝ ∑

q=u,d,s

Cq,N L O
S f n

q +
∑

q=u,d,s,c,b

3

4
(q(2) + q̄(2)) Cq

T − 8π

9αs
C g

S f n
g

⎞
⎠ . (41)

We will neglect the term proportional to C g
S because the matching in Eq. (38) cannot be used at EW NLO. As discussed in [7], taking into 

account the EW NLO corrections of the gluon contributions would require a proper mixed QCD-EW matching of the QCD trace anomaly.3

Therefore the NLO contributions considered are

Cq,N L O
S = f uV

q + f lV
q + f med

q + f box
q , (42)

Cq
T = gbox

q . (43)

Here f i
q are the Wilson coefficients from the upper vertex corrections, lower vertex corrections, mediator corrections and the box contri-

butions. The gbox
q are the box contributions proportional to the second momenta of the quarks qn(2). The values for qn(2) are also given 

in Appendix A.

4.1. Upper vertex corrections

For the extraction of the Wilson coefficients of the upper vertex the one-loop corrections to the coupling χχhi (i = 1, 2) need to 
be calculated. For this purpose χ is taken on-shell and it is assumed that the momentum transfer goes to zero. Thus the incoming 
momentum pin of the dark matter particle equals the outgoing momentum pout ≡ p. The NLO amplitude consists of the LO amplitude 
AL O , the virtual vertex corrections AV C and the counterterm AC T . In the limit of zero momentum transfer the LO amplitudes for the 
upper vertex topology read (i = 1, 2)

iAL O
hi

= Cχχhi Cqqhi

1

m2
hi

ū(p)u(p) , (44)

with Cχχhi given in Eq. (30), the Higgs hi coupling to a quark pair given by

Cqqhi = − gmq

2mW

Rα,i2

sin β
(45)

and u(ū) denoting the spinor of the (anti-)quark. The counterterm amplitudes read

3 For consistency, we do not include any other QCD corrections as e.g. the approximate approaches suggested in [30–32]. They would necessarily be incomplete. Together 
with the missing mixed EW-QCD contributions, this would not allow us to a properly quantify the inclusion of the NLO EW effects on the cross section which we are 
interested in this paper.
6
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iAC T
h1

= Cqqh1

m2
h1

(
1

2
(Cχχh2δZh2h1 + Cχχh1δZh1h1) + Cχχh1δZχχ + δCχχh1

)
(46)

iAC T
h2

= Cqqh2

m2
h2

(
1

2
(Cχχh1δZh1h2 + Cχχh2δZh2h2) + Cχχh2δZχχ + δCχχh2

)
, (47)

where the counterterm of the coupling is obtained by varying the trilinear coupling Cχχhi ,

δCχχhi = ∂Cχχhi

∂mW
δmW + ∂Cχχhi

∂α
δα + ∂Cχχhi

∂β
δβ + ∂Cχχhi

∂ g2
δg2 + ∂Cχχhi

∂λ7
δλ7 + ∂Cχχhi

∂λ8
δλ8. (48)

Therefore the NLO amplitude at zero momentum transfer is given by

iAN L O
hi

= iAL O
hi

+ iAV C
hi

+ iAC T
hi

(49)

4.1.1. Mediator corrections
To obtain the Wilson coefficient from the mediator corrections the one-loop corrections to the propagator and the corresponding 

counterterms need to be determined. They can be expressed in terms of the renormalized one-loop propagator (i, j = 1,2)

�hih j = − �̂hih j (p2 = 0)

m2
hi

m2
h j

, (50)

with the renormalised self-energy matrix(
�̂h1h1 �̂h1h2

�̂h2h1 �̂h2h2

)
≡ �̂(p2) = �(p2) − δm2 − δT + δZ

2

(
p2 −M2

)
+

(
p2 −M2

) δZ

2
, (51)

with δT denoting the tadpole counterterm matrix and M ≡ m2
hi

δi j the diagonal mass matrix. The details of the calculation can be found 
in [7]. Here we just note that the self-energies receive extra contributions relative to the complex singlet extension in [7] because there 
are new scalars in the loop from the second doublet.

4.2. Lower vertex corrections

The lower vertex corrections are also calculated exactly as in [7]. The difference is again the contribution of the new scalar particles in 
the loop. However from the point of view of the renormalization procedure nothing changes. A very detailed discussion on the different 
problems arising in this calculation is presented in our Ref. [9]. Of particular importance is the treatment of infrared divergences and the 
discussion on the heavy quark contributions to the process.

4.2.1. Box diagrams
Finally, the calculation of the box corrections is also discussed in detail in our previous works, Refs. [7–9] and again was shown to be 

one order of magnitude smaller than the main contribution.

5. Results and discussion

One of the Higgs bosons, either h1 or h2, is the SM-like Higgs boson with a mass of 125.09 GeV [33]. The other CP-even Higgs can be 
lighter or heavier than the SM-like Higgs boson. The points presented in the scatter plots were generated using ScannerS [34,35] where 
the most relevant experimental and theoretical constraints were taken into account. ScannerS checks if the potential is bounded from 
below, that there is a global minimum and that perturbative unitarity holds. Agreement with the electroweak precision measurements at 
the 2σ level is enforced using the S, T , U [36,37] parameters. Collider bounds from Tevatron, LEP and LHC are encoded in HiggsBounds 
5.6.0 [38] and HiggsSignals 2.3.1 [39]. We ask for a 95% confidence level agreement using the exclusion limits for all available 
searches for non-standard Higgs bosons, including Higgs invisible decays. Branching ratios are calculated using AnyHdecay 1.1.0 [35]. 
The code includes the Higgs decay widths for the N2HDM N2HDECAY [40], with state-of-the art higher-order QCD corrections. The code
N2HDECAY is based on the implementation of the N2HDM in HDECAY [41,42]. All EW radiative corrections in HDECAY are turned off for 
consistency.

The DM relic abundance is calculated using MicrOMEGAs [43], and a bound on its value is set by the current experimental result 
(�h2)obs

DM = 0.1186 ± 0.002 from the Planck Collaboration [44]. We require the calculated relic abundance to be equal or below its experi-
mental central value plus 2σ , that is, we allow the DM not to saturate the relic density and therefore define a DM fraction

fχχ = (�h2)χ

(�h2)obs
DM

, (52)

where (�h2)χ stands for the calculated DM relic abundance in our model. As for direct detection, the PandaX-4T and XENON1T experi-
ments provide the most stringent upper bound on the spin-independent DM nucleon scattering.

The ranges of the input parameters for the scan are shown in Table 1. m� denotes the masses of � = hi, A, H± , where hi is the 
non-125 GeV Higgs. Note that the constraints are applied and therefore the allowed parameter space will be a small fraction of the initial 
space. In Fig. 2 we present a scatter plot of the K -factor, defined as K = σN L O/σL O , as a function of the σL O DM-nucleon spin-independent 
7
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Table 1
Input parameters for the DSP of the N2HDM scan, all parameters varied independently between the given 
minimum and maximum values. The SM-like Higgs boson mass is set mh = 125.09 GeV and the SM VEV 
v = 246.22 GeV. m� denotes the masses of � = hi , A, H± . The parameter λ6 does not play any role for 
our computation.

m� [GeV] mχ [GeV] tanβ α λ7,8

min 50 1 1 − π
2 −4π

max 1000 1000 30 π
2 4π

Fig. 2. Scatter plot showing the K -factor as a function of the σL O DM-nucleon spin-independent cross section. In the left panel we show the behaviour with λ8 in the colour 
bar while in the right panel the DM mass is now shown in the colour bar.

Fig. 3. Scatter plot showing the SI cross section, including the correction factor fχχ , at NLO (left) and LO (right) compared to the PandaX-4T limit (orange line) and XENON-1T 
limit (red line), as a function of the DM mass. The colour bar shows the dependence on the parameter λ8.

cross section. In the left panel we show the behaviour with λ8 in the colour bar while in the right panel the DM mass is shown in the 
colour bar.

Both the PandaX-4T and the XENON1T experiments set an upper limit on the cross section of 10−45 cm2 valid for any value of the DM 
mass (the limit is stronger for smaller DM masses). Therefore, in the region of interest it is clear that the correction is very stable with 
the bulk of the points just below 0.94 (note that we have not applied the direct detection bounds in Fig. 2). The largest value of the correction 
yields a K -factor close to K = 1.26 and the lowest value of K is just below 0.75. Hence the correction is stable and there is in general a 
slight decrease of the cross section at NLO. We have also checked that in the region of interest none of the free parameters play a special 
role in the K -factor values.

In Fig. 3 we now show the DM-nucleon cross section including the correction factor fχχ , at NLO (left) and LO (right) compared to 
the PandaX-4T (orange line) and XENON1T limit (red line), as a function of the DM mass. The points shown are such that they are all 
below the XENON1T line at NLO as can be seen in the left plot. In the right plot we show that some of the points would not comply with 
XENON1T limit if calculated at LO. The same conclusions apply to the XENON1T line.

6. Conclusions

We have calculated the spin-independent DM-nucleon scattering cross section for the DSP of the N2HDM including higher-order 
corrections. One of the main goals of this work was to check if the parameter space of the model compatible with the most important 
theoretical and experimental constraints would give rise to large and/or unstable higher-order corrections. We found that in this model 
the corrections are stable with a K -factor close to one for most of the parameter scenarios. The reason behind this result is that the main 
corrections come from the upper vertex, mediator and lower vertex, where the diagrams are similar to the ones in the SM extended by 
a complex singlet field (CxSM). In the CxSM, although the LO cross section turns out to be negligible due to a peculiar Feynman diagram 
cancellation, the NLO corrections are quite stable as discussed in [5–7]. The same is true for the vector dark matter (VDM) model discussed 
8



S. Glaus, M. Mühlleitner, J. Müller et al. Physics Letters B 833 (2022) 137342
in [8,9]. For the VDM the LO cross section is not negligible and the K -factor is quite stable and close to one, except for large values of the 
dark gauge coupling.

Still, in the model discussed in this work, there are new particles in the loops, like for instance in the case of the CP-even self-energies 
which contribute to the mediator correction, one could in principle expect sizeable corrections which is not the case. The masses and 
couplings in this model are already very constrained by the LHC results but a such a stable result could not be anticipated.

From the phenomenological point of view the overall conclusions are the following. The NLO corrections can increase the LO results 
to values where the XENON1T experiment becomes sensitive to the model, or to values where the model is even excluded due to cross 
sections values above the XENON1T limit. But the reverse is also true even if not as common. Parameter points that might be rejected at 
LO may render the model viable when NLO corrections are included. We conclude that as a first approximation the LO cross section is a 
very good approximation but if a DM candidate is detected NLO corrections should be taken into account in order to either validate or 
exclude the model.
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Appendix A. Numerical values for the parameters

In this appendix we present the numerical values of the parameters used in the calculation of the cross sections. The SM input 
parameters are [45]

mu = 0.19 GeV , mc = 1.4 GeV , mt = 172.5 GeV ,

md = 0.19 GeV , ms = 0.19 GeV , mb = 4.75 GeV ,

me = 0.511 MeV , mμ = 105.658 MeV , mτ = 1.777 GeV ,

mW = 80.398 GeV , v = 246 GeV ,

mZ = 91.188 GeV .

(53)

The SU (2) gauge coupling g and the Weinberg angle are calculated as

g = 2mW /v = 0.653 , sin θW = mW /mZ = 0.472 . (54)

The nucleon cross section is calculated for the proton, meaning σ ≡ σp , and the mass of the proton is mp = 0.938 GeV.
The nuclear matrix elements for the proton have the following values [27,28]

f p
u = 0.01513 , f p

d = 0.0191 , f p
s = 0.0447 ,

f p
g = 0.92107 ,

up(2) = 0.22 , cp(2) = 0.019 ,

ūp(2) = 0.034 , c̄ p(2) = 0.019 ,

dp(2) = 0.11 , sp(2) = 0.026 , bp(2) = 0.012 ,

d̄p(2) = 0.036 , s̄p(2) = 0.026 , b̄p(2) = 0.012 ,

(55)

and no uncertainties in the determination of these nuclear matrix elements were taken into account.
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