KIT | KIT-Bibliothek | Impressum | Datenschutz

One‐Shot Active Learning for Globally Optimal Battery Electrolyte Conductivity**

Rahmanian, Fuzhan 1; Vogler, Monika 1; Wölke, Christian; Yan, Peng; Winter, Martin; Cekic-Laskovic, Isidora; Stein, Helge S. ORCID iD icon 1
1 Institut für Physikalische Chemie (IPC), Karlsruher Institut für Technologie (KIT)

Abstract:

Non-aqueous aprotic battery electrolytes need to perform well over a wide range of temperatures in practical applications. Herein we present a one-shot active learning study to find all conductivity optima, confidence bounds, and relating formulation trends in the temperature range from −30 °C to 60 °C. This optimization is enabled by a high-throughput formulation and characterization setup guided by one-shot active learning utilizing robust and heavily regularized polynomial regression. Whilst there is an initially good agreement for intermediate and low temperatures, there is a need for the active learning step to improve the model for high temperatures. Optimized electrolyte formulations likely correspond to the highest physically possible conductivities within this formulation system when compared to literature data. A thorough error propagation analysis yields a fidelity assessment of conductivity measurements and electrolyte formulation.


Verlagsausgabe §
DOI: 10.5445/IR/1000150559
Veröffentlicht am 14.09.2022
Originalveröffentlichung
DOI: 10.1002/batt.202200228
Scopus
Zitationen: 9
Web of Science
Zitationen: 9
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Physikalische Chemie (IPC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2566-6223
KITopen-ID: 1000150559
Erschienen in Batteries and Supercaps
Verlag John Wiley and Sons
Band 5
Heft 10
Seiten Art.Nr.: e202200228
Vorab online veröffentlicht am 23.08.2022
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page