KIT | KIT-Bibliothek | Impressum | Datenschutz

Controlling the Mobility of Ionic Liquids in the Nanopores of MOFs by Adjusting the Pore Size: From Conduction Collapse by Mutual Pore Blocking to Unhindered Ion Transport

Zhang, Zejun 1; Liu, Modan 2; Li, Chun 1; Wenzel, Wolfgang 2; Heinke, Lars 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Ionic liquids (ILs) in nanoporous confinement are the core of many supercapacitors and batteries, where the mobility of the nanoconfined ILs is crucial. Here, by combining experiments based on impedance spectroscopy with molecular dynamics simulations, the mobility of a prototype IL in the nanopores of an isoreticular metal-organic framework (MOF)-series with different pore sizes is explored, where an external electric field is applied. It has been found that the conduction behavior changes tremendously depend on the pore size. For small-pore apertures, the IL cations and anions cannot pass the pore window simultaneously, causing the ions to mutually block the pores. This results in a strong concentration dependence of the ionic conduction, where the conduction drops by two orders of magnitude when filling the pores. For large-pore MOFs, the mutual hindrance of the ions in the pores is small, causing only a small concentration dependence. The cutoff between the large-pore and small-pore behavior is approximately the size of a cation-anion-dimer and increasing the pore diameter by only 0.2 nm changes the conduction behavior fundamentally. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000150563
Veröffentlicht am 14.09.2022
Originalveröffentlichung
DOI: 10.1002/smll.202200602
Scopus
Zitationen: 12
Web of Science
Zitationen: 10
Dimensions
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 28.09.2022
Sprache Englisch
Identifikator ISSN: 1613-6810, 1613-6829
KITopen-ID: 1000150563
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Small
Verlag John Wiley and Sons
Band 18
Heft 39
Seiten Art.-Nr.: 2200602
Vorab online veröffentlicht am 24.08.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page