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Abstract In this paper, the reduced strain gradient elasticity model with two characteristic lengths is proposed
and presented. The reduced strain gradient elasticity model is a particular case of Mindlin’s first strain gradient
elasticity theory with a reduced number of material parameters and is a generalization of the simplified
first strain gradient elasticity model to include two different characteristic length scale parameters. The two
characteristic lengths have the physical meaning of longitudinal and transverse length scales. The reduced
strain gradient elasticity model is used to study screw and edge dislocations and to derive analytical solutions
of the dislocation fields. The displacement, elastic distortion, plastic distortion and Cauchy stress fields of
screw and edge dislocations are non-singular, finite and smooth. The dislocation fields of a screw dislocation
depend on one characteristic length, whereas the dislocation fields of an edge dislocation depend on up to two
characteristic lengths. For the numerical analysis of the dislocation fields, the material parameters including
the characteristic lengths have been used, computed from a second nearest neighbor modified embedded-atom
method (2NN MEAM) potential for aluminum.

Keywords Gradient elasticity · Dislocations · Plastic distortion · Dislocation density · Regularization

1 Introduction

It is well known that classical elasticity theory is not valid at small scales and leads to unphysical singularities at
small scales. For instance, the (classical) stress and elastic strain fields of screw and edge dislocations possess
a 1/r -singularity (see, e.g., [12,34,39]). On the other hand, generalized continuum theories such as strain
gradient elasticity and nonlocal elasticity are continuum theories valid at small scales (see, e.g., [8,29,31]). In
particular,Mindlin [36] (see also [37]) developed the theory of first strain gradient elasticity which is a powerful
theory. In first strain gradient elasticity, the elastic energy density depends on the gradient of the elastic strain
tensor in addition to the elastic strain tensor. Due to the strain gradients, strain gradient elasticity possesses
a weak nonlocality important for the mathematical modeling of crystals in the framework of generalized
continua. Isotropic first strain gradient elasticity theory contains two Lamé constants and five strain gradient
parameters leading to two characteristic lengths.

Toupin and Grazis [47] and Mindlin [38] (see also [13]) showed that first strain gradient elasticity, which
is sometimes called gradient elasticity of grade-2, can be considered as the continuum version of a lattice
theory with up to second-neighbor interactions (nearest and next-nearest neighbor interactions). Therefore, a
second nearest neighbor interatomic potential should be used for the computation ofmaterial parameters in first
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strain gradient elasticity. Nowadays, it has been understood that strain gradient elasticity is a straightforward
continuum theory for mechanics at small scales. Using ab initio density functional theory (DFT) calculations,
Shodja et al. [45] showed that the two characteristic lengths of Mindlin’s isotropic strain gradient elasticity
theory are in the order of∼ 10−10 m (Ångström) for several fcc and bccmaterials. The size of the characteristic
lengths gives the information where the weak nonlocality of strain gradient elasticity is dominant. Therefore,
the weak nonlocality is dominant in strain gradient elasticity at the Ångström-scale. All material parameters
of first strain gradient elasticity can be computed using interatomic potentials [1,31,43]. In particular, the
atomistic representation of the constitutive tensors in first strain gradient elasticity has been given by Admal
et al. [1].

Let us note that in the early days of gradient elasticity, several trials (e.g., [16,44]) to find non-singular
fields produced by dislocations were not successful, leading only to additional singularities in the dislocation
fields. More than three decades later, Altan and Aifantis [3] have derived a simplified version of Mindlin’s first
strain gradient elasticity. Using such a simplified first strain gradient elasticity with only one characteristic
length scale parameter, Gutkin and Aifantis [9,10] found, for the first time, non-singular elastic strain fields
of screw and edge dislocations. Lazar and Maugin [19] (see also [20,27]) have shown how non-singular stress
and strain fields of screw and edge dislocations can be computed in simplified first strain gradient elasticity.
Such simplified first strain gradient elasticity is a particular version of Mindlin’s first strain gradient elasticity
where the double stress tensor can be expressed in terms of the gradient of the Cauchy stress tensor (see, e.g.,
[19,26]). An important mathematical property of strain gradient elasticity is that it provides a mathematical
regularization based on partial differential equations (PDEs) of higher order where the characteristic length
scale parameter plays the role of the regularization parameter. Using an incompatible version of Mindlin’s first
strain gradient elasticity, non-singular and smooth displacement fields of screw and edge dislocations have
been recently given by Delfani and Tavakol [4] and Delfani et al. [5], respectively. All non-singular dislocation
fields including elastic strain, stress, and displacement fields of screw and edge dislocations have been derived
by Lazar [30] in the framework of incompatible first strain gradient elasticity of Mindlin type.

Themain disadvantage of simplified first strain gradient elasticity is that it possesses only one characteristic
length scale in addition to the two Lamé constants in contrast to Mindlin’s first strain gradient elasticity which
possesses two characteristic length scales for the isotropic case. As a consequence, the elastic shear strain
(deviatoric part of the elastic strain tensor) and elastic dilatation (spherical part of the elastic strain tensor)
have the same characteristic length scale, which is to some degree unphysical because shear strain and dilatation
are the two irreducible pieces of the elastic strain tensor or the two eigen-modes (see [27]). To bemore physical,
at least every eigen-mode or every Lamé constant should have its own independent characteristic length scale.
On the other hand, Mindlin’s first strain gradient elasticity with its five gradient-elastic constants is sometimes
too complicated and sophisticated for applications. For that reason,wewant to derive the reduced strain gradient
elasticity model with two characteristic length scale parameters in addition to the two Lamé constants. The
reduced strain gradient elasticity model is a robust gradient model similar to the simplified strain gradient
model but includes the main properties of Mindlin’s strain gradient elasticity like two characteristic length
scales. Moreover, the reduced strain gradient elasticity model is the bridge between simplified strain gradient
elasticity and Mindlin’s first strain gradient elasticity.

The paper is organized as follows. In Sect. 2, we present the reduced strain gradient elasticity model
with two characteristic lengths as a particular version of the incompatible strain gradient elasticity of Mindlin
type with a reduced number of material parameters. We give the expressions for the three-dimensional and
two-dimensional Green tensors together with their decomposition into longitudinal and transverse parts. For
aluminum, the material parameters including the characteristic lengths have been computed based on a second
nearest neighbor modified embedded-atom method (2NN MEAM) interatomic potential. Exact analytical
solutions of screw and edge dislocations are given in Sects. 3.1 and 3.2, respectively. In Sect. 3.3, the limit
to simplified strain gradient elasticity is shown and performed. Moreover, the comparison of the dislocation
fields in reduced strain gradient elasticity, Mindlin’s strain gradient elasticity and simplified strain gradient
elasticity is given and similarities and differences are pointed out. Conclusions are given in Sect. 4.

2 Incompatible strain gradient elasticity

In this section, we develop the reduced strain gradient elasticity model in the framework of incompatible strain
gradient elasticity of Mindlin type. First, we present the basics of incompatible strain gradient elasticity of
Mindlin type. In the second part, the reduced strain gradient elasticity model is derived and presented.
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2.1 Mindlin’s first strain gradient elasticity

In Mindlin’s theory of first strain gradient elasticity [36,37] (see also [28]), the strain energy density for an
isotropic materials is given by

W(e, ∇e) = 1

2
Ci jkl ei j ekl + 1

2
Di jmkln∂mei j∂nekl . (1)

The isotropic constitutive tensor of rank four reads as

Ci jkl = λ δi jδkl + μ
(
δikδ jl + δilδ jk

)
, (2)

where λ and μ are the Lamé moduli (elastic constants) and δi j is the Kronecker symbol. The isotropic consti-
tutive tensor of rank six reads as

Di jmkln = a1
2

(
δi jδkmδln + δi jδknδlm + δklδimδ jn + δklδinδ jm

) + 2a2 δi jδklδmn

+ a3
2

(
δ jkδimδln + δikδ jmδln + δilδ jmδkn + δ jlδimδkn

) + a4
(
δilδ jk + δikδ jl

)
δmn

+ a5
2

(
δ jkδinδlm + δikδ jnδlm + δ jlδkmδin + δilδkmδ jn

)
, (3)

where a1, a2, a3, a4, a5 are the five strain gradient parameters (gradient-elastic constants) inMindlin’s isotropic
first strain gradient elasticity theory [36] (see also [28,31,37]). The incompatible elastic strain tensor ei j reads
as

ei j = 1

2

(
βi j + β j i

)
, (4)

which is given by the symmetric part of the incompatible elastic distortion tensor

βi j = ∂ j ui − βP
i j . (5)

The incompatible elastic distortion tensor (5) is nothing but the gradient of the displacement vector ui minus
the plastic distortion (or eigendistortion) tensor βP

i j . Note that we use the following abbreviation for the partial
derivative: ∂ j = ∂/∂x j .

In dislocation theory, the dislocation density tensor is defined in terms of the incompatible plastic distortion
tensor (see, e.g., [15,25])

αi j = −ε jkl∂kβ
P
il (6)

and may also be expressed in terms of the incompatible elastic distortion tensor

αi j = ε jkl∂kβil , (7)

where ε jkl indicates the Levi-Civita tensor. Moreover, the dislocation density tensor satisfies the Bianchi
identity of dislocations

∂ jαi j = 0, (8)

which means that dislocations cannot end inside the body.
The Cauchy stress tensor σi j and the double stress tensor τi jm are defined by

σi j = ∂W
∂ei j

= Ci jkl ekl , (9)

τi jm = ∂W
∂(∂mei j )

= Di jmkln∂nekl . (10)

Using Eqs. (2) and (3), the Cauchy stress tensor reads as

σi j = λ δi j ell + 2μ ei j (11)
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and the double stress tensor reads as

τi jm = a1
2

(
δim∂ j ell + δ jm∂i ell + 2δi j∂l elm

) + 2a2δi j∂mell

+ a3
(
δim∂l e jl + δ jm∂l eil

) + 2a4∂mei j + a5
(
∂i e jm + ∂ j eim

)
. (12)

In presence of body forces, the (static) Lagrangian density of strain gradient elasticity is given by

L = −W − V, (13)

where W is given in Eq. (1) and V is the potential of body forces given by

V = −ui fi . (14)

Here fi denotes the body force density vector. The static (force) equilibrium condition is given by the Euler–
Lagrange equation of strain gradient elasticity (see, e.g., [2,35])

δL
δui

≡ ∂L
∂ui

− ∂ j
∂L

∂(∂ j ui )
+ ∂m∂ j

∂L
∂(∂m∂ j ui )

= 0. (15)

In terms of the Cauchy stress and double stress tensors, the equation of equilibrium (15) takes the following
form [36]

∂ j
(
σi j − ∂mτi jm

) = − fi , (16)

which has the physical meaning of the force equilibrium condition.Moreover, the total or effective stress tensor
σ̂i j can be defined as a variational derivative

σ̂i j := δW
δei j

= ∂W
∂ei j

− ∂k
∂W

∂(∂kei j )
. (17)

Using Eqs. (9) and (10), it reads as (see also [22,28,35,47])

σ̂i j = σi j − ∂mτi jm (18)

and Eq. (16) reduces to the simple form

∂ j σ̂i j = − fi . (19)

Using Eqs. (11) and (12), the total or effective stress tensor (18) reduces to

σ̂i j = 2μ ei j + λ δi j ell − a1
(
∂i∂ j ell + ∂k∂lδi j ekl

) − 2a2δi j
ell

− (a3 + a5)
(
∂i∂l e jl + ∂ j∂l eil

) − 2a4
ei j , (20)

where 
 denotes the Laplace operator. If we substitute the total stress tensor (20) into Eq. (19), then the
displacement equation of equilibrium is given by

LM
ikuk = μ

[
1 − �22


](
∂lβ

P
il + ∂lβ

P
li

) + [
λ − (a1 + 2a2)


]
∂iβ

P
ll − (a1 + a3 + a5)∂i∂k∂lβ

P
kl − fi , (21)

where LM
ik denotes the tensorial linear partial differential operator of fourth order, appearing in Mindlin’s first

strain gradient elasticity, and is called the Mindlin operator. The isotropic Mindlin operator reads as

LM
ik = (λ + 2μ)

[
1 − �21


]
∂i∂k + μ

[
1 − �22


]
(δik
 − ∂i∂k). (22)

Note that LM
ik = LM

ki . The two characteristic lengths in Mindlin’s strain gradient elasticity, defined in terms of
the five gradient-elastic constants and the two Lamé constants, are defined by

�21 = 2(a1 + a2 + a3 + a4 + a5)

λ + 2μ
, (23)

�22 = a3 + 2a4 + a5
2μ

. (24)
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Using the longitudinal and transverse sound speeds

c2L = λ + 2μ

ρ
, c2T = μ

ρ
, (25)

where ρ denotes the mass density, the Mindlin operator (22) can be decomposed into a longitudinal part and
a transverse part and can be rewritten as

LM
ik = ρc2L

[
1 − �2L


]
∂i∂k + ρc2T

[
1 − �2T


]
(δik
 − ∂i∂k), (26)

namely

LM
ik = LM,L

ik + LM,T
ik (27)

with

LM,L
ik = ρc2L

[
1 − �2L


]
∂i∂k (28)

LM,T
ik = ρc2T

[
1 − �2T


]
(δik
 − ∂i∂k) (29)

and the conditions for the longitudinal and transverse parts

εl j i∂ j L
M,L
ik = 0 (30)

∂i L
M,T
ik = 0. (31)

It can be seen in Eq. (26) that every sound velocity has its own characteristic length. Therefore, the characteristic
length �1 has the physical meaning of characteristic longitudinal length �L and the characteristic length �2 has
the physical meaning of characteristic transverse length �T:

�1 = �L, �2 = �T. (32)

2.2 Reduced strain gradient elasticity model with two characteristic lengths

The reduced strain gradient elasticitymodelwith two characteristic lengths is obtained fromMindlin’s isotropic
first strain gradient elasticity if we assume to every Lamé constant λ and μ an independent length �λ and �μ,
which we may call the characteristic lengths of the Lamé constants, via

a1 = 0, a2 = λ �2λ

2
, a3 = 0, a4 = μ�2μ, a5 = 0. (33)

On the one hand, the reduced strain gradient elasticitymodel is a particular case ofMindlin’s first strain gradient
elasticity theory. On the other hand, it is a generalization of the simplified first strain gradient elasticity model
to include two different characteristic length scale parameters.

Using the relations in(33), the constitutive tensor of rank six, Eq. (3), reduces to

Di jmkln = λ �2λ δi jδklδmn + μ �2μ
(
δilδ jk + δikδ jl

)
δmn (34)

and the double stress tensor (12) becomes

τi jm = λ �2λδi j∂mell + 2μ�2μ∂mei j . (35)

It is worth noting that the double stress tensor (35) is nothing but the gradient of the Cauchy stress tensor (11)
with an independent length scale for every Lamé constant. The double stress tensor (35) is much simpler
than the expression of the double stress tensor (12) in Mindlin’s strain gradient elasticity. Substituting the
constitutive tensors (2) and (34) into Eq. (1), the elastic strain energy density reduces to

W(e, ∇e) = 1

2
λ eii e j j + μ ei j ei j + 1

2
λ �2λ ∂keii∂ke j j + μ�2μ ∂kei j∂kei j . (36)
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By means of Eqs. (11) and (35), the total or effective stress tensor (20) simplifies to

σ̂i j = 2μ
[
1 − �2μ


]
ei j + λ

[
1 − �2λ


]
δi j ell , (37)

where it can be seen that every elastic constant possesses its own Helmholtz operator. For the total stress
tensor (37) with two independent characteristic length scales, the equation of equilibrium (19) gives in the
framework reduced strain gradient elasticity the corresponding displacement equation of equilibrium

μ
[
1 − �2μ


](

ui + ∂i∂kuk

) + λ
[
1 − �2λ


]
∂i∂kuk = μ

[
1 − �2μ


]
∂l

(
βP
il + βP

li

)

+ λ
[
1 − �2λ


]
∂iβ

P
ll − fi . (38)

However, sometimes this representation in terms of length scales of the Lamé constants �λ and �μ is not very
suitable for the investigation of specific gradient phenomena. Consequently, we use a more suitable represen-
tation in terms of longitudinal and transverse length scales �1 and �2. Therefore, the following representation
is used

a1 = 0, a2 = (λ + 2μ) �21

2
− μ �22, a3 = 0, a4 = μ�22, a5 = 0 (39)

and the relations between the length scales (�λ, λμ) and the longitudinal and transverse length scales (�1, �2)
read

�2μ = �22, �2λ = λ + 2μ

λ
�21 − 2μ

λ
�22 (40)

and

�21 = λ�2λ + 2μ�2μ

λ + 2μ
. (41)

Substituting Eq. (40) into Eq. (36), the elastic strain energy density can be written as

W(e, ∇e) = 1

2
(λ + 2μ) eii e j j + μ (ei j ei j − eii e j j )

+ 1

2
(λ + 2μ) �21 ∂keii∂ke j j + μ �22

(
∂kei j∂kei j − ∂keii∂ke j j

)
. (42)

Then the constitutive tensor of rank six, Eq. (34), reduces to

Di jmkln = (λ + 2μ)�21 δi jδklδmn + μ �22
(
δilδ jk + δikδ jl − 2δi jδkl

)
δmn (43)

and the double stress tensor (34) becomes

τi jm = (λ + 2μ)�21δi j∂mell + 2μ�22∂m
(
ei j − δi j ell

)
. (44)

Moreover, the Cauchy stress tensor (11) can be written in the form

σi j = (λ + 2μ) δi j ell + 2μ (ei j − δi j ell) (45)

and the total or effective stress tensor (37) reduces to

σ̂i j = (λ + 2μ)
[
1 − �21


]
δi j ell + 2μ

[
1 − �22


](
ei j − δi j ell

)
. (46)

Substituting the total stress tensor (46) into the equation of equilibrium (19), the displacement equation of
equilibrium is obtained as

(λ + 2μ)
[
1 − �21


]
∂i∂kuk + μ

[
1 − �22

](

ui − ∂i∂kuk

) = (λ + 2μ)
[
1 − �21


]
∂iβ

P
ll

+ μ
[
1 − �22


](
∂lβ

P
il + ∂lβ

P
li − 2∂iβ

P
ll

) − fi ,
(47)
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which can be written in terms of the Mindlin operator (22)

LM
ikuk = (λ + 2μ)

[
1 − �21


]
∂iβ

P
ll + μ

[
1 − �22


](
∂lβ

P
il + ∂lβ

P
li − 2∂iβ

P
ll

) − fi (48)

or in terms of longitudinal and transverse length scales and longitudinal and transverse speeds of sound

c2L
[
1 − �2L


]
∂i∂kuk + c2T

[
1 − �2T


](

ui − ∂i∂kuk

) = c2L
[
1 − �2L


]
∂iβ

P
ll

+ c2T
[
1 − �2T


](
∂lβ

P
il + ∂lβ

P
li − 2∂iβ

P
ll

) − fi/ρ.

(49)

It is important to note that the left-hand side of the displacement equation of equilibrium in Mindlin’s strain
gradient elasticity (21) and in reduced strain gradient elasticity (48) is formally given by the same type
of differential operator, namely the Mindlin operator LM

ik , whereas the right-hand side of the displacement
equation of equilibrium is much simpler in reduced strain gradient elasticity than in Mindlin’s strain gradient
elasticity. In contrast to the right hand side of Eq. (21), the right hand side of Eq. (48) is given in terms of
longitudinal and transverse Helmholtz operators. For the compatible case, where the plastic distortion is zero,
both equations (21) and (48) reduce to the same partial differential equation, namely

LM
ikuk = − fi . (50)

Moreover, for both Eqs. (21) and (48), the particular solutions can be given by the convolution of the inhomo-
geneous parts and the Green tensor of the Mindlin operator, which is given in the next section.

2.3 Green tensor of the Mindlin operator

The Green tensor of the isotropic Mindlin operator (22), being the fundamental solution, is defined by (see,
e.g., [28])

LM
ikG

M
k j (R) = −δi jδ(R), (51)

where δ(.) denotes the Dirac delta function. Note that the Green tensor is a symmetric tensor: GM
k j = GM

jk .
The three-dimensional Green tensor of the Mindlin operator (22) reads as (see [14,28,44])

GM
i j (R) = 1

8π

[ 1

λ + 2μ
∂i∂ j A(R, �1) + 1

μ

(
δi j
 − ∂i∂ j

)
A(R, �2)

]
(52)

with the two scalar auxiliary functions

A(R, �1) = R + 2�21
R

(
1 − e−R/�1

)
, (53)

A(R, �2) = R + 2�22
R

(
1 − e−R/�2

)
, (54)

where i, j = x, y, z and R ∈ R
3.

The two-dimensional Green tensor of the plane strain problem in Mindlin’s strain gradient elasticity reads
as (see [14,28,44])

GM
i j (R) = 1

8π

[ 1

λ + 2μ
∂i∂ j A(R, �1) + 1

μ

(
δi j
 − ∂i∂ j

)
A(R, �2)

]
(55)

with the two scalar auxiliary functions

A(R, �1) = −
(
R2 ln R − R2 + 4�21

[
ln R + K0

(
R/�1

)])
, (56)

A(R, �2) = −
(
R2 ln R − R2 + 4�22

[
ln R + K0

(
R/�2

)])
, (57)

where i, j = x, y and R ∈ R
2. Here Kn is the modified Bessel function of the second kind of order n.
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In general, the Green tensor of the Mindlin operator can be decomposed into longitudinal and transverse
pieces according to

GM
i j (R) = GM,L

i j (R) + GM,T
i j (R), (58)

where the longitudinal and transverse Green tensors are given by

GM,L
i j (R) = 1

8πρc2L
∂i∂ j A(R, �L), (59)

GM,T
i j (R) = 1

8πρc2T

(
δi j
 − ∂i∂ j

)
A(R, �T) (60)

with the conditions to be longitudinal and transverse

εlk j∂kG
M,L
i j (R) = 0 (61)

∂ j G
M,T
i j (R) = 0. (62)

For the anti-plane strain problem, the Mindlin operator (22) reduces to the two-dimensional Laplace–
Helmholtz operator depending only on the length �2

LM
zz = μ

[
1 − �22


]

. (63)

The corresponding Green function of anti-pane strain is defined by (see, e.g., [28])

LM
zzG

M
zz(R) = −δ(R) (64)

and reads as (see [28])

GM
zz(R) = − 1

2πμ

[
ln R + K0

(
R/�2

)]
. (65)

Moreover, the two-dimensional Green function of the Helmholtz operator is needed in problems of straight
dislocations and is defined by

L IG
LI = δ(R), I = 1, 2 (66)

and reads as

GLI = 1

2π�2I
K0(R/�I ), (67)

where the isotropic scalar Helmholtz operator (differential operator of second order) reads

L I = 1 − �2I
, �I > 0. (68)

Sometimes in the mathematical literature, the differential operator (68) is called modified Helmholtz opera-
tor [48] or metaharmonic operator [40].
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Table 1 Lamé moduli, gradient-elastic constants, characteristic lengths, equilibrium lattice parameter, and Poisson ratio for
aluminum (Al) computed from 2NN MEAM interatomic potential [31]

λ (eV/Å3) μ (eV/Å3) a1 (eV/Å) a2 (eV/Å) a3 (eV/Å) a4 (eV/Å) a5 (eV/Å)

0.38649 0.19704 − 0.13862 0.22500 0.10877 0.15309 0.21632

�1 (Å) �2 (Å) � (Å) a (Å) ν

1.2027 1.2657 1.1300 4.05 0.3312

2.4 Material parameters

In Mindlin’s first strain gradient elasticity theory, the elastic constants and the gradient-elastic constants are
characteristic material parameters which can be computed from interatomic potentials (see, e.g., [1,43]) or via
ab DFT calculations (see, e.g., [46]). For some important cubic materials such as Al, Cu, Fe andW, the 3 elastic
constants and 11 gradient-elastic constants have been computed using the second nearest neighbor modified
embedded-atom-method (2NN MEAM) interatomic potential given by Lee et al.[32] (see [1,31,33,43]).
Although W and Al are nearly isotropic concerning the elastic constants because they satisfy the isotropy
condition for the constitutive tensor of rank 4, Ci jkl , the 11 gradient-elastic constants of W and Al do not
satisfy any of the 6 isotropy conditions for the constitutive tensor of rank 6, Di jmkln , as shown in [31]. Based
on the Hermann theorem, the rank 6 of the constitutive tensor Di jmkln is too high for a crystal possessing a
cubic symmetry to be isotropic [31]. Therefore, an average of the gradient-elastic constants of cubic materials
is necessary to get isotropic gradient-elastic constants. Lazar et al.[31] proposed and used a Voigt-type average
of the sixth-rank constitutive tensor Di jmkln for the computation of the 5 isotropic gradient-elastic constants
(a1, a2, a3, a4, a5) of Al and W.

For the numerical analysis of the dislocation fields produced by screw and edge dislocations we choose
aluminum (Al) and we use the corresponding Lamé moduli (μ, λ) and the 5 gradient-elastic constants (a1, a2,
a3, a4, a5) given in [31]. The Lamé constants, gradient-elastic constants, characteristic lengths, and the Poisson
ratio of aluminum, which have been computed from the 2NN MEAM interatomic potential [31], are given in
Table 1. The 2 characteristic lengths are given in terms the 2 Lamé moduli (μ, λ) and the 5 gradient-elastic
constants (a1, a2, a3, a4, a5) by Eqs. (23) and (24).

Even for the so-called simplified first strain gradient elasticity theory possessing only 1 characteristic
length for isotropic and cubic materials, the characteristic length can be computed directly from the fourth-rank
constitutive tensor Ci jkl and the sixth-rank constitutive tensor Di jmkln by means of a projection method [42]
leading to the formula for the characteristic length:

�2 = 1

18
C

−1
i jklDi jmklm (69)

with the inverse tensor of elastic constants for an isotropic material

C
−1
i jkl = 1

4μ

(
δikδ jl + δilδ jk − 2λ

3λ + 2μ
δi jδkl

)
. (70)

If we substitute Eqs. (3) and (70) into Eq. (69), then we obtain the following formula for the characteristic
length in terms of the 2 Lamé moduli (μ, λ) and the 5 gradient-elastic constants (a1, a2, a3, a4, a5)

�2 = 2μ(a1 + 3a2) + (5λ + 4μ)(a3 + 3a4 + a5)

6μ(3λ + 2μ)
. (71)

Eq. (71) gives an atomistic determination of the characteristic length �of simplifiedfirst strain gradient elasticity
from the numerical values of the elastic and gradient elastic constants computed from interatomic potentials
or via ab initio DFT. Using the elastic and gradient-elastic constants of Al given in Table 1, the characteristic
length � is computed using Eq. (71) and reported in Table 1. It can be seen that for aluminum the length � of
simplified strain gradient elasticity is a slightly smaller than the 2 characteristic lengths of Mindlin’s strain
gradient elasticity theory but in the same size-range.

The size of the characteristic lengths tells us where (weak) nonlocality in gradient theories is dominant.
As it can be seen in Table 1, nonlocality is dominant in strain gradient elasticity theory at the Ångström-
scale, where classical elasticity theory breaks down and leads to unphysical singularities. In other words,
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Fig. 1 Plastic distortion βP
zy of a screw dislocation near the dislocation line

the Ångström-scale is the scale of nonlocality in strain gradient elasticity. Strain gradient elasticity becomes
relevant at small distances in materials such as crystals. It seems that nonlocality is a fundamental property of
nature at small scales. Therefore, strain gradient elasticity is a straightforward continuum theory valid at small
scales like the Ångström-scale leading to a straightforward non-singular dislocation theory with non-singular
dislocation fields in the dislocation core region as it will be shown in the next section.

3 Application of reduced strain gradient elasticity to straight dislocations

In this section, we investigate the anti-plane strain and plane strain problems of screw and edge dislocations,
respectively, in the framework of incompatible reduced strain gradient elasticity for vanishing body force
density fi = 0. For the numerical study of the dislocation fields, the elastic constants and the characteristic
length scales of aluminum given in Table 1 are used.

3.1 Screw dislocation

The screw dislocation is located at the position (x, y) = (0, 0) with Burgers vector bz and the dislocation line
in the z-direction of a Cartesian coordinate system. For a screw dislocation, Eq. (48) simplifies to

LM
zzuz = μL2∂yβ

P
zy (72)

with

L2β
P
zy = βP,0

zy (73)

and

LM
zzuz = μ∂yβ

P,0
zy . (74)

The classical plastic distortion of a screw dislocation given by deWit [6] (see also [39]) reads

βP,0
zy = bzδ(y)H(−x) = bzδ(y)

∫ ∞

x
δ(X) dX, (75)

which possesses a discontinuity at y = 0 for x < 0. Here H(.) denotes the Heaviside step function.
By substituting Eq. (75) into Eq. (73) and using the Green function (67), the plastic distortion is calculated

as

βP
zy = GL2 ∗ βP,0

zy = bz
2π�22

∫ ∞

x
K0

(√
X2 + y2/�2

)
dX, (76)

which is non-singular, smooth and finite as it can be seen in Fig. 1. The symbol ∗ denotes spatial convolution.
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Fig. 3 Effective Burgers vector bz(r) of a screw dislocation (normalized by the Burgers vector bz)

The dislocation density of a screw dislocation is obtained as

αzz = −∂xβ
P
zy = bz

2π�22
K0

(
r/�2

)
, (77)

where r = √
x2 + y2. The dislocation density (77) is plotted in Fig. 2 and gives the shape and size of the

dislocation core of a screw dislocation.
Using the dislocation density (77), the effective Burgers vector bz(r) of a screw dislocation is defined by

(see, e.g., [7,17,18,23])

bz(r) =
∫ 2π

0

∫ r

0
αzz(r

′) r ′ dr ′dφ = bz

[
1 − r

�2
K1

(
r/�2

)]
. (78)

The effective Burgers vector differs appreciably from the classical Burgers vector bz , which is constant, in
the region from r = 0 up to r � 6�2. Thus, it is suggestive to take rc � 6 �2 as the dislocation core radius.
Outside this dislocation core region, the effective Burgers vector reaches its constant value bz . Accordingly,
the gradient solution approaches the classical one outside the dislocation core region. Using the values given
in Table 1, the dislocation core radius reads for aluminum: rc � 1.875 a = 7.594Å. The effective Burgers
vector (78) is plotted in Fig. 3.

If we substitute Eq. (75) into Eq. (74) and use theGreen function (65), the displacement field uz is calculated
as
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Fig. 5 Elastic distortion components of a screw dislocation near the dislocation line: a βzx and b βzy

uz = −μ ∂yG
M
zz ∗ βP,0

zy

= − bz
2π

∂y

∫ ∞

x

[
ln

√
X2 + y2 + K0

(√
X2 + y2/�2

)]
dX

= bz
2π

(
arctan

y

x
+ πH(−x) sgn(y) + ∂y

∫ ∞

x
K0

(√
X2 + y2/�2

)
dX

)
, (79)

where the first part in Eq. (79) is the angle ϕ with range (−π , π] and discontinuity of 2π across the negative
x-axis (see also [6,41])

ϕ = arctan
y

x
+ πH(−x) sgn(y). (80)

The displacement field (79) is plotted in Fig. 4. The displacement field (79) is non-singular and has a smooth
form due to the superposition of the classical jump discontinuity (first term) and the gradient term (second
term).

The two non-vanishing components of the elastic distortion are calculated as

βzx = μbz∂yG
M
zz = − bz

2π

y

r2

[
1 − r

�2
K1(r/�2)

]
, (81)

βzy = −μbz∂xG
M
zz = bz

2π

x

r2

[
1 − r

�2
K1(r/�2)

]
. (82)
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The two components of the elastic distortion tensor, Eqs. (81) and (82), are plotted in Fig. 5a, b. It can be seen
that they are non-singular. The corresponding two non-vanishing components of the non-singular stress tensor
simply read

σzx = −μbz
2π

y

r2

[
1 − r

�2
K1(r/�2)

]
, (83)

σzy = μbz
2π

x

r2

[
1 − r

�2
K1(r/�2)

]
. (84)

All the dislocation fields obtained in reduced strain gradient elasticity are in agreement with the dislocation
fields obtained in Mindlin’s strain gradient elasticity (see [4,30]).

3.2 Edge dislocation

The edge dislocation of glide-mode is located at the position (x, y) = (0, 0) with Burgers vector bx . The
dislocation line coincides with the z-axis of a Cartesian coordinate system. For an edge dislocation of glide-
mode with Burgers vector bx , Eq. (48) reduces to

LM
ikuk = μL2∂l

(
βP
il + βP

li

)
(85)

with

L2β
P
i j = β

P,0
i j , i 	= j (86)

and

LM
ikuk = μ∂l

(
β
P,0
il + β

P,0
li

)
. (87)

The classical plastic distortion of an edge dislocation of glide-mode given by deWit [6] (see also [39])
reads

βP,0
xy = bxδ(y)H(−x) = bxδ(y)

∫ ∞

x
δ(X) dX. (88)

Substituting Eq. (88) into Eq. (86), the plastic distortion of an edge dislocation is calculated as

βP
xy = GL2 ∗ βP,0

xy = bx
2π�22

∫ ∞

x
K0

(√
X2 + y2/�2

)
dX (89)

and the corresponding dislocation density is obtained as

αxz = −∂xβ
P
xy = bx

2π�22
K0

(
r/�2

)
. (90)

The plastic distortion (89) is non-singular and finite as it can be seen in Fig. 6. The dislocation density (90)
is plotted in Fig. 7 and gives the shape and size of the dislocation core of the edge dislocation. Note that in
reduced strain gradient elasticity, the plastic distortion (89) and dislocation density (90) of an edge dislocation
have the same form as the corresponding fields (76) and (77) of a screw dislocation. The dislocation cores of
screw and edge dislocations possess a cylindrical symmetry (see Figs. (2) and (7)) and have the same shape
and size in the reduced strain gradient elasticity model.

Using the dislocation density (90), the effective Burgers vector bx (r) of an edge dislocation is given by

bx (r) =
∫ 2π

0

∫ r

0
αxz(r

′) r ′ dr ′dφ = bx

[
1 − r

�2
K1

(
r/�2

)
]
. (91)

This effective Burgers vector differs appreciably from the classical Burgers vector bx , which is constant, in
the region from r = 0 up to r � 6�2. Note that the effective Burgers vector (91) of an edge dislocation has
the same form as the effective Burgers vector (78) of a screw dislocation. The effective Burgers vector (91) is
plotted in Fig. 8.
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x (Å)
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The solution of Eq. (87) provides the displacement field of the edge dislocation in the following form

ux = μ
(
GM

xy ∗ α0
xz − ∂yG

M
xx ∗ βP,0

xy

)
, (92)

uy = μ
(
GM

yy ∗ α0
xz − ∂yG

M
yx ∗ βP,0

xy

)
, (93)

where α0
xz = −∂xβ

P,0
xy = bxδ(x)δ(y) is the classical dislocation density of an edge dislocation. Substituting

the classical plastic distortion and the Green tensor (55) into Eqs. (92) and (93), a straightforward calculation
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Fig. 9 Displacement fields of an edge dislocation near the dislocation line: a ux and b uy

gives

ux = bx
2π

[
arctan

y

x
+ πH(−x) sgn(y) + ∂y

∫ ∞

x
K0

(√
X2 + y2/�2

)
dX

+ xy

r2

(
1 − 4�22

r2
+ 2K2(r/�2)

)
− 1 − 2ν

2(1 − ν)

xy

r2

(
1 − 4�21

r2
+ 2K2(r/�1)

)]
, (94)

uy = − bx
4π

[
1 − 2ν

1 − ν

{
ln r + K0(r/�1) − x2 − y2

r2

(
1 − 4�21

r2
+ 2K2(r/�1)

)}

+ x2 − y2

r2

(
1 − 4�22

r2
+ 2K2(r/�2)

)]
, (95)

where ν is the Poisson ratio. The displacement fields (94) and (95) are plotted in Fig. 9a, b, respectively. Note
that the displacement fields (94) and (95) are non-singular and smooth functions. The displacement fields (94)
and (95) obtained in reduced strain gradient elasticity are in agreement with the displacement fields obtained
in Mindlin’s strain gradient elasticity (see [5,30]).

If we substitute the displacement fields (92) and (93) and the plastic distortion (89) into Eq. (5), a straight-
forward calculation gives the four non-vanishing components of the incompatible elastic distortion tensor

βxx = − bx
4π(1 − ν)

y

r2

[
(1 − 2ν) + 2x2

r2
− 2(1 − ν)

{
3x2 − y2

r2

(
4�22
r2

− 2K2(r/�2)

)
− x2 − y2

�2r
K1(r/�2)

}

+ (1 − 2ν)

{
3x2 − y2

r2

(
4�21
r2

− 2K2(r/�1)

)
− 2x2

�1r
K1(r/�1)

}]
, (96)

βyy = − bx
4π(1 − ν)

y

r2

[
(1 − 2ν) − 2x2

r2
+ 2(1 − ν)

{
3x2 − y2

r2

(
4�22
r2

− 2K2(r/�2)

)
− x2 − y2

�2r
K1(r/�2)

}

− (1 − 2ν)

{
3x2 − y2

r2

(
4�21
r2

− 2K2(r/�1)

)
+ 2y2

�1r
K1(r/�1)

}]
, (97)

βxy = bx
4π(1 − ν)

x

r2

[
(3 − 2ν) − 2y2

r2
− 2(1 − ν)

{
x2 − 3y2

r2

(
4�22
r2

− 2K2(r/�2)

)
+ x2 + 3y2

�2r
K1(r/�2)

}

+ (1 − 2ν)

{
x2 − 3y2

r2

(
4�21
r2

− 2K2(r/�1)

)
+ 2y2

�1r
K1(r/�1)

}]
, (98)

βyx = − bx
4π(1 − ν)

x

r2

[
(1 − 2ν) + 2y2

r2
+ 2(1 − ν)

{
x2 − 3y2

r2

(
4�22
r2

− 2K2(r/�2)

)
− x2 − y2

�2r
K1(r/�2)

}

− (1 − 2ν)

{
x2 − 3y2

r2

(
4�21
r2

− 2K2(r/�1)

)
+ 2y2

�1r
K1(r/�1)

}]
. (99)
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Fig. 10 Elastic distortion components of an edge dislocation near the dislocation line: a βxx , b βyy , c βxy and d βyx

The components of the elastic distortion tensor, Eqs. (96)–(99), are plotted in Figs. 10a–d and 11a–d. It can
be seen that they are non-singular and zero at the dislocation line. The elastic distortion components (96),
(97) and (99) obtained in reduced strain gradient elasticity are in full agreement with the corresponding ones
obtained in Mindlin’s strain gradient elasticity (see [30]). Only the elastic distortion component (98) is slightly
different because it depends only on 2 lengths scales (�1, �2), whereas in Mindlin’s strain gradient elasticity
the component βxy depends on 3 lengths scales (�1, �2, �4) (see [30]). In the dislocation core region, the
component βxy obtained in the reduced strain gradient elasticity model is higher than the component βxy in
Mindlin’s strain gradient elasticity (see Fig. 11c). Using the values of the material parameters given in Table 1,
the additional length in Mindlin’s first strain gradient elasticity is computed as �4 = 1.4405Å (see also [30]).

The trace of the elastic distortion tensor gives the elastic dilatation which reads as

βll = −bx (1 − 2ν)

2π(1 − ν)

y

r2

[
1 − r

�1
K1(r/�1)

]
, (100)

depending on the longitudinal length �1. The skew-symmetric part of the elastic distortion tensor gives the
elastic rotation which reads as

ωxy = bx
2π

x

r2

[
1 − r

�2
K1(r/�2)

]
, (101)

depending on the transverse length �2.
Substituting the symmetric part of the elastic distortion tensor given in Eqs. (96)–(99) and the elastic

dilatation (100) into the Hooke law (11), the non-vanishing components of the Cauchy stress tensor of an edge
dislocation are calculated as

σxx = − μbx
2π(1 − ν)

y

r2

[
3x2 + y2

r2
− 2νr

�1
K1(r/�1)
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Fig. 11 Plots of the elastic distortion components of an edge dislocation in reduced strain gradient elasticity (RSGE), simplified
strain gradient elasticity (SSGE), and classical elasticity (Classical): a βxx/bx , b βyy/bx , c βxy/bx , and d βyx/bx

− 2(1 − ν)

{
3x2 − y2

r2

(
4�22
r2

− 2K2(r/�2)

)
− x2 − y2

�2r
K1(r/�2)

}

+ (1 − 2ν)

{
3x2 − y2

r2

(
4�21
r2

− 2K2(r/�1)

)
− 2x2

�1r
K1(r/�1)

}]
, (102)

σyy = μbx
2π(1 − ν)

y

r2

[
x2 − y2

r2
+ 2νr

�1
K1(r/�1)

− 2(1 − ν)

{
3x2 − y2

r2

(
4�22
r2

− 2K2(r/�2)

)
− x2 − y2

�2r
K1(r/�2)

}

+ (1 − 2ν)

{
3x2 − y2

r2

(
4�21
r2

− 2K2(r/�1)

)
+ 2y2

�1r
K1(r/�1)

}]
, (103)

σxy = μbx
2π(1 − ν)

x

r2

[
x2 − y2

r2

− 2(1 − ν)

{
x2 − 3y2

r2

(
4�22
r2

− 2K2(r/�2)

)
+ 2y2

�2r
K1(r/�2)

}

+ (1 − 2ν)

{
x2 − 3y2

r2

(
4�21
r2

− 2K2(r/�1)

)
+ 2y2

�1r
K1(r/�1)

}]
, (104)

σzz = − μνbx
π(1 − ν)

y

r2

[
1 − r

�1
K1(r/�1)

]
. (105)

The components of the Cauchy stress tensor, Eqs. (102)–(105), are plotted in Figs. 12a–d and 13a–d. It can
be seen that they are non-singular. At the dislocation line, the stress is zero. The stress components (102),
(103) and (105) obtained in reduced strain gradient elasticity are in full agreement with the corresponding
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Fig. 12 Cauchy stress components of an edge dislocation near the dislocation line: a σxx , b σyy , c σxy and d σzz

stress components obtained in Mindlin’s strain gradient elasticity (see [30]). Only the stress component (104)
is slightly different because it depends only on 2 lengths scales, whereas in Mindlin’s strain gradient elasticity
the component σxy depends on 3 lengths scales (see [30]). In the dislocation core region, the component σxy
obtained in the reduced strain gradient elasticity model is higher than the component σxy in Mindlin’s strain
gradient elasticity (see Fig. 13c).

3.3 Limit to simplified strain gradient elasticity

In this section, we carry out the limit from reduced strain gradient elasticity to simplified strain gradient
elasticity for the fields of screw and edge dislocations. Since reduced strain gradient elasticity is a generalization
of simplified strain gradient elasticity, the dislocation fields of the simplified strain gradient elasticity model
must be recovered from the dislocation fields of the reduced strain gradient elasticity model. The limit towards
simplified strain gradient elasticity reads [19,28]

a1 = 0, a2 = λ�2

2
, a3 = 0, a4 = μ�2, a5 = 0 (106)

and

�1 = �2 = �. (107)

For a screw dislocation, the limit reads �2 = � in Eqs. (76), (77), (79), (81) and (82) which leads to known
results in the literature (see, e.g., [9,11,19,24,30]). Therefore, the dislocation fields of a screw dislocation in
reduced strain gradient elasticity are in agreement with the dislocation fields of a screw dislocation in simplified
strain gradient elasticity.
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Fig. 13 Plots of the Cauchy stress components of an edge dislocation in reduced strain gradient elasticity (RSGE), simplified
strain gradient elasticity (SSGE), and classical elasticity (Classical): a σxx/bx , b σyy/bx , c σxy/bx , and d σzz/bx

For an edge dislocation, the plastic distortion (89) and the dislocation density (90) reduce to formulas
known in simplified strain gradient elasticity (see, e.g., [21,24,30]). The displacement fields (92) and (93)
simplify to

ux = bx
4π(1 − ν)

[
2(1 − ν)

(
arctan

y

x
+ πH(−x) sgn(y) + ∂y

∫ ∞

x
K0

(√
X2 + y2/�

)
dX

)

+ xy

r2

(
1 − 4�2

r2
+ 2K2(r/�)

)]
, (108)

uy = − bx
4π(1 − ν)

[
(1 − 2ν)

(
ln r + K0(r/�)

)
+ x2 − y2

2r2

(
1 − 4�2

r2
+ 2K2(r/�)

)]
. (109)

Equation (108) is in agreement with the displacement field given in [5,21,30]. Equation (109) agrees with the
expression given in [5,10,21,30].

The incompatible elastic distortion fields (96)–(99) reduce to

βxx = − bx
4π(1 − ν)

y

r2

[
(1 − 2ν) + 2x2

r2
− 3x2 − y2

r2

(
4�2

r2
− 2K2(r/�)

)
− 2(y2 − νr2)

�r
K1(r/�)

]
,

(110)

βyy = − bx
4π(1 − ν)

y

r2

[
(1 − 2ν) − 2x2

r2
+ 3x2 − y2

r2

(
4�2

r2
− 2K2(r/�)

)
− 2(x2 − νr2)

�r
K1(r/�)

]
,

(111)

βxy = bx
4π(1 − ν)

x

r2

[
(3 − 2ν) − 2y2

r2
− x2 − 3y2

r2

(
4�2

r2
− 2K2(r/�)

)
− 2

(
y2 + (1 − ν)r2

)

�r
K1(r/�)

]
,

(112)
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βyx = − bx
4π(1 − ν)

x

r2

[
(1 − 2ν) + 2y2

r2
+ x2 − 3y2

r2

(
4�2

r2
− 2K2(r/�)

)
− 2

(
x2 − νr2

)

�r
K1(r/�)

]
, (113)

which agree with the formulas given in [21,24,30]. The elastic distortion (96)–(99) obtained in reduced strain
gradient elasticity, the elastic distortion (110)–(113) obtained in simplified strain gradient elasticity and the
classical elastic distortion are plotted in Fig. 11 using the values of the length scales given in Table 1. It can
be seen that for these values of the length scales, the elastic distortion in reduced strain gradient elasticity and
the elastic distortion in simplified strain gradient elasticity are in good agreement even in the dislocation core
region. Only the extremum values of the elastic distortion in the dislocation core region are slightly higher in
simplified strain gradient elasticity than in reduced strain gradient elasticity for the used values of the length
scales.

The stress fields (102)–(105) simplify to

σxx = − μbx
2π(1 − ν)

y

r4

[
(3x2 + y2) − (3x2 − y2)

(
4�2

r2
− 2K2(r/�)

)
− 2y2r

�
K1(r/�)

]
, (114)

σyy = μbx
2π(1 − ν)

y

r4

[
(x2 − y2) − (3x2 − y2)

(
4�2

r2
− 2K2(r/�)

)
+ 2x2r

�
K1(r/�)

]
, (115)

σxy = μbx
2π(1 − ν)

x

r4

[
(x2 − y2) − (x2 − 3y2)

(
4�2

r2
− 2K2(r/�)

)
− 2y2r

�
K1(r/�)

]
, (116)

σzz = − μνbx
π(1 − ν)

y

r2

[
1 − r

�
K1(r/�)

]
, (117)

which agree with the formulas given in [11,19,30]. The stress fields (102)–(105) obtained in reduced strain
gradient elasticity, the stress fields (114)–(117) obtained in simplified strain gradient elasticity and the classical
stress fields are plotted in Fig. 11 using the values of the length scales given in Table 1. It can be seen that for
these values of the length scales, the stresses in reduced strain gradient elasticity and the stresses in simplified
strain gradient elasticity are in good agreement even in the dislocation core region. The extremum values of
the stress fields in the dislocation core region are slightly higher in simplified strain gradient elasticity than in
reduced strain gradient elasticity for the used values of the length scales.

4 Conclusions

The reduced strain gradient elasticity model is developed in this paper. Reduced strain gradient elasticity is
a strain gradient elasticity model involving two internal characteristic lengths in addition to the two Lamé
parameters. It allows to eliminate elastic singularities and discontinuities and to interpret elastic size effects.
Reduced strain gradient elasticity is a gradient model at a level of simplicity and complexity between simplified
strain gradient elasticity and Mindlin’s strain gradient elasticity. One advantage of reduced strain gradient
elasticity is the fact that is possesses two internal characteristic lengths like Mindlin’s strain gradient elasticity
but less gradient-elastic constants than the five in Mindlin’s gradient theory leading to simpler expressions for
the total stress and double stress tensors. The reduced strain gradient elasticity model is the appropriate model
if two length scales are needed but the full Mindlin strain gradient elasticity theory is too sophisticated for
applications. Thus, reduced strain gradient elasticity theory contains most features of the full Mindlin strain
gradient elasticity theory and can be used for many important applications at the Ångström-scale, but also as
effective (gradient) theory with two independent length scales. Therefore, the reduced strain gradient elasticity
model is a particular case of Mindlin’s first strain gradient elasticity theory, and is a generalization of the
simplified first strain gradient elasticity model to include two different characteristic length scale parameters.

In order to show the main advantages of the reduced strain gradient elasticity model, it has been employed
to investigate straight dislocations. Exact analytical solutions for the displacement fields, elastic distortions,
Cauchy stresses, plastic distortions and dislocation densities of screw and edge dislocations have been derived
which demonstrate the elimination of any singularity fromelastic and plastic fields at the dislocation line, except
the dislocation density field possessing a logarithmic singularity at the dislocation line. The dislocation fields
of a screw dislocation only depend on the characteristic transverse length �2, whereas the dislocation fields
of an edge dislocation depend on the characteristic longitudinal lengths �1 and the characteristic transverse
length �2. The most important length scale for the characteristic dislocation profiles of the displacement,
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plastic distortion and dislocation density fields of screw and edge dislocations is the transverse length �2. The
dependence of the dislocation fields on the characteristic length scale parameters �1 and �2 is as follows.
The fields of a screw dislocation only depend on the characteristic transverse length �2 in the following way:

• displacement field: uz = uz(r, �2)
• plastic distortion: βP

zy = βP
zy(r, �2)• dislocation density: αzz = αzz(r, �2)

• incompatible elastic distortion: βi j = βi j (r, �2)
• Cauchy stress: σi j = σi j (r, �2).

The fields of an edge dislocation depend on the characteristic longitudinal length �1 and the characteristic
transverse length �2 in the following way:

• displacement field: ui = ui (r, �1, �2)
• plastic distortion: βP

xy = βP
xy(r, �2)• dislocation density: αxz = αxz(r, �2)

• incompatible elastic distortion: βi j = βi j (r, �1, �2)
• Cauchy stress: σi j = σi j (r, �1, �2).

It is important to note that the main feature of the obtained solutions of screw and edge dislocations is the
absence of any singularity in the displacement, elastic distortion, plastic distortion and stress fields due to the
regularization in the framework of gradient elasticity.
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