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ABSTRACT

In this thesis we compute several important ingredients for to the next-to-next-to-next-to
leading order (N3LO) zero-jettiness slicing scheme that is used for providing fully differential
cross-sections at N3LO in perturbative quantum chromodynamics.

In the first part of the thesis we calculate next-to-next-to leading order (NNLO) beam
functions through higher orders in the dimensional regularization parameter € as required for
the renormalization of the N3LO beam function. We build upon these results to calculate the
so-called real-virtual (RV) contributions to the N3LO beam function.

In the second part of the thesis we concentrate on developing new methods to calculate the
zero-jettiness soft function. This computation is complicated because of Heaviside functions
that are needed to define jettiness. In order to enable the calculation, we develop two different
approaches to allow for the application of integration-by-parts identities to integrals with
Heaviside functions. We use these two approaches to compute the NNLO soft function to
higher orders in € as required for the renormalization of the N3LO soft function. Finally,
we apply one of these approaches to study the N3LO zero-jettiness function and derive the
first N3LO contribution to the zero-jettiness soft function, the triple gluon same-hemisphere
emission.

ZUSAMMENFASSUNG

In dieser Dissertation berechnen wir mehrere wichtige Beitrage fiir ein next-to-next-to-next-
to leading order (N3LO) zero-jettiness Slicing-Schema das verwendet wird um vollstindig
differentielle Streuquerschnitte auf N3LO in storungstheoretischer Quantenchromodynamik
zu berechnen.

Im ersten Teil dieser Dissertation berechnen wir next-to-next-to leading order (NNLO)
Beamfunktionen zu hoheren Ordnungen in dem dimensionalen Regularisierungsparameter
€, da diese fiir die Renormierung der N3LO Beamfunktion benétigt werden. Aufbauend auf
diesem Ergebnis berechnen wir sogenannte real-virtual (RV) Beitrdge zur N3LO Beamfunktion.

Im zweiten Teil dieser Dissertation konzentrieren wir uns auf die Entwicklung von Methoden
zur Berechnung der Softfunktion, diese wird durch Heavisidefunktionen, die bendtigt werden
um jettiness zu definieren, erschwert. Um die Berechnung zu erméglichen, entwickeln wir
zwei verschiedene Methoden welche die Anwendung von integration-by-parts Identitidten
auf Integrale mit Heaviside-Funktionen ermoglichen. Wir verwenden beide Methoden um
die NNLO Softfunktion zu hoheren Ordnungen in € zu berechnen, da dieses Ergebnis fiir
die Renormierung der N3LO Softfunktion benétigt wird. Schliefilich verwenden wir eine der
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beiden Methoden um erste Teil-Ergebnisse der N3LO Softfunktion zu bestimmen, ndmlich die
Emission dreier Gluonen in dieselbe Hemisphre.
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INTRODUCTION

1.1 OVERVIEW

The fundamental physical interactions are currently best described within the framework of
quantum field theory as encapsulated in the Standard Model of Particle Physics (SM). While
the SM keeps being confirmed at particle colliders and else-where it is understood that it can
not be fully correct up to arbitrary high energy scales. Indeed, the SM is not able to describe
several physical effects observed and verified. Besides not including the fundamental force of
gravity, it also fails to describe cosmological observations that require the existence of dark
matter, the observed imbalance between matter and antimatter in the universe and a few other
things.

To remedy these shortcomings many theories that go beyond the Standard Model (BSM)
have been proposed over the years. However, none of these theories has so far been confirmed
by a direct measurement at a particle collider or in other laboratory experiments. A lead to
what a correct BSM theory might look like is expected to come from a disagreement between
experimental measurement and theory prediction at the Large Hadron Collider (LHC).

Searching for deviations between theory and experiment has led to great efforts in both
communities to increase the precision of experimental measurements and theoretical predic-
tions. Theoretical efforts are complicated by the fact that the LHC is a proton-proton collider
and protons are composite particles which cannot be described in perturbative quantum
chromodynamics (pQCD). However, theoretical predictions within pQCD are made possible

by the collinear factorization framework [1, 2]

had ! ! Aqcp
UPP—>X = Z/o dx; /0 dxjﬁ/p(xi)f]-/p(xj)Uij%X(pi, p]) 1+0 0 . (1.1.1)
ij
In Eq. (1.1.1) U;‘;i x is the hadronic cross section for the production of the final state X in a

proton-proton collision. The f;,p(x;) are the parton distribution functions (PDFs) that describe
the probability to find a parton i with momentum fraction x; in the proton. Furthermore,
0ijsx(pi, pj) is the partonic cross section for the production of the final state X in the collision
of partons i and j. Finally, Aqcp ~ 0.3 GeV is the scale of non-perturbative QCD and Q is
the momentum transfer of the hard scattering process. Thus, at a momentum transfer of
Q ~ 30 GeV non-perturbative effects are at the percent level so that neglecting non-perturbative
contributions in Eq. (1.1.1) provides a good description of proton-proton collisions. A more
precise theoretical prediction for proton-proton scattering requires better knowledge of both
PDFs and the partonic cross section.
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While the PDFs are non-perturbative quantities that need to be extracted from experiment,
the partonic cross section Uijﬁx(pi, pj) can be calculated in pQCD. A better theoretical descrip-
tion of the latter quantity requires the calculation of virtual and real emission contributions to
higher orders in the strong coupling constant «s.

These computations are encumbered by an interplay of singularities that appear in both real
and virtual emission corrections. Virtual corrections contain so-called loop integrals which may
introduce ultra-violet (UV) and infra-red (IR) divergences. The UV divergences are re-absorbed
into physical parameters by the process of renormalization. The IR poles stemming from
virtual corrections cancel against similar poles from real emissions and collinear counter terms
required for the PDF renormalization.

Experimental measurements introduce selection requirements for final states (so-called
fiducial cuts) to account for detector limitations and discrimination of backgrounds. Therefore,
to compare theory predictions to experimental data, computations of cross sections need to be
performed differentially in kinematic observables.

One such comparison for the production and decay of a Higgs boson in proton-proton
collisions at a center of mass energy of 13 TeV and in the diphoton decay channel pp — H —
¥ was reported in Ref. [3]. Kinematic cuts were imposed on the final state photons such that
the squared four momentum of the diphoton pair is in the range 105 GeV < p%w < 160 GeV
and the inclusive cross section as well as the Higgs boson pr distribution were measured for
this fiducial region. The reference found good agreement between the measured inclusive
cross section 0exp = [132 £ 10 stat £ 8 sys | [fb] and the SM prediction Oyhe, = [126 £7 | [fb].
The comparison for the Higgs boson transverse momentum distribution is shown in Fig. 1.1
and generally also shows good agreement.

Theoretical predictions used for the analysis in Ref. [3] are fully differential with respect to
any infra-red safe kinematic feature of the Higgs boson production process at next-to-next-to
leading order (NNLO) in QCD. Since the statistical and systematic accuracy of the experimental
measurement will be improved with the collection of more data, theoretical predictions for the
fully differential cross section will need to be extended to next-to-next-to-next-to leading order
(NBLO).

In the context of such computations, the phase-space integrations need to be carried out
numerically as fiducial cuts may be complicated functions of the final state momenta. To allow
for such a numeric integration a systematical approach to extract and cancel IR divergences is
required. This is the focus of current efforts for fully-differential cross sections at N3LO in

QCD. We explain this situation in more detail, in the next section.
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Figure 1.1: Differential cross section for pp — H — 7 extracted from Ref. [3]. The measured cross
section is compared to different SM predictions obtained with different programs that
provide a fully differential cross section for pp — H. "Total uncertainties are indicated by
the error bars on the data points, while the systematic uncertainties are indicated by the
boxes. The uncertainties in the predictions are indicated with shaded bands. The bottom
panel shows the predicted values from the top panel divided by data."(Ref. [3],page 29 figure
8.)

1.2 SOFT AND COLLINEAR DYNAMICS

To understand how IR divergences appear in real-emission processes consider the example
of a massless incoming quark with momentum p emitting a gluon with momentum k, as
illustrated in Fig. 1.2. The associated propagator with the intermediate quark in Fig. 1.2 reads

1 1 1

= = , (1.2.1)
(k=p)2  —2k-p —2E.E; [1—cosby,]

where E; (E;) is the energy of the gluon (quark) and 0, , is the relative angle between the
initial state quark and the final state gluon. From Eq. (1.2.1) we can infer that the integration
over the gluon final state phase space dk, becomes singular in the two cases for which the

k

> >
p p—k

Figure 1.2: Massless incoming quark emitting a final state gluon. The gray circle represents an arbitrary
process.
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propagator 1/ (p — k)? becomes singular. The first case appears when the gluon is emitted
with zero energy E; = 0, the so-called soft limit. The second case is given by 0, ; = 0, when
the gluon is emitted in the same direction as the quark; this is the so-called collinear limit.

While both of these singularities are regularized in dimensional regularization by integrating
in d = 4 — 2e dimensions d’k; — ddflkg, this makes a numerical evaluation required for
complicated observables impossible. The situation can be best illustrate with a toy example.
Imagine that we want to calculate the following integral

I =lim [/01 dx ﬁ’fi - ff) / (1.2.2)

e—0

where f(x) is a complicated function but finite everywhere in the integration domain and the
dependence of the integrand on € is similar to the one of phase-space integrals in dimensional
regularization. To integrate the first term in Eq. (1.2.2) numerically we first need to set

~1 around x = 0 and we obtain a

€ = 0. However, in this case the integrand behaves like ~ x
logarithmic divergence. Furthermore the € — 0 limit is directly prohibited in the second term
of Eq. (1.2.2), preventing any numeric integration. To solve this problem, the divergence at
x = 0 needs to be extracted and cancelled against the second term, prior to any integration.

This can be achieved by two different methods, subtraction and slicing.

Subtraction Methods

Since we know that the integrand in Eq. (1.2.2) is only singular at x = 0, we can simply
subtract and add back the function at f(x) at x = 0. We obtain

. [/ ax RSO 110 _ SO

e—0 €

= lim [/ dx 0)} +£135[ (0)/01dxx11€—f(€0) (1.2.3)
:/1dx_0)
0 X

The last line in Eq. (1.2.3) is now finite in the x = 0 limit and can thus be evaluated numerically,

while the explicit 1/€ pole of the third term in the second line in Eq. (1.2.3) cancelled against
the second term, the so-called subtraction term, after integration.

For NNLO QCD processes different subtraction schemes exist. Two examples are given by
the antenna subtraction [4—16] and the nested soft and collinear subtractions [17-26]. While
being numerically more stable than their slicing counterparts, subtraction schemes are also
more involved. A subtraction scheme regulates singularities locally at the integrand level
and requires precise knowledge of all singularities as well as the integration of the associated
subtraction terms. For this reason slicing schemes seem more feasible at N3LO.
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Slicing Methods

We again want to calculate the integral in Eq. (1.2.2) numerically. To isolate the divergence at
x = 0, we split the integration into two regions around a small cut-off parameter § < 1. We

obtain

= lim [/ dx 1Y +/ dx (0)]. (1.2.4)

The second term on the r.h.s. of Eq. (1.2.4) is again finite and can be evaluated numerically,
the first term on the other hand can now be simplified in the § — 0 limit. We find

Izlii%[(i%—log(é))f(o) @N) } /d

. () (1.2.5)
—1og(5) £(0) + /5 dx 2+ 0(9).

While the subtraction in Eq. (1.2.3) provided an exact result, the slicing in Eq. (1.2.5) usually
only provides an approximation for small §. Additionally, the first term in the r.h.s. of the
last line in Eq. (1.2.5) has an explicit factor of logé that needs to cancel against the second
term, after integration. In practice this leads to large numerical cancellations that need to be
controlled.

Despite these shortcomings, as compared to the subtraction method, slicing methods are
easier to construct and thus seem more feasible at N3LO. Currently, different slicing schemes
are readily available at NNLO in QCD with N-jettiness [27-30] and pr [31—38] being the most
prominent.

To understand how slicing works in a physical context consider the production of a vector
boson in quark anti-quark collisions g7 — V 4 X at NLO QCD. Two contributions need to be
considered. Virtual O(as) corrections to g7 — V and real emission corrections described by
the process g7 — V + g. We calculate the pr distribution of the Vector boson and introduce a
cut-off parameter py < 1, see Fig. 1.3. To fulfill momentum conservation any radiated gluon

below this cut-off parameter needs to be soft or collinear while any gluon radiation above

NLOqGg—V do

do_ LOgq—V +g
AVAVAVAVAVAVaV: dp

—VVVV VWV

soft or collinear hard

—(

7

Po pL

v

Figure 1.3: Visualization of gt slicing at NLO for the process g7 — V + X.
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N3LOgqq — V do NNLOgG—V +j

AAVAVAVAVAVAVAV] dp VVVVVVVN

soft or collinear hard

—)

bo pL
Figure 1.4: Visualization of g7 slicing at N3LO for the process g7 — V + X.

the cut-off parameter needs to be hard. From Fig. 1.3 it becomes clear that we can view the
emission in the latter region as the leading Order (LO) process of g — V + g. This process
is free of singularities and therefore its cross section can be computed numerically in four
dimensions. On the other hand, the process in the first region is g5 — V at NLO, for which all
emissions need to be soft, collinear or virtual. However, just like in the toy example, we can
simplify the integrand in these soft and collinear limits to facilitate the computation.

The extension of this discussion to the N3LO case is illustrated in Fig. 1.4. The first region
is now simply g7 — V at N3LO with all emissions being either soft collinear or virtual.
Conversely, the second region still needs to have at least one resolved final state jet such that
the most offending singularities are given by the process g7 — V + j at NNLO. While the
second region now also exhibits divergences from real and virtual emissions, they can be
treated with existing NNLO subtraction schemes.

Although the pr slicing scheme has already been used in fully differential N3LO calculations
of color singlet production [39], this scheme can not be extended to final states with additional
jets. For this reason we study the use of jettiness as a slicing parameter.

Specifically, we will use the zero-jettiness observable as a slicing parameter for color singlet
production pp — V + X at N3LO.

> o

P1 P2

Figure 1.5: Kinematic configuration of the process pp — V 4 X, p; and p, are the momenta of the
incoming partons, while k;;, are the momenta of the final state partons. The final state vector
boson V is omitted.



1.3 STRUCTURE OF THIS THESIS

zero-jetiness slicing

The zero-jettiness variable is defined as [40, 41]

. 2Pi : km]

T= min , (1.2.6)
;iE{LZ} [ Qi

where p; are the four momenta of the initial state partons, k;, are the momenta of final state

QCD partons and Q; are hardness variables (cf. Fig. 1.5). From the definition in Eq. (1.2.6) it

becomes clear that in the limit T — 0 all emitted momenta k,, need to become either soft or

collinear to the initial state momenta p; as required for a slicing parameter. In this limit of

small 7, the cross section factorizes [40, 41]

lim doNL9 x (T< ) =B®B®S®H®dr0,, . (1.2.7)
In Eq. (1.2.7), ® denotes convolutions of the transverse virtuality and longitudinal momenta
fractions of particles entering the hard process (cf. Eq. (14) in Ref. [41]). The hard function H
describes virtual corrections to the leading order cross section and is process-dependent. It is
already known through N3LO QCD for such processes as single vector boson production and
Higgs boson production [42, 43]. The beam function B is a process-independent function that
describes initial state collinear radiation and is already known through N3LO [44—47]. We note
that the beam function is independent of the number of jets in the final state since it describes
radiation collinear to the incoming partons. The soft function S is also process-independent. It
describes soft radiation off the external partons. It is currently only known through NNLO [48,
491
Application of the zero-jettiness slicing scheme at N3LO requires the knowledge of the
corresponding soft and beam function. In this thesis we contribute towards this goal by
calculating varies contributions required for the two functions. These computations require the
use of standard multi-loop techniques such as reverse-unitarity [50] and integration-by-part
identities (IBPs) [51] (cf. Appendix A.1).

1.3 STRUCTURE OF THIS THESIS

This thesis contains two independent parts, that deal with zero-jettiness beam and soft
functions. In the first part, we focus on the computation of the beam function.

Specifically, in Chapter 2 we calculate all NNLO QCD beam functions through second
order in €, as required for the renormalization of the N3LO beam functions. In Chapter 3
we compute contributions to all N3LO beam functions due to real-virtual emissions. To
facilitate these calculations, we employ the by-now standard techniques of collinear projection
operators [52], integration-by-parts identities (IBPs) and reverse unitary.

The calculation of the soft function described in Part II can not be performed with the
help of the standard methods as Heaviside functions, that appear in the definition of the
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zero-jettiness observable, complicate the calculation. Therefore, the goal of Chapters 4 and 5 is
twofold. First we want to calculate the soft function at NNLO through second order in € as
required for the renormalization of the N3LO soft function. Second, we want to develop new
computational techniques which will enable application of integration-by-parts identities to
phase-space integrals with Heaviside functions.

In Chapter 4 we achieve this by rewriting Heaviside functions as integrals of auxiliary
parameters over delta functions. After writing delta functions as the imaginary part of a
propagator-like structure, integration-by-parts identities can be applied. At variance with this,
in Chapter 5 we derive modified integration-by-parts identities that can be directly applied to
integrals containing Heaviside functions. Both of these approaches allow to express the NNLO
soft function through a sum of master integrals, and lead to huge simplifications compared to
the original calculations in Refs [48, 49].

In Chapter 6 we apply the modified IBP approach of Chapter 5 to the computation of the
N3LO soft function. We focus on the contribution where three gluons are emitted into the
same hemisphere. While the calculation turns out to be complicated because of an additional
analytic regulator that needs to be introduced, the approach ultimately proves successful
allowing us to derive first contributions to the zero-jettiness soft function at N3LO.

We summarize this thesis Chapter 7.



Part1

BEAM FUNCTION






NNLO BEAM FUNCTION
This chapter is a revised version of Reference [53].

In this chapter we discuss the calculation of the NNLO beam function through higher orders
in the dimensional regularization parameter €. It is structured as follows. In Section 2.1 we
explain the general setup of the calculation, relating collinear limits of QCD cross-sections to
beam functions. We use reverse unitarity and IBP-relations to express the bare partonic beam
function through master integrals. The calculation of master integrals is discussed in detail in
Section 2.2. We proceed by renormalizing the beam function in Section 2.3. Finally, we discuss
the results and conclude in Section 2.4.

We note that parts of this chapter were already discussed in the authors master’s thesis
Ref. [54] in which the quark-to-quark beam function was calculated. However, the computation
of the new results in this chapter, the gluon-to-gluon, gluon-to-quark, anti-quark-to-quark
and quark-to-gluon beam functions require the recapitulation of concepts and results already
discussed in Ref. [54].

2.1 GENERAL SETUP

The beam function is a quantity defined in soft-collinear effective theory (SCET) [55-58].
However, it was pointed out in Ref. [59] that the beam function can be related to QCD splitting
functions. More precisely, the bare partonic beam function Bf’]- is related to the spin-averaged
and color-summed collinear splitting function <Pj L {m}> which describes the transition of a
parton j to a parton i under collinear emission of m other partons. It can be written as

Bi~ Y / dPs™ (P, () ). (2.1.1)
{m)

The phase-space measure is defined as [44, 45]

dps™ = < (;:)’;",1 5" (ki)) 5 (22kn P ;) 5 (2

n

==
ke
»|=
ST
|
—~
—_
|
N
~—
N——
~
N
=
N
~

where
6t (k2) =0 (k) 0 (ko). (2.1.3)

In Eq. (2.1.2) p is the momentum of the parton j, p is the light cone momentum complementary
to p, and k,, are the momenta of final state partons. Furthermore, f is the so-called transverse
virtuality of the off-shell parton i, z - p is its longitudinal momentum and s = 2p - p. Thus,
the last two delta functions in Eq. (2.1.2) introduce the dependence on the transverse virtu-
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ality t and the longitudinal momentum fraction z to the beam function as required for the
convolutions of the factorization theorem in Ref. [41].

]
It relies on the use of a projection operator P acting on matrix elements M;_, ., for the

A general formula for the calculation of any splitting function <P~ Ly {m}> is given in Ref [52].

process of a parton j splitting into on-shell partons {m} and an off-shell parton i*. This
projection operator, together with an axial gauge for gluons, decouples the collinear emissions
from hard matrix elements. We obtain

<Pj—>i*{m}> = P|Mj—>i*{m}|2’ (2_1_4)

p + . _

J=itum - v o 1.
_2(117—6) 2 diu (ps) dup (ps) M]P‘;i*{m}MjLi*{m}' ifi € {g}
where
k,py + Puky
d],ll/(k> = —8w + m; Ps =p— ka, (2.1.6)
m

and the sum in Eq. (2.1.4) runs over all color and spin degrees of freedom of all external
partons.
Putting everything together, we write

1 m
BZ = M] {Z:} M /dPS( )P|M]—>1*{m} |2, (2.1.7)

where ¢y, is a symmetry factor for identical particles and Vj; is an averaging factor, dependent
on the color (C;/;) and spin (S;/;) sums of partons i and j

__1 {S)
Nij = (s (2.1.8)

This factor simply introduces the spin and color average for the initial state j and removes

~—

the spin average for the final state 7, that was performed in Ref. [52]. All required averaging
factors /\/ij are shown in Table 2.1

It is apparent from the definition Eq. (2.1.1) that, just like for the splitting functions, it is suffi-
cient to consider the following set of i’'s and j’s: (i,7) € {(91,9m), (91,8), (91, Gm), (£, &), (£, qm) }[60,

61], where the indices I and m denote quark flavors.

b
q19m
is obtained by setting

Any other set is obtained by charge conjugation. For example the beam function B], is

b b

simply equal to qu o q1Gm

. Furthermore a flavor-preserving transition in B
I =m.

The representation of the bare partonic beam function Bf’j given in Eq. (2.1.7), together with
a special Feynman rule for the projection operator P, allows us to perform a calculation in a
standardized way. We start by drawing all relevant diagrams for the process |M,;_,;« 3 2, then

we apply Feynman rules to obtain an expression for the projection of [M;_- () ?, and finally,
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(i,7) (9,9m)  (91,8) (9,qm)  (&8) (&9m)
Nij NL N§1—1 11? NL Ngl—l 11\1;6

Table 2.1: Averaging factors j; required for the different bare partonic beam functions B?j

we use integration-by-parts identities to obtain the beam function expressed through master
integrals.

For example the calculation of ng at NNLO requires the consideration of the two real-real
emission (RR) processes |M,_,,- {gg}]2 and |Mg_, (a7}
(RV) contribution |Mg_, ¢} |2 at one loop. It is convenient to distinguish amplitudes for the

|2 at tree level, as well as the real-virtual

process ¢ — ¢*{g} that involve a loop from the ones at tree level. We will refer to the former

as M! and to the latter as M!

=g {8} TS Squaring the amplitude we obtain

|M

g—g*{g} | ‘M M,

2
g—g*{g} + §—g* {g}|

_ 2 H 2 (2.1.9)
= ‘Mg%g*{g}’ + ZRe{Mg%g sy Mgg {g}} + ‘Mg—>g @l

In Eq. (2.1.9) we only keep ZRe{M g (M gﬂg {g}}
2

S-

The required diagrams for \Mg%g*{ggﬂz, |Mgﬁg*{qq}] and Re{MgHg (M gﬁg {g}} are

as it is the only terms which is of order

14

shown in Fig. 2.1. Diagrams for all other beam functions are shown in Appendix B. We
implement Feynman rules in Form [62] to obtain mathematical expressions for all diagrams
and employ reverse unitarity[50] to rewrite delta functions appearing in Eq. (2.1.2) as the
difference of two propagators

i 1 1
0X) =57 <X+ie X - ie) ' (z:2.10)

Eq. (2.1.10) effectively maps phase-space integrals in Eq. (2.1.7) onto loop integrals, allowing

us to use integration-by-parts (IBP) identities [51] to express the beam function through master
integrals. The IBP reduction is performed using FIRE [63].

We find that all five beam functions can be expressed through just twelve master integrals.

They include nine double-real master integrals

[ 1

L = 1{1],, L= |—F——= ,
1 H(z) 2 _P'(P—kl)](z)

[ 1 [ 1
L=|——| , Iy = _ ,
’ L(p _k12)2] ) ! L(p— k1) K, P'kZ] 2)

[ 1 [ 1
I = 7 I - 7
T k)2 (p— k) B kl](z) T k) (p k)2 p kz](z)

(2.1.11)

b= ! ] s = ! }
T k22 P (=)l )’ PR (k)] (P =kl )

15
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1
bz[@—kmzw—kﬁ”P—MWﬁLm'

and three real-virtual master integrals

110 = I: 2 — 12 2:| ’ Ill = I:z]-2:| ’ (2‘1‘12)
PL-p(p=12>(p—k=1)2]n 2 (p—k—=1)2]q

1
I = [lz (p—1)2 (1 —k)? (l—k)‘f’](l)‘

In Egs. (2.1.11) and (2.1.12) we used the notation ki to define the sum of k; and k,. We
labelled all the integrals with the subscripts [ |(1) and [ |(5). These labels refer to the phase

space element that we use to integrate

d
[fl) = /dPS(Z) f [flay = /dPS(l)/(Zdnl)df. (2.1.13)

(21) are defined in Eq. (2.1.2). We further note that all

b
q19m

in Ref. [54]. However, we discuss the calculation of some already known integrals in detail to

We note that phase-space measures dPS

integrals but Iy are required for the calculation of B; ; “and have thus already been determined

introduce computational techniques that will be required later.



2.1 GENERAL SETUP

(b)

Figure 2.1: Diagrams contributing to the By, beam function. Diagrams for which the fermion flow
is reversed and left-right mirror diagrams are not shown. The dashed line represents
a “cut” so that all particles crossing it are on the mass-shell. The vertex ® denotes the
insertion of the projection operator defined in Eq. (2.1.5). Diagrams (a)-(g) are double real
gluon emission diagrams, (h)-(k) are quark anti-quark emission diagrams, and (1)-(p) are
real-virtual emission diagrams.

17
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2.2 CALCULATION OF MASTER INTEGRALS
2.2.1  Master integral I

We begin by discussing the simplest integral, the two particle phase-space I;. It reads

&k ik -
L :/ (27_[)0}_1 / (Zn)dz—l 6t (k3) 6 (k3) 6 (2kip-p—1L)4 (2]“7”’ -(1- z)) . (2.21)

We start by rescaling the external momenta ki, k>, p, and p such that the dependence on s and

t factors out of the integral in Eq. (2.2.1). We write

\2, p= ﬁ\/f, ki = I~<,-\/¥, (2.2.2)

n

ﬁ:

and obtain

ddk dk
h= td_g/ (27'()d1_1 / (27r)d2—1 67 (ki) o7 (ky) & (2kiz-p—3) (2.2.3)
X(S(Zklz'f)—(l—Z))/

where we dropped the tilde to simplify notations. For integrals such as the one shown in

Eq. (2.2.3) it is useful to introduce a Sudakov decomposition for the momenta k; and k;
K= wph + Bip" + KL, i=12, (2.2.4)

where p? = p?> = p-k;, = p- ki1 = 0. With this parametrization, the phase-space integration

measure becomes

d 0o o
/(2d )k 5+ (k2) = (27-1)d—1/0 d“i/o dﬁi/dd_zkud((xiﬁ,'—kfl), (2.2.5)

where the lower boundaries in the first two integrals enforce the constraint k; - p > 0, k; - p > 0
is encoded in 6 (k?).

We further simplify the expression Eq. (2.2.5) by introducing spherical coordinates for /|
and, since the integrand in Eq. (2.2.3) is independent of any angles associated with k! , we can
directly integrate over the (d — 2)-dimensional solid angle ();_»

/ d’k; (5+ (kz) Qg / du(l/ dﬁl/d|ku| |kll|d 35(“ iBi — ki )

(2m)* 2(27) 22m)*t (2.2.6)

Q
2251/ docl/ dﬁl/dk (2,) d(asfi — K2, ).




2.2 CALCULATION OF MASTER INTEGRALS

We now insert Eq. (2.2.6) into Eq. (2.2.3) and integrate over klz | to remove delta functions
(S(OCiﬁi — kzzi)‘ We find

1 (Q By
h= 27:22 2/ dle/ dﬁl/dk )€5(arf1 — K2,)
/ docz/ dﬁz/dk (K,)6(azPa — K2, )5(anz — (1 — 2))6 (P12 — 1)
1 (Q
_ 4d-3 d—2
=t 16 27r2d2/ dtxl/ dag(aqap) €6(1n — (1 —2))

></0 d:Bl/O dB2(B1B2) "6 (B2 — 1),

(2.2.7)

where the shorthand notation a1, = a1 4+ ap and B12 = B1 + B2 is used. The remaining two
integrals are of the form

/Ooo day /ODO day a? ab 5(ay + o — x). (2.2.8)
They can be computed using the integral definition of the beta function

/01 w11 —u)V ldu = B(x,y) = W (2.2.9)
Indeed,

) o0 . )
[ aw [ du o o stwr 02— = [(dwraf (1-2) 21
0

2.2.10
y="% 1+a+b/ dy v (1— )" 22 TA+a)T(A+b) 1404 ( )
vy -y T2+a+b) '
Inserting Eq. (2.2.10) into Eq. (2.2.7) we obtain
1 ()2 T(1—e)* [1—2z\"
d—3 d—2
b= 6 22T 202 \ 2 ' (2.211)
2.2.2  Master integral I,
The next-to-easiest integral is the master integral I,. It reads
2k12'ﬁ
d?k; d’k, 6 (22— (1-2))
I = 67 (k) 6% (k3) 6(2kpa-p—1 ;o (22
2= [ i | i &) 70 Sk p =)D e e

19
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and it can be calculated along the lines of I;. Rescaling momenta Eq. (2.2.2) and employing
the parametrization Eq. (2.2.6) we obtain

731 (- 041 2)~¢
12 s 8(271’2512/ dﬂél/ dﬂ( 5(0(12_ (1_2))

(2.2.13)
8 /0 dﬁl/o dB2(B1B2) (P12 — 1)-

The second integral in Eq. (2.2.13) can again be evaluated using Eq. (2.2.10), while the first
integral can be related to the integral representation of the Gauss hypergeometric function

1
I S A b—1 _ \c—b—1 o —a
2Fi(a,b,¢,z) = T (=) /0 P (1—1t) (1 —tz)""dt. (2.2.14)
Indeed
/ d(xl/ day af & (1 —a1)™ 6(aq 4 ap — x)
0 0

x aq\ D e b
a [
——/Odoclocl (1——x> (1—wa1) “x’,

y=" 1 b 1 b (2.2.15)
=t /0 dyy" 1—y) (1-xy)™
2214 TA+a)T(1+b) 1104s
: F .
re+atb) = 2 1(1+a,c2+a+bx)
Combining these results we finally find
M3 (Q0)? (1-2\'7 T(1—e)
b= s 8 (2m)2d-2 < z ) I(2—2¢)2 oF1(1,1—-¢€,2—2¢,1-2). (2.2.16)
2.2.3 Master integral I3
We turn to the calculation of the integral I3. It reads
2k12~ﬁ
= 5 (k) 6% (kB) 6 (2knp-p— 1 (e
3 / (2m)d-1 / (277)d-1 (k1) (k3) 0 (2ki2-p— %) TECDE (2.2.17)

Unlike the previous two integrals, this integral can not be evaluated using the phase-space
parametrization Eq. (2.2.6). This happens because the propagator in Eq. (2.2.17) introduces
the scalar product ki, -k, complicating the integration over the solid angel. To circumvent
this problem we insert 1 = [ d?Qé%(k; + k» — Q) into the integrand and change the order of
integration. The integral can now be split into two integrals that can be evaluated one after
another. We find

b= (4905 (20 p—1)5(Q p-(1-2) (HQZ) (22.19)

p— Q)



2.2 CALCULATION OF MASTER INTEGRALS

d d
HQ) = [ oy | gt ()9 ()6 - Q), (2219

27T)d 1 27-[)01 1

where we rescaled the momenta to factor out ¢ again. We further simply the calculation of F(Q?)

by exploiting Lorentz invariance and choosing a reference frame such that Q = (Qy,0,0,0).

The integral simplifies to

d d L
F(Qo) :/ (2(711)’;1—1 / (2(;11;2_1(5+(k%)5+ (k3) 071 (ky + k2) (k1o + k20 — Qo), (2.2.20)

where kjy denotes the time-like component of k;. We first perform the k; integration removing
the delta functions and integrate over k; after that. We find

d?k 2
F(Q0) = [ ggrpima® (Ko~ 11)3" (G~ 2Qok),
_ dlkt] a2 sip2 22 ko2
= [ dkio Q41 (2 )2d—2|k1| J (klo_kl )5 (Qo—2on10),

ks=|k 73
1F [ dkio Qs / e Zd Skt 6H (B — k)5 (Q3 —2Qokn),  (2:221)

= /dklo Q4 1W ko267 (Q§ — 2Qok1o),

_ Qdfl Qo
- (zn)Zd—z 2d—1"°

The Lorentz invariance is restored by identifying Q3 = Q?, and we obtain

F(QZ) _ Qal—l (QZ)_G

TR T (2.2.22)
@) 2\ —€
=t #0520 - 1000 p - 1-2) (. Gaa)

We perform the remaining Q integration in Eq. (2.2.23) by introducing the Sudakov decompo-
sition Q = ap” + Bp* + Q| and write

B i [ e [ ap [aQi (@) 0wp - @)
N2 \—€
X m&ﬁ—l)é(a— (1—-2)). (2.2.24)
1

The integration over « and B is performed by removing the delta functions, while the Heaviside
function is removed by changing the integration variable to Q% = 1=2y. We finally obtain,

L g4 Qa1 Qap (1-2 126/ e
3 4(2m)24-2 a1 dy-———7+— 1_|_1 e )

1 (Q 1-z\"% r1-e
e 416((27:)25)2< . ) (1—e)*

(2.2.25)

-1
WzF] (1 1_6,2—26,27),

21
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where we used the integral representation of the Gauss hypergeometric function Eq. (2.2.14)

again.
2.2.4 Master integral I,

We next consider the master integral Iy

2k12-ﬁ
_ ddkl dde + (12\ s+ (12 t 5( 5 _(1_Z)>
L= [ BT / it & )07 (8)0 @k -p =) oy o (2226)

It is calculated along the same lines as I3, and we again split the integral into two parts

I = #7571 /ddQ 6(20-p—1)6(2Q-p—(1-2)) F(Qz’pég'ﬁ : Q), (2.2.27)
d?k d?%, ot (K3) 6t (K3
F(Qp-Qp-Q) = / (271)‘11*1 / (27t)d2*1 C E ]2)2 ﬁ(' 12{2 81 (Q — ki — ko). (2.2.28)

Due to the presence of the vectors p and p the function F will now be a function not only
of Q? but also of p-Q and p - Q. Nonetheless, our approach remains the same. We exploit
Lorentz invariance by setting Q = (Qy,0,0,0), and find

1 d?-1k - 1 1
F= /( ! 5(Q0—2\k1\)

8popo ) (2m)2-2[k, [4 1 —dip-rig 1+1p -7

(2.2.29)

1 Qo \** [ do Y 1
~ (2p0Qo) (2P0Q0) <2> /(ZN)Z”H (kn - p1) (k- p2)’

While the angular integral in Eq. (2.2.29) is not straightforward to compute, it is discussed in
detail in Refs. [64, 65]. The result reads

dQl((d_l) (d—2) 2_26 F(l — €)2 012
/ kn-p1) kn-p2) —Q e T(1—2¢) 2F (1,1,1 —€1— 7) , (2.2.30)

where p1p = (1 — 7ip, - 7ip,). Finally, we write p17 in the Lorentz invariant way

2popo 4popo 2Qopo 2Qopo  (2Q-p)(2Q-p

1 N
1—p£:§(1—npnﬁ)

> y’ (2.2.31)

and the function F in Eq. (2.2.29) becomes
0d-2) (Q?)~¢ I'(1—¢)?
(2m)*=2 (2p- Q)(2p- Q) e T(1 —2¢)

QZ
F(1,1,1— .
( e'(ZQ-P)(2Q~ﬁ)>

F(Q%p-Qp Q=
(2.2.32)
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We substitute Eq. (2.2.32) into Eq. (2.2.27) and find

Q(d—Z) (QZ)—l—e
(27)24=2 (2p - Q)(2P- Q)

14:td—SS—l/ddQ(s(zQ.p—;)5(2Q-p—(1—z))

o T -e)? e o
eT( —2¢) 211 <1’1’1 ’(ZQ-P)(ZQ-P)>'

(2.2.33)

To facilitate the Q integration, we introduce a Sudakov decomposition Q" = ap* 4 pp# + QPi
and integrate over « and f removing the delta functions ¢ (8 —1/z) and ¢ (« — (1 —z)). We

obtain
2
(d-2)
W2 2] ra-ep
1-z
“z - - —(1 2 5
<[ agi@) () MR (L1 -e1- §).
Finally, we substitute Q> = (1 —z)(1 — u)/z, integrate over u and find
2
14 = —td_5S_1 YRR G)
42m)2=2 \  z €2T(1 —2¢)? (2.2.35)

x 3F (1,1,—€,1—2¢,1—¢,1),

where 3F is the generalized hypergeometric function [66]. The remaining RR master integrals
I5 through Ig can be calculated following the above discussion. For this reason we move to the
discussion of the master integral Io.

2.2.5 Master integral Ig

We consider the master integral Iy, it reads

d?k d?k 6 (2kip-p—1)6 @—(1—2)
Iy = / (Zn)dl—l / (27-()(12—1 o (k%) 6" (k%) (7 —kn)? (p —(kz)z CEE ﬁ) . (2.2.36)

To proceed, we insert 1 = f ddQ(Sd(kl + kp — Q) into the integral and obtain

2 4. 7.
=% (405 (20-p—1)6(2Q p— (1-2)) F9(Q(;f_ g')f Q) (2.2.37)

where

dk, / dik, o7 (k) o™ (K3) 5(Q — k1 — ka) (2.2.38)

2m)=t ) (2m)* p-(p—ki) (p—k)?

We choose the rest frame of Q, use the phase-space parametrization shown in Eq. (2.2.20),

R(QpQPQ =

remove delta functions by integrating over k; and introduce spherical coordinates for k,. We
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further remove the remaining delta functions by integrating over the absolute value of k> and

obtain the angular integral

F9:_<Q0>d2 1 STo Y 1

2 Q5 Qoo Qoo A (27)%=21 — ity - i 1 = Tip - i (2.2.39)
()" 1 dol Y 1
T <2> Q3 Qopo QoPo/\ (271)23=2 (ky - p1) (ku - p2)’

where we introduced the notation p; = (1, }7;), with A = 1/(Qopo) — 1, p» = (1,7,) and
kn = (1, 7). While the angular integration in Eq. (2.2.39) looks similar to the one in Eq. (2.2.29)
it is in fact more difficult as the momentum p; is not massless anymore. Indeed, this case was
also discussed in Ref. [65] and the result is given by the Appell hypergeometric function F;
(see e.g. Ref. [67])

/ dQ,(cdfl) 1 21-2¢ 1= A T(1 —¢)
(k- p1) (kn - p2) €(A— ﬁp ) ﬁﬁ) (1 _2€)1 o o (2.2.40)
XF1<1 —€, _611_261_ +1ip71_’_ +7/-l»p 7/—l»ﬁ>
A —iip - 1ip —)L—i—np fip

Substituting Eq. (2.2.40) into Eq. (2.2.39) and restoring Lorentz invariance, we obtain

> oy 11 e (QY) T T(1-¢)
FQup QP Q= Grpra c(grr2p-0 -2 QT 29)
) ~ ) (2.2.41)
><F1<1,—e,—€,1—26, Q —4p-Qp-Q Q >
Q*+2p-Q(1-2p-Q)"Q*+2p-Q(1-2p-Q)

We insert Eq. (2.2.41) into Eq. (2.2.37), introduce the Sudakov decomposition Q¥ = ap# + Bp# +
Q'l, remove delta functions by integrating over a and f and substitute Q% = I(1 —z)/z.
We find

=5 Q-2 1 T(1-e)

b= o e T - 20)
' iz (1-2) (1—1)1(1—2)2\ ¢ .
></odl[l—l(l—z)] 1 (1—2z)+2] < 2 ) (2.2.42)

I(1-2z) (I-1)(1-2)
X B (1,—6,—6,1—26‘,1(1_2)_1, -2 -1 >

While the remaining [-integration is too complicated to be performed in closed form in €,
it is sufficient to know the result expanded €. Since there are no readily available software
packages to perform an expansion for the Appell function, we replace Appell function by its
integral representation [66]

1 a—1 _ 4 \c—a—1
Fy (a,by,by,¢,21,22) = /0 gy L© ™ (1—u)

I'(a)(c—a) (1—u Zl)ibl (1-u Zz)sz. (2.2.43)
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We find

2
=5 QU2]7 gy a2 r( — e
I9:T/O d”/o A o T i+ (z—1)] [ (z=1) =2 T(1 —2¢)
(1-D1(1-2)?2) [z +1(-14u+z-uz)]° (2.2.44)
e e e =i “
1+u(z—1)+1(-1+u+z—uz)]°
X[ 111 (z—1) } '

While the integral over [ in Eq. (2.2.44) converges if we Taylor expand around € = 0, the
integral over u is proportional to (1 — u)~172¢ and therefore it diverges at u = 1 for € = 0. We
subtract the divergence at u = 1, splitting the integral into two pieces. To this end, we define
two functions

[z 41 (-14+u+z—-uz)]"
M(u’l>_[ 1+1(z—1) ]
1+u(@E-1)+I1(-1+ut+z-uz)] (2:2.45)
X[ 14+1(z—-1) } ’
i-2)]?
G(]) = 1 [Q( } (z—1)zT(1—¢)?
)= )22 4[1+1(z—1)] [ (z—1) — 2] T(1 — 2€) (2.2.46)
y [(1—1) 12(1—z)2]€,

and re-write Eq. (2.2.44) as

19_/ du/ dl (1 —u)""2 G(1) M(u,1)
- / du / dl (1—1u)""2 G(1) [M(u,1) — M(1,1)] (2.2.47)
+/0 du/o dl (1— )72 G(1) M(1,1).

The u = 1 singularity in the first term on the right-hand side of Eq. (2.2.47) is now regulated,
while the last term in Eq. (2.2.47) can be easily integrated over u. We find

1 1
Iy :/0 du/o di (1_u)—1—26G(l) [M(u,l) — 5 / dIG(I) M(1,1). (2.2.48)
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The integrand in Eq. (2.2.48) is now expanded up to order e* and integrated using the HyperInt
package [68]. The final result is expressed through harmonic polylogarithms (HPLs) [69]
H (i, z). It reads

2
td_5 |:Q(d72):| e 1 z
b= gz 1797 L T O

(2.2.49)

I (7 +4 H(-1,0,z) —8 H(0,0,z) +4 H(1,0,2)) | + O(e),

where we do not show higher orders in € for the sake of brevity.

2.2.6 Master integral I

We finally turn to the calculation of the RV master integral I;o. While this integral has also
already been discussed in Ref. [54], it is important to re-examine it for two reasons. First, it
complements our discussion of the computation of master integrals and second, the calculation
of the N3LO RV beam function in the next chapter will re-use the result for integrals Iy, I11
and Iy5.

The integral I;o reads

Lo — / dk / 441 5+ (kz) ) (2k. p— i) h) (J (1 Z)) e
") @) Gy Pp) (p =17 (p— k=17 25
We rescale k and the loop momenta using Eq. (2.2.2) as well as | — [/t and obtain
td*5 ddk ddl + (02 (S(ka_%) (5(2k;5—(1—z))
IlO - S / (27-(>d—1 / <27.[)d 5 (k ) 12 (l . ﬁ) (p _ 1)2 (p _ k _ l)z 7 (2.2.51)

where we dropped tildes after the rescaling. We first integrate over / and then over k. The loop

integral in Eq. (2.2.51) is standard except for a linear propagator

d4 1

- Qm)drz (1-p) (p—12 (p—k—1)% (2.2.52)

We address this problem by first combining the propagators 1/1? and 1/1 - p . We find

11y~ dy o dy
12(21'15)_/0 (12—1—21-;5]/)2_/0 (I+yp)2? (2.2.53)



2.3 RENORMALIZATION

We then combine 1/(p —1)? and 1/(p — | — k)? and obtain

1 1 B /1 dx
(p=0*(p=k=02 Jo [1—x)(p—1)2+x(p—k—1)2
(0=t =2+ xlp k=173 s
_/ —J—xk]
Putting everything together, we find
ddl 1
I —/ dy/ / "t (2.2.55)
[(T+y )22 [(p— 1 — xk)?]
The integral over [ is standard. We obtain
121 r( g / _ 1
= d / dx / duw ¢ (1—u)t-e
(47)4/2 y “ (2.2.56)

X(Zka—ZyMP—XH)

After integrating Eq. (2.2.56) over y, the remaining x and u integrations are straightforward

and we obtain

/ d’I 1 i 2+2€7_[—2+er<1 —e)’T(1+e¢)
@m)d>(1-p) (p—1>(p—k— l) e T'(1-2e) (2.2.57)
x (2p-k) 1€ oF (1, —€,1—€,2p - k).

The remaining integration over the on-shell momentum k is performed by introducing the
Sudakov decomposition k¥ = ap" + Bp* + k| . We find

2
EM (1— Z)—ezl+zer(1 —€)’I'(1+e)
4(2m)2d-2 €2 T(1—2¢) (2.2.58)

X 2F1(1,—€,1—¢€,1—2z).

This concludes the discussion of the evaluation of master integrals. All master integrals
are substituted into the expressions for the beam functions and expanded in €. Note that

factors of (1 —z) 1€ and t~!7"¢ are expanded in € using the so-called plus distribution (cf.

Appendix A.3). The expansion to the required order in €? is performed with the help of the
HypExp package [70]. The quantity obtained as the result of this procedure is the so-called bare
partonic beam function. In the next chapter we renormalize the bare partonic beam function
to obtain the so-called matching coefficients.

2.3 RENORMALIZATION

In this section we discuss the renormalization of the bare partonic beam functions Bz.are

obtained in the previous sections. This includes the standard ultra-violet (UV) renormalization
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in the MS scheme, which in this case only requires the renormalization of a;. However, we
also discuss the renormalization’ of infrared poles of Bbare The physical quantities obtained
after this renormalization procedure are the so-called matching coefficients I;;. Thus the goal
of this section is to derive a formula that expresses the matching coefficients I;; through the
bare partonic beam function B}}are.

We begin by applying the standard renormalization in the MS scheme

23’75 €
o) = Z(as) <M4n ) Ks, (2.3.1)
Z(as) =1— a—;% + O(uc?), (2.3.2)
11 CA — 4Tp n
Po = 3 ! (2.3.3)

While the replacement in Eq. (2.3.1) is sufficient to remove all ultra-violet poles of the beam
function, there are still infrared (IR) poles that need to be taken care off. These IR poles cancel
against other IR poles of the soft and hard functions as well as collinear counter terms required
for the PDF renormalization. To renormalize the beam function we follow the discussion in
Ref. [71].

We start with the relation between the physical and the bare beam function

t
Bg-are (tzu) = /0 dt'Z; (t—t,pu) Bij (', z, 1), (2.3.4)

where the renormalization constants Z; (t — t/, ) are known to the three-loop order [60]. The
physical beam function in Eq. (2.3.4) is defined as

(t,zn) Z/ — Ly (¥,2 V)fk]( )Z;Iik (.2, 1) ® fi (2), (2.3.5)

where we introduced the shorthand notation for the z-convolution in the second line.

We now derive a relation between the matching coefficients I;; and the bare partonic beam
functions Bg-are with the help of Egs. (2.3.4) and (2.3.5). We begin by multiplying both sides of
Eq. (2.3.5) with Z; (t — ¥, 4) and integrating over +'. We obtain

BY™ (t,2, 1) = ;/dtl Zi(t =t p) I (', 2, 1) © fi, (2.3.6)

where we omitted the integration boundaries.
Since we want to compute the matching coefficient, we can use any external states. Thus, we

will consider partons j as initial states. We write the "bare" and the "physical" parton PDFs as

h o
B =Tu® fie, (2:37)
fbare — (Sl] (1 _ Z) (238)

To be consistent with the literature Ref. [60, 61] we call this procedure renormalization, however, one might also
call this procedure subtraction.




2.3 RENORMALIZATION
and insert them into Eq. (2.3.6) to obtain
B (1,200 = X [ AF 74 (= £,0) i (£,20) © Ty (2). (239
k

The quantities fkj follow from the Altarelli-Parisi equation. Up to O (a?) they read

(0)
as(p) P;
Tig = 0i6(1 —z) — 2(71:) Tk

s 5 . (2.3.10)
s 0 (1)
+(2n> [2@(% k+7P >_2epik]‘

The quantities Pi(jn) , n=1,2, are known and can be found in the Appendix of Ref. [60]. After

expanding all quantities that appear in Eq. (2.3.9) in powers of «;

NI
Ly = <E) F](k), (2.3.11)
Zy(t,u) =6(t) + 2 ( ) (2.3.12)
. — 5 _ Hs \" 1(n)
L (t,z,u) = 0x6(1)0(1 —2) + ;12:1 (4ﬂ> L7, (2.3.13)
] s\ are (n
Bl (bz,p) = x0(05(1 =) + 1 (=) B, (23.14)
n=1
we obtain
1 bare (1 1 P
10tz 0) = B O (t,2) = 2V () 6 6(1 - 2) +2 Lo(1), (2.3.15)

1Pz = B Pz) — [ ez~ (1002 +2r e(t))

2 1 1 2 (2.3.16)
—aro) =2 Y 1 (b2 ) @ Ty (2,0) — 217 (4, ) 6 6(1 - 2).
k
Egs. (2.3.15) and (2.3.16) relates the matching coefficients to the bare beam function Bgare.
However, convolutions over z’ and #' which appear in Egs. (2.3.15) and (2.3.16) still need to be
computed.

The z convolution ® is of the form

[ g (3) = [ anduftogta)st - n) (2317)
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These convolutions have been extensively studied and we simply use the Mathematica package
MT][72] to evaluate them.

The t convolutions give rise to integrals of the form

/Otdt’Ln(t — ') Ly (t), (2.3.18)
where
1 n
L.(t) = [nt(tq . (2.3.19)
+

To calculate these contributions we consider the integral

/tdt/(t . t/)flfﬁe p —1-we _ r(_u‘e)r(_ﬁe) tflf(aﬂi)e. (2.3.20)
0

I(—(a+p)e)

and expand both sides of the equation in €. Since expansion of ' ~17%¢ is performed using the
plus distribution, Eq. (2.3.20) plays the role of a generating function for the convolutions. Thus,
all required convolutions can be found by matching coefficients in « and . All convolutions
for the computation of the beam function can be found in Appendix A.s5.

Combining Eq. (2.3.16) with the above convolutions we obtain all five matching coefficients
Lygur 1,80 1gigur lgg and Ig 4, . This concludes our discussion on the renormalization. We
discuss the results in the next section.

2.4 RESULTS AND CONCLUSION

We successfully calculated all five matching coefficients Iq,,, Iy, ¢/ 15,5,, lgg and I 4, through
second order in the dimensional regularization parameter €. The expressions for these func-
tions are quite lengthy and we decide to only discuss some features of the most complicated
coefficient I,. However, we note that expressions for all matching coefficients can be found in
digital form in the ancillary file of Ref. [53].

We write the matching coefficient in the following form

V2 1 t
Ié? - (%) I{;};Lk <}£2> FY(2) +6(t)Fs(2), (2.4.1)
5
Fs(z) = C_16(1 —z) + )_ CiLi(1 — 2) + Fs (), (2.4.2)

k=0



2.4 RESULTS AND CONCLUSION

where L is the plus distribution defined in Eq. (2.3.19). For breavity reasons we only show
the coefficient C_; and the function F;;(z) for n 7 = 0. The coefficient C_; reads

110¢(3) 2428 67n% 117t 407(3) 656 1072
2
C—l = CA <— 9 + 81 - 18 + 90 —|—CA7’lfTP 9 —ST+ 9
9387(3) 65727 (3 14576 202> 777t
+e|Ch (_ 27( L+ 3 ) 1s07(5) + 243 27 ' 540
2807(3) 3904 56m2 7t
Cany TP( 27 243 " 27 135
2 2 7472
] ( | 5656{(3) , 220m%((3) | 1142{(3)>  638((5) , 8

81 27 9 15 729

121472 677*  5937° 15687(3)  80727(3) . 232¢(5)
— — CansT —
s 216 11340) +Canglr ( 81 7 15

_ 23360 3287 5t
729 81 54 )|

(2.4.3)

To present the function F;(z) we write

F5,h (Z)|nf:0 = Ci (PO(Z) +e P] (Z) + 62 Fz(Z)) , (244)

and introduce the short-hand notation H; = H(d,z). For brevity reasons we only present F,
the function reads

4 (5523 — 472% + 58z — 55) Hy 4
3z
2 (286z* — 365z% + 34222 — 307z + 66) Hpo 4 (55z% — 1022% + 10522 — 102z + 55) H o
+ 3(z—1)z + 3(z—1)z
32(z4 =322 +322 —z+1) Hyp N 8 (7z* — 182> + 2122 — 10z +7) Ha
(z—1)z (z—1)z
8 (3z* — 102> — 722 + 10z + 7) Hy,0 L8 (6z% —122% + 1822 — 11z 4+ 6) Hy 1
(z=1)(z+1) (z—1)z

2 2
z2+z+1
+ % (—16H_2/0 —16H_ 1, +16H_1, 10 —32H_190 + 47‘[2H,1> (2.4.5)

1
F0:48 (ZZ*Z*Eﬁ*Z) H1/1,1+

2 2 5 4 2
(22 —z+1) 16H3 (42> — 7z* +72* 4 3)
——— (56H 56H

==1) (56H1 +56H1,0,0) + 2@ -1

- <2 (1342% 4+ 1022% 4+ 1312% + 163z — 134)  47? (72* + 722 + 13z — 7) )
) _

9z(z+1) 3z(z+1)

| AH (99z% — 13323 4 1232% — 111z + 33) H —268z* — 5632° + 462z> — 167z + 804
3(z—1)z 0 9(z—1)z
% (44z° — 60z* +122° + 642> — 82+ 28) \  271% (99z* + 652 + 552% + 67z — 33)
3(z—=1)z(z+1) 9z(z+1)
L2 (2460z* 4 55323 + 3502 + 255z — 2406)  (120z° — 112z* + 8823 + 12022 — 200z + 80) {(3)

27z(z+1) (z—1)z(z+1)
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N3LO REAL-VIRTUAL EMISSION BEAM FUNCTIONS

In this chapter we discuss the calculation of contributions to the N3LO beam function due to
real-virtual emissions. This contribution is required for the ongoing computation of the N3LO
beam function in Refs. [44—46]. However, unlike the contributions discussed in these references,
the complexity of the RV emission contribution is comparable to the NNLO contributions
discussed in the previous chapter. Indeed, the computation of the N3LO RV beam function
is very similar to the one of the NNLO RV beam function because the Feynman diagrams
required for these two quantities are directly related to each other. For this reason the two
beam functions share intermediate results and the calculation of the N3LO RV beam function
is straightforward after the discussion of the previous chapter.

The chapter is structured as follows. In Section 3.1 we explain the general setup of the
calculation and illustrate how the N3LO RV emission contribution can be obtained using
results of the previous chapter. In Section 3.2 we explain how to obtain the RV master integrals
as the direct product of NNLO RV master integrals. Finally, we discuss the results and

conclude in Section 3.3.

3.1 GENERAL SETUP

In this section we discuss the calculation of the RV beam function at N3LO. Similar to the

NNLO case, the beam function is obtained from the following equation (cf. Eq. (2.1.7))

=N L [ ars™PIM (3.1.1)
{m} Tum

where we need to sum over all possible emissions m under which a parton j changes into a
parton 1.

However, in this chapter we are only interested in the case where {m} is a single parton. For
example for Bb we only consider the matrix element [M,_, (4 |>. We distinguish the two

and the tree level M!

loop M! §—g*{g}

g8 gl
amplitude is then written as

the one loop M!

7—g*{g} amplitudes. The squared

I t 2
‘Mgﬁg*{gﬂ ‘Mg—>g *{g} +M s—g*{g} +M §—8* {g}’
1l
= Mg_o(s} gﬁg*{g} + Mg%g {s} g%g*{g} + Mg%g “{g} gﬂg*{g} (3.1.2)
- 2Re{Mg—>g {g} —>g {g}} + Mg—>g *{g} g—>g*{g}’

where we dropped all terms that do not scale as a2.
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The first term in the last line of Eq. (3.1.2) is the real-virtual-virtual (RVV) contribution while
the second term is the real-virtual contribution that we consider in this chapter. The required
diagrams are obtained by interfering the seven RV diagrams in Fig. 2.1 with themselves,
yielding the diagrams shown in Fig. 3.1. Diagrams for all other RV emission beam functions
are given in Appendix B.

We proceed by implementing Feynman rules in Form [62] to obtain mathematical expressions

for all diagrams. In doing so we denote the loop momentum appearing in M} as [ and

g—g*{sg}

the one appearing in M'f as u. Since these amplitudes are the same as for the NNLO

§—¢ {8}
RV computation, we can reuse the previous partial fraction and topology definitions. If, for

example, a RV amplitude requires the following topologies for the NNLO calculation

A _ 1 a 1 b 1 c 1 e
ILLL%“K‘HZZ} [(p—k—l)z} [(p—l)z} [l-ﬁ”(l)' (3-13)

11° 1 1° 1 1°7T171°
o= [ T (2] 1251,

then the topologies needed for the N3LO computation read

IAlAu _
1L1,1abcea b ce,f —

[lz}rio]a [(p_k_lz)zﬁor [(p_l§2+io]c
[rreal [eta] [o=ra] 6143

' [(p—ul)Z—ior [u-ﬁl—ior [“:WHM
LZLO]Q [(p k—12+10r [ ]
1

1 € 1 a v
x[l.;ﬂ—io] [u2 10} {(P )2 — ] (3.1.6)

| |

)
1 C
X -
] [l [
where ellipses stand for all other combinations of the families defined in Egs. (3.1.3) and (3.1.4).

IAI Bu _
1,1,1,a,b,cea b c e, f —

We note that in Egs. (3.1.3) - (3.1.6) we used the shorthand notations
d?1
/ aprs(l / a f (3.1.7)

lt /dPS / ddl /gidf (3.1.8)



3.1 GENERAL SETUP

d’k

dps® = LR 6t (K*) 6 (2k-p— s (? - (1- z)) . (3.1.9)

We further note that the last propagators in Egs. (3.1.5) and (3.1.6) are required because the
collinear projection operator connects the otherwise disconnected loop momenta. Indeed, the
contractions in the projection operator (cf. Eq. (2.1.5))

<Pj%i*{m}> = P!Mﬁi*{m}lzl (3.1.10)
Z Tr [M]%Z*{m}ﬁM;’%l*{m}}’ ifi e {q, q}

) ) ; ) (3.1.11)
_@Z dy (ps) dvp (ps) My ey MiZsio oy 3 € {8}

PIMjiegmy* = {

may lead to a factor [ - u, which solely appears in the numerator. This factor is mapped onto
integral families Egs. (3.1.5) and (3.1.6) by means of the identity

lou=c ((I4+u)?—17—u?). (3.1.12)

N[ =

We further note, that since the "propagator” 1/ (I + u)? only appears in the numerator we do
not need to assign a Feynman prescription to it.

After mapping all integrals onto families we perform a reduction using KIRA [73]. Since
KIRA automatically looks for shifts of loop momenta, that map different integrals onto each
other and since KIRA does not keep track of the Feynman prescription, such shifts include for
example | — u and u — [. If applied in our case, this shift of loop momenta would effectively
perform a complex conjugation of some integrals. In the context of IBP programs, such
relations that map different integrals onto each other are commonly referred to as inter-family
relations. We disable all inter-family relations when performing the reduction with KIRA, and
only apply shifts of loop momenta that preserve the Feynman prescription after the reduction.
We further discard all equations that contain an integral with a 1/(I + u)? propagator when
generating IBP relations. Proceeding like this we express the beam function in terms of master
integrals. We explain their evaluation in the next section.
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Figure 3.1: Diagrams for the RV emission contribution to the N3LO Bé? beam function. The dashed
line represents a “cut” so that all particles crossing it are on the mass-shell. The vertex ®
denotes the insertion of the projection operator defined in Eq. (2.1.5). Diagrams which can
be obtained by reversing any of the fermion flows and/or mirroring the diagram at the cut
are not shown.



3.2 CALCULATION OF MASTER INTEGRALS

3.2 CALCULATION OF MASTER INTEGRALS

After shifts of the loop momenta were performed by hand we obtain nine master integrals.

Notably the "propagator" 1/ (I + u)? linking the two loop momenta together is gone after the
reduction. For this reason, all master integrals can be written as a direct product of already
known RV master integrals I1o, I11 and Ij; in Eq. (2.1.12) up to a prefactor. They read

2
s [0 Tl

2
Q(d_z)} 3
| eaT(—ePT(1+e)
=it a2 =2 A T — 2y’ (3-2.2)

s [0 2 T(1—e)iT(2+e)
s 4(2m)%-2e2(1+€)T(1 — 2¢)

—1-2¢
X [ (1 ;Z> I'(1+ €)(cos(7te) 4 isin(7e)) (3.2.3)
ZP2€(1—2z)" 1" ¢, F(1,e+1,e +2,1—2)

o€ (1+el(1—e)

For example, we find the following master integral

RVRV_/dPS /ddl 1 1 1 1
27rd12+10 (p—k—=102+10 (p—1)>+i0l-p+1i0

(3.2.4)

></ 1 1 1 1
(27r) u?—i0 (p—k—u)2—i0(p —u)>—i0u-p —i0’

While the individual loop integrals are just the loop integral encountered in ;g and its complex
conjugate, there is only one phase-space integration. However, the phase-space integration
effectively amounts to making the replacements 2k - p — t/z and 2k - p — s(1 —z) and to
multiplying the integrand with the following prefactor C

(3-2.5)

C:[ﬂw”ﬂ(ﬂl—w>*‘

4(27r)d-1 z

Exploiting the simplicity of the phase-space integration we re-write the last line in Eq. (3.2.4)
as the product of NNLO RV solutions. We find

JRVRV _ /dPS /ddz 1 1 1 1
2nd12+10 (p—k—=01)2+i0 (p—1)2+i0l-p+i0

y /dPS 1 1 1 1
) uw?—i0(p—k—u)2—i0(p—u)?—i0u-p—i0 )’

Lol
= L)Cw , (3.2.6)
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3
e |0 T T2 e
S s2 4(2m)3-3 e*(14€)I'(1—2¢)?

x 2F(1,—€,1—¢€,1—2)%

Proceeding similarly, we find the results for all master integrals. They are defined as

YR = Lo, hol gy gy - (3-2.7)
IFVRY — (1, ) vy » (3.2.8)
RVRV = [ho, 2] gyry - (3.2.9)
IFVRY — (1, Lol gy » (3.2.10)
IRVRV [T, I gy gy » (3.2.11)
IRV = Iy, Ing) gyy s (3.2.12)
PR = [y, Lol gyry » (3-2.13)
INVRY = (1, ] vy » (3.2.14)
IR = I, Io] gy gy + (3.2.15)

where we used the shorthand notation

ab*
[4,b]gvry = o (3.2.16)
They read
-2
g (0O Ta— T T2 e
2 s 16(2m)%-3 e3(1+¢€)(1—2€)I(1 - 2¢)? (3-2.17)
x 2F1(1,—€,1—¢€,1—2),
a@-2)°
IRVRV — _t7273€ |: :| E (1 —el—e1-— Z)r(l — e)r(_€)6r(2 + e)z
3 2 16(2m)d3 2 Y ’ (1+¢€)2T(—2¢)?
— ) l=er(—=1 —
% ZZ+3€ !_ (1 Z) I’(_z)(z 1 6) 2F1(1,1 —|—€,2+€,1 —Z> (3218)

+ (1 —2)"77%T(1 + €)(cos(re) — isin(me)) |,

IRVRV IRVRV (3'2.19)

o]

JRVRV _ (=3¢
64(277)34-3

cese T(1—¢€)T(1+¢)? (3.2.20)
-2 (1— 2€)262T (1 — 2¢)2’



3.3 RESULTS AND CONCLUSION

3
1 (d-2)
JRVRV _ 1 [Q } (1—z) 1265143 F(1-e)’T(1+€)l(2+¢)
6 s 16(27m)3-3 e3(1+¢€)2(1 —2e)T(1 — 2¢)2
X | —e(l—2)2F(1,14+€2+¢,1—2) (3.2.21)

+ (1+¢e)T(1—€)'(1+e€)(cos(me) — isin(rme)) |,

RVRV — (IéWRV) ) p (3.2.22)
v () 6229

22 [0-2)

( —2-3¢,2+3¢ I'(1—¢€)°T(2+¢)?
S2 4(27-()3d—3

[RVRV _
? e*(1+€e)*T (1 —2¢)?

1—2)

x [€2(1—2)*,F(1,14+€62+¢,1—2)?
(3.2.24)

—2¢(14+€)(1 —2z)°cos(me)[ (1 —e)[(1+€)2F(1,1+€24+¢1—2z)

+ (14 €)°T(1 —€)’T'(1 +¢)?

We note that in Egs. (3.2.18) and (3.2.21) - (3.2.23) it is sufficient to only take the real part of
the master integrals. However, it serves as a useful cross-check to keep the imaginary part for
all integrals and let them cancel between each other in the full expression for the bare beam
function.

This concludes our discussion of master integrals for RV contributions to the N3LO beam
function. All master integrals are substituted into the expression for the beam function and
any factors of (1 —z) 17" and t~1*"€ are written as a plus distribution (cf. Appendix A.3),
the resulting expression is expanded to the zeroth order in €. The quantity obtained by this
procedure is the RV contribution to the bare partonic beam function. We discuss the results

and conclude in the next section.

3.3 RESULTS AND CONCLUSION

The individual contributions to the RV bare partonic beam functions read

GEE C‘S“{lwm —2)5() + = [o(8) ( -y 1002

4 |e®9 €d 3 3z
32(1-2)2 16(1-z) 16\ 160(1—z2)Lo (ﬁ) (3.3-1)
+ - + ] -
3z z 3z 3u?

+ O(e*‘*) ,
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ar\° w11, 8(1-z)% 8
<zx> Beg = g5 CaCr <_32_32> o)

+CaCt <32(1_Z)2 + 32) 5(t) 4 C¢ <_32(1—Z)2 _ 32> (5(t)} (3:3:2)

3z 3z 3z 3z
+ 0(6’4) ,
N\’ w11 8 1
(as) Big = 123 —gciTFé(t) —516C§TF(1—z)2(5(t)
6 (3-3:3)
+ A Te(1— z)5(t)} + 0(5—4) ,
3
ar\® )  C3Ce[ 116 1 16 1
(“S> B = 451 590081 —2)+ 5|8 — F'Lo(1—2) — 38(1~2)
(3.3-4)
16 166(1—-2)Lo (5) oot
+? - 3;”2 + (6 )

For brevity reason we only displayed the first orders in €, however all contributions are
calculated through zeroth order.

To summarize, in this chapter we computed the simplest contribution to the N3LO beam
functions, the real-virtual emission contributions. The calculation was straightforward, as
intermediate and final results of the RV emission contributions to the NNLO beam functions
discussed in the previous chapter could be used. We discuss the computation of the soft
function in the next chapter.
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NNLO SOFT FUNCTION AND AUXILIARY PARAMETERS
This chapter is based on Reference [53].

In this chapter we discuss the calculation of the NNLO zero-jettiness soft function. We begin
by explaining the general setup in Section 4.1, relating the soft function to soft limits of
QCD cross-sections that are given by the so-called eikonal functions. We re-write Heaviside
functions that appear in the definition of the zero-jettiness observable as integrals of delta
functions over auxiliary parameters. We then use reverse unitarity to express the soft function
in terms of master integrals. We discuss the calculation of these master integrals in Section 4.2.
Afterwards we explain how to perform the remaining integrations over auxiliary parameters
in Section 4.3. Finally, we present the results for the NNLO soft-function in Section 4.4.

4.1 GENERAL SETUP

Similar to the beam function, the zero-jettiness soft function is a quantity originally defined
in SCET. However, in full analogy to Eq. (2.1.1) it can be calculated by considering soft
limits of squares of scattering amplitudes in QCD, which are given by the so-called eikonal
functions ¢ [52]. The soft-function is then obtained by integrating the eikonal function over
an appropriate phase-space. To be precise, the bare soft function S is related to the eikonal
function ¢y, which describes the soft emission of m partons

1 m
S=Y — [dPS{™ My, (4.1.1)

{m} Pm}
where ¢y, is an identical particle factor,

o @k, "
dPS(Sm) = H a—1 6F (k;%) = H[dkn]l (4.1.2)
n=1 (27T) n=1

is the unresolved phase space for m emissions and

m
M, =96 (T — Y minfk; - n,k; - fl]) , (4.1.3)
i=1
is the m-particle measurement function. Note that, to be consistent with the literature [48, 49],
we have changed the definition of the zero-jettiness variable in Eq. (4.1.3) compared to the one
already introduced in chapters Chapters 2 and 3. That is, we rescaled the light-like momenta
pand pasn =2pand i =2p and set n-n1 = 2.
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The value of the sum ;" ; min[k; - n,k; - i] in Eq. (4.1.3) depends on the relative orientation
of k;,n and 7 where i € IN. To express it in a unique way we use Heaviside functions. Explicitly,
for up to two emissions the observable reads

My =4(T), (4.1.4)
M1:(5(T—1’l'k1)9(17l'k1—1’1~k1)—|—(5(1’—fl'k1)9(71'k1—fl'kl), (415)
My=1[6(t—n-ki—n-ka)0(i-ky —n-k1)0(ii-kp—n-ky)+ (n* < i)

_ _ _ : (4.1.6)
+o(t—di-ky—n-ky)0(n-ky—7i-ky)0(ii-ka—n-ky)+ (n* < a")].

We refer to different sets of delta functions and Heaviside-functions in Eqs. (4.1.4) - (4.1.6) as
“configurations”. Since the NNLO eikonal function ¢ is invariant under exchange of n and 7, it
is sufficient to only consider two configurations, which we refer to as A and B. Hence, we

write
M = MY+ MY, (4.1.7)
My, =2 My +2 Mg, (4.1.8)
where
MY (k) =6(t—n k)8 (ki —n k), (4.1.9)
MU (k) =6(t—7-k)0(n-ky—a-ki), (4.1.10)
MA(kl,kz):5(T—1’l'k1—Tl-kz)@(fl-kl—7’l~k1)9(17l'k2—71-k2), (4.1.11)
Mp(ki,ky) =0(t—n-ky—7i-ka)0(-k1 —n-k1)0(n-ky—1-kp). (4.1.12)

To further facilitate the calculation we expand the bare soft function in a series in the bare

strong coupling constant

5=y [g8.]'s. 41.13)
i=0

The zeroth order is simply defined as [48]
SO = 5(1). (4.1.14)

To compute the NLO contribution to the zero-jettiness soft function we need to consider

corrections due to the emission of a soft gluon. This contribution reads

s =g 4 g = / apslV MV &b 4 / arstt M) &b, (4-1.15)
where [52]
n-n
gél) =Cp 2 (4.1.16)

(Tl kl)(fl 'kl)’



4.1 GENERAL SETUP

and C, = Cp(C,) if the incoming particles are quarks (gluons), respectively. Since Cél) is

symmetric under exchange of n < 7 it follows that Sg) = qul).

To compute 81(41) we introduce the Sudakov decomposition

nt it
k';l = a17 + ,317 + k‘?L’ (4117)

use spherical coordinates for k!, and remove the delta function 6(a; 81 — k2 | ) by integrating

2
over ki, . The phase space becomes

d0§d72)

[dk]] = W dDC] d'B] (0‘1‘51)76/ 1 ,ﬁ] S [0, 00) . (4118)
Using this parametrization in Eq. (4.1.18) the computation of Sl(ql) is straightforward, and we
obtain

n-n
5(0) = Co fars{) sz =k mo i n— k) 2
0d-2) —1-2€ (4.1.19)
=G 4(27)d-1 e

At NNLO we need to consider three different contributions to the soft function

1
5@ = [aps{) Mg + 5. [ars®? Mg + [ars? iy gl .
: 4.1.20
— g2 4 ¢(2) 4 ¢(2)
=S¢ + Sgg + 547 -
The single gluon emission contribution Séz) in Eq. (4.1.20) comes from loop corrections to the
NLO result. It has already been calculated to arbitrary order in € in Ref. [48]. It reads

2 _ ~\5 3 —1-4e
5@ _ Qo] C.Cs Fr1—e)’T(14+e€)° 1

& 7 2(2m)X-2 T(1—26)T(1+2€) &3

(4.1.21)

We continue with the discussion of the double-real emission pieces Sgg,) and S,gf]-). The required

eikonal functions (;‘é? and é’gf]-) can be found in Eq. (A1) and Eq. (A3) of Ref. [52]. They read

CE;%,-) = Tr Co (Ti1 + T2 — 2T12), (4.1.22)
Cé? = Cy [4 Gy Gr1a(k1) C12(k2) +Ca (2612 — &11 — G22)], (4.1.23)
where

2(pi - pj) (k1 - k2) + [pi - (k1 — k2)l[p; - (k1 — k)]

T = = ) Ry (R T k)] (4-1.24)
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i = (1—€) pi-kipj-ka+pj-kipi-ka
U (ky - k2)? pi- (ki +k2) pj- (ki +k2)

B (pi-pj)? [ _Pi'klpj'k2+]9i’k2pj'k1:|
2p;i k1 pj-ka pi-k2 pj-ka pi- (k1 +k2) pj- (k1 +ka)
2ky ko | pi-kipj-ka  pj-kipi-ke

1 4 (Pi'klpj'k2+Pi'k2Pj'k1)2
pi- (k1 +ko)pj - (k1 + k) pi-ki pj-ka pi-ka pj-ka ’

pi-Pj
pi-ki)(pj-k1)’

with py =n, p» = 7.

(4.1.26)

Gij(k1) = (

We note that the previous results for Sc(,é) and Sg,) in Refs. [48, 49] were obtained by directly
integrating 7;; and ¢;; over the relevant phase space. However this approach is not extendable
to N3LO as the N3LO eikonal functions is quite involved (cf. Egs. (C.7)-(C.10) of Ref. [74])
and the associated integration is highly non-trivial. For this reason the goal of this chapter is
twofold. First, we want to re-calculate S,%-) and S é? to higher order in €. Second, we want to
develop a method that can be extended to N3LO.

A standard way to reduce the number and complexity of integrals in loop calculations are
the IBP relations, cf. Appendix A.1. We already saw in Chapters 2 and 3 that this technique
can be adapted to phase-space integrals by re-writing delta functions as the sum of two

"propagators"

i 1 1
0X) =57 <X+ie N X—ie) ' (4-1.27)
This method allows us to use publicly-available reduction tools like FIRE [63] or KIRA [73], that
are programmed to work with linear or quadratic propagators. While the identity Eq. (4.1.27)
was sufficient in the case of the beam function, this is not the case for the soft function, as
the definition of the zero-jettiness observable in Egs. (4.1.11) and (4.1.12) contains Heaviside
functions.
To remedy this problem, we map Heaviside functions onto delta functions, using the
following identity *

1
6(b—a) :/0 dzdé(zb—a) b, (4.1.28)

which holds for a,b € [0,00). Since, for real emissions, k1, -1, k1 -1 € [0,00), Eq. (4.1.28)
can be used to remove Heaviside functions in Egs. (4.1.11) and (4.1.12) at the expense of

introducing an auxiliary integral. We find

MA:5(T—1’l-k1—7’l~k2)9(fl~k1—n'kl)e(fl-kz—ﬂ-kz)

1 See also Section 4.2.2 in Ref. [75] and Appendix B in the journal version of Ref. [76].
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1 1
:/dzl/ dz; 6 (t—n-ky —n-kp)d(zifi-ky —n-ky)ii-ky (4-1.29)
0 0

1 1
X(S(szl'kz—n'kz)ﬁ'kz:/le/ dzo My,
0 0
MB:5(T—n‘k1—ﬁ~k2)9(ﬁ-k1—n-kl)G(n-kz—ﬁ-kz)

1 1
~[4a /d S(t—n-ki—7i k)6 (zii-ky—n-k)a-k
/o Z1 ; 220(T—n-ki—7i-ko)d(zifi-ky —n-ki) 7 -k (4.1.30)

1 1
X(S(Zzﬂ-kz—ﬁ-kz)ﬂ-kzZ/ le/ dz, Mg,.
0 0

We use the representations Egs. (4.1.29) and (4.1.30) in Eq. (4.1.20), postpone the z; integrations
until the very end and perform phase-space integrations first. We then use reverse unitarity
and IBP relations to express the soft function in terms of master integrals. We continue by
computing the master integrals as functions of z; and z,. Finally, we integrate over these

auxiliary parameters.

(2)
99
of Sgg) is completely analogous. According to the earlier discussion, contributions to the soft

We illustrate these steps by discussing the computation of S’ in detail; the computation

functions due to the emission of a g4 pairs read

1 1 1 1
52 =2 ("4 [[dz [aps® Me g2 +2 [ dz [ dz [ars My g2

=

@ @) (4-1.31)
= Ty Cang (285, +25%;),
where we separated the contributions of configurations A and B. They read
@) Y [ @)
Sg7AB = / dzl/ dZZ/dPSS Mazpz (Tin + T2 — 27T12) - (4.1.32)
o 0 0

After writing all delta functions in Egs. (4.1.29) and (4.1.30) as linear combinations of the
corresponding “propagators” and doing partial fractioning, we perform a reduction to master
integrals using FIRE [63]. In configuration A we find four master integrals

B B n-kq TzZ1 -
Lir = (1) 4y IA2_<( 2 _2(21—22)) >(A),

_ -k -1 B
s = <(k1 ~ka) 1>(A), Ing = <<n 5 - 2<21TZ_1 zz)> (ky - k2) 1>(A), (4.1.33)

where we defined

(f>(A) = /dPSéz) 0(t—n-ky—n-ky) 6(n-ky —zi7i-ky) §(n-ky —zoi - ka) f.  (4.1.34)

For configuration B, we obtain six master integrals

Lip = (1)(g),
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B n-kq T21 -1
IZB_<< > +2(1—Zl>> >(B)/

-k - _
Lip = <<n 5 -+ 2(1Ti121>> (k1 - k2) 1> / (4.1.35)

-1
Iop = <<”'2k1 a6 izg) (kl-kz)1> ,

where we used
(F)p) = /dpsg2> S(t—n-ki—fi-ky)o(n-ki—zii-ky) 6(i- ko —zom - k) f. (4.1.36)
We discuss the calculation of the master integrals in detail in the next section.
4.2 CALCULATION OF MASTER INTEGRALS
We evaluate the master integrals of Egs. (4.1.33) and (4.1.35) by integrating over gluon momenta

kip. Since all contributions to the soft function are symmetric with respect to z; < z
permutation, for the calculations below we will assume that z; > z».

4.2.1  Master integral 14,

We begin by discussing the configuration A. The simplest integral reads

Ia = /dPSé?) S(t—n-ky—n-ky) §(n-ky —z17 - ki) 6(n - ky — zo7i - kp). (4.2.1)
To compute it, we follow the discussion in Section 2.2.1. We introduce the Sudakov decompo-
sition
nt t
B = B K (422)

use spherical coordinates for k? ', and remove the delta function &(«;8; — k?, ) by integrating
over k7 . The phase space becomes

dQ(d—Z)
[dk;] = W da; dB; (wiBi)™ ¢, a;,Bi € [0,00). (4.2.3)



4.2 CALCULATION OF MASTER INTEGRALS

Combining Eq. (4.2.3) with Eq. (4.2.1) we obtain

2
Ini = [N]Z/Hd“idﬁi [a;Bi] € 6(T — B1 — B2)d(B1 — z141)d(B2 — 2262), (4-2.4)
i=1
where we defined
Od-2)
[N] = W‘ (4.2.5)
We integrate over a1 and a, and use (cf. Eq. (2.2.10))
00 ®© I['(14+a)l(1+0)
a pb . — 1+a+b
[ B [ ape BBy 0(p1+ 2 ) = ST (4.2.6)
to perform the remaining integrations. The result reads
1 [ee]
In = [N]? (2122)16/0 dp1dpa (B1B2) > 6(T— p1— B2)
NP Tl T2(1  2¢) (4-2.7)
(z122)1-€¢ T(2 —4e)
4.2.2  Master integral 19
The next-to-easiest integral is I 4. It reads
Ipap = /dPSéz) S(t—n-ky—n-ky) 6(n-ky—zi-ky) 6(n-ky — zp7 - kp) (4.2.8)
n-kq T21 -t
X < 5 2@ _22)> . (4.2.9)

Since the additional propagator only depends on 7 - ky ~ B; the integration is identical to the
one of I4; up to the last integration. We find

Ipp = /dﬁ ﬁl 1_[31)) . (4.2.10)

lez TZ1
2(z1—22)

We scale out 7, integrate over ;1 and obtain

Iar = 1e/ dpi ‘Bll—‘Bl)) -

(z1z _
122) -2z (4.2.11)

—2)T7%z — 2, F2(1 — 2€) 71 — 2
— N2 Fi(1,1—2¢,2— 4e, :
[ (z1z2) ¢z T(2—4e) *! € € z1
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4.2.3 Master integral 143

We now discuss the integral 1,3, it reads

IA3:/dPS§;2)5(T—n-k1—n-k2) d(n-ky —z1i-ky) 6(n - ko — zo11 - k)
2 (4.2.12)
2k1 - ko'

X

This is the first integral that contains a scalar product k; - k2. We use the Sudakov decomposition
Eq. (4.2.2) to write it as

2k1 . k2 = lele + ,51062 — 24/ 0(1‘5206251 COSs (PlZ = 1K (Zl + 2y — 2\/2221 COS (Plz) . (4.2.13)

We note that in the second line of Eq. (4.2.13), we used the relation 8; = «;z;, that arises
from the delta function in Eq. (4.2.12). The result in Eq. (4.2.13) is quite remarkable, as the
factorization of integration over ¢, and integrations over a;, simplifies the computation
significantly. Consider the angular integration. We find

/dagd—z)dﬂéd_z) o / d0*2galt?
2k1 - ko arao J z1+ 22 — 24/Z221 cOs P12
Qd=2)y(d-3) /n do (Sinz 9) —€
K10 0 21+ 22 — 24/2221 cos P12
x=cos P12 Qd-2)0d-3) /1 dx (1 _ xz) —e—1
a0 121 +20—2y/Z221 X

L1 QU-2@-3) A et
=02 M4—€/ dy [y (1 2]/)] 2 (42.12)
e 0 (Var+ R, —dyyE T
1 VW
Q(d*Z)Q(d*?)) 4_61“ (% _ G)Z 2F1 (1/ 2 €, 1 - 26, W)
B X100 r(]. — 26) (\/E_}_ \/Z>2)2

2
I ) (1 L, war )
a0 Z7 (1—1—\/%)2 2 (1—1—\/22/21)2

The hypergeometric function in Eq. (4.2.14) can be simplified using the following identity

1 ¥4
»F <1, 5 €,1—2¢, 2> =1+ 2)2 »F (1, 1+¢1— e,zz) , (4.2.15)

4
(1+2z)
which is valid for |z| < 1. Since we work in the region where z; < z;, we can immediately use

Eq. (4.2.15) to simplify Eq. (4.2.14) and we obtain

2

[Q<H>} 2
. Z2 (4.2.16)
=== HSF(1,1+¢1—¢€,—].
& Bip, ! ( Zl)

/ 400l
2ky - ko

on;—
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We substitute Eq. (4.2.16) back into Eq. (4.2.12), and use the representation Eq. (4.2.7) divided
2
by the solid angels [Q(dfz)} to integrate over ay, ap, 2. We find

222 V) T . 1
Lo = INP 2 oR (L14e -6 2 ) [ dp (- ) 2
43 = [N] )< 1( +el—e Z1> ; B1 By (T —pB1) (4.2.17)

We scale out 7, integrate over f; and obtain

277174 T2(—2¢) b2
I43 = [N)? F(1,1+e1-¢2). 2.
a3 = [N] (z122)1—¢ T(—4e) Z2 2b1 < 1 +e € Zl) (4.2.18)

4.2.4 Master integral 144

We now calculate the last master integral in configuration A. It reads
Tga = /dPS(Sz) d(t—n-ky—n-ky) 6(n-ky —z17 k1) 6(n ko — zo7 - k)

" <n-2k1 1z ))1 s k)L

2(21 — 2>

(4.2.19)

The integration is straightforward as we can use the integral representations Eq. (4.2.16) and
Eq. (4.2.7) to directly obtain

B ’ (_4)1.72746 Z
Ipg = [N] (leZ)l_e z22F1(1,14+€,1—¢, =

oe (4.2.20)
(z1—z) 1, (Bu(l—B1) >
8 Z1 /0 b 1-=-28 '

Integrating over 1 we obtain the final result
2 (4T 22 (2¢)
(z122)17¢ T(—4e)

X 2y 2L Z_ 2 R (1,1 +el—e z2> LF (1, _2e, —4e, L Z_ ZZ) .
1 1 1

Iag = [N]

(4.2.21)

The remaining master integrals are all part of configuration B. Integrals in this configuration
can be computed in complete analogy to the integrals contributing to configuration A. Explicit
calculations for these integrals are given in Appendix C.1

This concludes our discussion of the calculation of master integrals. We explain how to

perform the remaining integrations over auxiliary variables z; ; in the next section.

4.3 INTEGRATION OVER AUXILIARY PARAMETERS

After substituting the solutions for the master integrals into the expression for the soft function,

we still need to integrate over the auxiliary parameters z; and z,. For example, consider the

51



52 NNLO SOFT FUNCTION AND AUXILIARY PARAMETERS

(2)

contribution to the soft-function S 43,4

defined in Eq. (4.1.32). Written in terms of master

integrals, it reads

1Py

32¢(2e — 1)z122 8¢(2e — 1)z122(z1 + 22)
—2/ 4 / d I
qA / “ ZZ[ 2(z — 252 M * T(z1 — 22)3
N 8(z1 + z2) (16€3z125 — €*(21 + 22)? + € (22 — 62120 + 23) + z122)
(4e —1)(z1 — 2p)*
872122 (€%(z1 + 22)* — z122)
IA4 .
(z1 —22)°

Iaz (4.3.1)

It appears that after inserting our solutions for the master integrals into Eq. (4.3.1) we will
have to perform a non-trivial integration over z; and z,. However, after changing variables
zp = t z1 the z; integration factors out. We find

2 Q(d 2) _1 A 1
Sgqa =2 [4(27({11 e/ dzy z; ! /0 dt|F(1,14€,1—¢,t)

16(1 +t)t€ (16€’t —e*(1+t)> + € (2 — 61 +1t) +t) [(—2¢)?
. (4 — 1)(1 — D)AT (—4e)

32541 (€2(1+ 1) — t) T(—2€)22Fi(1, —2¢, —4e, 1 —
B (€*( ) ) [(—2€)*2Fy( ) (4-3.2)

(1 — )T (—4e)
16€(2¢ —1)(1 4 £)tT(1 — 2€)22F (1,1 — 26,2 — 4¢,1 — 1)
B (1—1)2T(2 — 4e)
32¢(2e — 1)tT(1 — 2¢)?
(1—)20(2 — 4e)

The z; integration is straightforward while the remaining ¢ integration seems to exhibit a
power-like divergences in t = 1. However, upon expanding the expression in square brackets
in Eq. (4.3.2) around t = 1, we obtain

_ 10251 (2(e —1)e+1)T (2 —2e)T(1 —€)T (e — l)

im|...| = —(1— 1=2 2

k-l = == I (5 —2e) (4-33)
+0((1-1)?)

Hence, we observe that the t = 1 singularity only leads to a logarithmic divergence. We
subtract the divergence at t = 1, expand the integrand in a Laurent series in € using HypExp [70]



4.3 INTEGRATION OVER AUXILIARY PARAMETERS 53

and compute the integral order by order in € with the help of HyperInt [68]. The final result
reads

Lo (_640B) 952 domt\  ,( 8200(3) 3848 3e8n? 32t
3 81 27 9 243 81 45 (43.4)
29447(3)  41672Z(3) 17576 332872 327 e
3(_ _ _ _
e < 7 T 9 67265) + 35~ om3 27

+O<e4)].

Next we discuss the contribution S((M)B due to an emission of a quark anti-quark pair in

configuration B. Written in terms of master integrals, this contribution reads

32¢(4e — 1)z1z
qu_z/dzl/ dz[ )12131

T2 lez — 1)

81z (*(z2+1) (2223 — 1) + e(z1 — D)za(z1z2 + 1) — z1(22 — 1)22) ;
(22 — 1)3(z122 — 1) pe

<162122(Z1<—22) +2z1+ 20 — 1)

(21 — 1)2(22 — 1)2(2122 — 1)2
8 (23(—(2z2 —3))z3 + 232 (323 — 1120+ 6) + 21 (623 — 112, +3) + 320 — 1)
(21 — 1)2(22 — 1)2(2122 — 1)2
232 (2323 + 2325 (25 — 420 +2) + 21 (223 — 420 + 1) + 20)
(Zl — 1) ( Zy) — 1) (lez — 1)2
N 87z1 (ez3z3(ez1 +e+1) — (€ +1)(z1 — 1)z120 — €(ez1 + € + 21)) ;
(Zl — 1)3(2122 — 1)3 b4
N 8ez12p(2€(z1 +1)(z1z2 — 1) — (z1 — 1) (z122 + 1))
T(z1 — 1)(z1220 — 1)3
8ez122(2€(za +1)(z122 — 1) — (22 — 1) (2122 + 1))
- . Igs |
T(zo —1)(z1z0 — 1)

+ €

+e€

Ips (4.3-5)

Ipo

Although the expression in Eq. (4.3.5) looks more complicated than the one in Eq. (4.3.1), it is
actually much simpler. Indeed, the integrand in Eq. (4.3.5) is finite in the whole integration

region and we simply expand it in a Laurent series in € and integrate using HyperInt. We
obtain

2 _
SW,B -

2
Od-2) 8 1672 2247(3) 88 12872
[1] T_1_4€[— 3+ & +e< £6) + 227 ) (4.3.6)

4(2m)- 9 3 9 27

Lo <_1792g(3) 904 = 688772 1367r4>

9 27 81 45
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5 (99204(3)  3527%((3) | 65607(5) | 5752 26727> 10887t
27 3 3 81 243 135

+O(€4)].

While it was not necessary for the above computations, we can actually predict and under-
stand the singularities of the z; integration from physical arguments. To understand this point
we consider the Sudakov decomposition of one of the emitted partons

k”—le —1—131 ”. (4-3.7)

After using the on-shell constraint k? = 0 as well as the relation encoded by the delta function
Bi = w;z;, we obtain

nt il
K = le + ﬁ, wiiel = (2 +zim + ﬂeﬂ) ) (4.3.8)

From the representation in Eq. (4.3.8) it becomes clear that a; — 0 encodes the soft-limit
k! — 0 while the limit z; — 0 describes kinematic configuration where k; becomes collinear to
the beam axis 1, i.e. k!’ o« n#.> Let us now consider the scalar product between the momenta
of two emitted partons k; and k; in the representation Eq. (4.3.8)

DCiIXj
2

ki-kj= (zj—f—zl 2./2iz; & - e]> (4-3.9)

We are interested in finding the limit where the partons i and j become collinear i.e. k; - k; = 0.

To this end we require the expression in parentheses to vanish
(zj +zi —2,/2iz; & - e]) 2 0. (4.3.10)

After changing variables ¢; - &; = 1 — 2y with y € [0, 1] we obtain

(Vai-va) +ayzgy=o0, (4311)

and see that this condition is only satisfied when z; = z; and y = 0.

Thus the collinear limit k; || kj, after ¢;; integration appears as the singularity at z; = z;. This
is not surprising, as z; controls the emission angle in the n#i plane. Hence, if this quantity has
the same value for two emitters after ¢;; integration, both emissions are in the same direction
and thus collinear to each other.

From this discussion we can infer that the z; = z, singularity in Eq. (4.3.1) is the collinear
ki || kp singularity of the original amplitude. After the change of variables z; = t z; in
Eq. (4.3.2), the singularity at t = 1 describes the limit where the quark and anti-quark become
collinear to each other, while the singularity at z; = 0 describes the kinematic configuration

2 In configuration B the limit z; — 0 would correspond to kg o 71# instead.
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in which the gluon, that emits the pair, becomes collinear to the light-like directions n*.
Conversely, in Eq. (4.3.5) the z; integration is free of any singularities as in configuration B the
quark and anti-quark should be emitted into different hemispheres and collinear singularities
are thus absent.

We now discuss contributions due to the emission of two gluons Sé? . Similar to the quark
case, we split it into A and B contributions. We find

2 2
S3 = 5 [dzi [ dz [aPs®) Mac e+ 2, [z [dz [ dps My &l

(4-3.12)
2 2 2 2
=G ( Séa)/ggrA + S(Ca),gg/B)  CaCa ( S(Cf)\/gg,A + S(Cf)‘/ggf3> ’
where we separated contributions proportional to C2 and C,C,. They read
S(Cza),gg,A,B = /dzl /dZZ/dPS_(gZ) Maz,pz 4 G12(k1) G12(k2), (4.3.13)
S(czf)x,gg,A,B = /dzl /dzz/dPsg) Mazpz (2812 — €11 — €22) - (4.3.14)

The calculation of ng‘, g is fully analogous to the calculation of S

(2)
99
with the g7 case, the double gluon emission includes an additional singular configuration, the

. Although, in comparison

pole structure of the z;-integration is the same as before. Indeed, the single soft divergence,
which is absent in g4 emission, is accounted for by an additional factor 1/e€ originating from
IBP reduction. We find

2) 2 1-4c| 8 44 268 4%\ 1 4472
SCA,gg,A = [N]"7 [63 + 32 + 5 "3 )" 72C(3) + 9
1544 3527(3) 9568 26872 107
—— te€ + + -
27 3 81 27 3
2144
+ € <9g(3) +167127(3) — 1208Z(5) + %

(4.3.15)

4 1760772 n 1767
81 45

297472

+4247(3)% 4 36967 (5) + 720

140807 (3)  228872(3)
+€3< 7 9

243 135 945

7

11296772 10727*  35967t°
+ + ) +0(e')
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2 2 1- 8> 88w 8
SChgen = NI 46[ 3 9 3
e 12327(3) 112 N 53677 N 327
3 9 27 45
75047 (3) 640 323272 7487t
2 —_— —_——— pa—
+e€ ( o T 4807(5) 7 g1 15 (4.3.16)
45536(3)  1936712(3) 360807(5) 3040
3 _ _ 2 _ _
+€ ( >+ 3 9127(3) 3 o1

| 176967 | ds6mt  29847°) (€4>
243 135 945 ‘

()

The contribution which is proportional to the color factor CZ, S 22

NLO results 81(41) and Sg) in Eq. (4.1.19).
Indeed, we find

is completely fixed by the

dik _
S(Cza),ggrf‘ =2 / (2r)" 25" () 0 (ky-7i —ky-n) Eia(ko)

/(d)k1 T (k) S(t—ki-n—ky-n)0(ky i —ki-n) 2 Eia(ky)

2 [

s< >(T - k2 n)
Ca
_ 47*12*4€r(1 —26)25V(1)
€2’ (1 — 4e) Ca
2 16T 174 (1 — 2¢)?
e T(1—4e)

(kp-n) (k2 -7)

— 0% (k3) 0 (ky- i —ky - )
(4.3.17)
A0 (t—kz-n)

-

Similarly, we find the following relation for the configuration B

@ _ ar-1-%er(1—2¢)2 54 (1)
Caggs = ~ [N] €2T (1 — 4e) Ca
) 16T 174 (1 — 2¢)?
e T(1—-4e)’

(4.3.18)
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4.4 RESULTS AND SUMMARY

4.4 RESULTS AND SUMMARY

We now present our final result for the bare soft function S through O(e?) at NNLO QCD.

To this end, we write

Nd-2)

2) _ —1—4e
ST=T [4(2n)d—1

2
] 4 <c§ SP 4 CuTens SE +CaCy s(cz)>. (4-4.1)

The individual contributions shown in Eq. (4.4.1) read

2 4 256727 (3
s@ = B L1 1osr(3) + 297 1 e2 (15367(5) - 2060
el 3e 5 3 (4.4.2)
2528716 v
3 2
— 1024
+e ( 015 0 €<3)),
@ _ 420 4r 12 (803) 80 28
5T 32 9T 9 T\ "5 s 9
L ~3527(3) N 2144 N 1607 N 527 (4.4.3)
3 243 ' 81 ' 45 +43
3 (34880(3)  3207°((3) L 2272((5) | 34672 100072 2087
27 9 3 729 81 45 )7
@ _ 11 17067 7\ 404 117
5 =32 973 145(3) + 27 9
b - 2207(3) N 2140 N 677 497
3 81 9 90
8712 (3) 12416 36872 1437
2 —17 — —
+e <268g(3) + = 02(5) + =3 o1 e ) (4.4.4)
2
B <_786;1§(3) N 880n9§(3) 12673 — 62483@(5)

L 67528 24167 4697  107°
729 81 45 63

We compare the result Egs. (4.4.1) - (4.4.4) with the O(e) results in Refs. [48, 49] and find full
agreement.

Thus we achieved the first goal of this chapter, namely the calculation of the NNLO zero
jettiness soft function to higher orders in €. Our second goal was to develop an approach that
can be extended to N3LO. To this end, we proposed to write Heaviside functions as follows

1
6(b—a) :/0 dz; 6 (zi b—a) b. (4-4-5)

We then noticed that, since Eq. (4.4.5) allows us to trade Heaviside functions for delta functions,
and since delta functions can be dealt with using reverse unitarity, this representation enables
a straightforward reduction to master integrals and generalization to higher orders.
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We found that the NNLO zero-jettiness soft function can be expressed through just 10 master
integrals. These master integrals are remarkably easy to compute, as the integration over
the relative azimuthal angle between two partons completely decouples from the remaining
integrations. As a final step we had to integrate the sum of reduction coefficients and master
integrals over the auxiliary parameters z; introduced through Eq. (4.4.5). All in all we saw that
the use of Eq. (4.4.5) led to a great simplification of the calculation compared to the earlier
calculations of Refs. [48, 49].

Unfortunately, it turns out that the application of this approach to the computation of
the N3LO correction is less straightforward. Indeed, the N3LO soft function requires the
computation of master integrals that involve a propagator (k; + ky + k3) 2. In this case the
angular integration does not factorize and the introduction of three auxiliary parameters
complicates the calculation of these master integrals. For this reason we will recalculate the
NNLO soft function with a different approach, that does not require us to introduce auxiliary

parameters, in the next chapter.



NNLO SOFT FUNCTION AND IBPS FOR THETA FUNCTIONS
This chapter is based on Reference [77].

In this chapter we re-calculate parts of the NNLO soft function using a different approach that
does not require introduction of auxiliary parameters. The idea is to derive integration-by-
parts identities for integrals with Heaviside functions and solve the resulting system of linear
equations to obtain a reduction to master integrals.

This chapter is organized as follows. In Section 5.1 we explain the general setup of the
calculation, illustrating how to construct IBP relations for integrals with Heaviside functions.
We proceed by applying this method to the NNLO soft function in Section 5.2. We then discuss
how to calculate master integrals obtained using this modified IBP approach in Section 5.3.
Finally, we conclude in Section 5.4, summarizing the approach and comparing it to the earlier

calculation in Chapter 4.

5.1 GENERAL SETUP AND IBPS FOR THETA FUNCTIONS

In the previous chapter we turned phase-space integrals into loop integrals to allow for a
reduction with standard multi-loop tools. To accomplish that, we had to write Heaviside
functions as integrals over delta-functions because standard reduction programs do not allow
for the reduction of integrals containing Heaviside functions. These reduction programs use
the IBP relations as a starting point to create linear relations between integrals. The relation

reads

/ dk, / dk, 2 5 { 0 Dm] —0, v e {ki,n, i} (5.1.1)

where m € {1,2} and D; are any linear or quadratic propagators. Since Eq. (5.1.1) is just
Gauss’ theorem in d-dimensions supplemented with the statement, that boundary terms of
any dimensionally-regularized integral vanish, it should also hold true if one adds Heaviside

functions to the integrand. Thus, we can write

/ddkl /ddkz 82” { I_II:L[?}'] =0. v € {kj,n,n} (5.1.2)

The modified IBP identity Eq. (5.1.2) turns out to be quite useful as it can be related to
the standard, well understood, IBP relation in Eq. (5.1.1). To illustrate this point we consider
Eq. (5.1.2) in case there is only one Heaviside function. We compute the derivative in Eq. (5.1.2)
and split the resulting expression into two pieces: the so-called homogeneous term, which is
obtained when the derivative does not act on the Heaviside function, and the inhomogeneous
term, which appears when the derivative acts on the Heaviside function. It is clear that, in case

59



60

NNLO SOFT FUNCTION AND IBPS FOR THETA FUNCTIONS

of the homogeneous term, Eq. (5.1.2) is identical to Eq. (5.1.1). In case of the inhomogeneous
term, the derivative of the Heaviside function yields a delta function 9/9dx 6(x) = J(x).
This delta function is then treated as a cut propagator through the use of reverse unitarity.
Therefore, the class of integrals obtained from the inhomogeneous term can again be studied
with the help of reverse unitarity and the standard IBP relation Eq. (5.1.1). While this approach
is straightforward, there is one caveat that makes its practical realization complicated. Indeed,
when the delta function is written as a cut propagator, partial fractioning may be necessary
if this new propagator and propagators D; that are present in the integrand are linearly
dependent.
To illustrate this process consider the following integral

o dk 0 (k-n—k-n)
o =/ @) i) [~k [ 513)

In Eq. (5.1.3) we used the following notation for cut propagators

i1 1 1
o) =24 <x+i0 I i0> ~ (5.1.4)

with x = k%, 7 — k - n. We will use the following shorthand notations for the integrals

ddk 0k ii—k-n)
0 —
I{nlﬂlz,ﬂs} - / (27‘[)d_1 [kz]zll [T — k- 7’1]?2 [k . ﬁ]m’ (5.1.5)
dik 5(k-fi—k-n)
I = : 1.6
b = | G W e F A 19

To express the integral in Eq. (5.1.3) through simpler integrals we have to choose a set of
integrals and apply the identity Eq. (5.1.2) to them. These so-called seed integrals are given
by I?l,l,l} and 1?1,1,0}'
through suitable scalar products. We find

To simplify the computation, we re-write the derivatives in Eq. (5.1.2)

) oot ok 9 ok-n 9
W 2 1. 7)) = [ = w7 H
s (O (K kn k7)) (aku“’ ok ok Y okk ok u
ok-7i 9
p ok -1 (5.1.7)
v ok 8k-r‘1>f

0 0 _ 0
— <d50,k+2kvak2+nvakn+nvakﬁ>f

We now apply Eq. (5.1.7) to our seed integrals and use the fact that 9/dx 6(x) = d(x). We
obtain the following linear relations

(e
Il
Iy
(@)
I
—
=
|

) [Ifl,l,l} - 1?1,1,2}} - 271?2,1,1}/ (5.1.8)

) {_If1,1,1} + 1?1,2,1}} _21?2,1,0}1 (5.1.9)
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0= 5 0 9 5 0 0
v=k: 0= |—7ly;y — 10y + 71{1,2,1}} + {I{LLO} ~ Iy 2y

) (5.1.10)
+dl g0y
and
v=n: 0= (n-n) If{sl,l,O} - ZTL?ZLO}, (5.1.11)
v=n: 0= (n-n) [_If{sl,l,o} + 1?1,2,0}} — 21?2/1’71}, (5.1.12)
0=y s 0 0 5 0
o=k: 0=dIf), o+ |~TI 10y~ Iy + TIhogy | + sy — 20110y (5.1.13)
for I?l,l,l} and 1?1,1,0} respectively.

These six equations are sufficient to express the integral I?l,l,l} through simpler integrals.

Indeed, we solve the system of linear equations for I?l 11} and find the following result

2 1

0 o o

Ty = (4—d) ey = 2l - (5.1.14)
Eq. (5.1.14) expresses a "complicated" integral I?l 11} through a simpler integral Ifl 1,0} We

verify Eq. (5.1.14) through a direct calculation of both integrals. We find

I?l,l,l} = /dPSgl)§ (T —_ k1 . n) 0 (kl kfll '—ﬁkl . 1’[)
-V /d“d’gwfx)_e& (T—£)0(x—p) (5.1.15)
= [N]t¢ /oo daa~=¢ = [N] T;G,

as well as
By = /dPsg”(s (t—Fk-n) 6 (ky-7i— k1 -n)

(5.1.16)
= (V] [ dad (p) 5 (v~ f)é(a— p) = [N] T ’

where the constant [N]| was defined in Eq. (4.2.5) . Thus, we confirm the correctness of
Eq. (5.1.14).

While Eq. (5.1.14) demonstrates that IBPs and reductions can be constructed for integrals
with Heaviside functions, the example we just considered is clearly way too simple. To better
illustrate some technical aspects that arise in more complex situations, let us consider the
NNLO case. At NNLO we obtain two copies of Eq. (5.1.7), one for k; and another one for k»

9 0 0 0 d

= oh = R O 4 Atk P 1.
ak’fv Ady x, + 2kq vak%—kn Uakl-n+n Uakl-r‘z+ 2 Uakl-kz’ (5.1.17)
0 0 0 0 d

i . . - .

Bkgv Ady k, + 2ko vak%+n Uak2-n+” vakz-ﬁ+k1 Uakl-kz' (5.1.18)
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While it was not necessary for the NLO example, an important technical aspect of any loop
calculation is the definition of integral families.

Integral families define bases of linear independent propagators which allow one to un-
ambiguously map any scalar product onto a particular basis of propagators. Since there
are two internal momenta {kj,k,} and two external momenta {n,7} we have seven scalar
products involving the internal momenta. Thus, to define a family we need to identify seven

independent propagators. For example a family' without Heaviside functions reads

T _/ dk,dk; (5.1.19)
-ty kz o kz]az[l—klz 1’1] (kl kz)”4 (kz 1’1)”5 (kl )”6 (klz Tl)

where we introduced ki = ki + k». The family representation of an integral Eq. (5.1.19)
now becomes useful when deriving IBPs, as it allows to write the derivatives in Egs. (5.1.17)
and (5.1.18) in a convenient way. Indeed, we apply Eq. (5.1.17) with v = 7 to Eq. (5.1.19) and
focus on the last term. We find

/ £ 4k d?k B
ak” kz]al [kZ]ﬂz[l — k1o - 1’1]?3 (k1 . kz)a4 (kz . 1’1)‘15 (kl . T_l)% (k]z . fl)a7 B
n /k2 ddklddk2
ak1 kz kz]al [kZ]ﬂz[l — k12 n]”3 (k1 kz)a4 (kz )u5 (kl )% (k12 1’1) (5.1.20)

—|—/k 7i ( 614)ddk1ddk2
2 U RE )L — kg - m]® (K - ka)® T (g - ) (ky - 1) (Kag - 7)%7

ex
ctag (7:11 a2,03,04+1,a5,86—1,a7 7:11,ﬂ2,ﬂ3,a4+1,ﬂ5,ﬂeﬂ7—1) ’

where we used the fact that the scalar product k; - 7 can be expressed through the propagator

basis
1 1

ko -1 = — + . .1.21
2 (kp-7)"' (kg -A+ky i)t (5-1.21)

Thus, we observe that taking a derivative is equivalent to shifting indices when working with
integral families. We can make this property even more apparent by writing

. / ddklddkz
3k” k2 CBJENL = k- ] (ky - k)% (ko - 1) (ke - 71)% (ki - 7)™ (5.1.22)
= [a44+(6 —7 )+ 20337 — 116~ ] 7;61)’(@,”3,”4,”5/,16/,17,

where we defined operators i t(~) that increase (decrease) the index a; of the integral T a5,00,05,06.07
by one.

We note that while integral families serve as a useful tool to manage IBP relations, they are
strictly speaking not necessary for a reduction. Indeed, the shorthand notation in Eq. (5.1.6) did
not constitute a well-defined family definition, as it contained linearly-dependent propagators.

We note that we can set T = 1, in all integrals, because of the uniform scaling of the soft function. We can recover
the full T dependence at the end of the calculation.
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We now add two Heaviside functions to the family definition Eq. (5.1.19) as required for the
NNLO calculation of the soft function

/ d%k A%, 0(ky -7 — k1 - 1)0(ko - 7 — ko - 1) (5.1.23)
I IR T — Ky - )% (k- k)™ (kp - 1)1 (ky - 7% (kyg - )77 213

ex,00 __
7;1...u7 -

Clearly, the two additional Heaviside functions in Eq. (5.1.23) do not count towards the total
number of propagators and Eq. (5.1.23) thus remains a valid family definition with seven
propagators. We re-derive the IBP relation Eq. (5.1.22) using the family definition in Eq. (5.1.23)
and obtain

0 / dk;d%; 0(ky -7 — Ky -n)0(ko -7 — ko - )
ak” kZ]al [k2]112 [1 — k12 Tl]u3 (kl kz)a4 (kz 1’1)“5 (kl )“6 (k12 1’1)
= [T (67 —77) +2a38" —m 176 | T e (5.1.24)
_ (1’1171)/ ddkldde(S(k] -ﬁ—k1-n)9(k2-ﬁ—k2-n)
(K31E R3] [1 — kg - n] & (K - ko)™ (ko - )% (ky - 72)% (kg - 72)%7

As already discussed, the IBP equation can be split into two parts. The first part, which we
call the homogeneous part of the IBP equation, is identical to Eq. (5.1.22) and all terms present
there can be expressed through integrals defined in Eq. (5.1.23). The second part, which we
refer to as the inhomogeneous part of the IBP equation, appears when derivatives act on
the Heaviside functions; the resulting integrals can not be expressed through integrals in
Eq. (5.1.23). To describe them we can not simply introduce a new family

Tex,(50 _ / ddkldde(S(kl - —ky 'n)e(kz‘fl—kz -n) ( s )
e )OI R — kg - m P (k- k) (kg - 1) (ky - 72)% (kag - 71)%7 2125

because the propagators [k -1 —ky - n¢, [1 — ki -n —ky - n¢, ki - 1 and ky - n are now linearly

dependent on each other. While we are unable to resolve this linear dependence for the

arbitrary exponents in Eq. (5.1. 25) we can perform a partial fractioning for any fixed values

//////

obtain

0= / ddklddkz O(ki-n—ky-n)f(ky -1 —ky-n)
ak” % e[l — k1o - n]e (k1 - k) (ko - m) (ky - 72) (Kqz -
=476 -7 +23 =176 T (5.1.26)

B (n‘ﬁ)/ d?kyd?ky 6(ky -7 —ky - 1)0(ky - i — Ky - 1)
[k31c[k3]c[1 — kiz - n]c (k1 - ka) (ko - 1) (ko - 71) (ka2 -

3|
SN—

3|

3
The linear dependence in the last term of Eq. (5.1.26) is now resolved by replacing (ki - 1 —

ki-n) —1/[ky -1 — ky - n], and multiplying with the partial fractioning identity*

(kl-ﬁ)—[kl-fl—kl‘n]c
(ki-n)

2 We use the algorithm outlined by A. Pak in Ref. [78] to implement partial fraction identities in our code.

1=

X {1 —kiz-n] .+ (ky-n) + (k2 -n)} . (5.1.27)
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We obtain

/ A%k dh, 0(ky - 71 — ko 1) [y - 71 — Ky - )]
[klelk3)e[1 = k1o mle (ke - ka) (kv - 72) (k2 - n)(l 1)
/ddklddkze (kyn—kym)lky-n—kem)' [ 11
1=k nle (ki -ko) (kip-71)  |(ki-n)  (kp-m))”

(5.1.28)

where we discarded terms without the full set of cut propagators. After defining two new
families
« d%,d%, 0(ky - i —ky - 1) [ky -7 — k
E?léio = / 2141 ‘; ap 2 ( 2 as 2 ) [ L L )]C (51'29)
K31 R3] 1 — ko - n] & (K - ko) (kip - 72)% (ky - )7’
dk;d%; 0(ko -7 — ko - ) [ky -7 — Ky -m)]c ™

Tex2 30 _ , 1.
wets = | TR IR — g - 12 (ks - ko) (g - 7% (ko - )7 (5-1.30)
we finally write Eq. (5.1.26) as
At(p— A A+ _ 4+ x,00 x1,60 x2,50
0=[47(6"—77)+23" —1%67| T 1111 — (71?1,1,1,1,1, 7’1?1,1,1,1,1,1) (5.1.31)

We can now compare the normal IBP relation Eq. (5.1.22) and the modified IBP Eq. (5.1.31).
As already mentioned, the first part of the modified IBP is equivalent to the normal IBP.
Since these normal IBP relations form a closed system of linear equations which can be
studied on their own, we call them the homogeneous part of the modified IBP equation. The
inhomogeneous part is given by integrals of different families where one of the Heaviside
functions is replaced by a delta function. Thus, the IBP identity Eq. (5.1.31) relates integrals
with two Heaviside functions to integrals with one Heaviside function and one delta function.
If we repeat this derivation for an integral with one Heaviside function and one delta function
as a seed integral, we obtain integrals with two delta functions as inhomogeneous terms.

Extrapolating, we conclude that all IBPs are of the form

0= Zb?om( k€6 +Zzblnhom I;J}G/ (5132)
i

0= Xi;c?om( {’;9}" + ZZcmh"m VT (5.1.33)

0= Zd?"m( T + Zdehom VTN (5.1.34)

0— Zehom Tkea +Zzelnhom 1;(5}(5 (5.1.35)

0= Z Fom(e) T (5.1.36)

where the notations 7509, 750 Tk8 and Tk are self-explanatory. Egs. (5.1.32) - (5.1.36)
define a hierarchical structure of families. In this hierarchy, integrals with fewer Heaviside
functions and more ¢ functions are easier to compute. For this reason we will always try to

reduce integrals with more Heaviside functions to integrals with more é functions.



5.2 REDUCTION OF THE SOFT FUNCTION

We would like to make a final remark concerning the derivation of modified IBP equations.
We have seen that inhomogeneous parts of the IBP equations can not be derived for arbitrary
powers of propagators due to the necessity of partial fractioning. This makes the generation of
IBPs considerably slower than what is the case normally. We note that this forces us to choose
a seed lists in a conservative manner when generating IBPs for complicated problems, such as
the calculation of the N3LO soft function.

This concludes our discussion of modified IBPs. We apply them to the NNLO soft function

in the next section.

5.2 REDUCTION OF THE SOFT FUNCTION

In the last section we derived modified IBP equations for NNLO integrals with Heaviside
functions.

To compare the modified IBP approach with the auxiliary parameter method in Chapter 4,
we calculate the maximally non-Abelian contribution to the NNLO soft function S(Cza), gg,4 and

S(Cza) 2g,B" They are defined as
s — [ dPS? Map (2812 — &1 —
CAgg,AB s’ Map (2812 — &11 — $22), (5.2.1)
where
My :5(T—1’l'k1 —Tl'kz)e(fl-kl—7’l~k1)9(77l~k2—n'k2), (5.2.2)
Mg :5(T—1’l~k1 —ﬁ'kz)g(fl-lq—7’l~k1)9(7’l~k2—ﬁ'k2), (5.2.3)

and the integrand ¢;; was defined in Eq. (4.1.25). We implement derivation of modified IBPs in
a Mathematica code. The output is then fed to Kira where we use the”user-defined system”
feature to solve the system of linear equations. Proceeding in this way, we obtain the maximally
non-Abelian contribution in terms of master integrals. The relation reads
SNAgg = S(szgx,gg,A + ngzl,gg,B
1 { [ (192€° 4 48¢* — 736€ + 1336€ — 376¢ + 33)
3e3(2¢ —3)(2e — 1)
8(4e — 1) (12¢* — 25¢ 4 41e — 3 3 2
-2 322((26—3)(26—1) )I§n+ezgn+eﬂ*m
128¢” + 864€° — 848¢ — 1680e* 4 152¢° 4- 770€* — 163¢ + 3
[ e3(e+1)(2e —1)(2e +1)(2e + 3)
8 (64€” +120e® — 164€° — 246€* + 69€® + 1262 — 46¢ + 3) i
€2(e+1)(2e —1)(2e +1)(2¢e + 3) 2
(16€> + 16€” + 36€2 + 11 — 9) o 4 2
ele+1)(2e +1)(2e +3) 3 e

nn
Il

" (524
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8(4e — 1) (2€3 + 3¢ + 3¢ — 3)
€(2e +1)(2¢ +3)

Tim 4270 + 415“7} } :

The master integrals that appear in Eq. (5.2.4) are defined as follows

dq)nn
= [y, oz [
(krz - ) (5-2.5)
o [ G o deyy
3 (k1 -ko)(kp-71) " % (k1 -ko) (ko -n) (ki -72)
and
B B - . dq)nﬁ
Tt /d(I)n", nin __ / 0 ,
1 00 2 (k12 . 1’1)
Inﬁ — / chgg Inﬁ — / dq)gg
; (k1 - k) (ko - m) ” ‘ (k1 - k) (ko - ) (k12 - m) * 6
B dq)nﬁ ~ dq)nﬁ (52 )
I — / 00 , I — / 00 ’
(klz . Tl)(k]z . fl) (kl . kz)(k] . T_Z)(kz . TZ)
- | dvy |
(k1 - ko) (k2 - ) (k2 - 71)
In Egs. (5.2.5) and (5.2.6) we introduced the shorthand notations
dd%e = [dki][dko]o (1 —k1-n—ko-n)f (ki -7t —ki-n) g (ka1 — ko 1), (5.2.7)
dcb?g = [dkl] [dk2]5 (1 —ki-n—ky- fl)f (kl i—kyq - Tl)g (kz n—ky- fl) , (5.2.8)
dk; + (1.2
[dkl] = (27_[),1_1 0 (kl) (529)

We note that not all of these master integrals are independent of each other. In fact it holds
true that Il?m = 1" fori=1,2,3,4. This is due to the fact that these integrals are symmetric

under the exchange of «; <> B; (or n <+ 71). For example, consider the integral Z}'". We find

Iﬁm _ /[dkl][dkz]ﬁ(l—kl~n—k2-ﬁ)(5(k1-ﬁ—kl-n)e(kz'n—kz-fl)

(k12 - 1)
ni / [dk]] [dk2]5(1 —ki-a—kp- 1’[)(5(}(1 -n—ky- ﬁ)@(kz ii—ky - l’l)
= (k2 1) (5.2.10)
12
. / [dkl] [dkz](S(l —ki-n—ky- 1’[)(5(1(1 i —kq - n)@(kz -i—ko - I’l) _ gnn
- (kio - 1) S

We further note, that there are no master integrals with two Heaviside functions in configura-
tion A. To understand this we note that, since the homogeneous parts of the IBPs is unaffected
by the Heaviside functions, we should find all master integrals with two Heaviside functions
by removing the Heaviside functions and solving the homogeneous IBP equations. However,
all integrals belonging to configuration A would vanish in this case, because they are scaleless,

leaving us without master integrals.



5.2 REDUCTION OF THE SOFT FUNCTION

To illustrate this, we note that eikonal propagator needs to be homogeneous in the external

momenta n and 71. Thus at NNLO we only find the following propagators
D e {ki-nky-nkip-nky-fi,ky-7,kip -,k -k}, (5.2.11)

and any integral we need to consider in configuration A is of the form

/ [dkl] [dk2]5(1 —ki-n—ky- Tl)

IL Di ( )
_ 2 IR P 5.2.12
_/<gdledﬁldﬂi Z(Dézﬁz) >1—IllDl

We note that such integrals would vanish if they are homogeneous functions of «;. Then

o —An;

/dlxidﬁz‘f (@i, Bi) = )\"/d“z’dﬁzf (ai, Bi) (5.2.13)
= [ dwdpif (i i) = 0. (5.2.14)

To check scaling properties of propagators {D;} with a;, we write

D € {B1, B2, B12, &1, a2, 12, 102 + Poars + / P1Poriaze] - €2} (5.2.15)

From Eq. (5.2.15) it becomes clear that all propagators D;, are homogeneous functions under a
simultaneous scaling of a1 and «»

D;(Aay, Aap) = A"Dj(aq, a2), (5.2.16)

where 7; is an integer. Thus any integral in Eq. (5.2.12) is equal to zero.
Similarly, we can predict which integrals do not vanish in configuration B and thus which
master integrals to expect. The integrals we need to consider in this case are of the form

/' [dki][dko]6(1 — k1 -1 — k- 71)
[ Di

(5.2.17)
2 _ —e | 0(1—B1 —a2)
= d id lde 2 iPi € I 7
/@1 aid BiAQ (o)) )

[ D;

and we immediately see that the only possible homogeneous scaling is given by a1 — Aay,
B2 — AB2. However, from Eq. (5.2.15) it becomes clear that the three propagators ki, - 1, ki3 - 71
and k; - kp are not homogeneous functions under this scaling and thus at least one of them
has to be part of each nii master integral with two Heaviside functions. A glance at Eq. (5.2.6)
shows that this is indeed the case.
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5.3 CALCULATION OF MASTER INTEGRALS

Having discussed the reduction to master integrals in the previous sections, we will now
explain how to calculate the master integrals shown in Egs. (5.2.5) and (5.2.6).

We begin by discussing the easiest integral, the empty phase space with two delta functions
first. It reads

I — /[dkl][dkz]é(l kien—ken)S (ki —ki-n) 6 (ka7 —kaon). (5.3.1)

We employ the Sudakov decomposition

nt it
kly - “i? + 517 + k;ﬁ_/ (532)
introduce spherical coordinates for k;| and integrate over its absolute value. The phase-space
element reads
d Q(dfz)

[dkz‘] = W

da; dB; (wiBi)”¢, wi,Bi € [0,00). (5:3-3)

Combining Eq. (5.3.3) with Eq. (5.3.1) we immediately obtain

2
" = [N)? / Hdzxi dBi(aiBi) = 0(1 — Br2) d(ar — B1) 6(a2 — B2)

= N7 [ dpr dBa(ife) 61— o) 534
o T2(1-2)
= [N’ I(2—4¢e)’

where the constant [N] was defined in Eq. (4.2.5). The next integral is Z}"; it reads

0(1—ky-n—ky-n)
k12'17l

5" = / [dky][dk] k- —ky-m)0(ky 71 —kp-m). (5:3.5)

We repeat the steps discussed in the calculation of Z{"" and obtain

(a2B7B2) € (1 — B12) (a2 — B2)

" — [N]? / " day dB, A

B1+ a2
D‘z%ﬁz/gfz 26 1 _ :B )1—26@’6—1 ;
- / d€2/ ap:” —B(1-&) (5-3.6)

ol —26)T(2— 2€)
= [N] e (3 — 4e)

3B (1,1,1—2¢,3 —4¢,1+¢,1).

Integral Z1" is the first one to include the scalar product k; - k,. It reads

(5(1—](1-7’1—](2-11)
ki koky-7

13" = /[dkl][dkz] 6(ky-it—ky-m)f(kz-nn—ky-n). (5:3.7)



5.3 CALCULATION OF MASTER INTEGRALS

Using Eq. (5.3.3) in Eq. (5.3.7) we obtain

nn az%ﬁz/@z 1 2 (d—2) dé’z d‘Bl é’; [,51(1 _ 51)]—1—26
o [4(2%)‘11} i / e / (62 +1—2y/Gcos o] 538)

where ng—z) = ngd—z) ngd—z) and ¢, is the relative angle between transverse components
of ki and k. We write the angular integration as

d0li™? = 2402 403 dy [4y(1 - )] V¢, (5.3.9)

where we introduced

1 — cos
y= % (5.3.10)

We use Eq. (5.3.9) in Eq. (5.3.8), integrate over y and find

2/ 1-y) e _ QU2 2by <1’1/2 —el-2¢ (1:4%2) (5.3.11)
e i 2/6(-2)] 0 1V -7
We rewrite the hypergeometric function using the identity
z\ 4 a a+1 1 z2
oFi (a,b,2b,z) = (1_§> 2F <2 1Ty b+2'4(1—z/2)2> ’ (53-12)

integrate over ¢, and obtain

2T%(1 — 2¢)
e(1+¢€)T(1—4e)

= — [N)? sh(L1+el+el—¢€2+4¢€1). (5.3.13)

The calculation of I; proceeds in full analogy. We find

5(1—](1'1’1—](2'1’1)

ki ko ko -nkyp- - ‘S(kl'ﬁ—kl-n)e(kz.ﬁ_kz.n)

I = / [dky] [dko]

B (5.3.14)
- 2502 s -G,
where
X1(82) = 2F (—1 —4e,—2¢,—4€,1 — &) oF1 (—€,—2¢,1 —¢€,82) . (5.3.15)

While the integrand in Eq. (5.3.14) diverges at the integration boundaries ¢, = 0, 1, the function
X4({r) is regular at these points

I'(1—4e)T(1+2e¢)
2T(1-2¢) °

I'(1—e€)l(1+2e¢)

A(0) = T(1+e€)

Xy(1) =

(5.3.16)
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Therefore, we compute the integral by subtracting the divergent contributions at the two

endpoints and adding them back. Specifically, we write

2(1 _ 1 1
7 =~ NP 2o {60 [ das e b [ daa -t
1
+/0 dés [Cz_l_e(l — &) T X&) — & AU(0) (5.3.17)

-a-g) x|

The first two integrals on the r.h.s of Eq. (5.3.17) can be trivially computed, while the last
integral is now regular in the integration domain ¢, € [0,1] and can be computed as an
expansion in €. We perform the expansion with the package HypExp [79] and use the program
HyperInt [68] to integrate the result over ¢,. We find

2 w2 177%€?
" = [N {€2+ -

810

1937°
3 30 + € [—6m5 — 2605] — € [ i +64§§] }

(5.3.18)
+0O(e%),

where we have discarded contributions of transcendental weight seven and higher. The
remaining integrals are all part of configuration B. The computation is analogous to that of
configuration A and explicit calculations can be found in Appendix C.2.

This concludes the computation of master integrals required for the maximally non-Abelian
contribution to the zero-jettiness soft function at NNLO. We present the result in the next

section.

5.4 RESULT AND SUMMARY

We insert the results for master integrals computed in Section 5.3 into Eq. (5.2.4) and obtain

2 11 1[67 404 1172
S, = [N]2T14€4{€3++€[6—712]+[ 0% _lim —1863}

3¢e2 9 27 9
e 2140 N 677> 5971t 22073 L 12416 3687
81 9 90 3 243 81
14374 67528 241672 (54.1)
— 2 477%75 — 182 3
5T 6803 + 4m*3 — 18 55] +e€ [ 79 T 81
4697t*  177° 786403 = 88073(3 , 624875 .
- - — 12272 — .
YT 5 T 2 T 9 & } +0(€)

Eq. (5.4.1) agrees with our earlier results for the same quantity computed with a different
method, see Egs. (4.3.15) and (4.3.16).

Having computed the same quantity with two different approaches, we can compare the
auxiliary parameter method of Chapter 4 and the modified IBPs discussed in this chapter.



5.4 RESULT AND SUMMARY

While the number of master integrals was roughly equal for both approaches, the computation
of these integrals was somewhat easier if the auxillary parameters were used. Indeed, the
factorization of angular integration in this case made the computation of master integrals next
to trivial. However, the integrals encountered in this chapter were still remarkably simple. In
addition, no complicated integration over auxillary parameters was required. Thus it appears
that, the modified IBP approach is a significant simplification as compared to the original
computations of the NNLO soft function in Refs. [48, 49] and is of comparable simplicity to
the auxillary parameter method of Chapter 4.

As already mentioned in Section 4.4, the auxillary parameter method does become quite
complicated at N3LO in the presence of the propagator (ki + ka + k3) 2 for which angular
integrations do not factorize. Even worse, introduction of auxillary parameters complicates the
evaluation of master integrals; and, additionally, one needs to integrate over three auxillary
parameters afterwards. Thus. it appears to us that, the modified IBP approach is much better
suited to calculate the zero-jettiness soft function at N3LO. We discuss the calculation of the
same-hemisphere three-gluon-emission contribution to the zero-jettiness soft function at N3LO
QCD with the modified IBP approach in the next chapter.
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N3LO SOFT FUNCTION
This chapter is based on References [77, 80].

In this chapter we apply the modified IBP approach introduced in Chapter 5 to calculate
the same hemisphere triple gluon contribution to the N3LO zero-jettiness soft function. The
chapter is structured as follows. We begin by discussing technical aspects of modified IBPs at
N3LO in Section 6.1. We proceed to explain the general setup of the calculation in Section 6.2.
The required eikonal function is extracted from the literature [74] where it is organized into
four different parts according to their singularity structure. For this reason, our computation

3),b 3),¢

is also split into these four different pieces: w®)?, w®?, wG) ¢ and w4, We discuss parts

3, PP and w )¢ one after another in Sections 6.3 - 6.5, explaining the reduction process

w®a, ¢l
and how to compute master integrals for each of them. We proceed with the computation
of the most complex contribution w4 in Section 6.6, explaining how to set up differential
equations and calculate boundary conditions for the most complex master integrals. Finally,
we conclude in Section 6.7.

We note that we also applied the auxiliary parameter approach of Chapter 4 to the com-

3)b and w®)¢. While we did not finalize the calculation, the approach

putations of w®a ¢l
worked and we derived first results. However, it became clear that this method is not suited
for the computation of w4, as master integrals containing the propagator (ki + ko + k3) 2

need to be calculated, which could not be done in this approach.

6.1 MODIFIED IBPS AT N3LO

In this section we extend the previous discussion of the modified IBP approach in Chapter 5
to the N3LO case. Just like at NNLO, our starting point are the IBP relations which state that
any total derivative of a dimensionally regularized integral vanishes. The relation reads

d L6
4k /ddk /ddk { i } —0, v € ki, ko, ks, n, 7 6.1.1
[ i [ 'k s 3 |71, b {ky ko ks, i} (6.1.1)
where m € {1,2,3}. After rewriting the derivatives in Eq. (6.1.1) in terms of scalar products,
we obtain three sets of equations one for each k,
0 d 0 _ d
WU = ddy, + 2k1 - vak2 viakl ~ 417 - Uiakl —
(6.1.2)

d
+ ko - Dakl k2+k3 V—r——
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0 0 0 _ 0
W” = Do 2 g e T Y
5 3 (6.1.3)
o TR e
0 0 0 o]
9 om 7.
ak”U = dby i, + 2k3 - vak2 n- Uakg-n+n vakg-fl
3 3 (6.1.4)
+ k1 - Uakl ks +ky-v ak3~k2'

Accounting for all the choices of v in Eq. (6.1.1), we obtain a total of 15 relations per seed
integral. Deriving IBP relations for seed integrals, starting with integrals with three Heaviside

functions, we again obtain a hierarchical structure of IBP relations

0— Z bhom {129}99 + ZZ bmhom /;0}99 , (615)
0— Z Chom {125}96 + chmhom 1715}59 , (6.1.6)

As we already noticed, integrals with fewer Heaviside functions and more delta functions
are easier to compute. For this reason we will always try to express integrals with Heaviside
functions through integrals with delta functions to the extent possible.

This hierarchical structure of IBP relations is depicted in Fig. 6.1. As we move down this
graph using IBP relations the number of families increases. We start with just 15 006 integral
families, however by the time we reach the 665 level this number has grown to 105. Since
generation of IBP relations is slow because of the need to perform partial fractioning, having to
deal with 105 integral families becomes a significant burden. To minimize the reduction time,
we implement inter-family relations already at the seed and IBP generation level. The way in
which integral families are connected to each other through inter-family relations is shown in
Fig. 6.1. Like the other pieces of the IBP code, the inter-family relations are implemented in
Mathematica.

To further decrease the time needed to produce IBP relations we choose seedlists much
more conservatively than what is the case normally. To this end, we exploit the fact that
the homogeneous terms in Egs. (6.1.5) - (6.1.7) can be studied on their own by removing the
Heaviside functions. We can thus use KIRA to find the master integrals for these homogeneous
equations. If we find more master integrals than KIRA we know that we have chosen too few
seeds and we add more seeds to our list until the number of master integrals agrees with KIRA.

We end of this section with a few remarks. First, one might be tempted by the hierarchical
structure Egs. (6.1.5) - (6.1.7) to run a reduction stepwise, i.e. first only reduce all 666
integrals to 000 master integrals and inhomogeneous terms with one delta function. Then

inhomogeneous terms with one delta function can again be reduced to master integrals and



6.1 MODIFIED IBPS AT N3LO

Inter-family 15

Figure 6.1: Hierarchical structure of integral families for the N3LO soft function. IBPs and inter-family
relations connect the different families as indicated by arrows. A total of 105 integral
families are required in the course of the reduction, while only 15 integral families are
required to describe the amplitude with three Heaviside functions.

inhomogeneous terms with two delta functions. The process is then repeated until one reaches
integrals with three delta functions. While one indeed can perform a reduction like this, it is
actually disadvantageous to do that.

To understand this point consider the reduction of 666 master integrals required for the
calculation of the same-hemisphere three-gluon-emission contribution to the zero-jettiness soft

function at N3LO. There are five relevant integral families which can be found in Appendix D.2.

We determine the master integrals of the top sector for these five families using KIRA and obtain
six master integrals. We determine the same set of master integrals with our modified IBP

setup, by only using seed integrals with three delta functions and find the same six integrals.

However, if we repeat this process and also use integrals with one Heaviside function as seed
integrals, the number of master integrals reduces to five. The reason for this decrease is the

following relation between supposed master integrals

q)nnn q)nnn
/ 586 / T (6.1.8)

where the phase space ®@}j is defined in Appendix D.1. We can understand this relation

through a simple calculation. Indeed, upon multiplying the Lh.s. of Eq. (6.1.8) with the partial

fraction relation

(k1 n+ky-n)—ky-n

1=
kz-n

, (6.1.9)
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and exploiting k; <+ ko symmetry in the second term , we reproduce Eq. (6.1.8). Thus we
observe that we find additional relations by working with all integral families at once and we
may miss relations between integrals by performing a reduction piece-wise.

Finally, we will need to introduce an analytic regulator in Section 6.4 since not all occuring
integrals are regularized dimensionally. We introduce this regulator by multiplying every
integral by a factor (k1 - n)"(ky - n)" (ks - n)". Since an additional partial fractioning step may be
necessary when a derivative acts on this extra term, it can simply be treated as an additional
inhomogeneous term in our setup. In this case the IBP relations in Egs. (6.1.5) - (6.1.7) read

0= Z bhom k 966 + ZZ bmhom k 099 +v Z Z bmhom v 1719}99 , (6.1.10)

0= Zchom k599 + chmhom {125}59 + 1/chmhoml/ {I;(S}?B , (6.1.11)
h k§(5(5 h k(5(5(5

0= Z om {u} Tv Zfln Om‘/ 7' (6.1.12)

We notate that the additional terms in Egs. (6.1.10) - (6.1.12) increase the number of integral
families from 105 to 109 and in general make the computation more complex because of the
new parameter v.

6.2 GENERAL SETUP

In Chapter 4 we discussed how the soft function can be obtained by integrating eikonal QCD
functions over a suitable phase space. We found that the bare soft function S is related to the
eikonal function ¢y, that describes the soft emission of m partons (cf. Egs. (4.1.1) - (4.1.3)).

We now specialize to the N3LO case, setting m = 3 in Eq. (4.1.3). To this end we again
introduce Heaviside functions to enable unambiguous calculation of the minimum functions.
We obtain

M; = Mnnn +Mnnn +Mnnn +M3ﬁnn + [Tl o 7,—1] , (6.2.1)
where we defined
MY =o(t—i ki —j ko =k ks)O0(T ks —ika) 0(F ko —j ko) O(K ks — k- Ks) , (6.2.:2)

and we set 71 = n. Exploiting the invariance of the eikonal function under exchange of n and
i, we again only need to consider two configurations, which we refer to as A and B. Hence

we write

Mz =2 My + 6 Mg, (6.2.3)
My=6(t—n-ky—n-ky—n-k3)0(in-ky —n-k1)0(ii-kp —n-kp)

(6.2.4)
X9(17l'k3—1’l'k3),



6.2 GENERAL SETUP

MB:(S(T—Tl-lq—7’l-k2—17l'k3)9(7’_l-k1—n-kl)G(ﬁ-kQ—i’l-kz)

6.2.
X9(7’l-k3—17l'k3). ( 25)

Again, configuration A describes the case where all partons are emitted into the same hemi-
sphere. Configuration B describes the case where two partons are emitted into one hemisphere
and the third parton into the opposite hemisphere. The two different configurations are
illustrated in Fig. 6.2.

Similar to the NNLO case the different contributions to the N3LO soft function can be split
according to partonic final states. We find

5O =5 45 + 5% + 55 + 55, (6.2.6)

where S és) is the RVV contribution, Ség) and Sé‘? are RRV contributions. While all of these
pieces need to be calculated eventually, we focus on the most difficult piece, Sgg, in this thesis.

The different contributions to S(g) can again be split into configuration A and B
888 g p g

Sy

<

~
3y
<
3

(@ (b)

Figure 6.2: The two different configurations A and B required for the calculation of the triple gluon
emission soft function. The configuration A where all gluons are emitted into the same
hemisphere is shown in Fig. 6.2a, while the configuration B where one gluon is emitted into
the other hemisphere is shown in Fig. 6.2b.

3 1 3
Ség)g — 31 / dPSé) M3 Cogq

1 1
- 2? / dPS(SB) Ma Gggg + 65 / dPSég) Mp Gggq (627)
=253 +653,

where the eikonal function ¢4, can be extracted from Eq. (7.10) of Ref. [74]. We focus on

the most singular part of Eq. (6.2.7), the same hemisphere contribution Sggy. To facilitate the
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computation, we further split the eikonal function according to the number of correlated gluon
emissions

(3) Sy = €3 [ aps{ Ma i) (k) wlid (k2) @l (ka)

+CiCa [ dPS{) My [wfy) (ki) (o ks) + (145 2) + (142 3)] 629
2.
+CiCh [ dPSY Ma ) (ko k)
— 3 1, 2 2 2 3
= C, Sgeq +CiCa Sgeq” + CaCia Sgge”
where C, = Cp(C,) if the incoming particles are quarks (gluons), respectively. The functions
Shas! and Syas? are easy to compute as they just present convolutions of the NLO and NNLO
results. For this reason, we move their computation to Appendix D.5 and focus on the maximal
non-abelian contribution S§§§’3. Following Ref. [74] we split the integrand one last time. The
function wy([;) (k1,k2,k3) in Eq. (6.2.8) reads

wiy (ki ko, k3) = Y W (k1 ka, ks) (6.2.9)
te{ab,cd}

w iil),t |:71(1t)_2 (k]/ k2/ k3) 1(72 (kl’ k2’ k3) o 8512 <k1, k2, k3) 5_12 (kll kz, k3>:| (6 )
S S .2.10
+ permutations{k1, ko, k3} ’

where “permutations{ky, kp, k3}” describes all possible permutations of the gluon momenta k;.
The four terms 35,?, t =a,b,c,din Eq. (6.2.10) are contributions to the soft eikonal function

that are ordered according to the structure of their collinear singularities [74]. This has direct
()

A .
wn does not involve

(3)

ni

consequences for the complexity of the respective calculations. Indeed, w
3),

any propagator of the form 1/k; - k;, while w,; b already involves one and w, ;" two of these

propagators. Finally, w,(;)’d is the most difficult contribution to compute as it involves the
propagators 1/ (ki + ko + k3)?. Example diagrams for all four contributions are shown in

Fig. 6.3. We calculate these contributions starting with the easiest and proceeding to hardest.

(b) ‘
(a) @

Figure 6.3: Example diagrams for contributions w3 through w4 to the N3LO soft function. Straight
lines denote eikonal lines, the dashed line represents a "cut" so that all particles crossing it
are on the mass-shell.
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6.3 THE w(®)" CONTRIBUTION

In this section we consider the simplest contribution to the N3LO zero-jettiness soft function,
(3)a

the integral over w,;". According to Eq. (6.2.10), this function is constructed from the function
S Ek), which reads [74]"

(n1)®
144 nk1 ?’lkl 1’lk2 nkz l’lk3 nk3

N (ni)? 11 6 n(ks — ki)
32 fikqp fiks nkq nks \ 7ikq fiky nkqp nkqz nky

5( )(’11 92,93) =

6.3.
Lo (1 1N g2 (1 3N(1 3 e
288 fik1p3 nk1az \ 7ikq fiky nky \nkz  nkq fiky ki
" 1 _ 3 1 B 1 1 _ 3
TkZ nkq3 ﬁ Tl{g, 1717k3 ik1n !
where we used kip = ki + ko and kio3 = ky + ko + k3. It is easy to check that, gl(,f ) is not

singular when any of the two gluons become collinear to each other. As already mentioned,
this feature reduces the number of scalar products that appear in the denominators of that
function, making integration over three-gluon phase space simpler.

Applying integration-by-parts identities, we find that the integral of w,([;)’“ over the phase space

of configuration A can be expressed through six master integrals. The result of the reduction
reads

| A% i o )

1 182 3392 23268 69432 757281
T (1—4e)(1—5¢) )| |55 5e* | 5e3 5¢2 5¢ |1

[ 8 72 32 112 2016 13328 38304

— — =+ —| I —— — —8064| I 6.3.
+ |53 5e? + e] 2 [ 5ed T B3 52 ' Be ] 3 (63.2)
L[ 4 356 2248 598 Seed) [ 8 104 448 1,

et 5e3  5e? 5¢ 5 | 5¢3  5e2  5e >

[ 36 648 4428 14328 22032

2= 25926 4 —0 TS0
T satse sz Tt T 5 5 ]6}

where the phase space @' is defined in Appendix D.1. Calculation of these master integrals
is straightforward and we only discuss the computation of I; and I5 in detail. The definition of
the remaining master integrals can be found in Appendix D.3. Note, that none of the master
integrals contains the full set of three Heaviside functions. We explained why this happens in
detail when discussing the NNLO soft function in Chapter 5. We now calculate the integral I;
explicitly. It reads

/dq)gg? = / dkl][dkz][dk3](5<1—k1 -n—kz-n)
X(S(kl-fl—kl-1’1)(5(](2'ﬁ—kz-n)(S(kg,-ﬁ—kg,-}’l).

(6.3.3)

1 We note that we took the emitters to be massless.
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We use the parametrization

dQ(d—Z)

[dkz‘] = W

da; dB; (aiBi) ¢, a;,Bi € 10,00), (6.3.4)

(d-2)

and directly integrate over all three angels ();" ~’. We then remove all 5(a; — B;)-functions by

integrating over «;, 1 = 1,2,3, and find

3 3(1 —
b= NP [ TTap 00 i) = INP T3 =y 63

For a less trivial example consider the integral Is, it reads

d@nnn
Iy = / 600 6.3.6
> (k13 - n)(kqos - 71) (63.6)

We again use the parameterization in Eq. (6.3.4) and integrate over a1 and a; removing two
delta functions. Finally, we integrate over $1 by removing (1 — B123) and change variables as
B2 = (1 — B3)¢ and a3 = B3/p. We obtain
1 d —1+e ! dEE2€(1 = &) 2
/d‘Bﬁl 2(1 _ pg)l—te PP / ¢ *(1-9) ,
J Pt (1=Pa)py  1-(1-ps)¢

P r2 1 — 2¢) /1 (6.3.7)
0

du ( Y2yl 4e 0k (1,1 — 26,2 — 4e,u)

= [N]
xoF (1,1,1+¢€,u),

where we used the transformation u = 1 — B3 in the last line. Although both hypergeometric

functions in Eq. (6.3.7) are divergent at u = 1, the whole expression is integrable due to the

)1—26

explicit factor (1 —u in the integrand. Therefore we directly expand the integrand in

Eq. (6.3.7) and integrate using HyperInt [68]. We obtain

s 1 7 'y 837t 2372
I5—[N] {€+8+€(2€3 76 +46 +€ 360 3
4 2
+é —189n2g3 — 18023 + 585¢s + 17 _ 86m + 776
6 2 180 3 638)
8972(3 77397 4?1497 e
4 2
—27173 — — 729 — 1024
€ ( ;2 3 53603 + 72905 + — o=+ — 50 T 10 )

+0(65)},

where we have discarded contributions of transcendental weight seven and higher.
The remaining integrals in Eq. (6.3.3) can be obtained along similar lines. Results for all master
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integrals can be found in the ancillary file of Ref. [77]. Inserting these results into Eq. (6.3.3)

(3)a

we find the final result for w,;" contribution. It reads

8 207 5843 86rt
€ €’ €? 15¢

| i ol k) = NP {
(6.3.9)

7
+{Mn%@—u%%g+e@n%ﬁ—3§?>}.

(3),b

We compute the next-to-easiest contribution, w,;" in the next section.

6.4 THE w(®)? CONTRIBUTION

In this section we consider the next-to easiest contribution to the zero-jettiness soft function,

(3),b

the integral of the function w,,;”. This function is constructed from the function Ef,f ), which
reads [74]

g(b) - 1 7nn
k ~ 16 k1ky nkqip | nkq nks fiky fiks

N (nf)? 1_2n(k1 —_kz) N _1 L B L 5 nky 2_ﬁk1
nk3 1’lk12 nk1 l’lk3 1’lk13 l’lk3 I/lkl i’lkz nk2

+ ! 3 BN . (nnfikyy)

48 k1ky fik1p3 | ikq nky \ 7ik1p ks nks 12

1 1 . nn 1 1
3 (@ - Tku) (nt ftk2) [r% i (Tkz - Tkgﬂ }
ni 1 1 _

T8 kyky fiky23 1k123 (”klz - ”73) (2 (ks kl))

1 3 1 1 1 3 1 1
(a) (b)

where we used kip = k1 + kp and k123 = k1 + k2 + k3. Unlike S;;’, the function S}’ contains

(—nfinkyp)

(6.4.1)

the scalar product of two gluon momenta k; - k, which results in a collinear singularity in the

limit kq || k. As already discussed, this scalar product makes it more difficult to calculate the
: (3)b 3)a
integral of w,,;” compared to the w,;" case.

The remainder of this chapter is organized as follows. In Section 6.4.1 we discuss the

(3)b

reduction of the integral w,;" to master integrals. It turns out that we have to introduce an
analytic regulator v since not all integrals that appear in the IBP relations are regularized
dimensionally. We proceed to calculate an example master integral that is divergent in
Section 6.4.2. In doing so, we show that the 1/v pole arises because of an unregularized

collinear divergence. Finally, we conclude and give a result for cufﬁ-l)’b in Section 6.4.3.
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6.4.1 Reduction

(3),b

To compute w,;",

(3)b

express w, " through master integrals. The result reads
p ni g g

we proceed by applying modified IBPs as discussed in Section 6.1 and

[ dvss ol (ko k) =
(10249456¢° — 6479980¢* + 713856¢ -+ 268429¢” — 67966¢ + 4287) |
2006526 — 1) (4e — 1)(5¢ — 1) !
7 38 (504€> — 270e* +37¢ — 1)
+ozhb— 3
5¢3 5e4(2e — 1)

(4260192¢” — 3531008¢* + 674380€> + 124140e? — 49897¢ + 3923)
50e* (403 — 382 4 11e — 1)
(704€ — 280€ + 26) 2 (9288¢* — 7308¢® + 858¢% + 347¢ —55) 237

Iy (6.4.2)

Ig — —1
5e3 — 10e* > 5e4(4e — 1) 6 42”7
6(4e+1 10 10 6 6 6 18 9
QIB 321 [10+ 111—|—52I 52[13—|— — Iy _QHS
14 — 84¢ 12 93 12 39 22(4e — 1
(52)116 + 5*117 + 5*118 - *119 - *120 (6)12
7
——In,
€

where the integrals I, 7 can be found in Appendix D.3.

Although Eq. (6.4.2) looks totally normal, it is actually wrong. We have discovered this issue
while numerically checking Eq. (6.4.2). The reason for this equation being wrong is subtle;
it is related to the fact that not all integrals that appear in the integration-by-parts identities in the
course of the reduction are regulated dimensionally. However, we emphasize that before and after
the reduction all integrals are dimensionally regularized, making this problem hard to detect.

In Section 6.4.2 we will show that integrals in IBP relations become unregularized due to a
collinear divergence and that this divergence can be regularized by changing the phase-space
measure S — GL (kyn)Y (kon)? (ksn)v.

We note that care needs to be taken when choosing a basis while working with a non-
vanishing analytic regulator. Indeed, the automatically chosen basis (preferring dots over
scalar products) leads to reduction coefficients of the form 1/v" where n € IN and thus
complicating the eventual v — 0 limit that needs to be taken. A more convenient basis can
be found by first performing a wrong reduction with v = 0, identifying the wrong master

integrals, and setting these integrals as a preferred basis for a correct v # 0 reduction. The
(8)c

choice of the reduction basis is best illustrated in the computation of w,;",

and we present a
direct comparison of the bases in Section 6.5.

Proceeding as explained above we obtain the following relation

/ A0 W (k1 ks, ks) =
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(10249456€> — 6479980e* + 713856€> + 268429¢> — 67966€ + 4287) .
2005(2¢ — 1) (4¢ —1)(5¢ — 1) !
7 38 (504€> — 270e? +37¢ — 1)
+ 7312 - 4 3
5e 5et(2e — 1)
(4260192€° — 3531008€* + 674380€> + 1241402 — 49897¢ + 3923) ; 6.43)
- 4 4.3

50e* (40€3 — 3862 + 11e — 1)
(704€> — 280e +26) 9 (9288¢* — 7308¢> + 858¢2 + 347¢ — 55) 237

Ie ——=I
5e3 — 10e* > 5e*(4e — 1) 6" 42”7
6(4e+1). 10 10 6 6 6 18 9
ST et o — o lio+ oD+ Ty — — I3 oy — ]
3 8‘|’3€2 97 2 10+€2 114—562 2= 55 13+ 24— 53hs
14 — 84e 12 93 12 39 22(4e — 1
+ (72)116 +=—hr+=—hs— —ho— —Io+ %Im
5e 5¢ 5e € € €
7 4 1.,
“el2m3a [Pi%”v<€'”>] -

We note that Eq. (6.4.3) is identical to the original v = 0 reduction of Eq. (6.4.2) except for a
new integral J,(€,v). This new master integral exhibits a 1/v pole and after extracting this
pole the limit in Eq. (6.4.3) can be taken in a straightforward way.

The remaining integrals appearing in this equation can be calculated following the discussion
in Section 6.3. Definitions for all integrals are again given in Appendix D.3.

In the next subsection we extract the 1/v pole from J,(e,v) and discuss the origin of the
corresponding divergence.

6.4.2 Calculation of master integrals

To understand how dimensional regularization may fail to regularize an integral and how to
fix this problem, consider the master integral

A (kin)Y (kon)¥ (kan)”
e = [ ) 044

We will now explicitly show that the factor v in Eq. (6.4.4) serves as a regulator of a divergence
which is not regularized dimensionally. To this end, we replace both Heaviside functions in
Eq. (6.4.4) by integrals of delta functions

1
0(ai — Bi) :/0 dz; 6 (zi @i — Bi) i, (6.4.5)

and proceed by splitting the z; integration regions into two pieces z; > z3 and z3 > z;. We call
the two contributions J; ,(€,v) and J», (€, v) respectively.
For z1 > z3, we find

[Q(d_Z)] ’ z3
st T s

/- dal"?aal’?

2k1 . k3 21

b <1, 1+¢1—¢, Z3> : (6.4.6)
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We use Eq. (6.4.6) together with

dal=2
k] = W da; dp; (aifi)~<, a;, Bi € 0,00), (6.4.7)

and obtain

—eageﬁl—e—Z“rl/IBZ—Ze“rVﬁ;l—€+V
a1+ B2

3 22304%
]1,1,(6,1/) = [N] /dZ1 /ngHdD&id,Bi
i (6.4.8)
Z
X 5(0&121 — ‘31)(5(06323 — ‘53)5(1 — ,3123) 2P1 <1,1 + €,1 — €, Zj) .
We remove delta functions by integrating a1, a3 and p; and change variables to x and y such

that b3 = x y and b, = x (1 — y). We obtain

—1—-2e+v x74e+2v (1 _ y) —2e+v y7172e+1/

1— 1-—x
A=y +5 (6.4.9)

X /dz1 dzs zi’z z§ oF (1,1—|—€,1 —e,?) .
1

Jiu(e,v) = 2[N]? / dxdy L=

We next change variables z3 = tz; and integrate over x. The expression reads

Jiv(e,v) = 2[N]? / dydz; dt t€ 22 ,F (1,1 4+€,1 —¢,t)(1 —y)' 2y 12t
I['(v—2e)T(1—4e+2v)
I'(1—6€e+3v)
X oF(1,1—4e+2v,1—-6e+3v,1—(1—y)z1).

(6.4.10)

To proceed further, we write the last hypergeometric function in Eq. (6.4.10) as a Mellin-Barnes

integral

2Fi1(1,1 —4e +2v;1 — 6€ +3v;1 — (1 —y)z1)

_ I'(1—6e+3v) 17 .
_F(V—Ze)r(l—4e+2V)F(3v—6€)27ri/ dzm((1=y)z) ™ T(1=2zm)  (6:411)

—ico

X T(zm)T' (1 —6€ +3v)T'(1 —4e +2v —zp)T(—1 —2e + v+ zpm).

Using Eq. (6.4.11) in Eq. (6.4.10) and integrating over y and z); we obtain

I'(v—2e¢)
_ 3 € R
Tio(e,v) = 2[N] /dzldt 2R (11 +e 1~ 6 e
" Z%ET(V —2e)[(1 —2e+v)T'(2v — 4e) (6.4.12)

T(1—4e+2v)
xo F(1,1-2e+v,1—4e+2v,1—12z),
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Finally, we re-write the hypergeometric function to isolate the 1/v pole by using the following
identity

2F(1,1-2e+v;1—4e+2v;1—2)
(1 —zp)% 2z 172V (1 + 26 — v)T(1 — 4e + 2v)
I'(1—2+v) (6.4.13)
I'(—1—2e+v)T(1—4e+2v)
I'(v—2e)T(2v — 4e)

2F1(1,1 —2€+V,2+2€—V,Zl).

We find

['(142e—v)T(v—2€)°T(2v — 4e¢)
I'(3v — 6¢)

Jiv(ev) =2 [N]S/dzldt zf”" t€

X oF1(1,1+¢€,1—¢,t)(1— 21)46_2V

v—2e)[(—1—-2e+v)I'(1—2e+v)
I'(3v — 6€)

x oF1(1,1+€,1—¢,t)2F1(1,1—2e4+v,24+ 2 —v,z7).

(6.4.14)

+2 [N]3/d21 dt £ 2261

The second integral in Eq. (6.4.14) is well-defined in dimensional regularization. In the first
integral the t integration is also well-defined while the z; integration clearly suffers from
an unregulated divergence if the analytic regulator is not present. From the discussion in
Chapter 4 we know that the z; — 0 limit describes the kinematic configuration in which both
ki and k3 become collinear to the beam axis n. Thus, the additional singularity we observe is a
collinear divergence, for which the dimensional regulator is not effective in this case.

We proceed by explicitly extracting the singular part of Eq. (6.4.14). To this end, we integrate
over z; and ¢ and expand in v. We obtain

Jiu(€,v) 3 1217% € (57%¢(3) +9577(5))

YN T 1 .3
v N 8€3—|—15§(3)—|—e 150 + > +O<v,e ) (6.4.15)

The second contribution ], (€, v) for which z3 > z3, is computed similarly. The calculation
can be found in Appendix D.6. The result reads

Jou(e,v) = 2[N]? / dzadt 251 EHV 1 (1 pzg)te2

I'(2e — DI(v—2€)*T(2v — 4
o T2e vt DI =26) @0 =4¢) b g oy 11— gt)
['(3v — 6¢) (6.4.16)
I(v—2e)[(—2e+v—1I(—2e+v+1)
2 N3/d dt #€ 2%
+2[N] = % I'(3v — 6¢)
x oF1(1,e+1,1—¢,t) 2F1(1, -2 +v+1,2¢ — v+ 2,tz3).

Thus we find the same singularity structure as in Eq. (6.4.14) with z; exchanged for z3.
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We proceed by extracting the singular part of Eq. (6.4.16), by integrating over z3 and ¢ and
expanding in v. We obtain

T 4 3 (357%Z(3) —1031Z(5
[N] 8 120 2 (6.4.17)
+0(v, € )
Combining the results of both sectors we find
Ju(e,v) 3 ) 77mtte 2
v = — = —25¢? (2m%7(3) — 817(5)) + + — +75C(3)
[N]® 2¢? ( ) 20 € (6.4.18)

+0(v,€e).
6.4.3 Results

Finally, combining the reduction in Eq. (6.4.3) with the results for master integrals found in
the ancillary file of Ref. [77], we obtain

(8 32 1 417°

[ 4 otk ko) = NP S+ 5+ 5 (- 50
1 ) 1 , 5817
+3 (128 — 647% — 77403) + E (256 — 128" — — o — 2144§3>
16887 1 2
+ (512 — 25672 — 15” — 428873 + % — 28770g5> (6.4.19)
33767 6

te <1024 _ 5127 — 12” - 612” — 857605 + 23047123

1194803 — 68736§5> }

We discuss the calculation of the next-to-hardest contribution to the soft function, w%)’c, in

the next subsection.
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6.5 THE w(®)¢ CONTRIBUTION

The third contribution to the zero-jettiness soft function can be written as an integral over the

() <(©)

function w,,;”. We construct it from the function S;;’, which reads [74]

=(c) 1 nin ﬁkl flk3 lelz
= = (- T (BB g (B2 g
i =3 (k1k2)? nky 7iks { (( 4y nky +-d nk2> {Zﬁkm nki23 (ﬁklz nk3

n nit. nkq 3 fikq
nks \ nkqy 2 iikp

L (L _ L) ((4—a) (nk1 2 + d ks nkz)}

nk123 l’lk3 lelz
1 { nmn |:4 I’I(kz — kl) 2 lelz 42 lez T’Zk3 + }’lk1 Ylk123

b v
2 1 k
32kiko kks nkpy | 7iky ks nk3 nky3 nks (6.5.1)

1 i i _

ke <nk1n(5k1 — 8k +2k3) — 31k, iks +4nnk2k3>}
2 1 1 i

* nkio3 fiks (Tkz - "k13> (nn "1z nkB)

2 1 1 o _ 1 nkqp
) [2nankg it k)] + ——— (1- ™12
* fikq23 ks (ﬁkm ﬁkz) [ i kg A(kz 1)} * fik123 k123 ( nk3)
1 1

- 77)2 7 7 _ _ 7
X(ﬁk13 ﬁkz) [4(;171) k2k3+nn<nk1n(5k1 8ky + 2k3) Snkznk3>H.

Unlike gf,f ) and gl(,f ), the function gf,f) contains propagators 1/k; - k, and 1/k; - k3 at the same

time. While these propagators make the evaluation of master integrals more complicated, no
additional issues arise when modified IBP relations are constructed.

The remainder of this section is organized as follows. In Section 6.5.1 we explain the
reduction to master integrals comparing the two choices of bases introduced in the last section.
In Section 6.5.2 we discuss the calculation of an example master integral. Finally, we present

(3)c

the result for the integral of w,;;;” in Section 6.5.3.

6.5.1 Reduction

We proceed by applying modified IBPs as discussed in Section 6.1 to obtain a reduction for
(3)c

wyi~ - In doing so we compare the two different choices of bases introduced in Section 6.4.
We start with the reduction to master integrals where we choose the v = 0 integrals as a

preferred basis. We obtain

[ dop o)t o ks) =
B 5152 n 60883 n 2218663 B 33423797 B 49850253233¢ n 44313583 40023347 I
675¢>  1350e* 5400€3 10800¢2 466560 12960¢e 15552 !
L(_ 22 8  1280c 16 160\ (2042 23954 74967872’
135¢3 = 135¢2 9 9¢ 9 2 135¢* 13563 1215

14596 | 2845312 69832 733168 | 47683 | 27427 7899529
45¢2 405 45¢ 135 )° 675+ | 25e3  1350€2
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11094485353¢> 119650151 7137263 5243129> I ( 334 600703€2
4

12960 T 2160 T 9006 T 360 135¢3 81
794 N 38854¢ N 5036 2024 1202 N 4022 N 60776601776 121631
45¢2 27 135¢ 9 )7 15¢¢ | 3¢3 6480 15¢2

~ 76894303¢ n 170291 n 534641
1080 10e 180

>16 + < — 3211€* 4 1409¢” — 151> — % +119¢

+3+44>17+ <16640€4 _ 3968¢”  1088¢” _14_2246_8+SO>19+ 65,
2¢ 3 3 3 32 3 3 3 9e2
430971€* | 238589¢3  21817€2 47  1527¢ 337 47 1613075¢*
<_ 2 T _962+4+9e+6)1“+(96

8 T Tu e 12 5 T3
_ 2560¢> 578 N 320€ N 16 3 _ 377080¢* N 54680€°  7480¢>
3 45¢2 " 3 "45¢ 3 )M 9 9 9

118055¢® 8195¢2 13  515¢ 25)[1 1} ( 127360e*  18560¢>
- 12 — 113 -

19  920c 8 88 1103843 N 21808¢> 92 449%e
15¢2 ' 9 ' 45¢ 9 )P 3 3 15€2 3
L 212 L 832 832\ | (- 1075877¢5 N 114497¢*  10397€° N 121762 e
Ti5e T3 ) he 16 8 4 2
68 1111653€>  127713¢* 99333 15932 12
2 1141 — — 87+ = —36 I
+5 + )17+< 16 3 + 1 > 8 —|—5 36) 18

(6.5.2)

25462056  275865¢* | 2200567  3465¢2 18
< - S P iset — —150 ) I
16 8 4 2 e

2 4 4
+ ( —1726” + 44e” + 32 + — — 14) I + (6463 +32¢? — 5 166 + o+ 8) I

172 4 151  4532¢% 7
+ <1968€ — 320€? +€+0_68>122+( 31263 + 5 532¢ 3

3 9 9 60e3 3 6e2
2
—270¢ — % — 3;3) I + (3840e4 — 67263 +96€% — 24¢ — > Iy + (69719e4
1 125 920 83680t  13280€3  2080¢?
—941 2419¢2 + —— — 107 — == —
3e + € —|—3 > —10 T + 9 > 25 ( 3 3 + 3

4 320 104 3
- 4161 —96e* —48e> —24€®> —12e — = —6 | I
B 3 i5c + 6) 26+< 96¢ 8e € €~ 6> 27

<4480€ 2240e*  1120€3  560€? 4 280e 91 140) I
28

5 T3 Tt Tzat s Tt

2 2
+ (117120e5 —19200e* + 3360e® — 480> — St 120e + 3€> I + (3456065

80e 20 40
— 5760e* + 960€® — 160e% + ?e +50 9> Iso + < — 96576€” + 15216¢*

40832¢° N 7232¢* B 992¢3
3 3 3
272¢2 7 8& 29 76 37

4= I — 5728¢* + 1048¢% — 128¢%* —
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134¢ 9 N 38 93152¢° B 15632¢* N 2552¢3 B 452¢2 7 N 62 1
3 2 9 )% 3 3 3 3 182 " 3 6e
17 85 5
- 3> Iy + (346955’ — 5805¢* + 975¢® — 165¢2 + TG +3 - 5) [135 — Iz + 137}
N 4 e _ 16640¢* N 3968¢>  1088¢> N 8 N 224¢ N 8
3¢ | ¥ 3 3 3 3¢2 " 3 3e
80

— 3> [mm} +0(€?).

The master integrals I; through I39 can be evaluated at v = 0. The only v-dependent term is
(3)b

again given by J, which we already calculated for the w,;" contribution.

In comparison, the reduction to the automatically chosen basis (preferring dots over scalar

products) will lead to an expression where v-finite integrals are multiplied by 1/v coefficients.

For example

/ A0 G (k) ko ks) =
{ < 11 1373 59  108085¢ n 16073 14369) I
- 1

1%

36¢r 71808 2 T 18 90e 18

13 7504762 1274  123352¢ | 6764 6356
+ (- -5+ +-— - I
3¢ 15 15¢ 15 15 5

(6.5.3)

1 2
+ (53 — 68292¢% — % +11252¢ + 626 _ 2104) Is
€ € €

6 6 6 18 18 ' 36 3

13933¢>  2671e*  277¢3  397¢%  6le 5 4
+ < + ) Ig p + O(1Y).

Calculation of the v — 0 limit of Eq. (6.5.3) is clearly complicated. Hence, it follows from this
comparison that the v = 0 integral basis is the preferred choice.

6.5.2 Calculation of master integrals

We now discuss the calculation of master integrals appearing in Eq. (6.5.2). Evaluation of
these integrals closely follows earlier discussions. However, the two propagators 1/k; - k, and
1/ky - k3 make the calculation of master integrals significantly more complicated.
To illustrate this point, we compute the master integral I3y explicitly. The integral reads
qunnn
Io = / 600 . 6.5.
% (k1k) (kiks) (kion) (ks7) (654)

89



90 N3LO SOFT FUNCTION

We integrate over the relative azimuthal angle between El, | and E3, 1, using the formula

(d-2) O(a;B; — w;B; Bi
o™ 1 :2{(“ﬁ] “15)2P1(1,1+e,1—e,“’ﬁ>

Q=2 ki -k aif; aip;
+M2Fl (1,1+€/1 —€, [XIIB]) ,
“j,Bi OC]'IBI‘
where i = 1 and j = 3. We proceed by changing variables a3 — B13/&1,3 and obtain
- d6idgs 6525 B
Lo = (N4 [ T]dpi ;%" o1 - 1963 6163
o= ,I:I Pib 0= P) (54 o) (Bida + Pod)
< (161 - 6 8) |60 - 82 (11t e1-¢ 3 ) (6:56)
g3
+830(61 — ¢3) 2R 1,1+€,1—€,a :

We next integrate over B, by removing the delta function §(1 — B123) and further change
variables (B1,B3) — (x,y) using B1 = x(1 —y) and B3 = x y. The integration over x yields a
hypergeometric function. Finally, we obtain

5 AT(—4¢)T(—2¢) y (1 —y) > 'g5es
Mo J dvebdat gl

X 2F1 (1/ _4€/ _6€1y) ZFl (1/1 +€/1 - €/€1)

X [&9(53 —¢1)2h <1, 1+¢€1—¢, (f1> (6.5.7)

I;0 = [N]

3 3
+0(¢1—C3) 2F (1,1+e,1 —e,) ]

Multiplying out the squared bracket we write the integral as the sum of two terms

5 AT (—4€)T(—2¢)

0 = [N] I'(—6¢)

(Zég) + Iﬁ?) : (6.5.8)

We change variables as follows: 1 = 1§, ¢3 = ¢ in Iég), and {3 =7, §1 =¢in 13(8). Finally,
we transform the hypergeometric functions appearing in the squared brackets using the
following identity

oF (a,b,c,z) = (1 — z)c_”_b 2F(c—a,c—b,cz). (6.5.9)
We obtain

Tl (e il s anad (€ et Ye et W
1—y(1—r7)

7\ = / dy dé dr
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X oF (—1 — 6€, —2¢€, —6€,y) 2F1 (—e, —2¢,1 —€,1¢) (6.5.10)

X oF (—e,—2¢,1—¢,1),

and
—2€ o —4e—2 x2€ L€ .\ —2e—1
7 — /dyd(jdr y A-y) e rd-r
r+y(l—r)
X oF (—1 —6€, —2¢,—6€,y) 2F1 (1,1+¢€,1—¢,¢) (6.5.11)

X oF (—€,—2¢,1—¢€,r).

The two integrals in Egs. (6.5.10) and (6.5.11) are difficult to compute due to a power-like
divergence at y = 1. To isolate and extract this divergence, we transform the y-dependent

hypergeometric function in the following way

I[(—6e)T(14+2€) 1 6
I'(—4e)

142 [ (=1 —2€)I'(—6€)
I'(—1—6¢e)I'(—2¢)

2F (=1 —6€, —2¢, —6¢€,y) =

(6.5.12)
+(1-y)

2F (1, —4€,2+2¢,1—y).

The first term in Eq. (6.5.12) can now be straightforwardly integrated and the second term
only leads to a logarithmic divergence in y = 1. Thus, to proceed further we consider the

integral 1'3(3) and write it as

Ty =15 + 1y, (65.13)
where Iég’l) and Iég’Z) correspond to the two terms of Eq. (6.5.12). To compute Ig()g’l) we
integrate over y and find

1+4e ) —4e—2

/ y Sy =@+ 4er(-1-4e) p2-de, (6.5.14)
The full expression for Iég’l) now reads

13(8,1) _ T(244e)I(—6€)I'(1 + 2¢) /dC dr g2 13¢(1 — )21

(1+4e) (6.5.15)

x (1— ér)’ze’1 oF (—€,—2¢,1—¢€,1¢) 2F1 (—€,—2¢,1—¢€,1).

This integral has a singularity at r = 0 and an overlapping singularity atr =1, = 1. We
separate these two singularities by multiplying the integrand with 1 = (1 —r) 4 . The first
term removes the r = 1 singularity so that the remaining r = 0 singularity can easily be
extracted. The second term still suffers from the overlapping r = 1, ¢ = 1 singularities. To deal
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with this case we subtract the product of hypergeometric functions at r = 1 and add it back.
When this difference of hypergeometric functions

oF) (—€,—2¢,1—¢€,1() oF1 (—e,—2¢,1—¢€,71)

(6.5.16)
—oF1 (—€,—2¢,1—¢,() 2F1 (—€,—2¢,1—¢,1),

appears in the integrand, the r = 1 singularity is removed and the integrand can be expanded
in a series in € and integrated. On the other hand, when only the subtraction term appears, the
hypergeometric function does not depend on r anymore, so that the remaining integration over
r can be carried out in a straightforward manner. The resulting one-dimensional integration
over ¢ is divergent in ¢ = 1. However, this divergence is logarithmic and can be easily isolated
and subtracted. Combining all the different contributions, we find

I(a,l) - _ Il T E—
30 182 48e3 ¢ 18+ 6 12 + 108 18

4 2 2
e (61§3 L7t 125 137 ) e <89n s 8503

1 1 1(5 712) 4373  5m* 25

6 540 ' 18 108 9 2

8450s 2097 177 625 3047205 1075¢ (6.5.17)
+ 5—|— >+€3 <_32€§+ 3+ 3

4 162 108 18 9 6
+3059g5 57637 t° N 107772 N 3125 21947
6 17010 108 18 405

The computation of ZE,ES’Z) proceeds in the following way. There are two singularities one
at y = 1 and another one at r = 1,§ = 1. To disentangle the overlapping singularity at
r =1,¢ = 1 we make the following replacement

rl+e

———HF (—€,—2¢,1—¢€,0r)2F (—€,—2¢,1—¢,1) —
1—y(1—7r) 1 )21 ( ) (6.5.18)

oF (—€,—2¢,1—¢,8)2F (—e,—2¢,1—¢€,1),

in Eq. (6.5.10) and add the difference of the two terms back. In the difference the r = 1
singularity is regulated such that we only need to extract the logarithmic singularity at y = 1.
To compute the contribution of the subtraction term, we simply integrate over y and r to obtain
yet another hypergeometric function of ¢. The resulting ¢ integration only has a logarithmic
divergence at ¢ = 1 which can easily be isolated and subtracted. We find

1 1 1 2 1573 272 82
T@2) _ _ ST I T -5 Y | —23 2
30 16e  4e2 ' e 4 4 3t G F
2374 23723 59505  32m?  47m*
-== 11 2 =22 410405 — — — — 64 6.5.
% —|—6>+e< g + 10473 1 3 30 6) (6.5.19)
2123 67m* 12872 47567°

+ € <249g§ + — 47603 — 57705 + I — + 256) .

3 10 3 2835
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Computation of Iég) proceeds along the same lines, however this time the ¢ integration can be
directly performed. We find

I§3>:1+12 3B (1,1+¢€,1426,1—¢,242¢,1)
—2 —4e—-2 —2e—1
x/dydry A—y) T r-n"" (6.5.20)
r+y(l—r)

X oFy (—1 —6€, —2¢,—6€,y) oF (—€,—2¢,1—¢€,7).

We then re-write »F; (—1 — 6€, —2¢, —6¢,y) using Eq. (6.5.12) and integrate over the two
resulting terms separately. The first integration is straightforward as it leads to yet another
3F-function. Integration over the second term is also straightforward since no additional
resolution of overlapping singularities is required.

We finally put everything together and obtain the final result for I3y

3 13 1/ 109 n2\ 1 572 461
Lo=[NP{ =+ +=(-——= 1034+ ) =7
0= ]{8€4+6e3+62< 12 12>+ ( 3t 5=+ ) 63

1969 237% 12117t 311 , 311175 77* 8501
T2 18 360 +€<_6”€3+292€3_ > Tt
35574 7273 114774 (6.5-21)
2 2 3
— 1873 — — 11083 — 4
36 >+e (8§3 3 0803 — 403505 + —
+3977z2 37129 107297°
18 12 810

Definitions of the remaining master integrals that appear Eq. (6.5.2) can be found in Ap-
pendix D.3 and their analytic results are again given in the ancillary file of Ref. [77].

6.5.3 Results

Substituting results for the master integrals into Eq. (6.5.2) we arrive at the following result for

(3)c

the integral of w,,;;” over the nnn phase space

/ Ao w0 (k1 ko, k3)

3 4 70 1 /920 1972 1 /8527 12272
= [N {_e5+3e4+€3 ot ) taly T ek

L(67193 | 12807 1977 | 27320, 558745 | 109907 4397
81 9 90 3 243 27 9 (6522

€

3203203 160472Z5 4074557 8913872 2802474
+== 3 HA2040s | e oo+
| 2302975 28899203 92247

_ 2
I . 7604§3+50296§5>}.
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We explain the calculation of the last contribution w,sg;l)’d to the zero-jettiness soft function in

the next section.

6.6 THE w)4 CONTRIBUTION

The last contribution to the zero-jettiness soft function can be written as an integral over the

function w,%)’d. We construct it from the function 35,5 ), which reads [74]

=(d) —(n)? 1 { 1 { 1 ( _ ni
S~ LI koks — kyks) (2%
ik 4k%23 fikqo3 fikq nky nks + 4k%23 fik103 kiky | fikq nky nn( 2 1 3) <Hk3>
12 (kg ks — ks fiky — ko ﬁk3))
1’lk3
1 11
+ 27’Zk13 }’_lkz { <TI{1 B Vl7k3>
x {nﬁ (ﬁk1 n(4ky — 3kya) — 3 iky nkya + fiks n(ky — 3ka) + 27t (koks — k1k3))}

+4nﬁﬁ(k3—k1)}

+m {(nikl - nikz> (—2nﬁnk1ﬁk123>

+ nifi(ky —3k2—k3)}+m{nﬁﬁkl3
+ (ﬁ}% ﬁikl) ['72—_ fik13 r‘zku] } + m{nﬁﬁ@h +ky —3k3)
+ (nib - nikl) [Znﬁ ik, ﬁk13] }

) ) (o)

*5 (i~ k)

<ﬁ}<1 B ﬁ}cz) <2 it ik ik — k3))
5 (s~ i) G — ) [amm (ks — k)i — )]}
* (klllfz)2 ["kzlza ﬁis B ﬁiu) (6.6.1)
X [niikiks (@ = 4) itky = ditky ) +2 (d = 2) nky (ky )2 + 7y 7k (4 = d) ks + 5 ks )|
nk121ﬁk3 {(d 2)nikz =) ky ﬁkl3}
ﬁk121nk3 {Znﬁ fks ((4 —d) ks + dﬁkZ) + (d —2) nky 7i(ky — k2) f1(kyz — 3k2)}}

1 1 o
+ 2k1k2 k1k3 |:I/lk12 ﬁk3 {4 nn k2k3 1’1(2k1 +k3)
+ (k7 )? <(7—2d) nky + (2d + 1) nk, —4nk3> + 271k, 7iks ((S—d) nky + (d — 5) nky —znk3)
7k ks (24 = 3) nky + (9 = 2d) nky — 211k ) + 3 (7ks)? n(ky — ko)
+ fiky ks n(9k1 — 3ko + 2k3) + 2 (7iky ) n (ks —kl)}
_ _ _\2 _
77_11{12 ks {2 nii kpks ii(k1p + 2ks) + (7ky) ((Zd 7) nky + 2nky + i’lk3)

+ 7ikq ﬁk3<(2d — 7) nky 4+ 4nky — 3nk3) + 2 71kq 7iky (1’1k2 - 2d7’lk1) +2 (ﬁk3)21’l(2k1 - kz)

1 fiky ks (2 nky +3nks — (2d +1) nkl) + (7tky)? ((Zd —9)nky — nk3) }
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4 1 1 nn _ =12

+ (flkl)z (Hkl + (3—4) l’lkz) + (d — 2) itky fiky nky + fiky iks n(ky — 3ky) + iky ik n(3ky — kz)}} }

1 { _
+ — {(3d—10)ni +
2 (k3,3)? nk1p3 fik123

2nitkiks
(k1k2)?

((d — 4) kyks — dksz)

+ L kg <(8 —3d) nky + (16 — 7d) nk2> — @ ik nky — 27t (2hegks + 3Kaks)
kik 2

koks
kiky kiks

|:7117Z koks + 4 (d - 4) fiky nky — 16 7ikq nky + 4 (2 — d) fiky 1’lk2:| } .

A distinct feature of this contribution is the propagator 1/k3,,, which was absent in all other
contributions. Master integrals containing this propagator are quite complex and we decided
not to calculate them through a direct integration. Instead, we can use the fact that we are able
to write down IBPs for integrals with Heaviside functions to construct differential equations
for these master integrals. Solving differential equations, allows us then to compute the master
integrals.

We begin by expressing w,%)’d through master integrals, which can be found in Appendix D.3.
We split them into two categories. The first category includes all master integrals without
1/k3,,. Such integrals can be computed following the discussion in Section 6.5.

For integrals with a 1/ (k3,,) propagator, we replace 1/ (k3,;) by 1/ (k3,; + m?) and derive

a differential equation with respect to the mass parameter >

. The resulting system of
differential equations is solved numerically following the discussion in Ref. [81].

We fix the boundary condition at m — oo, since this limit leads to a simplification in the
propagator 1/ (k2,, + m?). This makes the boundary conditions calculable, as explained in the
text. However, the introduction of the mass parameter also complicates the derivation of IBPs
and introduces more integrals to close the system of differential equations. In the remainder
of this section we explain how to calculate m — oo boundary conditions in Section 6.6.1.
Afterwards we discuss how to solve the system of differential equations using a simple

example in Section 6.6.2.

6.6.1  Boundary conditions

In the previous sections we have seen that, even though IBP reductions have to be carried out
with full v dependence, the v — 0 limit can often be taken in a straightforward manner after
the reduction. This also holds true for integrals with the additional mass parameter. For this
reason we will discuss the boundary conditions for v = 0. We will explain how to take the
v — 0 limit for the integrals, where this limit is non-trivial, in Section 6.6.2.1.

As we will see, the complexity of boundary conditions strongly dependents on the number
of Heaviside functions for any given integral. Thus, the discussion of boundary integrals
naturally splits into three pieces. Integrals with no Heaviside functions, integrals with one

Heaviside function, and finally, integrals with two Heaviside functions®.

2 We remind the reader that there are no master integrals with three Heaviside functions
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We begin by discussing the easiest case, boundary condition for integrals with zero Heaviside
functions. Thus, we consider the following integral

nnn
Isss(m) = / m. (6.6.2)
In Eq. (6.6.2) the ellipses stand for scalar products which are independent of the mass parameter
and i is an integer. In the nnn configuration all B; variables are constrained 0 < 8; < 1, because
of the delta function 6(1 — B123). Furthermore there are three delta functions constraining the
values of the a; to a; = B;. Finally, since the k; are emitted on-shell, it holds that k% | = api.
Hence, the integration in Eq. (6.6.2) is performed over a finite region of the three-particle
phase space and the m — oo limit is simply given by the Taylor expansion of the propagator
1/ (k3,5 + m?) in k3,5 /m?. Thus, the asymptotic mass dependence of Eq. (6.6.2) is given by
Jim Igg(m) ~ m 2. (6.6.3)

It is clear that a Taylor expansion of Isss5(m) integrals in k3,;/m? leads to integrals where the
massive propagator 1/ (k3,, + m?) is absent. Using IBP relations, these integrals can be further
expressed through massless master integrals that were discussed in the previous sections. Thus
no additional calculations for this class of boundary integrals are needed.

Consider now the class of boundary integrals that contain two delta functions and one
Heaviside function. We choose four momenta kj ;3 in such a way that the Heaviside function
is dependent on k; and write

dq)nnn
Tpss(m) = /¢ (6.6.4)
(k3ps +m2)i. ..

At variance with I;s5(m) the phase space in Eq. (6.6.4) is not restricted. Indeed, the a; integration
is only constrained by the Heaviside functions 6(a; — 1) so that a; € [0,00). The integral
Eq. (6.6.4) thus has two contributions in the m — oo limit. The first one is given for a; ~ B ~
1 < m?. The calculation of this contribution is completely analogous to that of Isss(m) and is
given by a Taylor-expansion in powers of k%,,/m?.

On the other hand, since &7 is unbounded, it can be of order m?, ay ~ m?2. Since the phase
space scales as a; € and since in the a; — oo limit it holds that k3,, + m? ~ a1 (B2 + B3) + m?,
we find that all integrals Iys5 have the following asymptotic dependence on the mass parameter
m in the m — oo limit

hgn 1955(711) ~ m_Zil_zeAz + m_ZiAl. (665)
m—00

In Eq. (6.6.5) i1 and i are integers particular to the integral under consideration, A; is the

Taylor-expansion contribution, and A, is the new contribution from the region where a; ~ m2.

To compute A, we need to discard the 6(x; — B1) constraint, as it is only relevant for small
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values of a1, and simplify the integrand under the assumption that ay ~ m? > ay, a3, B1, B2, B3-
We note that in this case all integrals evaluate to hypergeometric functions.

Finally, we need to calculate boundary conditions for integrals with two Heaviside functions

. dq)nl’m
Toos = / ) (6.6.6)
(k3yy +m2)i. ..

The asymptotic m — oo limit of such an integral reads

Lim Tggs (m) ~ m=H2 Ay BT Ay T H AL (6.6.7)

In Eq. (6.6.7) A; originates from the Taylor-expansion of the integral in powers of k2,5 /m?, A»
from the region where a; ~ m2, ay ~1ora; ~1, ap ~ m? and A; from the region where
a1 ~ ay ~ m?. As before, A, is computed by removing the corresponding constraints given
by Heaviside functions, where appropriate, and simplifying the integrand in the required
limit, i.e. a1 ~ m? > &y, a3, B1, B2, B3 and ay ~ m? > ay,as, B1, B2, B3. Similarly, A3 can be
computed by removing both Heaviside functions and simplifying the integrand in the limit
wy ~ ag ~ m* > az, B, B2, B3

In the following, we illustrate the computation of all non-trivial branches by considering
an explicit example. We discuss the computation of the m~2¢-branch in Section 6.6.1.1 and

—4e

proceed by illustrating the computation of the m~**-branch in Section 6.6.1.2. Finally, we

continue with the discussion of the differential equation in Section 6.6.2.

6.6.1.1 m 2-branch

To illustrate how contributions of different regions to the boundary conditions can be com-
puted, we consider the following integral

B 500 =/ 500 ,
' (k33 4 m2)(kiks) (kion) (kaft)

(6.6.8)

We would like to extract a contribution to this integral which, in the m — oo limit, scales

as m~2¢. We begin by inserting the Sudakov decomposition for all propagators except

1/ (k3,5 + m?). We obtain

_ 2 : a iz —eqeyd-2)0(a1 — B1) 0(az — B2)
B1se0 = Wg/d“zdﬁz<“zﬁz> dQ), (k%za + m?2)
0(az — Bs3)

. (w183 + a3B1 + 2+/a1a3B1B3 cos pi3) (B1+ B2) a3

(6.6.9)
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We would like to calculate the leading m~2¢-branch contribution to this integral. To this
end we consider two regions ay ~ m? > 1 and a3 ~ m? > 1. In the first case it holds that
k25, + m* ~ aa(B1 + B3) + m? and together with Eq. (6.6.9) we find that

d —€
lim By 509 ~ / %2 % ~ m 2. (6.6.10)
m—roo o (

B1+ B3) + m?

Np~m

However, in case a3 ~ m? > 1 it holds that k123 +m? ~ a3(B1+ B2) + m? as well as kzk; ~
a3B1 ~ m?. This implies

lim 31,599
m—o0

das a;© ~2e—4
wyrom? - / (@3 (B1 + p2) + mD)azas (66.11)
We conclude that in the limit m — co the leading m~2¢€ behavior of the integral By 5p9 comes
from the region where a; ~ m? > 1. The second region a3 ~ m? > 1 only contributes to the
m~2¢-branch with power suppressed terms.

We now extract the leading O (m~%¢) dependence of By s by simplifying Eq. (6.6.9) in the

ay ~ m? > 1, a3 ~ 1 limit. First note that B 509 only depends on a; through

dDCz o, 0(2 — ‘32)
B1,500 N/ k§23 ) : (6.6.12)

Because we want to extract the contributions where a; > 1, we split the integration region in
Eq. (6.6.12) introducing an auxiliary parameter A. We find

/O?dlxz 0(2_69(062 - ,32) . /A'doéz 062_69(062 — ,32) n 7(?1062 062_69(062 — IBQ) 6.6.13)

Ky +m? Ky +m? Ky +m? . -
The parameter A is chosen to be 1 << A < m? so that the region where ay ~ 1 is confined to the
first term and the region where ay ~ m? to the second term in Eq. (6.6.13). To extract the m—2€
contribution from the second term in Eq. (6.6.13) we replace 1/ (k3,, + m?) by 1/ (a2B13 + m?)
and neglect the Heaviside function, since A > 1 and B, € [0, 1]. We obtain

/oodocz a, “0(ax — B2) N 7 day oy €

K tm? ) wpitm?
0 A
dao ay € dao ay €
~ O/ 2B 4 12 — O/ -~ (6.6.14)

[ee]

day o€ 1

—2¢ 2 Wy —€
= —=— - — [ d .
m 0/“2 atl 20/ o 0y
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where we used that a,813 < m? in the second term. The first term in Eq. (6.6.14) contains the
complete contribution to the sought after m~2¢ branch.

The second term in Eq. (6.6.14) depends on the parameter A. To show that the dependence
on this parameter disappears in the full integral in Eq. (6.6.13), we need to calculate the ay ~ 1
contribution, i.e. the first term in Eq. (6.6.13).

Considering this term, we safely neglect k3,, compared to m? and obtain

das DCEEG(IXZ — IBQ)
mZ

/['\dﬂéz a;ee(ﬂéz — ‘52)

Kz +m?

Q
S— 5

(6.6.15)

Q

1 o0

— - d ,
/ ap ;€0 (ap — B2) — / ap oy €
0

where we again neglected the Heaviside function in the second term since there &« > A >
1 > Bo. The first term in Eq. (6.6.15) is just the Taylor mP%-branch of B1 509, that we already
discussed. The second term in Eq. (6.6.15) now explicitly cancels again the second term in
Eq. (6.6.14). Indeed, summing both terms we find

0 A 00

1 1 1

—2/ o a;e—ﬁ/daz txz_e:—ﬁ/docz ay € =0. (6.6.16)
A 0 0

Finally, combining all the contributions discussed above we obtain

00 day a5 €0 (ar — B2) 267 day a; € 1 7’ )
- — =+ [d €0(ay — Bo). 6.
/ Ky + m? ) " a2f13 + 1 Tz ) 4 (a2 — B2) (6.6.17)

Thus, as stated earlier, we obtain the m~2¢-branch by simply replacing the propagator 1/ (k3,; +
m?) with 1/ (a2B13 + m?) and neglecting the Heaviside function in the full integral in Eq. (6.6.9).

We continue the computation of the m~2¢ branch by substituting Eq. (6.6.17) into Eq. (6.6.9)
and neglecting the Taylor contribution. After integrating over the relative azimuthal angles of
the massless partons we obtain

e [ dB1dBadBs BBy B3 °0(1 — Proa) dasa; ©
By 500 = 2[N]Pm 2% / 1([312_1_’332)’31“2 3
~ 3
s N (6.6.18)
ﬁg) / das ay €
x 0(az — Fl1L1+e1— —_—
(a3 53)21< w) ) wpor1
The &, integration is straightforward, we find
(o) d —e
/L”‘Z — Bt T(eI(1—¢). (6.6.19)

/ wPfz+1 7B
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After changing variables a3 — ¢ where a3 = B3/¢ the ¢ integration factorizes and we obtain

e T(1—€e)T%(1+€)
el(2+e¢)

x [ dprdpads o(1— Bis) BB Br Bl Bia Br <

=2[N]® m

xy~m?

B1 560 s (1,1+€1+¢€1—¢2+¢€,1)

(6.6.20)

To compute the remaining integral, we remove the delta function by integrating over B, and
change variables 1 = xy and B3 = x(1 —y). The integration of x and y is straightforward
and yields just another hypergeometric function. Finally, we obtain the result for the required
branch

C0e T2(1—€)T?(1 +€)T(—1 — 3€e)T%(—2¢)

_ 3
= 2[N]"m eT(2+ €)T2(—4e) (6.6.21)

y~m?

X3Fh (1,14+€14€1—¢€2+¢€,1) 3F (1, —1— 3¢, —2¢, —4¢, —4¢,1).

B1 506

The calculation of the m—2€

-branch described above is representative for the computation of all
other boundary conditions contributing to this branch. Indeed, all such boundary conditions

can be calculated in terms of hypergeometric functions, in a straightforward fashion.

6.6.1.2 m *-branch

At variance with the simplicity of the previous computation, the calculation of m~*¢-branches
turns out to be quite difficult. For such branches we need to consider the asymptotic limits
ay ~ ay ~ m?> > a3,PB1,B2 B3 In this limit the propagator 1/ (k3,, + m?) simplifies to
1/(2ky - ko + k3 - n(kqz - 1)), where the remaining dependence on the scalar product kj - k»
makes a calculation difficult.

To understand how such integrals can be computed, we consider the generic integral

dDges
Igos = /W (6.6.22)

Similar to the discussion of the m~2¢ branch, we obtain the m *¢-branch by neglecting the
Heaviside functions in Eq. (6.6.22) and simplifying the propagators in the limit a; ~ ay ~
m? > a3, B1, B2, Bs- We obtain

5(1—’(123'1’1) 5(k3'fl—k3'1’l)
2k1-k7_+k3-n(k12-ﬁ) B

1995 (6623)

_ / [dky][dko] [dks]

aq ~ap~m?
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where ellipses stand for other propagators that need to be simplified in the given limit. To
facilitate the computation, we re-write Eq. (6.6.23) by introducing the vector g = ki + ko. We
find

Ipos

ks -n)dks 71— k3 -
_/y M3 qﬁ_igfiﬁm§w

X/MMMbww—h—bym

&1~y ~m?

(6.6.24)

Therefore, to determine the m~*¢-branch of any lgg; integral, we need to compute integrals of
the form
d’q6(1—q-n) 2
19915 = / ( q-1n,q- ﬁ)l 6.6.2 )
S v (B R [ R0 R I (6625

Hfﬂ-mqﬁ):/MMMG—qWP%ynﬁ@yﬁ—h-w

(6.6.26)
X/HhWMﬂMq—h—kﬁ””

To simplify the computation of many required functions F(q%,q - n,q - i), we can derive IBP
relations and use them to express any function F as a sum of master integrals. Upon doings

so, we find that there are five master integrals in total. They read

{Bll BZ/ B3/ 841 85}

= [1aks10( — g n — ks m)a(ks 71— ks ) [ [dki] k)l — ki — k2) (6627

X{ 1 1 1 1 }
k2 (kz Tl)(kz-fl)’(kz'l’l)(kl-ﬁ)ll—kl'l’l '

Note that these integrals are fairly easy to compute, as they do not involve the scalar products
of gluon four momenta. Indeed, any such scalar product is either simple, as is the case of

ki-ky = g*/2orit gets simplified in the limit under consideration, as e.g. ink; - k3 — k3 -n kq - i,

ko ks — kz-nky- .
To compute the master integrals B, 5 we switch to the rest frame of g, where k; and k; are
back-to-back. In this frame the angular integration yields

d—1
/ dQ,(( )
(A7) (1~ 7y - 1)

_ 27260(1/{*2) W °F (1, 1,1—¢,

(6.6.28)

—_
+
N3y
=t
N———
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where we used n = (1,#) , 1 = (1,7) and k = ko (1, 7ix). We find

Bi = Ne(q®) (1 —q-n)7%,
5, - L2 (@) (1= g-m) ™

e T
o (2021 g ) 7 .
b= R (e ) e

o (1=26)2(2) <(1—q-m) 7
B = R R (e )

Bs = Neg (1 —q-n)"*,F (1,1 —¢,2—2¢,q-1),

@-2) 12 _
i 1 [Q 2 ] T2(1—¢) (6.6:30)

Ne =G |a@a 1| Tl—2e)

Having computed the master integrals ;5 we next need to integrate the function F(g2, ¢ -
n,q - i1) over the remaining phase space (cf. Eq. (6.6.25) ). For example, for one of the boundary

conditions that we will refer to as B, this function reads

s [H1-20P@ g (=g o 4P
R = | B (6631
2(1+2€>(1—q-n>q.ﬁ8 6.3
B m2q? 41
where
dig (1 —q-n) ) .
2_/ P+q-al—q-n)+m’ B7.q-n,q-7). (6.6.32)

To compute the integral B, we introduce the Sudakov decomposition for the vector g and

write g = Jagn + 1.7 + q, . In this parameterization the phase-space measure reads
dq0(1—q-n) = dzquﬁqdm 7)7edQ ") 0(1 - By). (6.6.33)
In addition we require the four-vector g to be time-like
7 = 2ky - ko = 2|k1||k2|[1 — cos(¢12)] > 0. (6.6.34)

This implies that

0> = agBs—q71 > 0. (6.6.35)
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Thus the integration boundaries can be chosen tobe 0 < f; < 1,0 < a; < o0 and 0 < g3 <
agB4- To simplify the mass-dependent denominator in Eq. (6.6.32) we perform the variable
transformation qi — t, where t = a; — qi and obtain.

F+q-a(l—q-n)+m*=a,—q; +m* =t+m’. (6.6.36)
Transforming the integration measure and boundaries of Eq. (6.6.33) we find

1
d?dg0(1—q-n) = 4 dgdBydt(ay - 1)~edQU=29(1 - B,), (6.6.37)
where the integration boundaries are 0 < 8, < 1,0 < ay < 00 and ay(1 — B,) < t < ay.

However, we would like to choose a parameterization of this integration volume, such
that the t integration is not bounded by the other integration variables. In this case we find
0<t<oo,t<a;<ocoandl—t/ay; <Py <1. Weperform a last variable transform g; — B,
with g7 =1 — B, such that 0 < ] < t/ag.

We proceed by substituting Egs. (6.6.31), (6.6.36) and (6.6.37) into Eq. (6.6.32) and integrating
over d0@~2), We obtain

4(1-2€)2(1+p))
(1+¢€)mb(1— By)?

4¢€? 2(1+2¢)Braq
A+e)m ™ m2(t—agp;)

B, — Od-2) / da,dpgdt(eg —t)~¢

/
q
4 t + m? B

(6.6.38)

_|_

To integrate further we change variables a; — ¢ with a; = t/¢ and 0 < ¢ < 1, and thus
0 < B, < ¢. Then, we change variables one more time 8, — r with g = r¢, such that r € [0,1].

Upon changing variables and using explicit expressions for integrals B;, 4, we note that
integration over t factorizes and can be performed easily. We obtain

—4—4¢ 1
B, M 4-4 [N]Srz(;z_e)l‘(l + 2¢) /d(j dr Wa(e, 1),
0
B (r(Q+rd)+e(1—2r(1+) —2r22(1—¢/2))) 6.6
e = {26 ()= r)ere(i— e (1 - 1) 0039
1—2ex1—€ 1— € 1—
+2(2e+1) (17_ r)§1+€((1 — g)gl)ﬂe °F (—e, —€,1—¢, <1_:>§> }
After integrating over ¢ and r, we find
_ 4
B, =m *4N]? < - % - g - l—f + %f% +60(3 + % — 84 + € (1203
(6.6.40)

1176
+8135 + 7t — 204) + €2 <—75g§ + 36003 + 3245 + 6—;[ Yot - 468> ) .
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Calculations of all other m~#¢-branches required for boundary conditions can be performed
similarly. This concludes the discussion of boundary conditions. We explain how to solve the
differential equation in the next section.

6.6.2  Numerical solution of the differential equation

The system of differential equations that we need to solve involves 265 integrals. For illustration,
we discuss a subset spanned by only eleven integrals. For a large subset of the 265 integrals
and for the subset under consideration, the v — 0 limit can be smoothly taken and we set
v = 0 in the following discussion. We will discuss the v — 0 limit for integrals that require it,
afterwards.

We consider the subset of the following eleven integrals

A5
Ky +m*’

d@nl’ln @nnn
‘73:/( 365 ) ‘74_/k2 500

k%zs +m?)ky - n 123t m?’

d@l’”’lﬂ dq)nn/n
T = / _ S Jo = [ S0 6.6.41
’ (k%23 +m)? ° k%23 +m? (6641
dO5 do55
‘77:/ K2, + m?) (kyn)’ jS:/kz 2) (ksir)’
(k73 +m?)(kin) (kip3 +m?)(ksft)
¢1’l717’l dq)nnn
/k2 306 sz/( 300

205+ m?’ k3, 4+ m?) (komt)’

T = / ddF .
(ky5 + m?2) (ko)

Fi= [ dop, T =

We note that in Eq. (6.6.41) we defined the new shorthand notation ¢’ for derivatives of delta
functions. They read dé(kpii — kan)/d(kon) and dé(1 — kypzn)/ d(kizn) in the equations for
Je and J11 respectively. Calculating these derivatives is straightforward after writing the delta
functions as a sum of two propagators with the help of reverse unitarity.

We now derive a differential equation for the vector J consisting of the eleven master
integrals in Eq. (6.6.41). To this end, we differentiate J w.r.t. m? and reduce the resulting
integrals back to master integrals in Eq. (6.6.41). The differential equation can be written as a
matrix equation

0 M, M;

amzj: m2—|—1+m2_|_%

M
+ m—j + My + m*Ms | J. (6.6.42)

The matrices M, _5 are independent of m? but depend on €. They can be found in Ap-

pendix D.7. We note that the matrices M, 5, boundary conditions and solutions to differential

equation Eq. (6.6.42) are also given in digital form in the ancillary file of Ref.[77].
We have already explained how to calculate the boundary conditions for the integrals 71 11

in the previous sections. A list of all boundary conditions required for the N3LO soft function
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can be found in Appendix D.4. We solve the differential equation by expanding all master
integrals at m* — oo in a power logarithmic series in y = 1/m?

N~ Z Coo(n1,n2,13)y" ¢ 1In" . (6.6.43)

The coefficients Ce (11,12, 113) are series expansions in € and are fixed with the help of the
boundary conditions and the differential equation Eq. (6.6.42). We use these series solutions to
evaluate integrals in the upper complex half-plane within the radius of convergence. The radius
of convergence is determined from the singularities of the differential equation. According to
Eq. (6.6.42) they are located at m? = 0, —1/4, —1. We keep constructing and matching series
solutions within the radius of convergence until we reach the physical point m* = 0.
Suppose we want to find the solution of J at the point m* = m3 = 1/yo which is still within
the radius of convergence of Eq. (6.6.43). We construct another series solution at this point

T =Y Cy(m)(y —yo)™, (6.6.44)

and fix the coefficient C,,(0) by matching Eq. (6.6.44) with Eq. (6.6.41) at y = yo. The
remaining coefficients C,,(n1) with 11 7# 0 are then determined through the expansion of the
differential equation around y = yo. The series solution in Eq. (6.6.44) now has its own radius
of convergence which allows us to move past the original radius of the series in Eq. (6.6.41).
We repeat this process until we reach the vicinity of the physical point m? = 0.

For the differential equation Eq. (6.6.42) the poles and matching points are shown in Fig. 6.4.
Note, that for the example differential equation Eq. (6.6.42), there are no poles on the real axis,
and we can simply move along it while never leaving the radius of convergence of the first
matching point at m?> = 2. For the complete set of 265 integrals we will also encounter the
situation where there are poles on the real axis. In this case one can move around poles by
going into the complex plane where necessary. However, it is simpler to exploit the fact that
the power logarithmic in Eq. (6.6.43) are the same in both limits m — co and m — ico and
move along the positive imaginary axis instead.

Once we arrive in the vicinity of the physical point m? = 0, we construct another power-
logarithmic series

T =) Co(n1,n2,1n3) ()€ 1" 2, (6.6.45)

We again fix the coefficients Co(n1, n2, n3) by matching Eq. (6.6.45) to Eq. (6.6.44). The physical
solution is now obtained by taking the m? — 0 limit while keeping ¢ fixed in Eq. (6.6.45). This
is only possible if the coefficients Cy(n1,0,n3) with n; < 0 and 17 = 0, n3 > 0 vanish such that
there are no 1/m? and Inm? terms that are not multiplied by powers of m2¢. This condition is
tulfilled for our eleve? )example master integrals and indeed all other integrals required for
3

the computation of w,,;; “_In this case, the physical limit is simply retained by extracting the

coefficient Cy(0,0,0).
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Figure 6.4: Poles and matching points for the example differential equation. Red crosses indicate
poles, blue dots indicate matching points, black pluses indicate expansion points and the
grey circles around them are the corresponding convergence radii. For the physical region
around m? = 0 the color of the matching point and convergence radius is changed to green.

While the procedure outlined above only gives a numerical result, we stress that these
solutions can be obtained to arbitrary precision. To illustrate this point we present the solution
to two of the integrals in Eq. (6.6.41) at the physical point m? — 0 computed up to at least 15
significant digits through weight six. They read

d nnn .
To|p2eo = / 00— 0 5 8 17006373260709 € — 119.43143332972728 &2

ks €
— 430.4404286909044 €3 — 1410.1679482808422 ¢*
— 4372.111524529197 €° — 13148.701437210732 €° + O( 67), (6.6.46)
dorm ) .
Tiolw—o = / _Sa 05 4 99 | 34.3496305180546 + 170.0583525008628
(kip3) (kott) I3 €

+ 758.7443815516605 €* + 3238.222100561864 €°
+ 13535.346184323936 €* 4+ O( €°). (6.6.47)

We note, that we reconstructed analytic results for all master integrals required for w(®)*

using the PSLQ[82] and LLL [83] algorithms together with a basis of transcendental constants.
We have computed the master integrals to more than two thousand digits to check the validity
of the analytic results obtained in this way.
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6.6.2.1 The v — 0 limit in the differential equations

Finally, we comment on the v — 0 limit of the DEQ. We first note that the differential
equation contains additional integrals 7, qiy which are divergent in the v — 0 limit and
contain a k?,; propagator. However, it is sufficient to simply change the basis of the DEQ
{Tvaiv,---} = {vTydiv,- - - } to obtain a system that is free of 1/v poles where the v — 0 limit
can be taken smoothly. Although not straightforward, we can determine which integrals are
singular in the v — 0 limit by studying the differential equations and boundary conditions
together with numerical evaluations of the integrals at finite values of m2. For the numerical
evaluations we employed Mellin-Barnes representations of relevant integrals as well as the
programs MB [84] and MBresolve [85]. We also used the program pySecDec [86, 87] for an
alternative numeric check. We find that there is only one additional master integral which is
singular in the v — 0 limit. It reads

m [ it e o1

Ky +m2) (k- k3) (ki - n)(kip - 72)

After determining all divergent integrals and multiplying them with a factor of v, it is
beneficial to take the v — 0 limit because the number of integrals that span the system
of differential equations shrinks from 265 to 173 in this limit. However this step is not
straightforward. Indeed, after solving the system of differential equations in m? the correct
order of limits would be m? — 0, v — 0 and finally € — 0. Exchanging the m? and the v limit
we may face two different problems.

First, since the parameter m?2

may also serve as a regulator of infra-red divergences the v
and m? limits might not commute, i.e. taking the v — 0 limit first, the m?> — 0 limit might be
divergent. Second, additional terms may mix into the Taylor m®-branch at m? — 0 which we
identified as the sought after solution of the DEQ (cf. Eq. (6.6.45)).

We already addressed the first problem in the previous section by checking that the m? — 0
limit in Eq. (6.6.45) can be taken for all integrals while keeping € fixed. The second problem

can be understood by studying Eq. (6.6.45) in its generalized form for v # 0. It reads

T ~ Z Ciyryngn, (%) T12EH1Y 1014 (12 (6.6.49)

ny,M,Nn3,14

Taking the correct sequence of limits m — 0, v — 0, € — 0 we would identify the solution of
the DEQ with the coefficient in front of m°, copoo. However, if we take the v — 0 limit first

the m™V-branches will start mixing with the mO-branch, that is m"™? — m in the v — 0 limit.

If we now again identify the physical solution with the coefficient of m° we would obtain
€0000 + Y_pn;=1 Coons0 and thus a wrong solution if coo,0 7# 0.
Studying the differential equation for small values of m? but with full v and € dependence

we find that solutions of the form m"¥ without additional powers of € or m?

are not possible.
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We can therefore, safely take the v — 0 limit without any mixing of additional contributions
with the m®-branch.

While this mixing with the m%-branch does not appear in the m?> — 0 limit, it actually
appears at m?> — co and needs to be accounted for when calculating boundary conditions.
Indeed, the integral in ], in Eq. (6.6.48) is not only peculiar because it is the only master
integral with a k%), propagator and a 1/v pole, but also because it provides a contribution in
the m? — oo limit proportional to m=2/v. After multiplying this integral with v and taking
the v — 0 limit this additional contribution will mix with the m°-branch.

This additonal m~2"-branch does not originate from any of the asymptotic limits discussed
in Section 6.6.1, but from a fourth region where az ~ m?, a1 ~ 1 and B1 ~ m~2. However,
we stress that this integral is the only one which requires the computation of this additional
contribution. For all other integrals the three regions discussed in Section 6.6.1 are sufficient.

—2v

We proceed by extracting the m =" branch from J,. To this end, we first simplify the

integrand in Eq. (6.6.48) in the limit ag ~ m? > a1 ~ 1> By ~ m~2. We obtain

J2

— 7, = dDgs (k1 - 1)" (k2 -n)" (ks -n)"
—k= / ((ks-7) (ka-n) + m?2)(ky-ks)(ky-n)(kip-7) (6.6.50)

az~m2,By~m=2

Expanding in this asymptotic limit we further need to remove both Heaviside functions,
neglect the B contribution to the "zero-jettiness" delta function and extend the ; integration
to infinity. We rescale a3 ~ m2, B1 ~ m~2, and find

]2 _ 2[N]3m_zv/dﬁ1/d/32dﬁ3 doqdocg ﬁl—e-i-l/ﬁz—Ze-‘rl/ﬁ;E-i—lel—etX?)—e
0

y 0(1— B2s)
(a3f2 + 1)1 (a1 + B2)
0(B1/a1 — B3/ u3) _ B3
X [ Brs »F (1, 1+¢1—c¢ ocg,,Bl) (6.6.51)
0(Bs/az — B1/a1) 4 wh
+ [330(1 2 F <1,1—|—€,1 €; a1ﬁ3>] .

Changing integration variables to a1 = B1/¢1 and a3 = B3/{3 we obtain

= )
Ji=2[N / dpadBsddrddspy s e IES 5(352 5253)
x (§39(Cl —¢3)2h <1 1+e1- ’f’j) (6.6.52)
B B o ’31 2e+v—1
T80 —&)2h <1 trel-e > ) O/d'B B1+B2i1
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Integrating over 1 we arrive at
181 et —2e+v—1y(_ _
d,Bl = (B281) I'(—2e+v)I['(2e —v+1). (6.6.53)
b1+ 261

We use this result in Eq. (6.6.52), change variables {1 = r{3, and obtain
Jo = 2[N]Pm 2T (-2 +v)T(2e —v +1) / dBadBsBy T IBI (1 — Bs)  (6.6.54)

< dgsgy ! /1 v, et
X 2293 dr [ V4V oR (1,146, 1—¢,7) .
0 B3P2+¢s Jo [ }2 1 )

It follows that ], has a 1/v pole, which originates from the point & = 0 in Eq. (6.6.54). As

discussed earlier, we only need to extract this 1/v pole. We find

[ ders g = L Bape) O (66.55)
Upon further integration, we obtain the 1/v pole of J,. It reads
I = %m‘z” +0(°), (6.6.56)
where

C, = [N]SZFZ(—2€)F(—4G —1r2e +1) <3F2 (1,14+¢e1+¢€1—¢€2+¢,1)

I'(—6e—1) 1+e
(6.6.57)

sB(l,-el+el-¢1 —e,1))
€

Adding the additional contribution C, /v in Eq. (6.6.57) to the m%-branch of J, is the last
particularity that arises when taking the v — 0 limit.

Combining the above discussion with the discussion of numerical evaluations of the system
of DEQs, we compute all 48 master integrals, that have a 1/k?%,; propagator, numerically. We
find analytic solutions for all of them using the PSLQ and LLL algorithms, and choosing appro-
priate basis of transcendental numbers [88]. We present the result for the w(®)# contribution in

the next section.

6.6.3 Results

Checking all 48 master integrals containing the 1/k3,, propagator with the help of IBP relations
derived in the m = 0 case, we find that all master integrals fulfill the relations to their full
precision. In addition, all master integrals that do not contain the 1/k%,, propagator have
been numerically checked by constructing Mellin-Barnes representations and the use of public
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programs MB [84] and MBresolve [85]. We also used the program pySecDec [86, 87] for an
alternative numeric check. Using these programs, we found good agreement between the two
up to the default precision of the numerical programs that, in practice, can vary between 3
and 10 digits. For master integrals that contain the 1/k3,; propagator we were not able to
derive any sensible numeric results using the programs mentioned above.

Combining the reduction with the master integrals, listed in Appendix D.3, we obtain

12 142 1 (467 628
/d mn 504 (ke ky, k) = [N]P {€5+3€4 +5 <3 + 2 )
1 65072 18161\ 1 /3977 680872 165323
~ (1 - 1
+€2<96§3+ 5+ ) < i 13800 + 2+ = >
21467372 1917 1
+ <8982§5— 653” + 99” +4224Li4<2> 136963 In(2) — 17672 In?(2)
4618405 6661472 413971
11761nt(2) + 261846 | 66O o0y ¢
9 81 81
469347
te (2304 {51 — 446475 In(2) — 838072 + T?;SN — 6336GR(0,0,72,1, —1)

— 6336Gg(0,0,1,r2, —1) — 3168Gg (0,0, 1,72, 74) — 6336Gg(0,0,r2, —1)In(2)  (6.6.58)

32421505 (1 (1 n
+ =50 — 45056 Lis (2> — 45056 Liy <2> In(2) + 176C14<§> T

2
— 105603 Liy <i> — % — 2182475 In*(2) + 211231n(2) In(3)
B 2 (T  4400C(§) m° | 88m*In(2) 6167 In(3)
1584 CI3 3) In(3) - + 5

4646714

1126472 In%(2)  225281n°(2)
* a 27

9 15

107272 In’(2) L 1072 In*(2) | 49659203 587380712
3 3 27 243

—3841n’(2) +8321n(2) + %7876 +V3 <192 Im {Lig <W> }

1
+ 8576 Liy <2> + 750473 In(2) +

— 32712 In(2) +

+160C12(§) In(2) — 1677 In2(2) — 56801”3» } +0(e?),

where (_5_1 ~ —0.029902 is a multiple zeta value, and Cl,(x) are Clausen functions.
Gr(ay,...,ay) is the real part of the multiple polylogarithm G(ay,...,a,;z) evaluated at
z =1 [88]

Gr(ay,...,a5) = Re{G(ay,...,ay;1)}. (6.6.59)

Finally, r, = exp(—ir/3) and ry = exp(—i271/3). We note that we have computed the master
integrals to more than two thousand digits to check the validity of the analytic result.

We present the result for the same-hemisphere triple gluon zero-jettiness soft function in the
next section.
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6.7 RESULTS AND CONCLUSION

We are in a position to present the result for the same-hemisphere three-gluon-emission
contribution to the N3LO soft function. To this end, we write

Sges = / A | (ky, ko, k)

1
_ ———1-6¢ 3 cnnn,l 2 nnn,2 2 onnn,3
=l (Cosumt + CaCaSpm? + C,Chsmn?]

(6.7.1)

where we re-introduced the dependence on 7 and C, = Cp(C,) if the emitter is a quark(gluon)-
pair respectively. The Abelian contributions Sggs’ and Spgs”* are obtained by convoluting
NLO and NNLO results. We compute them explicitly in Appendix D.5. Sggs” is obtained by
summing the contributions w(3)'i, i €{a,b,c,d} calculated in the previous sections.

Combining all these results, we find

Sgee 48T3(1—2¢)

NP ~ &T(1— 6e) ’

Sgeg” _ 9T(1—4e)T(1—2¢) [8 44 1 (268 82,
[N]3 €2I'(1 — 6¢) 9

(6.7.2)

3 32 ¢
1544 88 9568 536(, 352
—+ =0 —72 - ey S
+<27 +3€2 C3>+e<81 +— + 3@’3 300@)
55424 3520 2144
+é ( 243 + 2762 + 9 & 435204 4+ 96023 — 1208€5> (6.7.3)

3 (297472 2259275 n 14080¢3 n 2144 4576

729 81 27 3 64— —3 G263+ 369605

+42473% — 3596%¢) + O (€4> } ,

s34 308 1 3380 1 440712 10048
oggg 24 S0 1 o, o 5380 1/
N + 32t 3 ( 1277 + =5 >+€2 ( 10005 + —5— + —3 )

_2377n4 N 44075 N 719272 N 253252
45 3 27 81

197275772 4 1
2 353” —63185” +4224Li4<2> +3696731In(2)

1320803 N 78848772 1925074>

1
€
+ <—28064C5 +

_ 212 4
1767 In*(2) +1761n*(2) + —— o7 +96In(2) + — =

673517
567

— 6336Gg(0,0,72,1, —1) — 6336Gg(0,0,1,7,, —1) — 3168Gg(0,0,1, 72, 74)

te (2304 {51 — 446475 In(2) + 2578472 —

268895 1
— 6336Gg(0,0,72, —1)In(2) + % — 45056 Lis <2)

45056 Liy (;) In(2) + 176 Cly (g) 7 — 105603 Lia <i> 3982057 (6.7.4)

— 2182475 1n2(2) + 21123 In(2) In(3) — 1584 C12 (9 In(3)
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_4400CL () 7 N 887*In(2)  6167*In(3) N 1126472 1n°(2)
27 45 27 9

22528 1n°(2 1 417477* 1072772 In?(2
- 15n() +8576Li4<2> + 750403 In(2) + 27” - n3 n(2)

10721n%(2) 55403273 730378712
+ + e
3 27 243

1 8321n(2) 4 208681 3 (192 Im {Li3 <eXp(i”/ 3>>}

— 32772 1In(2) —3841n?(2)

81 2

+160Cl, (g) In(2) — 167t In2(2) — 5651"3 >> +0().

In this chapter we discussed the computation of the same-hemisphere three-gluon-emission
contribution to the zero-jettiness soft function at N3LO in perturbative QCD. To this end,
we used the approach of modified IBPs developed in Chapter 5. This approach allowed us
to apply integration-by-parts identities and the method of differential equations to phase-
space integrals containing Heaviside functions. The appearance of integrals that are not
regularized dimensionally required the introduction of an analytic regulator. While this
feature complicated the use of differential equations and the computation of master integrals,
we were able to bypass these problems efficiently.

The missing configuration in which one of the gluons is emitted into a different hemisphere
can be computed in similar fashion. However, it remains unclear if this computation will be
simpler or more complex than the one for the same-hemisphere emission contribution. On
the one hand, the computation of master integrals should be easier, due to the absence of
some collinear divergences. On the other hand, we will have to compute master integrals with
three Heaviside functions, which were absent for the same-hemisphere emission contribution.
From the first preliminary results for the different-hemisphere emission contribution, it seems
that this configuration is indeed easier to compute and may be calculated with the methods
outlined in this chapter.

Finally, once a full result for three-gluon-emission contribution to the zero-jettiness soft
function is known, the contributions that arise from the emission of a soft gj-pair and a soft
gluon can be computed straightforwardly. Similarly, we expect that contributions due to
virtual corrections to two real emissions can also be dealt with using the method developed in
this chapter.
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In this thesis we calculated various contributions to the N3LO soft and beam functions as
required for the zero-jettiness slicing scheme at N3LO. Specifically, in Chapter 2 we extended
the already known results for the NNLO beam functions [60, 61] by calculating all NNLO
beam functions through second order in the dimensional regularization parameter €. These
results are required for the renormalization of the N3LO beam function. We further computed
contributions to the beam function due to real-virtual emission at N3LO in Chapter 3. These
contributions are needed for the ongoing calculating of the N3LO beam functions in Refs. [44—
46] as an independent cross-check of the N3LO beam functions presented in Ref. [47]. The
calculations in Chapters 2 and 3 could be carried out with standard multi-loop techniques
such as IBP relations and reverse unitary.

In contrast to this the computation of the soft function is complicated by Heaviside functions
that appear in the definition of the zero-jettiness observable, which prevent the standard use of
IBP relations to obtain a reduction to master integrals. To remedy this problem we developed
two different methods in Chapters 4 and 5.

In Chapter 4 we wrote Heaviside functions as integrals of auxiliary parameters over delta
functions. After writing delta functions as cut propagators using reverse unitarity, integration-
by-parts identities could be applied. At variance with this, in Chapter 5 we derived modified
integration-by-parts identities that can be directly applied to integrals containing Heaviside
functions. To this end, we used the fact that the starting point for IBP relations - the statement
that in dimensional regularization an integral of the total derivative vanishes, is independent
of whether Heaviside functions appear in the integrand or not. We further used the fact, that
when this derivative acts on a Heaviside function the result is a delta function which can again
be treated in the IBP framework using reverse unitarity.

Both of these approaches proved successful and we calculated the NNLO zero-jettiness soft
function through second order in €, as required for the renormalization of the N3LO soft
function. Both methods led to a huge simplification compared to the original computations
presented in Refs [48, 49], where the soft function was computed up to finite contributions
in e. However, the modified IBP approach of Chapter 5 appeared more suitable for an
N3LO calculation. Therefore, we applied it to the computation of the same-hemisphere
three-gluon-emission contribution to the N3LO zero-jettiness soft function in Chapter 6. While
this calculation was complicated by the need to introduce an additional analytic regulator, it
ultimately proved successful and we obtained the first contributions to the N3LO zero-jettiness
soft function.

To complete the computation of the N3LO zero-jettiness soft function additional contribu-
tions are required, such as the contribution due to the emission of three-gluons in different
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hemispheres, the emission of quark-anti quark pairs together with a gluon as well as all
real-real-virtual emissions. * While we only calculated a partial contribution to the N3LO soft
function, we are confident that it is the most general one and all other pieces can be calculated
with the methods developed in this thesis.

When these missing contributions are computed, all ingredients for the zero-jettiness slicing
scheme at N3LO would become available. This scheme would allow for a fully differential
description for the production of a colorless final state in proton-proton collisions pp — V
where V € {H,W,Z,v*, WW,ZZ,v7, ...} at N3LO.

The extension of this scheme to a one-jettiness slicing scheme at N3LO would only require
the computation of the one-jettiness soft function, as the required beam and jet functions are
already known [90, 91]. While the modified IBP approach can also be applied to determine the
one-jettiness soft function, such a computation would be complicated by the more complex
definition of the one-jettiness observable. A one-jettiness slicing scheme would allow for
the fully differential description of the production of colorful final states pp — V + j where
Ve{HW,Z,...}atN3LO.

Finally, the two different methods of dealing with phase-space integrals containing Heaviside
functions developed in thesis may be used for other problems, for example for computing
differential fiducial cross-sections. Thus, the two methods developed in this thesis neatly
complement the standard toolbox of reverse unitarity and integration-by-parts identities for
phase-space integrations.

1 In the final stages of the preparation of this thesis Ref. [89] appeared which presents the results for the RRV and

RVV contributions to the N3LO soft function.
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USEFUL FORMULAS

In this Appendix we collect useful formulas that are needed in Chapters 1 - 3.

A.1 INTEGRATION-BY-PARTS IDENTITIES AND REVERSE UNITARITY

When computing multi-loop amplitudes one is confronted with the need to evaluate a large
number of integrals. These loop integrals are of the form

/ ddll_[ o (A1.1)

where D; are propagators which are quadratic or linear in . It was pointed out in Ref. [51] that
there exists linear relations between loop integrals that can be established using IBP relations.
These relations follow from Gauss’ theorem in d-dimensions supplemented with the statement,
that boundary terms of dimensionally-regularized integrals vanish. Thus, the relations read

d 1
a1 [v } =0, Az
/ oly | "T1; D} (A1.2)

where v* is an arbitrary vector. After computing the derivative in Eq. (A.1.2), one obtains a
sum of integrals which is equal to zero. From there, one derives a system of linear equations
which can be solved to express more complicated integrals through easier ones.

To demonstrate the usefulness of IBPs we consider the following relation

/ a2 [ R ] —0. (A13)

We compute the derivative explicitly and find a relation between the two integrals

U S a1t A
et e = ot

without the need to compute either of them.

While quite useful, IBP relations were originally derived for loop-integrals and are not
applicable to the real-emission phase spaces we are interested in. Indeed, real-emission phase
spaces contain delta functions which can not be included in the structure in Eq. (A.1.2). As

pointed out in Ref. [50] one can circumvent this problem by using reverse unitarity.
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Reverse unitarity is based on the observation that the following formula holds for any

real-valued X

i 1 1) _ 1
0X) =57 <X+ie - X—ie) - X (A.15)

where 1/[X]. is referred to as a "cut" propagator. With the help of Eq. (A.1.5) any delta

function appearing in the phase space can now be written as the sum of two "propagators"
with different ie prescription and thus in the form of Eq. (A.1.2). Since the derivatives in
Eq. (A.1.2) are independent of the different ie prescription the cut propagator in Eq. (A.1.5)
behaves like a normal propagator with one exception. When this cut "propagator" disappears,

the integral vanishes. Indeed,

/dd15+ 12y !

[1; D}

_o. (A.1.6)

A.2 FEYNMAN PARAMETERS

Feynman found a useful identity to combine factors of a denominator. This identity is often

used to simplify loop-integrals. We will use the special case of the identity

1 1 dx
AB /o [x A+ (1—x)B]? (A.2.1)

When working with linear propagators a different representation of the Feynman parametriza-
tion becomes useful. We make the substitution y = ;% in Eq. (A.2.1) and obtain

1 * 1
— = s A,
AB /0 YAt yBe (A-22)
When using this formula we will let A be a normal propagator and B a linear one.
A.3 PLUS DISTRIBUTION
The plus distribution is defined as
'y, [ ‘(@ Q)
= — . A
/odz(l—z)Jr /odz<1—z 1—z> (A-3.2)

While the integral fo > is divergent it can be calculated in dimensional regularization

1

/dzl—z /dzzlezeo

= % with € > 0. (A.3.2)




A4 SUBTRACTIONS AT DIVERGENT ENDPOINTS

We combine the previous results to split any test function f(z) into a finite part, expressed
through plus distributions, and an explicit pole in €. To this end we subtract the divergent
term at z = 1 and add it back

/ dz-——— 1_2 / dz 1 = +f / dz T (A.3.3)

1
:/ dz 1_2 1_6] +f<€) (A3.4)
= / dz f(z) [ a ln (_; 2) + f(el) (A.3.5)
+
Omitting the integral sign Eq. (A.3.5) reads
f(z) - € f(z)6(1~2)
(EDEEAL LZO (L =2) |+ (A-3.6)
where we introduced
~ [In"(1—-2)
Lu(1—z) = [1_2} R (A3.7)

We note that the result is completely independent of the test function and we simply write

1 =2 e 0(1—2)
—_—= —L,(1— —_. Az
A.4 SUBTRACTIONS AT DIVERGENT ENDPOINTS
Imagine again we want to compute the integral
O
dz——=— A.g.
R (A4.1)

where the function f(z) is too complicated to be integrated directly but finite in z = 1. In
dimensional regularization it is sufficient to determine this integral as an expansion in €. To

exploit this fact, we again subtract and add back the divergence at z =1

/dzl—z /dz 1_21 e /dz 1—z (A.4.2)

The second integral in Eq. (A.4.2) can trivially be integrated while the first integral is now
finite in the z — 1 limit and can thus be expanded in €. Typical functions that appear in
f(z) such as hypergeometric functions can be expanded using HypExp. Typical functions that

appear after expansion are iterated logarithms, which can be integrated using HyperInt.
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A.5 CONVOLUTIONS OF PLUS DISTRIBUTIONS

To renormalize the beam functions in Section 2.3 we have to calculate convolutions of the form

/Ot dt'L,(t —t') Ly(t), (A.5.1)
where
L - [210)] hs2
+

All required convolutions can be obtained by expanding the generating equation in € and
matching coefficients

g Ig _ o\—1—Be ¢/ —1—ae __ F(—uce)I"(—ﬁe) —1—(a+p)e
/Odt (t—t) t = F(—(uc+ﬁ)€)t thle, (A.5.3)

Specifically, we need the following convolutions

t 7.[2
|| ar Lot =) Lo(t) = 2L1(6) = T-o(t), (A5.4)
2
/ AFL(t— ) L) = SLa() — T Lo() +2(3)8(0), (As5.5)
‘ar ' _ ¢ i s A
[ drtote—#) a(t) = Sta() = L)+ 253)L0(6) - T000), (A5.6)

/(:dt’LO (=) Ly (F) = —((47*Lo () + 15(272Ly () — 5Ly (£) + 12L1 (1) (3)

+6(t)£(5)))/60, (A.5.7)
/Ot dF'Lo (t— 1) Ly () = —((87%8 (£) + 21 (473 Ly (£) + 1072 Ls (£) — 18Ls () + 90L; (£) £(3)

+15L () £(5))) /315, (A5.8)
[ ArL (1) L (F) = (- (2% (1)) /360 (=21 (0)/3+ L (1) — Lo () 5(3) (A59)
/(: ALy (=) Ly () = ((— (Lo (1)) — 6(372Ly (t) — 5Ly (t) — 728 (1) £(3)

+18Ly (1) £(3) +0()£(5))) /36, (A.5.10)
/Ot dt'Ly (t—t) Ly (¢) = —((637*Ly (t) + 6 (t) (2m® — 3150(3)?) + 35(87°Ls (t) — 9Ls ()

— 6Ly (1) (3) + 72Ly (1) £(3) + 9Lg () £(5))) /420, (A5.11)
/O't dt'Ly (t—t') Ly (') = —((6 () (237° — 37807 (3)?) + 420(7*Ly (t) + 6(7*Ls (t) — L5 (t)

—1%Lo (£)Z(3) + 9Ly (£) L(3) + Lo (£) 2(5)))) /3780. (A.5.12)



BEAM FUNCTION FEYNMAN DIAGRAMS

In this Appendix we present all Feynman diagrams required for the various NNLO and N3LO
beam functions calculated in Chapters 2 and 3. They are shown below

Figure B.1: Diagrams contributing to the Bg;) beam function. Diagrams for which the fermion flow is
reversed and left-right mirror diagrams are not shown. The dashed line represents a “cut”
so that all particles crossing it are on the mass-shell. The vertex ® denotes the insertion
of the projection operator defined in Eq. (2.1.5). Diagrams (a)-(f) are double real emission
diagrams, (g)-(j) are real-virtual emission diagrams.
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(a) (b) (o)

(d (e) ®

(g (h) (1]

Figure B.2: Diagrams for the RV emission contribution to the N3LO Bg;) beam function. The dashed
line represents a “cut” so that all particles crossing it are on the mass-shell. The vertex ®
denotes the insertion of the projection operator defined in Eq. (2.1.5). Diagrams which can
be obtained by reversing any of the fermion flows and/or mirroring the diagram at the cut
are not shown.
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Figure B.3: Diagrams contributing to the B,gg)

is reversed and left-right mirror diagrams are not shown. The dashed line represents
a “cut” so that all particles crossing it are on the mass-shell. The vertex ® denotes the
insertion of the projection operator defined in Eq. (2.1.5). Diagrams (a)-(d) are double real
gluon emission diagrams, (e)-(g) are quark anti-quark emission diagrams, and (h)-(j) are
real-virtual emission diagrams.

beam function. Diagrams for which the fermion flow
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(d) (e) (f)
Figure B.4: Diagrams for the RV emission contribution to the N3LO ng) beam function. The dashed
line represents a “cut” so that all particles crossing it are on the mass-shell. The vertex ®
denotes the insertion of the projection operator defined in Eq. (2.1.5). Diagrams which can
be obtained by reversing any of the fermion flows and/or mirroring the diagram at the cut
are not shown.

(g (h) i)

(b)

Figure B.5: Diagrams contributing to the B;¢’ beam function. Diagrams for which the fermion flow is
reversed and left-right mirror diagrams are not shown. The dashed line represents a “cut”
so that all particles crossing it are on the mass-shell. The vertex ® denotes the insertion
of the projection operator defined in Eq. (2.1.5). Diagrams (a)-(f) are double real emission
diagrams, (g)-(i) are real-virtual emission diagrams.
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(a) (b) ()

(d) (e) )

Figure B.6: Diagrams for the RV emission contribution to the N3LO BS? beam function. The dashed
line represents a “cut” so that all particles crossing it are on the mass-shell. The vertex ®
denotes the insertion of the projection operator defined in Eq. (2.1.5). Diagrams which can
be obtained by reversing any of the fermion flows and/or mirroring the diagram at the cut
are not shown.

(b)
q4q
reversed and left-right mirror diagrams are not shown. The dashed line represents a “cut”

so that all particles crossing it are on the mass-shell. The vertex ® denotes the insertion of
the projection operator defined in Eq. (2.1.5).

Figure B.7: Diagrams contributing to the B;.’ beam function. Diagrams for which the fermion flow is






MASTER INTEGRALS FOR DIFFERENT HEMISPHERE EMISSION
CONTRIBUTIONS TO THE NNLO SOFT FUNCTION

In this Appendix we present the explicit calculation of master integrals in configuration B for

the soft functions calculated in Chapters 4 and 5.

C.1 MASTER INTEGRALS FOR CONFIGURATION B IN THE AUXILIARY PARAMETER AP-

PROACH
In this section we discuss the computation of master integrals required for the NNLO soft

function in the auxiliary parameter approach, that contribute to configuration B and were not

yet discussed in Chapter 4.

c.1.1  Master integral Ip;

The first inegral reads
Ig1 = /dPSgZ) ) (T —n-ki—17- kz) (5(1’1 k1 —z17 - kl) (5(7’_1 ko — zom - kz) (C.1.1)

We follow the calculation outlined in Section 4.2.1 and obtain

—2e
2 (B1a2)
IB] = [N] /d‘BldOCZ(ZlZZ)le(S(T — ,81 — 0(2)
_ 2e _ (C.1.2)
= @) / dpiBy ™ (t—p1) "
0
c.1.2  Master integral Ipy
The next integral to consider is Ip;. It reads
Igp = /dPSgZ) 5(’1’—1’1"(1 —T_Z'kz) (5(71-](1 —Zlfl-kl) 5(7’_1-](2—221’1'](2)
(C.1.3)

% Tl-k1+ TZ1 -1
2 " 20—-z))
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The additional propagator only depends on B and the integration is identical to the one of
Ip1 up to the very last step. We find

102) 2 8(T — Pr— a2)

122)1 € %—l— 121

IBZ = [N]z/dﬁldlxz ((i

— NP 2% 1-z /01 dp1 (B1(1—B1)) ™ (C.1.9)

- 1
(z1z2)17¢ 79 14+ 5B

274 1 -z T2(1—2¢) 1—2
— [N]? F(1,1-2¢2—4e, — )
[N] (z122)1¢ z; T(2—4e) 2 < ! € € Z1 )

C.1.3 Master integral Ip3

We now calculate the master integral Ipz. It reads

Iggz/dPSéz)5(T—Tl'k1—fl-k2) 5(ﬂ~k1—21ﬁ'k1) 5(ﬁ'k2—22n'k2)

(C.1.5)
x (k1 -ky) 7t

We start by writing the expression for the scalar product k; - k> in the configuration B. We find

2kq - ky = CKLBZ + ﬁlle — 24/ 061‘520(2[31 cos P12 = 0(1[32 (1 + 2120 — 24/2>21 COS (P]z) , (C.1.6)

Following the calculation described in Eq. (4.2.14), we obtain

d-2 d-2 d-2 d-2
/ doj"?dof"™? 1 do"2anl’?
2kq - k2 w182 J 1+ z1220 — 24/2221 cos 12
QUE-2QE-3) dé (sin6) *
- Délﬁz /0 1+ 2122 — 24/2p21 cos ¢12

X=Ccos P12 Qd-2)(d-3) /1 dx (1 _ xz)—E—%

alﬁz 1142120 — 24/2021 x
=5 QU /1 dy [y (1-y) < (C17)
w1 B2 0 (14 zZ1vzZ2) — 4y/71 22

a a1B (1+ /z221)* o 2 (14 /z221)*

2
[Q(d72)] Zn Z1
= Tzlﬁ (1,1—|—€,1—€,22 21).

2
Od-2)
— [ } F (1,1_6,1_%,4 VZZZl)



C.1 MASTER INTEGRALS FOR CONFIGURATION B IN THE AUXILIARY PARAMETER APPROACH

We now combine the integral representations of Egs. (C.1.2) and (C.1.7) and find

5 2T7174€

Zl+ezl+e

/ dpy (B1) 1% (1-B1) % (C.1.8)

) 211 462122 I'2(—2¢)
(z120)17¢ T(—4e)

133 = [N] Z1 Z2 2P1(1 1 —|—€,1 — 6,2122)

= [N] 2F1 (1,1+€,1-€,Z122).

C.1.4 Master integrals Ips, Ips and Ipe

As we have seen from the above discussion, the evaluation of master integrals is remarkably
easy. For this reason, we discuss the evaluation of the master integrals Ip4, Ips and Ipe all at
once. They read

134:/dPng)§(T—1’l'k1—fl'k2) (5(1’1'](1—21171'](1) (S(fl'kz—zy’l'kz)

B (C.1.9)
n 'kl TZ1 ! -1
8 ( 2 +2(1—z1)> (kr-k2)
Ipgs = /dPSéz) (S(T—i’l-kl —ﬁ'kz) 5(1’1-k1 —Zlfl~k1> 5(171-](2—227’1-](2)
1ok . -1 (C.1.10)
X - ’
2 2(1 —Zz)
Igg = /dPSgZ) 5(T—1’l'k1 —T_Z'kz) (S(Tl'kl —Zlfl'kl) (S(fl'kz—zy’l'kz)
(C.1.11)

n-k T -1 _
><< 21_2(1—22)) (la k)™

To facilitate their computation we again combine the integral representations of Egs. (C.1.2)
and (C.1.7) and find

—2—4e o
Iy = [N]? (42;2)1e(zlzz) 2F(1,14+¢€,1—¢€,2127) ! lel
511 2e _‘51)71726 (C.1.12)
/ b 1+ a7

g (YT B> (1—p1)~
Iss = [N (e (1- 22) /O e T (C1.13)

N EHTTE _
Igs = [N] CES z2122(1 — z2) 2F1 (1,1 4+ €,1 — €,2z122)

(C.1.14)

Bl (—p)
/dﬁ 11—(1—22)‘31 )
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The remaining 1 integration is straightforward to perform. We obtain

2 4T 7274 (1 — 21) 2o T?(—2€)

Ios = NI = S T(Zae)

1 (C.1.15)
x oF (1L, 1+€,1—¢2122) oF (1,—2e, —de, —— Zl) ,
1
Ips = [N] (z122)T (1—z2) (2 4c) 2Fi(1,1—2¢,2 —4¢,1—25), (C.1.16)
—4)T 2747125 (1 — 2p) T?(—2€
Ipe = [N]? (—4) 122 2) T?(—2€)

(z122)1 ¢ I'(—4e) (C.1.17)
X oF; (1,1 +€,1— 6,2122) 21:1(1, —2¢,—4¢,1 — Zz).

C.2 MASTER INTEGRALS FOR CONFIGURATION B IN THE MODIFIED IBP APPROACH

In this section we discuss the computation of master integrals that were omitted in the
computation of the NNLO soft function in the modified IBP approach in Chapter 5. The first

integral reads

(5(1—k1-n—k2-n)

13" = /[dkl][dkz] ik Ok a—km)6 (ke =k ). (C.2.1)
We use
dQ(d_z)
[dk;] = W da; dB; (aifi) ¢, a;,Bi € [0,00), (C.2.2)

change variables a1 = B1/¢1, B2 = a2/ to get rid of Heaviside functions and find

ni __ 2 2r2(2 26)
75" = [N] T(@—4e)
/ 4 / dz, ?‘?) R (1,2 - 26,4 —4e,1— &) (C.2.3)

2
- NPEREE ) [ ana - s @),

where

X5(81) =2k (e, 14€,81)2F (1,2 —2¢,4—4€,1 (1) . (C.2.4)



C.2 MASTER INTEGRALS FOR CONFIGURATION B IN THE MODIFIED IBP APPROACH

We subtract the singularity at §; = 0, expand in €, where appropriate, and obtain

_ (1 2 m 9
Ign: [N] {6Q+€+|:2+6:|+€[2€3—8+ﬂ]

- ”
+ €% 1603 — 64 + 47> + 9]
- (C.2.5)
2m? 2 267t
+ 6 6475 — 2553 | 307, — 9564 ST L 26T
i 3 45
[ 2mt 4476
1 et 12805 + 47205 + 832 4+ 6075 — 512+ 2 1+ T Lo ()
i 45 945
The next integral reads
_ 0(1—ky-n—ky-n) _ _
nn __ . — . . — .
Ié = /[dkl] [dkz] k1 ) kz k2 7 k12 T 0 (k1 n k1 7’1) 0 (k2 n kz n) . (C26)

The computation follows along the same lines. We integrate over relative azimuthal angle
between k; and k, and obtain

- 2T (1 —2¢)?
ni _ _ 2
Zg" =~ IN] el (1 — 4e)
1 1
X/ dCl/ dg> ¢1 65 2R (Le+1,1—¢,61 &2)
0 0 (C27)
a2 2T%(1-2¢)
=N e(1+¢€)?T(1—4e)
x4F(1,14+€14€14€1—-¢€2+¢€2+¢1).
Finally, the last integral reads
= 5(1—](1'1’1—](2'1’1) _ _
nn __ . — . . —_ .
= / kldka] S (k= k) B (ki Ky o). (C.2.8)
After the angular integration, we find
. I2(1 - 2e) 1
" = — [NJ? JR
7 V] e(1+€)T(1—4e) Jo G161 (C.2.9)

><2F1 (1,—26,1—46,1—61) 3F2 (1,1+€,1+€,1—€,2+€,(§1> .

As the remaining §; integration is finite, we expand the integrand in € and integrate using
HyperInt. The result reads

2 The 5772 937m°
"= NP — = +203+ — +¢€ P 05|+ | 0T gags
6€ (C.2.10)

12 3 3780
+O(eh).
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INTERMEDIATE RESULTS AND DEFINITIONS FOR THE N3LO SOFT
FUNCTION

This Appendix contains various definitions and intermediate results that arise in the computa-
tion of the N3LO soft function.

D.1 PHASE SPACE DEFINITION

In the calculation of the N3LO soft function we often integrate over the real emission phase
space of the emitted gluons. We introduce the following shorthand notations

(D.1.1)
Xf(kl'i’_l—kl-n)g(kz-ﬁ—k2~n)h(k3-17l—k3~n),
dk;
[dk;] = )i 5T (k). (D.1.2)

We note that the T dependence has already been scaled out of the integral in Eq. (D.1.1); it is
reintroduced when presenting the results in Section 6.7. We further note that we always use
the Sudakov decomposition when calculating master integrals, in this case Eq. (D.1.2) reads

402
[dk;] = W da; dB; (wiBi) ¢, a;,Bi € [0,00). (D.1.3)

D.2 INTEGRAL FAMILY DEFINITIONS FOR INTEGRALS WITH THREE DELTA FUNCTIONS

For the reduction of the zero-jettiness soft function at N3LO we require five different integral
families for integrals with three delta functions. These integral families read

d®n1~~~”7
) = | , Da
) = G R k) () (k) (k) B
d@?’ll...i’w
T9%(ny...n10) = / = ¢ D.22
2 (m 12) (k1 - k2)ms (ke - ke3)"o (kfps)mo (ko - )™ (ks - )Mz ( :
T8 (ny .. ) = / doys; " (D23
3 - (kl ) kz)”S (kl . k3)n9 (k%23)n10 (kl . n)nll (k12 . n)nlzl
T555(n1 N nlz) _ / dq)gfsg'm (D.2-4)
4 (kl . kz)ng (kl . k3)n9 (k%23)”10 (kz . n)nn (k23 . Tl)nlz
T2 (ny .. yp) = / g™ (D.2.5)
5 VT (y - Ka)s (ky - ka)™ (kps)™o (kng - m)m (kg - 1)z’ 0
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(D.2.6)
where we defined
dvk " d?k dk "
dgs; " = @ )l 57 (k) 1W ‘5+(k§)nzﬁ 5T (k3)™
(D.2.7)

><5(1—k1 l’l—kz 1’1)”45(](1 Yl—kl n)nsé(kz n—kz n)
(5(k3-fl—k3'1’l)7

D.3 MASTER INTEGRALS FOR TRIPLE GLUON SAME HEMISPHERE EMISSION TO THE SOFT

FUNCTION

The master integrals that are required for the computation of the triple gluon same hemisphere

emission to the soft function in Sections 6.3 - 6.6 are defined as follows:

* integrals for [ d®jy) w3

dq)nnn
I = /dq)nnn, I :/ 006 ,
! 000 2 (k12m) (ki3n)
dq:,m’m d¢n7’ln
LS _/ Do
’ (kq37t) (kio3t) ’ (D3.1)
s — / ddysy' _ / ddygy
(kizn)(kipsit) (kioaft) *
... . nnn  (3),b
e additional integrals for [ dPi w, " :
b [ e [ S
(kik3)(ks7i) (k1ks) (kzn)(ki37i)
b [ S g Ay
(kikz)(ksn)(kpatt) (kiks) (kion)(kq3ft)
I = / Do , Ip = / IDuis ,
(kiks) (kzn)(kio3ft) (kika) (k1an)(koft) (ki3n)
o [ SO e [ S
(k1ka) (kian) (ko) (k12372) J (kikz)(kion) (ky3fi) D
d(pnnn . d@nnn ( ‘3‘2)
Ii5 :/ b0, L = / ———00
(kiko) (kiom) (kq3t) (kika) (ko3t)
Ly = / . - ’ Lig = / i 1} ,
(kiko) (ka1t) (k1372) (kiko) (k211) (k1237)
Iy = / 1} , I = / AP ,
(kikz)(kon)(kip3i) (kiks) (kion)(kqp37t)
o [ S e
(kiko) (kpzn) (kqp32) (kiks) (kion) (kqp31)
e additional integral for [ ddpj w,(f;l)’ with 1/v behaviour:
dq)nnn (kln)"(kzn)"(k3n)"
958
= . D.3.
1= | ks G e o) (033



D3 MASTER INTEGRALS FOR TRIPLE GLUON SAME

e additional integrals for [ d®j}/ w,(m)

e / deppnn
27 ) Tkika) (kiks) *

Is :/ dPha; ,

J (kiko) (k1k3) (k12311)
b | dap
277 ] Tkika) (knks) (kion) (kioa?t)
b | dap
27 ] (kika) (kiks) (kiait) (ksit) *
- | dop
U7 ) (kka) (kiks) (kizait) (kst)
- | daopy
37 ) (kiky) (kiks) (kyon) (kigznt) *

nnn
d(b&(?@

s = /(klkz)(klks)(kzn)(k123ﬁ)(kaﬁ) ’

nnn
dq>099

a7 = / (kikz) (kiks) (kion) (kigan) (ko)

nnn
dq)QBb'

s = [ TR e T (o)

e additional integral for [ d®pj w,(l?,’l)’

- dop
407 ] (kiks) (kyn) (ki) (kaft) /

* additional integrals for [ dPyj w,(m)’

nnn
/ dgss
k123 klzn
nnn

550
Iyz = / ,

k%23
1= [ S0
k123 k131’1
/ Aoy
k123 k137’l
/ Aoy
k123 k1k3 k371)
/ Aoy
k123 k131’l kzl’l)
/ Aoy
k123 k1k3 k23n)
/ Aoy
k123 k1k3 k23”)
/ dosy
k123 k1231’l kgﬂ)

/ Ao’
k123 kl k3 k23”)

/ ddgsy
k123 k12” kl kS) (k37’l)

HEMISPHERE EMISSION TO THE SOFT FUNCTION

nnn
d(I)GzSzS

o = | G (ke )

nnn
d(DGM

ho = ./ (kikz) (kiks) (kiom) (kiait)

d@l’l}’ln

— [ 706
b= [ G et

without 1/k%,, propagator:

Io = / doysy
(kikz)(k1k3) (ki2n)(kqaft) *
_ doysy
= [k . O
o [ S
(k1k2) (k1k3) (kan) (k1372)?
I = / digy
(kikz) (k1k3) (kion) (koft) (k1sit) /
I — / ddge’
(kiko) (kik3) (kion) (ki) (kia7) ”
(D.3.5)

with 1/k3,, propagator:

MR
k%23 kin)(kyn)’

nnn
/ dyjy
2
k123 k31”l

/ 435
Ky (kasn)
/ 435
k123 kin)(ksi)
/ d3s0
k123 k1k3 k37’l)
m [ S
k123 k137’l k17’1)
/ A3
k123 klzi’l k1k3)
/ 4350
k123 k1237’l kli/l)
/ 4350
k123 k12371 k1371)

/ Ay
k123 k123n k137’l)

/ dPsse’
k123 k1231’l kl Vl) (k31’1)
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(Dnnn
/ 550
k35 (k123 (kiks) (ksn)
/ dysy’
k55 (k1o37) (kyzn) (kyn) ”
_ / APy
k123 kzi’l

/ e’
k123 k131’l kl kz)

/ APl
k123 k12311 kzl’l)
/ Ao’

k123 k1k2 k21’l)(k31’l)
/ dPse’

k123 ki3t) an)(kZV’)

(I)nnn
/ 500
k123 klk2 k23ﬂ)(k21’l)

/ Ay’
k2,5 (k1237) (k1on) (krks)

/ dq’gfslél
k2,5 (kyks) (kyn) (ko)
ddygy

f :-/ K5 (kizst) (knks) (ko) (k)

nnn
d©(599

% :/ K2, (kizaft) (kaks) (kaan) (kan) *

e additional integral for [ d®p w,;

/ dopsy' (kin)" (kan)¥ (ksn)"
k2,5 (kiks) (kyn) (k1o7) (kaft)

(3)d

INTERMEDIATE RESULTS AND DEFINITIONS FOR THE N3LO SOFT FUNCTION

/ d®sis (D.3.6)
k35 (k1237) (k1k3) (kst) ”

/ ddyy
ks (k137) (k1ks) (kosn)
/ _deRy

k123 k131’l

/ L
k123 klzn k3n)

/ d®Fgy
ks (k137) (k1om)

/ d5ge
k%23 k1k2 kzi’l)(kg,}'_l)

/ A5
kip3 (k13t) (kika) (kon)

qymn
/ 500
k123 k1231’l an)(kZ”)

/ ddysy
k2,5 (kom) (kks) (ks7t)

/ dgsg'
k2,5 (kiks) (kym) (kos7)?
ddygy’

fas :/ K25 (kiaa) (kian) (kika) (ko)

nnn
dq’eae

=] Ky Uizt (ki k) (ks 7) (ko)

with 1/k3,, propagator and 1/v behaviour:

(D.3.7)

Analytic solutions to the integrals I; through I4 are given in electronic form in the ancillary
file of Ref. [77].

D.4 BOUNDARY CONDITIONS FOR TRIPLE GLUON SAME HEMISPHERE EMISSION TO THE
SOFT FUNCTION
3),d .
The various boundary conditions needed for the calculation of [ d®pj wfm) are defined as
follows

* integrals for which the leading m~2¢-branch needs to be extracted:
L B [
Koz +m? (khys + m?)?
. / dogy - / doss, ,
(k%ZS -+ m2)3 (k%ZS + mz)(kzgn)

Aoy Aoy
Bs :/ , Bg :/ ’ (D.4.1)
(k%ZS +m )(k23n)2 (k%zs, + mZ) (k23”)

djoe ddnn
B7 :/ 2 N BS = /2—2_ ,
(Kips +m?)(kkz) (k) (k3,5 + m?) (ky371)
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b [
(K35 + m?) (k1371
b= [

(k35 + m?)2 (ky3i)

nnn
dq)(SGG

o= (k355 + m2) (k1ka) (kat) (kian)

* integrals for which the leading m %€
. dapp
' Wy + ) (kaka) (kam) (k) (ki)
B | daopp
3 = - 7
J (k3,5 + m?2) (k1on) (kis7)
B | doppn
5 = - 7
S (k3yq + m?) (k1an)? (k1pafl)
- dapp
J (k2yy + m?) (kiky) (kpzn)
5 - doppn
? ) K+ m2) (kiky) (ko) (kagm) (kizsft)2
B - | doppn
= 02, + 12 (kg (ki) (ki)
B | daoppn
187 s+ m2) (kaka) (kg (ki)
. dappn
157 ) g+ m2) (kerka) (ka2 (kys)
5o - | daoppn
7= 0y + ) (ki) (kst)
Buo— doppn
(k3p5 -+ m?) (k1kz) (kipn)
B = | dappn
2 08 + m2) (ko) (kizs)2
b= | dopp
2= ] 02y + m2) () (eg) (ks )2
B | dop
5= ] 12y + m2)2(Jerks) (eym) (kap)

nnn
dq)GJG

B :/ (2,5 + m2) (kyks) (kyn)2 (kpat)

daprn
Byo :/ 5 00,
(ki3 + m?)(ki371)?

dapn
By :/ 5 o,
(kfp3 +m?)? (kn3i)

-branch needs to be extracted:

ayy
B, = / . ; _,
(kips + m?) (kika) (kan)(ksn) (ki2371)
diag’
By = / . . __,
S (kfpg + m?)(k1an) (k1371)
diag’
86 :/ > 2\2 N/
J (kfpg + m?)?(k1on) (k137t)

dgse
B~ [ _,
J (ks + m2) (kky) (kon) (koan ) (ki3 it)
Byo = / dise

e additonal integral for which the leading m~2"-branch is required:

5 _ / Ao (kyn)Y (kpn)" (kan)?
") (K + m2) (kiks ) (kyn) (kiait) (kst)

kfps + m?
o= | awy |
J (K2y + m?) (kon) (koit) (kq37)?
dq)rmn
B :/ 266 , (D.g.2)
147 ) Wy + ) (kiky) (kzn) (k17)2
- | avy |
(K2y + m2)2 (kikp) (kan) (k1)
by [ S0
(K255 + m?) (k12)? (ks
o[
(K25 + m?) (kan) (k1237)
b | aw |
(K25 + m2) (kan) (ka ) (k1237)
b | awyy |
(k3,5 + m?) (knks) (kyn) (kp3ii)?
b | oy |
(k3,5 + m?) (ke k) (kyn) (koaft)
(D.4.3)
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D.5 COMPUTATION OF ABELTIAN CONTRIBUTIONS TO THE SOFT FUNCTION

In this section we compute abelian contributions to the N3LO soft function i.e. the first two

terms in Eq. (6.7.1). The first term is the so-called fully-abalian contribution, it is defined as

St = [ dpy wiy) (k) wiy (k2) @l (ks), (D.5.1)
where
Doy 4+

The calculation is straightforward and we immediately obtain

® /3
Sgeg = ]364/ (Hdai dB;i (i) 0(a; — ,Bi)> 6(1— B123)
0 \<T

(D.5.3)
_ [ ]3% F3(—2€)
B €3 T(—6¢)
The second abelian contribution is defined as
S = [ dp [wli) (el (ko ks) + (1 62) 4 (14 3)] (D5.4)
= 3/dq>gg; Wy kl) 2 )(kz,ka)] : (D.5.5)
We write this integral as
St =3 [ (ki) ks — kun) @iy (k1)
(D.5.6)

v

(ka, ks) .

X / <ﬁ[dki] 0 (ki1 — km)) 5(1 — kizzn) wi

i=2

The inner integral in Eq. (D.5.6) over [dk;][dk3] is simply equal to same-hemisphere double-real
gluon emission contribution to the NNLO soft function in Eq. (5.4.1) with the replacement
T —1— B1. We find

s =3IN] [ o dpr 6Ga — ) 2B NPy - ) e

a1
P l2T(—4e) I(=2¢) .
= N T(—6¢) 2

(D.5.7)

where the definition of C}" is evident from comparison with Eq. (5.4.1).



D.6 COMPUTATION OF THE DIVERGENT MASTER INTEGRAL IN CONFIGURATION B

D.6b COMPUTATION OF THE DIVERGENT MASTER INTEGRAL IN CONFIGURATION B

In Section 6.4 we split the calculation of the integral

]v(e,l/) = / dq)gglg(kln)v(kzn)v(k?)n)v

(kiks) (kyn) (ki) (ksft) ! (D.6.1)

into two pieces, J1,(€,v) and J»,(€,v) for z; > z3 and z3 > z; respectively. We now discuss
the second contribution ], (€,v). We use

dQ(dfz)

[dk;] = W

da; dB; (aifi) "¢, a;,Bi € [0,00), (D.6.2)

together with the angular integration

2
-2 i-2 (d-2)
daaf a0 E(11te1 c® (D6.3)
2k1'k3 a_>ﬁ1 - ,B]ﬁ?) 211 ’ ’ ’Z3 7
to obtain
2 —€p—€—2+4v 2¢+v p—1—e+v
Jov(€,v) /d23/dzlnda dg; 21“1 s '31“ +,B[B P
ke . (D.6.4)
(06121 ‘51) (06323 — ﬁg)(S(l — ‘5123) »F (1 e+1,1-— Z;) .

We again remove delta functions by integrating a1, a3 and p; and change variables to x and y
such that b3 = x y and b, = x (1 —y). After changing variables z3 = tz; and integrating over
x the expression reads

Jau(e,v) = 2[N]? / dzz dt dy € 25¢ (1 —y)V 2y 2etv1

I'(v—2e)I'(—4e+2v+1)
I'(—6e+3v+1)

X oF(1,—4e+2v+1,—-6e+3v+1,t(y —1)z3 +1).

oFi(l,e+1,1—¢,t) (D.6.5)
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We rewrite the last hypergeometric function in Eq. (D.6.5) as a Melin-Barnes integral and

integrate over y. We obtain

3 I'(v—2e)
]2,1/(6,1/) ZZ[N] /ngdt te Z§€2P1(1,€+1,1—€,t)1_|((31/_6€)
100
x / dza(F 23) M (1 — 2a0)T(za)T (=26 + v — zpg + 1)
—ico
xT(—2e+v+zpm—1)
I'(v—2e
Jou(e,v) =2 [N]3/d23dt 1€ 25 5F (e +1,1— e,t)l,((3v_6€))
I['(v—2e)T(—2e+v+1)'(2v —4e)
T(—4e+2v+1)

x oF1(1,—2e4+v+1,—4e+2v+1,1—1t2z3)

Finally we re-write the last hypergeometric function in Eq. (D.6.6) using

2P1(1,—2€+1/+1,—4.€—|—21/+1,1—tZg)

el 26T (e — y 4 )T (—4de + 2v 4 1) (1 — tz)te

N I'(—2e+v+1)

I'(—2e+v—1)T'(—4e+2v+1)
I'(v—2e)I'(2v — 4e)

_|_

oFi(1,—2e+v+1,2e —v+2,tz3),

and find

Iow(e,v) = 2[N]? / dzadtzy 1Y 17671 (1 = gyt

I'(2e — v+ 1)T (v —2€)?T'(2v — 4¢)
% I'(3v — 6¢)

2Fi(l,e+1,1—¢,t)

I'(v—2e)T(—2e+v—-1I'(-2e+v+1)
3 € 2€
+2[N] /dZ3dtt z5 T(3v — 6e)

X 2F1(1,€+1,1 —G,t) 2F1(1, —2€+1/+1,2€—V+2,t23).

(D.6.6)

(D.6.7)

(D.6.8)
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D.7 MATRIX FOR THE EXAMPLE DEQ

In Section 6.6 we discussed how to solve differential equations w.r.t. the mass parameter
for eleven example master integrals. These differential equations could be written as five
eleven-by-eleven matrices shown below.

(D.7.1)

~1)

(2e—1)(5e—2)

=
\
© ©O O O © © © O © © o

o O o O O O O o o o o
o O o O O O O o o o o
o O o O O O O O o o o
o O\’__‘,#O o O © o o o o
o O o O O O O o o o o
o O o O O O O o o o o
o O o O O O O O o o o
o O o O O O o o o o O
o O o O O O O o o o o
o O o O O O O o o o o
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(D.7.3)

o ©O o o o

o o o o o
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o © o o o
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o o o O

oc?oo
=
I @
o 8P o o
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o - O O
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