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Abstract: The increasing adoption of battery electric vehicles (BEVs) is leading to rising demand for
electricity and, thus, leading to new challenges for the energy system and, particularly, the electricity
grid. However, there is a broad consensus that the critical factor is not the additional energy demand,
but the possible load peaks occurring from many simultaneous charging processes. Hence, sound
knowledge about the charging behavior of BEVs and the resulting load profiles is required for a
successful and smart integration of BEVs into the energy system. This requires a large amount of
empirical data on charging processes and plug-in times, which is still lacking in literature. This paper
is based on a comprehensive data set of 2.6 million empirical charging processes and investigates the
possibility of identifying different groups of charging processes. For this, a Gaussian mixture model,
as well as a k-means clustering approach, are applied and the results validated against synthetic load
profiles and the original data. The identified load profiles, the flexibility potential and the charging
locations of the clusters are of high relevance for energy system modelers, grid operators, utilities
and many more. We identified, in this early market phase of BEVs, a surprisingly high number of
opportunity chargers during daytime, as well as switching of users between charging clusters.

Keywords: battery electric vehicles (BEV); temporal charging behavior of BEV users; flexibility
potential in charging processes of BEVs; k-means clustering; Gaussian mixture model clustering

1. Introduction

On the one hand, the increasing adoption of battery electric vehicles (BEVs) may
pose challenges for the power grid, especially for the low-voltage distribution grid where
charging infrastructure for BEVs is typically located [1]. On the other hand, the batteries
of BEVs represent a flexibility potential that might become more and more valuable to
the energy system in the face of the rollout of renewable energy sources (RES), and the
concomitant phase-out of coal and nuclear energy sources [2]. On average, passenger
cars are typically parked 23 h a day [3]. Thus, BEVs’ idle times often exceed the charging
duration. The resulting flexibility could be used, for example, for postponing or interrupting
charging processes, or even feeding back into the grid [4]. By applying controlled charging
strategies, charging costs can be reduced or RES usage increased [5].

In order to address future challenges and opportunities associated with BEV adoption
from an energy system perspective, distribution system operators (DSOs) need to quantify
impacts on grid infrastructure and necessities for grid reinforcement. Therefore, sound
forecasts of new load by BEV charging are required. Moreover, new market players of
the energy system, such as aggregators, need insights into BEVs’ flexibility potential for
determining smart charging or load shifting strategies. Consequently, meaningful data is
required for energy systems analyses.

As is today’s best practice, synthetic load profiles or empirical data from field tests are
used as input data to energy system models [6,7]. However, with the growing application
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of BEVs, it is of great significance to have a deep understanding of BEV users’ driving and
charging patterns for forecasting both their charging processes and the associated flexibility
potential. A detailed insight into the complexity of spatial and temporal charging behavior
has enormous significance for the future dimensioning and flexibility assessment of local
grids and charging infrastructure or for the use of the flexibility potential of BEVs for the
integration of RES.

For this reason, our contribution is twofold. Firstly, we provide insights into real-
world charging behavior, based on a comprehensive real-world data set of 2.6 million
charging processes in 2019. We particularly focus on the charging process, especially the
charging patterns and charging power used, and the plug-in times, i.e., the corresponding
charging flexibility potential. The aim is to investigate what insights can be gained using
the temporal individual charging behavior of BEVs’ users. For this purpose, we used a
two-stage cluster algorithm procedure to identify charging user groups and to derive a
standard charging pattern for each user group. We subsequently validated and mapped the
BEVs user groups to charging locations, such as at home, at work and in public, supported
by synthetic load profiles. In addition, this paper also provides the statistic parameters to
replicate and reuse the underlying real-world data set. Thus, on the one hand, the paper
allows the drawing of conclusions about real charging behavior and, at the same time,
reduces the lack of data, by providing the possibility to replicate the underlying data set,
which supports current energy system modelers to consider the load flexibilities of BEVs in
much more detail.

To address the above-mentioned research contribution, this work is divided into five
parts. Section 2 provides a short overview of the existing literature. Section 3.1 describes
the characteristics of the analyzed real-world data set as the basis for the subsequent
analyses, as well as describing the necessary data adjustments. Section 3.2 presents the
applied methodology of the two cluster algorithms (Gaussian Mixture Model clustering, k-
Means clustering). Section 4 describes the results, particularly the assignment of the single
charging events to temporal charging clusters and the investigation of the homogeneity
of these temporal charging clusters. Based on these temporal charging clusters, we derive
user groups and address the associated charging behavior. For validation, we use results
from a synthetic load profile generator for BEVs. Section 5 discusses the findings of this
work and Section 6 provides the conclusion.

2. Literature Review

The individual charging pattern of BEVs represents a large uncertainty in many analyses
due to lack of real-world data [8,9], while individual charging behavior has an influence on
numerous aspects. In order to provide grid stability, even with a high penetration of BEVs,
DSOs are particularly interested in the individual charging behavior and the resulting load
peaks to quantify impacts on grid infrastructure and necessities for grid reinforcement [10].
Ge et al. [11] determine a random based spatial-temporal prediction of BEV charging to obtain
more precise insights. Crozier et al. [12] apply a stochastic model based on two different
data sources (travel survey data as well as vehicle usage data) to evaluate the BEV charging
load and the impacts on the electricity network. One of their key findings is that peak
charging demand varies strongly among regions and that representative data is required.
Individual charging behavior of BEVs also plays a key role in determining the need for
charging infrastructure [13,14]. There is a substantial amount of literature on the prediction
of individual charging behavior. One commonly used method is the application of machine
learning algorithms to predict charging behavior [15,16]. An alternative method to machine
learning algorithms is simulation [17,18]. Zhang et al. [18] investigated charging profiles of
electric vehicles presenting a sophisticated simulation method that takes people’s demographic
and social characteristics into account. Pagani et al. [17] developed and applied a novel
agent-based simulation framework, which takes the charging behavior of individual electric
vehicle users as well as the spatial distribution of electric vehicles into account. Knowing
the individual charging behavior and the resulting flexibility potential is also crucial for
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aggregators for defining load shifting strategies. Others, like Sohnen et al. [19], use BEVs’
flexibility potential to evaluate greenhouse gas emissions of BEV charging processes on a
dispatch model, based on temporal and spatial effects. Flath et al. [20] analyzed the importance
of BEV charging and underlined the possibility of area pricing. This possibility is particularly
relevant for real world application if the load flexibilities of EVs are offered and used by energy
providers. Deng et al. [21] found that the flexibility provided by BEVs could be used for power
reserves and accordingly modeled an BEV aggregator to elaborate this potential of BEVs.
Gunkel et al. [22] consider EV flexibility in detail and with respect to the transmission system
development. The review paper of Gonzales Venegas et al. [23] goes one-step further and
identifies the services which can be provided through BEVs along the value chain. Thereby,
possible barriers are classified for active BEV integration. Consequently, meaningful data
based on real-world data is required for a successful integration of EVs into the energy power
system [24].

Cluster analysis is increasingly applied to smart meter electricity demand data to
identify patterns in electricity consumption. The aim is to improve load forecasting, to
increase the alignment of demand response programs or to improve the performance in
distribution grids [25,26]. Clearly, the scope of the focus in the literature is not only on
load profiles for BEVs. In [25] different cluster analysis strategies are examined to identify
typical daily heating energy usage profiles. With respect to BEVs, the cluster algorithm
is often applied to the charging power profiles. A dataset of hourly load profiles was
investigated in [27] and clustering applied to cumulative load profiles to model power
consumption during evening peak hours. In [28] the driving and charging behavior of
BEVs’ drivers in Shanghai were investigated. They used a machine learning approach as
a classifier to analyze the related habitual driver behavior. It is worth emphasizing that
clustering is often applied to charging profiles, but not exclusively to the temporal charging
behavior. This is the reason why the focus of this contribution is exclusively on the latter.

Up to now, only a few papers have considered empirical data from BEVs to generate
BEV load profiles. Among them one is by Schäuble et al. [7], who gained empirical EV load
profiles based on three electric mobility studies. The derived charging load profiles gave a
realistic understanding of the BEV energy demand. Another data source are the charging
stations, where the dataset from Elaad (elaad.nl) is used in literature [29,30]. In the absence
of real data, one approach is to use synthetic load profiles derived from the driving behavior
of conventional vehicle users, like in Heinz et al. [6]. In this case, real-world data from
BEVs’ charging and mobility behavior are lacking. As an alternative, previous studies often
rely on numerous assumptions for uncontrolled individual charging behavior [9,31–36].
Thus, the individual charging behavior of BEVs plays an important factor in numerous
research aspects. Due to the frequent lack of representative real-world data, this paper
aims to contribute data and provide insights into the charging behavior based on temporal
data of a real-world charging data set of BEV users. At the same time, the possibility of
reproducing the underlying dataset is given.

3. Materials and Methods
3.1. Materials
3.1.1. Data Characteristics

The analyzed dataset includes real BEV mobility and charging data from the German
vehicle manufacturer BMW. All charging events are associated with the i3 model. The
dataset comprises about 2.6 Mio charging processes, each giving information on the location
(approximate GPS coordinates), plug-in time, plug-out time, the time of the end of the
charging process, starting state-of-charge (SoC) of the battery, ending SoC, and charged
energy. The data for our analysis was collected from 1 January 2019 until 31 December
2019 and covers all of Germany and approximately 21,000 BEVs. The identifiers of the
individual vehicles are pseudonymized identification numbers so matching the charging
activity to the vehicle is possible. The dataset is the largest dataset on charging patterns
from a BEV perspective known in literature.
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3.1.2. Charging Behavior

The following subchapter presents and discusses the evaluation of the data and the
2.6 million charging processes. Figure 1 shows the distribution of plug-in and plug-out
times within a day. It is visible that a larger share of BEVs were connected to the grid in the
afternoon and evening hours and the majority of BEVs were unplugged in the morning. It
is also noticeable that the frequency of plug-out times was higher than the frequency of
plug-in times.

Figure 1. (a) Distribution of plug-in times over all Germany; (b) Distribution of plug-out times over
all Germany.

The average distance driven between two charging processes amounted to 67 km. The
remaining battery’s SoC at the beginning of a charging process was 53% on average. The
average charging frequency was 96 charging events per BEV over the registration period in
the year 2019. Adjusted for the number of weeks in which the vehicle was charged, this
corresponded to an average of 3.11 charging processes per week. Therefore, a BMW i3 was
charged approximately every two days on average. Compared to Schäuble et al. [7], the
charging frequency per BEV in the i3 dataset was higher.

During each charging process, an average of 9.24 kWh of electricity was charged. This
meant that, in total, all i3 generated an additional energy demand of 24,595 MWh over one
year. The distribution of the additional energy demand of all i3 BEVs for all of Germany in
hourly resolution is shown in Figure 2.

Figure 2. Charged energy of all i3 BEV for all of Germany in hourly resolution.

For all BEVs, the cumulative average charged energy represents a typical pattern. In
order to consider spatial aspects, the plug-in and plug-out times of the different federal
states in Germany are shown in Appendix A (cf. Figure A1). The main trend was very
similar, but there were differences in the number of BEVs and the related spatial charged
energy (cf. Figure A2).

In general, the challenge of integrating BEVs into the power grid lies mainly in the
potential load peaks, rather than in the provision of the additional energy. These load peaks
depend, in particular, on the individual charging behavior, the charging power used and,
thus, the associated simultaneity of the charging processes [1,37].

Therefore, we analyzed the real charging behavior and real charging load profiles
of today’s BEV users. Based on the entire i3 dataset, a cumulative, as well as an average
(per BEV), charging load profile were generated. The resulting power curves for both
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all considered charging processes over all of Germany and the per vehicle average are
presented in a weekly average in Figure 3a. A classic average load curve could be seen over
the period of a week with load peaks in the morning and evening hours. In general, more
charging processes took place during the week than on weekends. On average, the load
peak for one vehicle was 0.19 kW on weekdays and 0.15 kW on weekends. It is noticeable
that there was also a basic charging load during the night hours.

Figure 3. (a) Average power profile, aggregated (left axis) and proportional (right axis); (b) Average
charging profile differentiated by the charging power used.

Since the used charging rate also has an influence on the charging patterns, we consid-
ered the used charging power as well. Figure 3b shows the average charging power used
over time. Here, the assumption was made that the identification of the used charging rate
is possible based on the average charging power of each charging process, calculated by:

average charging poweri [MW] =
charged energyi [MWh]

charging durationi[h]
(1)

for each charging process i. It was noticeable that especially lower charging power rates
(3.7 kW and 11 kW) were used for the majority of charging processes.

3.1.3. Flexibility Potential

The flexibility potential of charging processes is of high interest for energy system
modelers. Whenever the plug-in time is longer than the charging time a flexibility can
be assumed. There are different definitions of load flexibilities of BEVs. In the following
we took a conservative approach and defined the shiftable load as follows: If the plug-in
duration exceeds the charging time (i.e., there is a temporal flexibility), it is assumed that
the load during the temporal flexibility can be increased by the average charging power
(cf. Equation (1)) of the charging process. However, if the temporal flexibility is shorter
than the charging time only the corresponding fraction is considered and for temporal
flexibility this fraction is set to 1. The energy demand during the plug-in period remains the
same and the necessary reduced charging at another time is not considered. Hence, other
approaches for considering load flexibilities of BEVs, e.g., considering also load shifting
potentials between charging events might show significant higher load shifting potentials.
Consequently, according to our approach the flexible load is always below the overall load.
The average flexibility potential considering the temporal aspects is shown in Figure 4a.

The absolute flexible, shiftable load that could potentially be offered to the grid was
quite homogeneous on weekdays and reduced on weekends. The potential flexibility is, of
course, always below the load curve, since there are also load processes that do not offer the
possibility of shifting the load over time. In the analyzed dataset, about 63% of the charging
processes had a flexibility potential. In the remaining charging processes, the vehicles were
either not fully charged, i.e., the plug disconnected earlier, or the BEV user terminated the
charging process exactly when a SoC of 100% was reached. The temporal flexibility was
8 h on average. It could be seen that there was a comparatively high flexible, shiftable
load share, particularly in the morning hours and during the night. BEVs being charged
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either at the workplace or at home during the night might explain this. Figure 4b shows
the flexible, shiftable load in relation to the average charging power used. It was obvious
that there was a correlation: the higher the charging power used, the lower the flexible
(shiftable) load. This could lead to the conclusion that for numerous charging processes
that are associated with a high idle time, lower charging rates are more likely to be used. In
addition, the temporal pattern of the shiftable power (which is strongly dependent on the
charging power used) can also give an indication of the charging location. In particular,
home charging or workplace charging is most likely to be associated with a high idle time
and a lower charging rate. This could also be an explanation for the related load peaks.

Figure 4. (a) Average power profile and flexible (shiftable) power; (b) Flexible (shiftable) power per
charging power used.

3.1.4. Data Adjustment

The data involves the date and time of both BEV plug-in and plug-out. These con-
tinuous values are difficult to cluster as they do not concentrate on one single day and,
therefore, are spread across the whole year. Hence, the dataset was adjusted to enable
useful clustering. The first step was based on the assumption that all charging activities
started at the same day. The plug-in time was implemented as plug-in time at minute
of the day. This approach had the shortcoming that the considered period started at 12
a.m. and ended at 11:59 pm. Early and late plug-in times might not be clustered into one
cluster because they lost their spatial proximity. The distribution of the plug-in times is
shown in Figure 5. It is visible that the charging activities decreased in early morning hours
and increased again later; forming a turning point at around 3 a.m. (red dashed line). To
restore the spatial proximity, all charging activities with a plug-in time below this minimum
(purple bars) were moved to the right side (blue bars) to continue the time after 12 pm
(green dashed line). The data covered by the purple bars was removed to avoid repetition.

Figure 5. Distribution of the plug-in times (taking into account data adjustment).

The second feature used for the clustering approach was the plug-in duration. How-
ever, the plug-in duration of the different charging activities differs significantly. Some
BEVs are plugged-out after a few minutes, while others are plugged-in for several days.
Such a dataset repeats itself, creating a cloud of data points for each day (one cloud for the
BEVs disconnecting on the same day, one cloud for BEVs disconnecting on the second day,
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one for the third day, and so on) and making it impossible to gain meaningful clustering
results because the clustering might only concentrate on the daily clouds instead of intraday
activities. Therefore, we adjusted the data in such a way that all charging activities, which
neither ended on the same day nor the next day, ended on the next day, but kept the original
plug-out time. This way, two clouds occurred: one for the same day charging activities and
one for the overnight charging activities. In addition, the plug-in duration was comparable.
The final adjusted data is depicted in Figure 6.

Figure 6. Final adjusted data depending on plug-in time and plug-in duration, red dashed line
represents midnight.

The y-axis covers the plug-in duration and, therefore, added dashed lines depict the
plug-out time. Two clouds can be observed. All data points above the midnight line
(red dashed line) represented charging activities, which ended on another day; all below
represented same-day charging activities.

3.2. Methods

In a first step, we examined the temporal charging behavior and investigated whether
a homogeneous charging behavior could be derived and whether conclusions could be
drawn about the charging location and charging type. The aim was to examine if BEV user
groups, having similar plug-in time and plug-in duration switch, existed, as they would
therefore, have similar temporal charging patterns.

3.2.1. Gaussian Mixture Model Clustering

Due to the sheer amount of data points, it was difficult to recognize clusters immedi-
ately, making it difficult to choose the clustering approach right away. Therefore, in a first
step the distribution of the data was analyzed, shown in Figure 7.

Figure 7. Density distribution of the final dataset.

The high concentration of the data is a common indicator for the application of density-
based approaches. In addition, the clustering approach needs to perform well with large
datasets regarding computation time and memory limitations [38]. Based on these limiting
factors, the Gaussian Mixture Model (GMM) clustering was applied.
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The GMM clustering is an unsupervised approach, which decomposes complex distribu-
tion of a database p(x) into K Gaussian distributionsN (x|µk, Covk), so called components,
with a mean µk, covariance Covk and weight πk each [39]; each distribution represents a cluster.

p(x) =
K

∑
k=1

πkN (x|µk, Covk) (2)

Before choosing the final number of clusters, the clustering approach was conducted
with several different numbers of clusters and the Aikaki Information Criterion [40] and
the Bayesian Information Criterion [41] were calculated. Both criteria helped to assess the
fit of the developed model, and to avoid overfitting of the data. Based on the analysis of
these two criteria, the GMM clustering was conducted with seven clusters.

3.2.2. K-Means Clustering

To analyze the charging behavior, only BEV users with more than 20 charging activities
were chosen for the second clustering approach. The number of total charging activities and
the charging activities during each of the above-derived temporal charging clusters were
counted, and the share of charging activities for each cluster for the user was calculated.
These shares for each user built the base for the next clustering step.

The unsupervised k-means clustering approach was used to derive the different
temporal behavior clusters [42]. K-Means is a simple and commonly used clustering
approach for behavior analysis. Some examples where k-means is applied for driving
pattern analysis are Fugiglando et al. [43] and Dardas et al. [44]. The aim of k-means
clustering is to find K cluster centers µk and assign each data point xn of the data set N to a
cluster center. The assignment of data point xn to a cluster center is conducted via binary
variable bn,k. Each data point can be assigned to only one cluster center. The k-means
approach finds values for µk and bn,k to minimize the sum of all distances between the data
points and their cluster centers. This function is sometimes called distortion measure [39]:

J =
N

∑
n=1

K

∑
k=1

bn,k ‖xn − µk‖2 (3)

Due to the seven clusters in the GMM clustering, the dataset of the k-means clustering
has seven dimensions. To examine if all these dimensions are necessary for the k-means
clustering, the dimensions were normalized and the number of dimensions reduced by a
subsequent principal component analysis [43]. The final number of clusters was chosen by
applying the elbow technique for different numbers of clusters [45]. Based on this analysis,
five clusters were chosen.

4. Results

Based on the methodological approach described in the previous Section 3.2.1, seven
temporal charging clusters were identified. In the following, we examine the seven clusters
(cf. Figure 8) in more detail and validate them with the aim of trying to categorize them.

The already high number of seven clusters showed that the data was too complex
to be described by a few Gaussian distributions. Moreover, the following two main
agglomerations of charging incidents, identified in Figure 7, were somewhat surprising:
there were many overnight chargers, who plugged-in between 6 pm and 9 pm, and another
hot spot seemed to be a huge group of opportunity chargers during the day, who stood
out because of the short charging times during the daytime. This latter group has not been
considered in most energy systems models. Besides these two hot spots, there was still
a broad range of other charging incidents. Consequently, the GMM clustering split the
overnight (Clusters 2, 3, and 4), as well as the daytime (Clusters 1, 5, 6, and 7), chargers into
different groups. The mean, weight, and covariance of each cluster and the total number
of samples in each cluster are depicted in Table A1 in the Appendix B. The evaluation of
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the identified charging clusters is shown in Table 1. The associated graphs can be found
in Appendix B (Figures A3–A9). There, the distribution of the plug-in times, the plug-out
times and the distribution of the plug-in durations, as well as the average load profile
(considering the charging powers used), are shown.

Figure 8. Related Clusters to the GMM-Clustering, red dashed line represents midnight.

Table 1. Characteristics of the temporal charging clusters.

Mean Plug-In Time Mean Plug-Out Time Mean Plug-In Duration Charging Power [%] Temporal
Flexibility

Description of
Charging Behavior

Cluster 1 8.28 a.m. 4.30 p.m. 8 h 8 min

3.7 kW: 60.21%
11 kW: 39.29%
22 kW: 0.45%
50 kW: 0.04%

3 h 58 min
Morning to
afternoon/

Evening charging

Cluster 2 12.57 a.m. 8.52 a.m. 19 h 55 min

3.7 kW: 71.64%
11 kW: 28.13%
22 kW: 0.21%
50 kW: 0.02%

15 h 25 min
Noon to

next morning
charging

Cluster 3 7.26 p.m. 7.55 a.m. 12 h 28 min

3.7 kW: 77.71%
11 kW: 22.21%
22 kW: 0.07%
50 kW: 0.01%

6 h 45 min
Evening to

next morning
charging

Cluster 4 5.44 p.m. 1.43 p.m. 19 h 57 min

3.7 kW: 76.54%
11 kW: 23.30%
22 kW: 0.15%
50 kW: 0.01%

14 h 18 min Overnight
rest charging

Cluster 5 2.37 p.m. 5.53 p.m. 3 h 41 min

3.7 kW: 62.25%
11 kW: 36.96%
22 kW: 0.71%
50 kW: 0.09%

56 min
Afternoon

medium-term
charging

Cluster 6 2.01 p.m. 2.39 p.m. 48 min

3.7 kW: 38.36%
11 kW: 35.97%
22 kW: 9.33%
50 kW: 16.34%

2 min Short-term
charging

Cluster 7 9.03 a.m. 12.03 a.m. 2 h 59 min

3.7 kW: 53.65%
11 kW: 45.00%
22 kW: 1.22%
50 kW: 0.13%

44 min
Morning

medium-term
charging

As shown in Table 1 and in Figures A3–A9 (in Appendix B), the temporal charging
clusters differed with regard to the temporal charging characteristics, such as plug-in time,
plug-out time and plug-in duration. Differences could also be identified with regard to the
charging power used, as well as the load peaks and the temporal flexibility potential. It
should be noted that the effective flexibility potential was higher due to the data adjustment,
since the charging processes with more than 48 h were not included. The number of
charging processes within a cluster also influenced the peak load.

Cluster 1 and Cluster 7 were characterized by plugging-in during the morning and
plugging-out after a medium plug-in duration. The charging events included in Cluster 5
were charging processes that began in the afternoon and had a medium plug-in duration.
Cluster 6 contained the charging processes that took place during the day and had a rather
short plug-in duration. Clusters 1, 5, 6, and 7 were united by the fact that they were
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plugged-in and plugged-out on the same day. Clusters 2 to 4 did not have plug-in and plug-
out times on the same day (represented by the red dashed line in Figure 8) and, therefore,
had a significantly longer plug-in duration. The temporal flexibility potential and the
charging power used also varied significantly per temporal charging cluster (see Table 1).
Interestingly, while temporal charging clusters with low flexibility potential tended to be
associated with charging processes that had used high charging power (cf. Cluster 6), high
temporal flexibilities were mainly associated with charging processes with low charging
power (cf. Clusters 2, 3, and 4).

Based on the clustering results, we analyzed how homogeneous the charging behavior
of BEV users was. The results of this assessment showed that BEV users did not behave
homogeneously by charging their BEVs during similar hours and for similar durations.
This finding contradicted the classification of BEV users into fixed user groups.

5. Discussion

The identified temporal charging clusters are not very useful for energy system mod-
elers as the characteristics of users and charging locations are missing. With this additional
information the modelers would be able to allocate the right charging patterns to the
observed users or charging. We, therefore, added two further analyses: first, we tried to
identify whether users switch between clusters and, second, we compared our empirically
based findings with currently applied load curves, which are usually based on empirical
data from conventional vehicles. If these two load curves coincide, current load curves can
be further applied in energy systems modeling.

For identifying switching car users between clusters, we applied a k-means clustering
with the original user IDs (cf. Appendix C). Surprisingly, there was quite frequent change
between charging clusters. This might come from the free charging opportunities at
attractive parking places. The k-means clustering came up with 5 user groups which did
not seem as homogenous than expected. Nevertheless, they were analyzed in further detail
(cf. Appendix C).

For comparing our load patterns with existing approaches in literature, which base
their charging patterns on plug-in assumptions and empirical mobility data from conven-
tional car usage, we applied the MobiFlex tool (Heinz et al., 2018) for generating synthetic
load patterns (cf. Appendix D). The comparison between the two charging curves were
surprisingly similar. Only the frequent opportunity charging during the daytime was
underrepresented in the synthetic load profiles by the MobiFlex tool. Furthermore, the
switching between the different charging incidents could not be found in the synthetic load
profiles. However, in our analyses we found that the resulting charging load patterns at
the different charging locations, such as home, workplace, public or fast charging, showed
surprising similar results. As these results are of high interest for all energy system model-
ers, we plotted the resulting load curves from the MobiFlex tool (cf. Figures A16–A19) and
provide the underlying csv files in the Supplementary Materials.

Even though our dataset was very comprehensive compared to other current available
data from BEVs, our approach relied only on the technical data, and user data was not
available. Furthermore, all data came from only one specific BEV, the i3 by BMW, and
all charging was undertaken in an early market phase of BEVs. Nevertheless, the dataset
delivers significant insights to current literature.

6. Conclusions

Within the scope of the analysis, the charging behavior of an empirical dataset of
real-world charging data, containing approximately 21,000 battery-electric vehicles and
about 2.6 million charging processes over a period of one year, was investigated.

In summary, our results show that, based on the exclusive consideration of individual
temporal charging data, conclusions could be drawn about battery-electric vehicle user
groups and related charging patterns and flexible (shiftable) load. Two main findings could
be highlighted: in this early market phase, a surprisingly high number of opportunity
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chargers during the day, as well as switching users between charging clusters, were identi-
fied. Moreover, an estimation of the charging location is possible. We provided resulting
load curves, which can be used in energy system models to consider the load shifting
potential of battery electric vehicles in more detail.

For future research, further factors of the charging process should be considered in
addition to the temporal aspects. For example, the charging power, the amount of energy
charged and the charging frequency also play a decisive role. The spatial distribution
should also be taken into account in future studies. It should also be emphasized that the
underlying real-world data set can be reproduced, based on our analysis, and can, thus, be
used for further scientific studies, such as investigating numerous research questions with
regard to battery-electric vehicles and to support the successful sustainable integration of
electric vehicles into the energy system.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/en15186575/s1.
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Figure A1. (a–p) Plug-in and plug-out times taking into account the charging power used per state.

• Charged energy per Federal State [MWh]

Figure A2. Charged energy of all i3 BEVs per Federal State.

Appendix B. Further Descriptive Statistical Indicators

• The mean, weight and covariance of each cluster and the total number of samples in
each cluster.
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Table A1. The mean, weight and covariance of each cluster and the total number of samples in each
temporal charging cluster.

Temporal Charging Cluster Mean µ Covariance Matrix ∑ Weight π Number of Samples in Cluster

Cluster 1 µ =

(
535.8582
451.0746

)
Σ =

(
14, 186.4869 −4976.5643
−4976.5643 19, 795.8058

)
0.1000 252,370

Cluster 2 µ =

(
845.9111

1132.1117

)
Σ =

(
34, 623.8945 −32, 903.1621
−32, 903.1621 36, 569.0678

)
0.0902 215,767

Cluster 3 µ =

(
1163.0563
757.6981

)
Σ =

(
23, 110.7883 −21, 835.7093
−21, 835.7093 27, 697.1618

)
0.2229 660,084

Cluster 4 µ =

(
1058.0706
1176.7476

)
Σ =

(
62, 463.0494 −62, 508.4638
−62, 508.4638 103, 104.9956

)
0.1184 272,415

Cluster 5 µ =

(
875.8100
193.8779

)
Σ =

(
29, 305.3776 −4100.6763
−4100.6763 8072.3007

)
0.1620 396,360

Cluster 6 µ =

(
848.3180
49.5780

)
Σ =

(
54, 307.5902 −699.9006
−699.9006 982.6405

)
0.2071 617,763

Cluster 7 µ =

(
559.3524
167.3003

)
Σ =

(
12, 351.5615 −847.9476
−847.9476 6524.9913

)
0.0995 247,508

• Charging characteristics for the identified temporal charging clusters

Figure A3. Charging characteristics of temporal charging cluster 1: (a) Frequency of different plug-in times;
(b) Frequency of different plug-out times; (c) Frequency of different plug-in lengths; (d) Charging power used.

Figure A4. Charging characteristics of temporal charging cluster 2: (a) Frequency of different plug-in times;
(b) Frequency of different plug-out times; (c) Frequency of different plug-in lengths; (d) Charging power used.
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Figure A5. Charging characteristics of temporal charging cluster 3: (a) Frequency of different
plug-in times; (b) Frequency of different plug-out times; (c) Frequency of different plug-in lengths;
(d) Charging power used.

Figure A6. Charging characteristics of temporal charging cluster 4: (a) Frequency of different
plug-in times; (b) Frequency of different plug-out times; (c) Frequency of different plug-in lengths;
(d) Charging power used.
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Figure A7. Charging characteristics of temporal charging cluster 5: (a) Frequency of different
plug-in times; (b) Frequency of different plug-out times; (c) Frequency of different plug-in lengths;
(d) Charging power used.

Figure A8. Charging characteristics of temporal charging cluster 6: (a) Frequency of different
plug-in times; (b) Frequency of different plug-out times; (c) Frequency of different plug-in lengths;
(d) Charging power used.
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Figure A9. Charging characteristics of temporal charging cluster 7: (a) Frequency of different
plug-in times; (b) Frequency of different plug-out times; (c) Frequency of different plug-in lengths;
(d) Charging power used.

Appendix C. Clustering of User Groups

To cluster users into charging groups, we applied the k-Means clustering approach
(Section 3.2.2). The resulting five user groups are composed of the shares of the differently
used temporal charging clusters (cf. Figure 8) and are shown in Figure A10.

Figure A10. Related Clusters to the k-Means Clustering.
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In the following, the five identified user groups were analyzed taking into account the
load pattern, and the charging power used, as well as the flexible (shiftable) power. User
Group A included 7830 BEV users and 1,056,623 charging activities. This user group was
characterized by the fact that the main charging activities took place mainly at night, with
a strong focus on the afternoon/evening plug-in times and the morning unplugging times.
In addition, there were short- and medium-term activities. The load pattern, as well as the
associated charging power and the flexible shiftable power, are shown in Figure A11. The
afternoon/evening plug-in times can also be seen in the load pattern, which were particularly
evident in the afternoon/evening hours. The charging activities mainly took place with
smaller charging powers (3.7 kW and 11 kW). Occasionally, charging powers of 22 kW or
50 kW were also in use and could be assigned to short- or medium-term charging activities.

Figure A11. (a) User Group A: Charging power profile as a function of the assumed charging power
used; (b) User Group A: Relation between the charging power profile and the associated flexible
(shiftable) power.

User Group B consisted of 5232 BEV users and 661,683 charging activities with a strong
focus on short- and medium-term charging activities. The load pattern and the flexible
(shiftable) load are pictured in Figure A12. The peak tended to be in the morning hours and
the most used charging power in this user group was 11 kW. User Group B had a medium
flexible power shifting potential.

Figure A12. (a) User Group B: Charging power profile as a function of the assumed charging power
used; (b) User Group B: Relation between the charging power profile and the associated flexible
(shiftable) power.

User Group C had 1900 BEV users and 240,897 charging activities, which were typified
by a high share of medium-term charging activities, which mainly started in the morning
hours (cf. Figure A13). Other short- and medium-term activities also occurred in this
charging type. This composition of the temporal charging clusters was also reflected in
the load pattern. In this user group, the load peaks were found in the morning hours and
had a high temporal density. Interestingly, the extreme load peaks were only observed on
weekdays. The most frequently used charging power in this user group was 3.7 kW and
11 kW during the week; charging processes with higher charging powers could also be
assigned at the weekend. In general, this user group had a high potential for flexible power,
which was particularly concentrated in the morning hours.
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Figure A13. (a) User Group C: Charging power profile as a function of the assumed charging power
used; (b) User Group C: Relation between the charging power profile and the associated flexible
(shiftable) power.

2994 BEV users and 328,562 charging activities characterized User Group D. A high
share of the charging activities took place over the night but without concentration on
evening plug-ins and morning plug-outs. Furthermore, some short-term activities took
place. Nevertheless, the occurrence of the charging process was more widely distributed
throughout the day. In Figure A14, it can be seen that here, too, the focus was on the lower
charging powers (3.7 kW and 11 kW) and that there were decisive differences between
weekday and weekend. In general, there was a very high flexible (shiftable) load in this
user group.

Figure A14. (a) User Group D: Charging power profile as a function of the assumed charging power
used; (b) User Group D: Relation between the charging power profile and the associated flexible
(shiftable) power.

User Group E included 2683 BEV users and 329,998 charging activities. The users
charged, in particular, by means of short-term charging processes during the daytime hours.
What was remarkable here was the share of charging processes that were carried out with a
high charging power of 11 kW, 22 kW and 50 kW (cf. Figure A15). The charging behavior
of this user group was quite uniform over the course of a week; only on Sundays were
there slightly fewer charging processes on average. This user group had only a very low
flexible power shifting potential.

Figure A15. (a) User Group E: Charging power profile as a function of the assumed charging power
used; (b) User Group E: Relation between the charging power profile and the associated flexible
(shiftable) power.
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The five user groups described in detail above were compared to each other. The user
groups differed in terms of their average load profile and the load peak, as well as the most
frequently used charging power with regard to the flexible (shiftable) load.

The load profiles resulted from the composition of the temporal charging cluster shares
(cf. Figure 8) and, therefore, led to very different load profiles of the different user groups.
The flexibility resulting from the idle time when the BEV was connected to the grid, but the
charging process was already completed, also showed differences. Obviously, the number
of BEVs and charging processes also had a decisive influence. In particular, user group A
had the highest load peaks, which were higher on weekdays than on weekends. User Group
C showed a peak especially on weekday mornings and User Group E showed a constant
load curve over a week, in average. The charging pattern could be explained by the shares of
charging processes in the temporal charging clusters. While User Groups A and D offered a
high temporal flexibility potential, a significantly higher load could be shifted in User Group
A. The focus of the shiftable load in User Group D was also mainly on weekdays. In terms
of temporal flexibility, User Groups B and C were similar, but they differed in terms of the
shiftable load. While User Group B also had a share of shiftable loads at the weekend, the
share of shiftable loads in User Group C was particularly during the week. User Group E
generally had a very low flexibility potential in terms of time and quantity.

Appendix D. Comparison with Synthetically Generated Charging Profiles

In this section, we analyze the hypothesis that the identified temporal charging clusters
and, thus, the identified user groups could be associated to charging locations. Therefore,
the MobiFlex simulation model that generates synthetic BEV charging profiles based on
empirical and representative driving data of conventional passenger vehicles, was applied.
For further details, please refer to Ecke et al. (2019), Ried (2020), and Heinz et al. (2018).

The following assumptions were made for the generation of the synthetic load profiles.
These assumptions were based on the obtained temporal charging clusters (Figure 8 and
Table 1). Further input data of the MobiFlex model can be found in Table A2.

• Temporal chargings in Clusters 2 and 3 represented home charging activities because
of overnight charging events, relatively long charging durations and a peak in plug-
out-time during the morning hours (commuters).

• Temporal chargings in Clusters 1 and 7 represented workplace charging, because they
covered charging events with plug-in time in the morning and the plug-out occurring
on the same day.

• Temporal chargings in Cluster 6 represented public charging, because of short plug-in durations.

The probabilities of charging power at the different locations were calculated based on
charging power per charging event in the respective charging location. In the following
analysis, four model configurations were carried out: (1) Home charging only, (2) Pub-
lic charging only, (3) Workplace charging only, (4) Both home and workplace charging.
Different user groups were not pre-determined in advance. Instead, the MobiFlex model
was applied to the full dataset of all approximately 2300 passenger cars. Those vehicles
that could be replaced by BEVs under the given assumptions then determined the total
charging power. For comparability reasons, the load profiles are shown on a per vehicle
basis. The charging profiles generated are shown below (Figures A16–A19). These reflect
the load profile on the one hand and the charging power used on the other. In order to
draw conclusions about the charging location, they were compared with the user groups
obtained by the k-means clustering.

In the first model configuration, only the possibility of home charging was considered.
The probabilities for the charging power used can be taken from Table A2. The resulting
charging pattern is shown in Figure A16.
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Table A2. Further input data for the MobiFlex model.

Parameter Value

Average battery capacity (calculated using the analyzed dataset) 23.4 kWh

Average energy consumption 17 kWh/100 km

Charging efficiency 90%

Probability of charging power at home

3.7 kW 76.2%
11 kW 23.7%
22 kW 0.1%
50 kW 0.0%

Probability of charging power at work

3.7 kW 57.0%
11 kW 42.1%
22 kW 0.8%
50 kW 0.1%

Probability of charging power at public

3.7 kW 38.4%
11 kW 36.0%
22 kW 9.3%
50 kW 16.3%

Figure A16. Charging patterns for uncontrolled charging for “home charging”.

The charging pattern of this configuration, the load peaks in the evening and the used
charging power showed a congruence with User Group A (cf. Figure A11a).

The second configuration examined the case where only public charging was possi-
ble. The resulting charging pattern (Figure A17) showed similarities with User Group E
(Figure A15a). There were two peaks on weekdays and one main peak on Saturday morning.
However, the MobiFlex model did not show any overnight charging.

Figure A17. Charging Patterns for uncontrolled charging for “public charging”.

When charging is only possible at the workplace, MobiFlex generated the charging
pattern shown in Figure A18, which had similarities to User Group C (cf. Figure A13a).
Here, the load peak in the morning hours was particularly characteristic.
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Figure A18. Charging Patterns for uncontrolled charging for “workplace charging”.

If both home charging and workplace charging were included in the charging pro-
cesses, it resulted in the load profile illustrated in Figure A19. However, this charging
pattern did not resemble any of the above user groups.

Figure A19. Charging Patterns for uncontrolled charging for both “home and workplace charging”.

This might lead to the hypothesis that the temporal charging in Clusters 2 and 3 mainly
covered home charging, temporal charging in Clusters 1 and 7 mainly workplace charging,
and in Cluster 6 public charging. Since the user groups were composed of the shares of the
temporal charging clusters (see Figure A10), User Group A might be rather home chargers,
User Group C workplace chargers, and User Group E mostly public short-term chargers.
Thus, possible charging locations could be assigned to the three user groups.
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