
Hardware-aware Partitioning of Convolutional
Neural Network Inference for Embedded AI

Applications
Fabian Kreß, Julian Hoefer, Tim Hotfilter, Iris Walter, Vladimir Sidorenko, Tanja Harbaum, Jürgen Becker

Karlsruhe Institute of Technology
Karlsruhe, Germany

{fabian.kress, julian.hoefer, hotfilter, iris.walter, vladimir.sidorenko, harbaum, becker}@kit.edu

Abstract—Embedded image processing applications like multi-
camera-based object detection or semantic segmentation are often
based on Convolutional Neural Networks (CNNs) to provide
precise and reliable results. The deployment of CNNs in em-
bedded systems, however, imposes additional constraints such as
latency restrictions and limited energy consumption in the sensor
platform. These requirements have to be considered during
hardware/software co-design of embedded Artifical Intelligence
(AI) applications. In addition, the transmission of uncompressed
image data from the sensor to a central edge node requires large
bandwidth on the link, which must also be taken into account
during the design phase.

Therefore, we present a simulation toolchain for fast evaluation
of hardware-aware CNN partitioning for embedded AI applica-
tions. This approach explores an efficient workload distribution
between sensor nodes and a central edge node. Neither processing
all layers close to the sensor nor transmitting all uncompressed
raw data to the edge node is an optimal solution for each use
case. Hence, our proposed simulation toolchain evaluates power
and performance metrics for each reasonable partitioning point
in a CNN. In contrast to the state of the art, our approach
does not only consider the neural network architecture. In
the evaluation, our simulation toolchain additionally takes into
account hardware components such as special accelerators and
memories that are implemented in the sensor node.

Exemplary, we show the simulation results for three commonly
used CNNs in embedded systems. Thereby, we identify advanta-
geous partitioning points regarding inference latency and energy
consumption. With the support of the toolchain, we are able to
identify three beneficial partitioning points for FCN ResNet-50
and two for GoogLeNet as well as for SqueezeNet V1.1.

Index Terms—convolutional neural networks, embedded
systems, hardware accelerator, simulation toolchain, hard-
ware/software co-design

I. INTRODUCTION

In recent years, research on Deep Neural Networks (DNNs)
has gained immense attention due to their superiority in
image processing enabling applications and manifold use cases
such as autonomous driving, intelligent prosthetics or assistive
robotics [1]. However, the increasing complexity of neural
networks and their intense workloads present unprecedented
challenges to the embedded hardware.

These challenges can no longer be met by general-purpose
CPUs or GPUs, but solely with dedicated hardware acceler-
ators and methods of hardware/software co-design, allowing

Input Output

Sensor Node Edge Node

Convolutional Neural Network (CNN)

L
in

k

Fig. 1: The simulation toolchain evaluates different partition-
ing of a CNN model on different nodes. Both, sensor node and
edge node are embedded platforms. The link layer transmits
intermediate results from one node to the other and can be in
between any network layer.

for efficient implementation of the DNN algorithms. The im-
provements in performance and energy efficiency can surpass
100x and 1000x, respectively [2]. However, the requirements
of the use cases continue to increase, as applications like
autonomous driving require multiple cameras with additional
sensors instead of static images for accurate perception of the
near environment and full surround view.

For example, in assistive robotics, personalization and pro-
viding an assistance in real-time is crucial for user acceptance.
For personalization, the robot perceives its environment and
recognizes people, which is often realized by observing the
proximity with multiple distributed cameras and sensors. To
realize a real-time person recognition while respecting privacy,
local execution on dedicated accelerators [3] is preferred over
remote computation.

Furthermore, Advanced Driver Assistance System (ADAS)
systems is another emerging topic in this scope. Camera-
and sensor-based systems with DNN-based object detection
and semantic segmentation for evaluation are the foundation
for lane assistants, face recognition [4] or fully autonomous
vehicles. Cameras or sensors are connected over an on-board
network to centralized Electronic Control Units (ECUs), which
can be regarded as edge nodes. To reduce the amount of
data that has to be transferred via the on-board network, the
sensor node itself can process parts of the DNN. This not only



helps reduce the amount of transferred data, but also increases
energy efficiency and keeps communication latency low.

To support the implementation of DNN-based applications
into embedded and distributed systems, we present a sim-
ulation toolchain for hardware-aware Convolutional Neural
Network (CNN) partitioning. In our tool flow, the previously
described use cases are to be approximated with the help
of a simplified model, shown in Fig. 1. A first partition
of DNN layers is calculated on a sensor node, while the
second partition is computed on an edge node. The output
feature map of the last CNN layer processed in the sensor
node is transferred over a wired link, such as Ethernet. Our
contributions in this paper are as follows:

• We present our simulation toolchain for evaluating energy
and latency of CNN partitioning in embedded systems

• We show, how we apply the toolchain to obtain latency
and energy consumption of applications running on dis-
tributed embedded systems

• We evaluate and identify beneficial partitioning points of
multiple, commonly used CNNs, namely FCN-ResNet50,
GoogLeNet and SqueezeNet

II. RELATED WORK

In many vision-based applications, DNN inference on sen-
sor devices is not a feasible solution due to the limited compute
performance and tough constraints regarding power consump-
tion [5]. Consequently, computational intensive operations
such as inference of Convolution (CONV) layers are offloaded
to more powerful platforms. However, several accelerators for
sensor platforms have already been proposed in recent years
to enable inference of small CNNs on sensor devices. As an
example, the analog accelerator RedEye is directly connected
to a pixel array of a camera [6]. It consists of modules for
processing CONV, max pooling and quantization operations
of which each can be used multiple times for single inference.
Furthermore, the authors evaluated partitioning GoogLeNet
based on their accelerator design, showing an improved latency
and slightly reduced overall power consumption when paired
with a Jetson TK1 GPU.

Besides of designing specialized accelerators for embedded
platforms to meet latency and energy constraints, little research
has been carried out considering DNN inference partitioning
over multiple nodes.

An edge-host partitioning approach has been presented by
Ko et al. [7]. They designed and synthesized an inference
engine containing 144 16-bit MAC units, an on-chip buffer and
a JPEG encoder and decoder which allows storing weights in
compressed format. They were able to prove that partitioning
of DNNs can be beneficial regarding throughput and energy-
efficiency. However, they do not provide a hardware-aware
design space exploration for DNN partitioning.

Hu et al. presented a partitioning algorithm for CNNs opti-
mizing throughput and accuracy of a pipelined inference [8].
Their approach includes an autoencoder-based compression
scheme to improve the inter-device communication perfor-
mance. Similar to CNN partitioning presented in this paper,

the first part of this DNN, i.e. the encoder, is executed by
the transmitting node while the decoder section is processed
in the receiver. However, the proposed methodology neither
considers power consumption nor the actual hardware im-
plementation used for inference in the sensor node. Such
an approach would be beneficial in identifying an optimal
partitioning of the CNN for a specific hardware platform.

The open-source framework DeepThings, proposed by Zhao
et al. [9], is targeting dynamic balancing of workloads in edge
clusters, achieving reduced local memory usage and significant
inference performance improvement. Under consideration of
the platform constraints and the CNN parameters, this ap-
proach divides the CONV layers into independent tasks that
can be distributed over the edge nodes available in the network.
Nevertheless, DeepThings only considers optimizations of
scheduling tasks over multiple edge platforms. This method-
ology neglects the actual hardware implementation, such as
specialized hardware accelerators. Therefore, this approach
only allows for latency and throughput improvement based on
dynamic workload balancing, but does not enable evaluation
of overall energy efficiency across sensor and edge nodes.

Yang et al. proposed a co-exploration methodology of hard-
ware design space and neural architecture for realtime Artifi-
cial Intelligence (AI) applications [10]. Thereby, the execution
of DNNs is partitioned on multiple Field-Programmable Gate
Arrays (FPGAs) based on a network-on-chip infrastructure.
Applying a feedback loop for exploration, their approach can
lead to improved accuracy of the DNN and increased hardware
efficiency. However, this methodology again disregards energy
consumption of the hardware and, therefore, is not applicable
for optimizing energy efficiency in embedded AI.

III. SIMULATION TOOLCHAIN

Recent embedded systems are composed of distributed
compute platforms, which enable data preprocessing locally
at the sensor to reduce the amount of data to be transmitted
to centralized control units. However, in many multi-camera
based embedded applications, e.g. automotive or robotics,
preprocessing data in each node is not always sufficient to
maintain the overall bandwidth limitation of the on-board net-
work. Such systems are therefore constrained by a maximum
number of possible sensors in the entire system.

Though, a rising number of sensors deployed in embedded
systems can be observed in recent years. By processing parts of
the workload of the central edge platform already in the sensor
node the demand for additional sensors in e.g. assistive robots
or autonomous driving cars can be fulfilled. Nevertheless,
embedded systems are constrained in energy consumption
and latency in order to operate on limited energy budget
and real-time requirements. In this paper, we address this
major challenge by integrating highly specialized hardware
accelerators into the sensor node and by investigating optimal
workload distribution in a distributed system.

Partially offloading the CNN workload to different platforms
while respecting the constraints, though, increases the com-
plexity of the hardware/software co-design. Therefore, we pro-



�
Energy

Consumption

�
Latency

Energy & Latency Evaluation
i < n

Timeloop

Accelergy
Custom
Model

PyTorch

Sensor Node Link Edge Node

Modeli & System Initialization
i = i+ 1

�
Architecture
Description

�
n Partitioned
CNN Models

�
Link

Configuration

Fig. 2: Overview of our simulation toolchain estimating energy
consumption and latency for each system module indepen-
dently. It expects the architecture description of the sensor
node, n partitioned CNN models and the link configuration as
input, loops through the models and outputs the estimations
in spreadsheet format.

pose a simulation toolchain, which allows fast exploration of
the design space for distributed compute platforms consisting
of sensors and central edge node. An overview of the toolflow
is provided in Fig. 2.

With this simulation toolchain we aim at optimizing the
hardware architecture of the sensor node as well as the CNN
partitioning efficiency. For this reason, consideration of a
single sensor node connected to the central edge node via a
link is sufficient. However, dedicated constraints, such as the
maximum available bandwidth, can be used to account for the
impact of additional sensor nodes in the system.

Our toolchain is based on established tools and custom
models to guarantee for compatibility with widely used open-
source deep learning libraries, such as PyTorch, and designed
to fit a wide range of use cases. As input, the toolchain takes:

• an architecture description of the hardware deployed in
the sensor node including memories and accelerators.

• a set of CNN models for exploration that have to be
partitioned in advance, as demonstrated in section IV.

• a link configuration containing important characteristics
for estimating energy consumption and latency.

The actual simulation is divided into three independent
segments that run in parallel to significantly reduce the overall
simulation time. In this process, each system module, i.e.,
sensor node, link, and edge node, simulates or measures

energy consumption and latency for the given CNN model
independently. The evaluation module collects the results
of the preceding simulations and calculates overall energy
consumption and latency for the partitioned CNN model.
Afterwards, the remaining models are evaluated analogously.

Finally, the simulation toolchain provides energy consump-
tion and latency of all given partitioned CNN models in
spreadsheet format to the system designer.

A. Sensor Node

Hardware-aware evaluation of CNNs is particularly impor-
tant in the scope of embedded systems, which are constrained
by both energy consumption and latency. Hence, these nodes
have to offer specialized hardware accelerators for inference.
There are many open-source hardware accelerators available
[11]–[14], each having its own advantages and drawbacks in
terms of power, performance and area consumption. Thus,
determining an optimal design for a given application is not
trivial. Enabling rapid simulation of low power and low latency
Application-Specific Integrated Circuit (ASIC) designs, con-
sequently, requires a fast and flexible framework that allows
evaluation of various CNN hardware accelerators. Frameworks
such as FLECSim [15] provide cycle-accurate simulation
and evaluation of a broad range of accelerators. However,
analyzing each cycle leads to enormous simulation time and is
therefore not applicable for our proposed simulation toolchain.
In contrast, higher-level simulation frameworks for evaluating
CNN hardware accelerators [16]–[18] offer significantly re-
duced simulation time but less accuracy of evaluation metrics.
Moreover, most of these tools are tied to just one hardware
accelerator architecture, e.g. systolic arrays, and only allow to
adjust few architectural parameters neglecting optimization of
processing elements or the memory hierarchy.

To overcome the aforementioned drawbacks, we use
Timeloop [19] as tool to evaluate most important design
metrics of the sensor node. It takes an analytical model of the
hardware accelerator and searches for an optimal inference
mapping of a single DNN layer. Thereby, Timeloop offers
different search algorithms and optimizations metrics, e.g.
energy and delay, as well as tuneable exploration termination
conditions. Consequently, this approach enables fair evaluation
of various designs and applications in a reasonable time span.

Usually, CONV layers contribute by far the majority of the
computational operations and weights to most CNNs [20].
Therefore, the evaluation of the embedded platform in the
sensor node focuses on CONV layers to estimate energy con-
sumption and latency as well as the required bandwidth on the
link between sensor and edge node. This methodology hence
offers a reduced simulation time, which is very important in
the context of hardware/software co-design. The architecture
description also features hardware constraints, the configura-
tion of Timeloop’s internal mapper and the layer input shape.
Latter may be different for each CONV layer of the CNN.
Therefore, the simulation toolchain has to extract every CONV
layer and the corresponding input shape first, before launching
Timeloop. Based on this information, Timeloop evaluates



the amount of cycles required by the hardware accelerator
for single CONV layer inference. Even though, it outputs
detailed statistics about each individual module instantiated
in the accelerator, such as memories, buffers and processing
elements, additional tools need to be included to account for
their energy consumption.

Therefore, Timeloop inherently offers an interface to Accel-
ergy [21], an open-source tool for analyzing energy consump-
tion based on a hardware accelerator description and action
counts of each module. Accelergy uses primitive component
libraries provided by estimation plug-ins to derive the overall
energy consumption. In the proposed toolchain, we use CACTI
[22] for modelling memory components and Aladdin [23] to
evaluate energy consumption of accelerator structures. As a
result, Accelergy provides reliable estimations regarding the
energy consumption per layer.

B. Link

Since the partition interconnection link is meant to transport
information that is critical to the modelled CNN, a separate
link model is provided by the toolchain to estimate its impact
on overall network performance. Currently, a copper-based
Ethernet link model has been implemented with two eval-
uation parameters: transmission latency and interface power
consumption. Nevertheless, more link models can be added
easily, e.g. wireless Ethernet, Bluetooth, etc.

Since our simulation toolchain targets embedded platforms,
the link model assumes a common embedded scheme with a
microprocessor system directly connected to the Physical layer
(PHY) device. With this connection scheme, overall power
consumption of the interface is predominantly defined by
energy demands of the PHY device. For this reason, emphasis
has been given to modelling the properties of these particular
devices.

The Ethernet model is based on the BASE100-T,
BASE1000-T and 10GBASE-T. In its baseline “legacy” con-
figuration, power consumption is evaluated based on typical
values for PHY devices [24].

Aside from power consumption, transmission latency Tlink

of the link is evaluated. It primarily depends on data size Ndata

and line rate B and is described by equation (1) [25].

Tlink =
Nhdr +Nstf +max{Ndata, Nmin}

B
+ Twire (1)

Nhdr = 20, Nstf = 18 and Nmin = 46 are sizes of
the header, stuffing section and minimum payload size as
per Ethernet standard. Wire propagation delay Twire, on the
other hand, must be computed with a particular use case
in mind. Considering signal propagation delay in a copper
twisted pair to be ≈ 6 ns/m, the cable delay is described as
Twire = lline ·6 ·10−9 s, where lline is the length of the cable
in meters.

C. Edge Node

In contrast to the sensor node and link, the performance
of the edge node does not need to be simulated with a high-

level tool. Instead, Commercial-Off-the-Shelf (COTS) com-
pute platforms for real-time evaluation can be used, providing
realistic data for exploring CNN partitioning. For evaluation of
the CNN latency, our toolchain uses the PyTorch Benchmark
module, which allows to run multiple threads while still en-
suring reliable performance metrics by adding a warm-up run
and CUDA synchronization. To achieve a reliable inference
latency estimation, our toolchain determines the median value
of 1000 measurements performed on the GPU. Since Python
is available on many platforms, this approach is applicable
for a broad range of embedded systems. Depending on the
workload, designers can incorporate either high-performance
embedded computing platforms such as the NVIDIA Jetson
TX-2 or embedded CPU platforms, e.g. Raspberry Pi.

Apart from latency, power consumption of the edge node
must also be taken into account in the evaluation. Since
COTS platforms usually implement general-purpose compo-
nents, however, measuring the power consumption of CNN in-
ference would only provide rough estimates. Consequently, the
overhead introduced by the operating system and peripherals
has to be considered for evaluation as well. Since this depends
on the application, we assume a constant power consumption
in our evaluation.

IV. EVALUATION

In the following, we show the results of CNN partitioning
for an exemplary workload that will be specified in the
subsequent subsection. The system used for executing the
sensor node and link evaluation is running CentOS on an AMD
EPYC 7702P using Python, PyTorch, Timeloop and Accelergy
including its plug-ins, i.e. CACTI and Aladdin. Timeloop is
configured to run eight threads in parallel to find a delay-
and energy-optimal mapping of each layer of the CNN for
the accelerator architecture. Thereby, it uses the linear-pruned
search algorithm, a more efficient version of linear search due
to its ability to prune irrelevant permutations of unit-factors.
The search is terminated by the victory condition which we
set to 100 valid but suboptimal mappings. This configuration
provides a good trade-off between quality of the results and
the simulation time.

The computationally powerful edge node is represented
by an NVIDIA Jetson TX-2 platform. For machine learning
tasks, it is equipped with a GPU that offers 256 Pascal cores,
running at 1.3 GHz. In combination with an ARM-based
Quadcore CPU, the Jetson hardware has a high performance
to power ratio, as it runs at 15 W in the MAX-P configuration
for maximum performance. From a software perspective, the
node is operating on unmodified 64-bit Jetson Linux. The
measurement of the partitioned neural network workloads is
performed using PyTorch accelerated by CUDA libraries and
the aforementioned PyTorch Benchmark module, taking the
median latency out of 1000 consecutive runs.

A. Workloads

As exemplary workloads, we select three network topolo-
gies: Fully Convolutional Network (FCN) ResNet-50 realizing



7× 7 Conv + Pool Bottleneck FCNHead

3× 244× 244 21× 28× 28

×4

× n (@)

1
×

1
C

on
v

3
×

3
C

on
v

1
×
1

C
on

v

1
×

1
C

on
v

+

R
eL

U

R
eL

U

@ @

@

Fig. 3: Exemplary overview of the FCN ResNet structure with
the partitioning points highlighted by scissors for distribution
of the network among different platforms

semantic segmentation in e.g. autonomous driving, as well as
GoogLeNet [26] and SqueezeNet V1.1 [27] both performing
image classification tasks. Partitioning of neural networks is
not advisable for each individual layer or layer type, respec-
tively. State-of-the-art networks often use skip connections to
prevent vanishing gradients during training. Skip connections
are usually grouped into building blocks. Partitioning the
network within these building blocks would introduce a larger
amount of data to transfer and a greater memory footprint.
For this reason, we choose to introduce partitioning points at
which a separation of the neural network is favorable. These
are usually placed in between the aforementioned building
blocks and in layers without skip connections. In addition, we
added an Identity layer in the beginning of each of our selected
topologies to evaluate an entire execution on the remote node
as well. For a deeper understanding of the partitioning points,
Fig. 3 shows a practical example of an FCN ResNet-50 in
more detail, with small scissor icons highlighting the favorable
partitioning points.

ResNets are available in different configurations and thus
varying complexity levels [28]. For FCN ResNet, usually
ResNet-50 and ResNet-101 configurations are used, reaching
91.4% or 91.7% pixel accuracy, respectively. In the topology
level, the network consists of a configuration independent head
and tail, as well as four Bottleneck blocks. Each Bottleneck
block has n residual blocks (upper part of Fig. 3), which
can be partitioned individually but not in itself. The first
residual block has a downsampling feature, which is realized
by an additional 1× 1 convolution in the branch. The amount
of residual blocks in each Bottleneck is determined by the
configuration. ResNet-50, for instance, has 3, 4, 6 and 4
residual blocks in each Bottleneck. The network head consists
of a large convolution and max pool to reduce the dimensions,
as well as a batch normalization layer. Whereas the tail has two
convolutions with batch normalization to build the segmented
output. Our network is trained for 21 segmentation classes.
Head and tail can be partitioned for each individual layer,

TABLE I: Median simulation time to evaluate system modules
for different CNN architectures out of 50 runs. The edge node
evaluation includes 1000 measurements for each element in
the given set of partitioned CNN models. Simulation time of
the link is very short and is therefore neglected.

Architecture Partitioning Sensor Node Edge Node
points (sim. time) (sim. time)

FCN ResNet50 25 610 s 3320 s

GoogLeNet 19 410 s 395 s

SqueezeNet V1.1 17 167 s 54 s

resulting in 25 partitioning points for FCN ResNet-50.
Partitioning points for GoogLeNet and SqueezeNet V1.1 are

defined in a similar fashion. GoogLeNet consists of multiple
Inception modules that offer different paths between the layers,
with different convolution filter sizes. This approach thereby
allows for minimal weight sparsity. In addition to the Inception
modules, the networks consist of simple convolutions, pooling
and dense layers. Inserting a partitioning point after each of
these modules, sums up to 19 partitioning points in GoogleNet.

SqueezeNet’s topology aims for a very low amount of
parameters to reduce the memory footprint. Similar to In-
ception modules of GoogLeNet, it therefore incorporates Fire
modules which perform an efficient feature extraction with
concurrent 1x1 and 3x3 convolutions. SqueezeNet also stacks
multiple Fire modules with pooling operations upon each
other, with a dense layer for classification at the end. In total,
SqueezeNet V1.1 provides 17 partitioning points.

B. Simulation Time

In general, the main purpose of simulation is accelerating
the design process by providing good estimates in terms of la-
tency and energy for hardware/software co-design. Therefore,
in the case of a large design space, fast simulation enables
broad exploration to determine an optimal system architecture.
Our simulation toolchain only adds a marginal simulation
time overhead to the integrated tools for CNN analysis and
partitioning between sensor and edge node.

In contrast, the estimates for inference of CNNs on a non-
parameterizable off-the-shelf accelerator, such as the NVIDIA
Jetson TX-2 GPU platform, can be directly generated and need
no modeling by Timeloop and Accelergy. However, a certain
reliability of the estimations has to be ensured. We therefore
ran each simulation 50 times in total and determined the
median value for the corresponding metric. In order to allow
fair comparison between different architectures, the toolchain
configuration is the same for all applications, including the
accelerator analyzed using Timeloop. Thereby, our sensor node
is based on a Simba-like accelerator architecture [13].

Since the evaluation of the link is based on a simple math-
ematical model, the computation takes less than a millisecond
and can therefore be neglected. The results are shown in
Table I. FCN ResNet50 takes the longest time for evaluating
the set of partitioning points (3320 s), which is obvious due to



being the largest network examined in the scope of our work.
In contrast to GoogLeNet and SqueezeNet V1.1, Timeloop
finds an optimal mapping for each CONV layer significantly
faster than the Jetson TX-2 can perform 1000 CNN inferences
for each partitioned model in total.

C. Experimental Results

For our evaluation, we assume a common embedded system
which can be found in automotive or robotics. It consists of
a centralized off-the-shelf GPU deployed in a high power
domain and specialized sensor node accelerators that are
integrated in a low power domain. Both platforms are con-
nected via a five-meter Gigabit Ethernet cable. The low power
domain for the sensor nodes leads to a simpler and far less
error-prone on-board network. This leaves us with several
possible optimization goals. Since we assume constant power
consumption in the edge node, we only have to consider
the sensor node and link for evaluating energy consumption.
Due to the size of the CNNs, the accelerator deployed on
the sensor node to evaluate FCN ResNet-50 and GoogLeNet
is a Simba-like architecture [13] clocked at 500 MHz. In
contrast, SqueezeNet can be inferred on a smaller, less energy
consuming accelerator. Consequently, we choose an Eyeriss-
like architecture [11] clocked at 200 MHz to obtain the
corresponding evaluation metrics that can be found below.

1) FCN ResNet-50: The estimated energy of the sensor
node and the communication link is shown in Fig. 4a. As
can be seen, if a single CONV layer is followed by a Batch
Normalization (BatchNorm2d) and ReLU layer, e.g. in case
of Conv2d:2-1, partitioning between these layers makes no
difference for the data amount to be transferred over the link.

When choosing an early partitioning point, the energy
consumed in the sensor node is very low, and due to the
large output feature maps, the communication link domi-
nates the energy demand. In the following layers, the output
feature maps are getting smaller, leading to fewer data on
the communication link, with local minimums at partitioning
point Maxpool2d: 2-4 and partitioning point Bottleneck: 3-7.
These mark our first points of interest. In case communication
bottlenecks on the link are identified and energy demand on
the sensor node has to be kept low, we favor one of these
solutions.

Our estimated latency in Fig. 4b shows that only minor
differences can be noticed between execution of the CNN
mainly on the specialized sensor node accelerator compared
to execution mainly on the off-the-shelf GPU. Therefore,
the design decision has to be made with respect to energy
consumption, e.g., regarding the maximum amount of energy
that should be consumed on the sensor node.

Executing the majority of the DNN on the sensor node
contradicts the optimization goal of low energy consumption
on the sensor node. Obviously, the maximum of energy is
consumed, when the backbone network is entirely executed
on the sensor node. Therefore, we define partitioning point
Bottleneck: 3-13 as our third point of interest, due to the steep
rise of sensor energy demand when we select later partitioning

Ide
nti

ty

Con
v2

d:
2-1

Batc
hN

orm
2d

: 2-2

ReL
U: 2-3

M
ax

Poo
l2d

: 2-4

Bott
len

ec
k:

3-1

Bott
len

ec
k:

3-2

Bott
len

ec
k:

3-3

Bott
len

ec
k:

3-4

Bott
len

ec
k:

3-5

Bott
len

ec
k:

3-6

Bott
len

eck
: 3-7

Bott
len

ec
k:

3-8

Bott
len

ec
k:

3-9

Bott
len

ec
k:

3-1
0

Bott
len

ec
k:

3-1
1

Bott
len

ec
k:

3-1
2

Bott
len

eck
: 3-1

3

Bott
len

ec
k:

3-1
4

Bott
len

ec
k:

3-1
5

Bott
len

ec
k:

3-1
6

Con
v2

d:
2-9

Batc
hN

orm
2d

: 2-1
0

ReL
U: 2-1

1

Con
v2

d:
2-1

30

50

100

150

200

Partitioning point

E
st

im
at

ed
E

ne
rg

y
[m

J]

Sensor Node Link(a)

Ide
nti

ty

Con
v2

d:
2-1

Batc
hN

orm
2d

: 2-2

ReL
U: 2-3

M
ax

Poo
l2d

: 2-4

Bott
len

ec
k:

3-1

Bott
len

ec
k:

3-2

Bott
len

ec
k:

3-3

Bott
len

ec
k:

3-4

Bott
len

ec
k:

3-5

Bott
len

ec
k:

3-6

Bott
len

eck
: 3-7

Bott
len

ec
k:

3-8

Bott
len

ec
k:

3-9

Bott
len

ec
k:

3-1
0

Bott
len

ec
k:

3-1
1

Bott
len

ec
k:

3-1
2

Bott
len

eck
: 3-1

3

Bott
len

ec
k:

3-1
4

Bott
len

ec
k:

3-1
5

Bott
len

ec
k:

3-1
6

Con
v2

d:
2-9

Batc
hN

orm
2d

: 2-1
0

ReL
U: 2-1

1

Con
v2

d:
2-1

30

100

200

300

Partitioning point

E
st

im
at

ed
L

at
en

cy
[m

s]

Sensor Node Link Edge Node(b)

Fig. 4: FCN ResNet-50 evaluation results of each reason-
able partitioning using a Simba-like architecture clocked at
500 MHz in the sensor node. Since we assume static power
consumption in edge node, energy estimation is only shown
for sensor node and link. The partitioning points MaxPool2d:
2-4 and Bottleneck: 3-7 are favorable in terms of energy
consumption in the sensor node. Bottleneck: 3-13 marks a
point of interest in terms of optimal latency balancing.

points. This point fulfills a good trade-off between latency and
energy consumption on the sensor node and should be chosen
when a well-balanced system is preferred.

2) GoogLeNet: In contrast to the FCN ResNet-50, our
evaluation of GoogLeNet, depicted in Fig. 5, clearly shows
two anomalies which highlight the relevance of our proposed
simulation toolchain. When partitioning at BasicConv2d: 1-
1 or BasicConv2d: 1-4, the necessary amount of data to be
transferred occupies the link significantly, which leads to peaks
in both energy and latency. As the output feature maps of
the layers get smaller, the energy consumption of the link
reduces, which makes partitioning point Inception: 1-9 and
the succeeding layers interesting regarding our optimization
goal. Additionally, Inception: 1-6 provides a good trade-off for
both small link and sensor node energy consumption, marking
another point of interest.

Our estimated latency in Fig. 5b clearly shows that execut-
ing the CNN entirely on the specialized sensor node accel-
erator is preferred over execution on the off-the-shelf GPU.
A global minimum can be observed for the partitioning point



Ide
nti

ty

Basi
cC

on
v2

d:
1-1

M
ax

Poo
l2d

: 1-2

Basi
cC

on
v2

d:
1-3

Basi
cC

on
v2

d:
1-4

M
ax

Poo
l2d

: 1-5

In
cep

tio
n: 1-6

Inc
ep

tio
n:

1-7

M
ax

Poo
l2d

: 1-8

Inc
ep

tio
n:

1-9

Inc
ep

tio
n:

1-1
0

Inc
ep

tio
n:

1-1
1

Inc
ep

tio
n:

1-1
2

Inc
ep

tio
n:

1-1
3

M
ax

Poo
l2d

: 1-1
4

In
cep

tio
n: 1-1

5

Inc
ep

tio
n:

1-1
6

Ada
pti

ve
Avg

Poo
l2d

: 1-1
7

Line
ar:

1-1
90

5

10

Partitioning point

E
st

im
at

ed
E

ne
rg

y
[m

J]
Sensor Node Link(a)

Ide
nti

ty

Basi
cC

on
v2

d:
1-1

M
ax

Poo
l2d

: 1-2

Basi
cC

on
v2

d:
1-3

Basi
cC

on
v2

d:
1-4

M
ax

Poo
l2d

: 1-5

In
cep

tio
n: 1-6

Inc
ep

tio
n:

1-7

M
ax

Poo
l2d

: 1-8

Inc
ep

tio
n:

1-9

Inc
ep

tio
n:

1-1
0

Inc
ep

tio
n:

1-1
1

Inc
ep

tio
n:

1-1
2

Inc
ep

tio
n:

1-1
3

M
ax

Poo
l2d

: 1-1
4

In
cep

tio
n: 1-1

5

Inc
ep

tio
n:

1-1
6

Ada
pti

ve
Avg

Poo
l2d

: 1-1
7

Line
ar:

1-1
90

20

40

60

Partitioning point

E
st

im
at

ed
L

at
en

cy
[m

s]

Sensor Node Link Edge Node(b)

Fig. 5: GoogLeNet evaluation results of each reasonable parti-
tioning using a Simba-like architecture clocked at 500 MHz in
the sensor node. Large output feature maps of BasicConv2d:
1-1 and BasicConv2d: 1-4 lead to peaks in both link energy
consumption and latency. If minimal latency is required, the
network has to be executed entirely on sensor node. Addition-
ally, partitioning point Inception: 1-6 provides a good trade-off
in terms of energy consumption, latency and link usage.

Inception: 1-15 marking our second point of interest. When
a minimum latency is preferred, this point is advantageous.
Since the results here move in opposite linear directions, most
of the partitioning points are Pareto-like. Therefore, it must be
decided whether lower latency or lower energy consumption
is more important for the specific use case.

3) SqueezeNet V1.1: Similar to GoogLeNet, the generated
results of the SqueezeNet, depicted in Fig. 6, reveal highly
disadvantageous partitioning points. Partitioning after the first
or last CONV layer (or ReLU layer), the large amount of out-
put feature data to be transferred over the link leads to peaks
in both energy consumption and latency. When the energy
consumed by the link is to be minimized, the partitioning point
Fire: 2-11 marks a point of interest, leaving out sending only
CNN results after the last layer. Looking at the latency plot,
this point also marks the global minimum, providing a very
good trade-off. Another partitioning point worth mentioning
is MaxPool2d: 2-6 having the lowest energy consumption for
sensor node and link combined, leaving out the first layer
(Identity). Since CNN inference solely on the edge node is
not favorable in multi-sensor systems due to high uncertainties

Ide
nti

ty

Con
v2

d:
2-1

ReL
U: 2-2

M
ax

Poo
l2d

: 2-3

Fire
: 2-4

Fire
: 2-5

M
ax

Poo
l2d

: 2-6

Fire
: 2-7

Fire
: 2-8

M
ax

Poo
l2d

: 2-9

Fire
: 2-1

0

Fire
: 2-1

1

Fire
: 2-1

2

Fire
: 2-1

3

Con
v2

d:
2-1

5

ReL
U: 2-1

6

Ada
pti

ve
Avg

Poo
l2d

: 2-1
70

5

10

Partitioning point

E
st

im
at

ed
E

ne
rg

y
[m

J]

Sensor Node Link(a)

Ide
nti

ty

Con
v2

d:
2-1

ReL
U: 2-2

M
ax

Poo
l2d

: 2-3

Fire
: 2-4

Fire
: 2-5

M
ax

Poo
l2d

: 2-6

Fire
: 2-7

Fire
: 2-8

M
ax

Poo
l2d

: 2-9

Fire
: 2-1

0

Fire
: 2-1

1

Fire
: 2-1

2

Fire
: 2-1

3

Con
v2

d:
2-1

5

ReL
U: 2-1

6

Ada
pti

ve
Avg

Poo
l2d

: 2-1
70

10

20

30

Partitioning point

E
st

im
at

ed
L

at
en

cy
[m

s]

Sensor Node Link Edge Node(b)

Fig. 6: SqueezeNet V1.1 evaluation results of each reason-
able partitioning using an Eyeriss-like architecture clocked
at 200 MHz in the sensor node. Large output feature maps
of Conv2d: 1-2 and ReLU: 2-2 lead to peaks in both link
energy consumption and latency. Partitioning point Fire: 2-
11 offers minimal latency by also providing very low energy
consumption. A good trade-off between latency and energy
consumption can be achieved by considering partitioning point
MaxPool2D: 2-6.

introduced regarding latency, this partitioning point should
be considered offering a good trade-off between latency and
energy consumption.

V. CONCLUSION

The deployment of AI in embedded systems faces con-
straints such as latency restrictions and limited energy
consumption which have to be considered during hard-
ware/software co-design of neural networks. In this paper,
we presented a simulation toolchain for fast evaluation of
hardware-aware CNN partitioning for embedded AI applica-
tions. Since it is based on open-source tools, it offers straight-
forward integration into existing toolflows. Our approach
allows exploring offloading CNN inference while explicitly
taking the hardware integrated in the sensor node into account.
As a result, our proposed simulation toolchain can be used to
determine an optimal partitioning point with respect to the
application and its requirements.

The evaluation results presented thereby proved the effec-
tiveness of the simulation toolchain to find multiple points
of interest for three, commonly used CNNs. Based on the



output metrics provided, we were able to identify several
optimal partitioning points for FCN ResNet-50, GoogLeNet,
and SqueezeNet V1.1.

In particular, the evaluation results showed interesting in-
sights into CNN partitioning for distributed systems. These
findings could be beneficially taken into account during Neural
Architecture Search (NAS) for embedded AI applications.
Hence, future work will include developing and evaluating an
automated design space exploration framework for hardware-
aware CNN partitioning to support NAS and integration of
other DNN models enabling the simulation toolchain to eval-
uate a broader range of applications.

ACKNOWLEDGMENT

This work was funded by the Ger-
man Federal Ministry of Educa-
tion and Research (BMBF) under
grant number 16ME0096 (ZuSE-
KI-mobil). The responsibility for
the content of this publication lies
with the authors.

REFERENCES

[1] N. Fasfous, M.-R. Vemparala, A. Frickenstein, M. Badawy, F. Hund-
hausen, J. Höfer, N.-S. Nagaraja, C. Unger, H.-J. Vögel, J. Becker, T. As-
four, and W. Stechele, “Binary-lorax: Low-latency runtime adaptable
xnor classifier for semi-autonomous grasping with prosthetic hands,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), 2021, pp. 13 430–13 437.

[2] S. Han et al., “EIE: efficient inference engine on compressed deep
neural network,” CoRR, vol. abs/1602.01528, 2016. [Online]. Available:
http://arxiv.org/abs/1602.01528

[3] I. Walter, J. Ney, T. Hotfilter, V. Rybalkin, J. Hoefer, N. Wehn, and
J. Becker, “Embedded face recognition for personalized services in the
assistive robotics,” in Machine Learning and Principles and Practice
of Knowledge Discovery in Databases. Cham: Springer International
Publishing, 2021, pp. 339–350.

[4] T. Hotfilter, F. Kempf, J. Becker, D. Reinhardt, and I. Baili, “Embedded
image processing the european way: A new platform for the future
automotive market,” in 2020 IEEE 6th World Forum on Internet of
Things (WF-IoT), 2020, pp. 1–6.

[5] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey
of accelerator architectures for deep neural networks,” Engineering,
vol. 6, no. 3, pp. 264–274, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2095809919306356

[6] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “Redeye:
Analog convnet image sensor architecture for continuous mobile
vision,” SIGARCH Comput. Archit. News, vol. 44, no. 3, p. 255–266,
jun 2016. [Online]. Available: https://doi.org/10.1145/3007787.3001164

[7] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host
partitioning of deep neural networks with feature space encoding for
resource-constrained internet-of-things platforms,” in 2018 15th IEEE
International Conference on Advanced Video and Signal Based Surveil-
lance (AVSS), 2018, pp. 1–6.

[8] D. Hu and B. Krishnamachari, “Fast and accurate streaming cnn infer-
ence via communication compression on the edge,” in 2020 IEEE/ACM
Fifth International Conference on Internet-of-Things Design and Imple-
mentation (IoTDI), 2020, pp. 157–163.

[9] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[10] L. Yang, W. Jiang, W. Liu, E. H. M. Sha, Y. Shi, and J. Hu, “Co-
exploring neural architecture and network-on-chip design for real-time
artificial intelligence,” in 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2020, pp. 85–90.

[11] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, 2019.

[12] NVIDIA Corporation. (2018, Nov.) The nvidia deep learning accelerator.
[Online]. Available: http://nvdla.org/

[13] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler,
“Simba: Scaling deep-learning inference with multi-chip-module-
based architecture,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New
York, NY, USA: Association for Computing Machinery, 2019, p.
14–27. [Online]. Available: https://doi.org/10.1145/3352460.3358302

[14] H. Genc, A. Haj-Ali, V. Iyer, A. Amid, H. Mao, J. Wright, C. Schmidt,
J. Zhao, A. Ou, M. Banister et al., “Gemmini: An agile systolic array
generator enabling systematic evaluations of deep-learning architec-
tures,” arXiv preprint arXiv:1911.09925, vol. 3, 2019.

[15] T. Hotfilter, J. Hoefer, F. Kreß, F. Kempf, and J. Becker, “Flecsim-
soc: A flexible end-to-end co-design simulation framework for system
on chips,” in 2021 IEEE 34th International System-on-Chip Conference
(SOCC), 2021, pp. 83–88.

[16] M. S. Abdelfattah, Ł. Dudziak, T. Chau, R. Lee, H. Kim, and N. D.
Lane, “Best of both worlds: Automl codesign of a cnn and its hardware
accelerator,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC), 2020, pp. 1–6.

[17] F. Muñoz-Martı́nez, J. L. Abellán, M. Acacio, and T. Krishna, “Stonne:
A detailed architectural simulator for flexible neural network accelera-
tors,” ArXiv, vol. abs/2006.07137, 2020.

[18] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Kr-
ishna, “Scale-sim: Systolic cnn accelerator simulator,” arXiv preprint
arXiv:1811.02883, 2018.

[19] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A systematic approach to dnn accelerator evaluation,” in 2019 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019, pp. 304–315.

[20] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of fpga-based
neural network accelerator,” 2018.

[21] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-
level energy estimation methodology for accelerator designs,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2019, pp. 1–8.

[22] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-
p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in 2011 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2011, pp. 694–701.

[23] Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA), 2014, pp. 97–
108.

[24] P. Reviriego, J. Maestro, J. Hernández, and D. Larrabeiti, “Study
of the potential energy savings in ethernet by combining energy
efficient ethernet and adaptive link rate,” Transactions on Emerging
Telecommunications Technologies, vol. 23, no. 3, pp. 227–233, 2012.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.
1526

[25] J. Gámiz-Caro and A. Grau, “Message delay in distributed control
systems through ethernet,” IFAC Proceedings Volumes, vol. 38, no. 1,
pp. 36–41, 2005, 16th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667016371737

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” arXiv:1409.4842 [cs], Sep 2014, arXiv: 1409.4842.
[Online]. Available: http://arxiv.org/abs/1409.4842

[27] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5mb model size,” arXiv:1602.07360 [cs], Nov 2016,
arXiv: 1602.07360. [Online]. Available: http://arxiv.org/abs/1602.07360

[28] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” arXiv:1605.06211 [cs], May 2016, arXiv:
1605.06211. [Online]. Available: http://arxiv.org/abs/1605.06211


